
UC Irvine
ICS Technical Reports

Title
Asynchronous data retrieval from an object-oriented database

Permalink
https://escholarship.org/uc/item/67s243dx

Authors
Gilbert, Jonathan P.
Bic, Lubomir

Publication Date
1988
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/67s243dx
https://escholarship.org
http://www.cdlib.org/


Notice; This Material
may be protectecl
by Copyright Law
(Title 17 U.S.C.)

Asynchronous Data Retrieval
from an Object-Oriented Database

Jonathan P. Gilbert

Lubomir Bic

Technical Report 88—10

Department of Information and Computer Science,

University of California, Irvine, CA 92717, USA.

Abstract

We present an object-oriented semantic database model which, similar

to other object-oriented systems, combines the virtues of four concepts: the

functional data model, a property inheritance hierarchy, abstract data types

and message-driven computation. The main emphasis is on the last of these

four concepts. We describe generic procedures that permit queries to be pro

cessed in a purely message-driven manner. A database is represented as a

network of nodes and directed arcs, in which each node is a logical processing

element, capable of communicating with other nodes by exchanging messages.

This eliminates the need for shared memory and for centralized control dur

ing query processing. Hence, the model is suitable for implementation on a

multiprocessor computer architecture, consisting of large numbers of loosely

coupled processing elements.



1. Introduction

The overall goal of the semantic data modeling project at UCI is to develop a

semantic database system suitable for highly parallel processing. We believe that

this can be accomplished if the underlying model is completely message-driven,

i.e., without any centralized control and centralized memory. First, however,

the semantics of the model and its operations must be defined. Based on these

definitions, procedures that govern the propagation of messages during processing

can be derived.

The present paper is a first step toward such a model. It describes the basic

philosophy of our approach, the components of the model, and the semantics of

queries. We also outline the generic procedures that permit queries to be executed

in a purely message-driven manner.

The model has all the desirable features of a conceptual modeling system.

These features are well known and have been presented many times before: see, for

example, [BrodieSO, Borgida87]. In particular, the model combines the virtues

of four concepts: the functional data model [ShipmanSI], a property inheritance

hierarchy (common to most semantics networks [Findler79] and some frame based

languages like KRL [Bobrow77]), the principles of message-driven computation

[Arvind78, Agha85], and the data hiding/abstract data types of object-oriented

programming systems [Stefik86].

The paper is organized as follows: In section 2, we describe the representation

and organization of base and derived data within our paradigm. We also sketch

the syntax of queries and specify their semantics. Section 3 shows how requests

can be processed asynchronously by propagating messages through the database

hierarchy. Finally, section 4 contains some concluding remarks and points out the

relationship of our model to some other approaches.

2. Components of an Object-Oriented Model

In this section, we begin by describing the representation, components and

organization of data in our model. After the basics have been described, we present

the message passing strategy.



2.1. Data Representation

A database is represented by a network of nodes and directed edges. Each

node represents an independent database object. We adopt the philosophy found in

many semanticdata models (see, for example, [Codd79, HammerSI, Banerjee87]):
higher-level (molecular) objects are recursively constructed from simpler database

objects. Nodes of the network represent objects within the database enterprise

(for example, people, colors, automobiles, or engines) and arcs represent various

associations among these objects. There are two basic kinds of association: the

IS-A relationship and the ROLE relationship. The first is used to construct an

inheritance hierarchy (see, for example, [Dayal84]) while the second is the func
tional "glue" that binds together molecular structures. These associations and the

overall structure of a database is similar to those in an Omega knowledge base

[Attardi86]. Data are organized in an incremental fashion, with more refined data

descriptions beneath their more general ancestors' descriptions in the IS-A hierar

chy. Figure 1 shows a single branch of a "modes-of-transportation" hierarchy. It

is used to illustrate various aspects of the two hierarchies found in our model.

We distinguish two types of nodes: ellipses which represent sets of non-

decomposable atomic objects and rectangular boxes which represent sets of com

pound molecular objects. The IS-A hierarchy (in which nodes are connected by the

unnamed arcs) facilitates inheritance of properties and relationships, represented

by ROLE associations. The arrows of the IS-A hierarchy show the direction in which

inheritance takes place. We chose the name "role", rather than property, function,

or relationship, to stress the fact that molecular objects are recursive compositions

of simpler objects and each of the simpler objects plays a certain role in the "super"

object. A database user may choose those roles he perceives as inherent (attributes)

parts of an object and those which are more like relationships between independent

objects. The former are displayed inside the objects description while the latter

are displayed outside of the object. For example, in figure 1 the roles color and

engine are perceived as part of an automobile while the role owner is identified

as a relationship between an automobile and a person. Notice that these choices

and many other choices related to the users' perception of the data are subjective.

Although meaningful to the user, whether a role is displayed inside or outside of

an object is irrelevant to the semantics of the database itself. On the other hand,

there may be some roles (displayed inside or outside the node) which are absolutely



Figure 1

Single Branch "Modes-of-Transportation

essential to the description of an object. We call this type of role a key role; all



other roles are ordinary roles (which may or may not be instantiated in all leaves).
For example, in figure 1 it the owner role (from cars to people) is key because (in

this very simple world) aU cars must be owned by people. However, if we were to

look at that same relationship in the other direction we would find that it is not

key because some, not all people own cars.

There is no explicit distinction made between sets of objects and individual

elements in our model. Conceptually, each node contains a generic description

of an object so that leaf nodes of the IS-A hierarchy are sets containing exactly

one object. However, since there are relatively few internal (non-leaf) nodes it is

desirable to store the bulk of the description and semantics at this level thereby

minimizing the eimount of redundant information at the "element" or leaf level.

Furthermore, internal nodes serve a dual purpose: they represent the set of leaves

reachable by following outgoing IS-A arcs and they serve as a type for those leaves.

One major advantage of this uniform view of sets and elements can be illustrated

by the following simple example: If we assume that CARS is a multi-set, then, if

Fred owned a fleet of identical Red_Racers, instead of just one, it would not be

necessary to repeat the Red_Racer's description for each car. Conceptually, the

current Red_Racer node worJd become a generic description and empty children

nodes would be inserted to represent the individual automobiles.

2.2. The External Schema

The global external schema contains only non-leaf nodes (set description ob

jects). It describes for the user the entire database enterprise in a single connected

graph. Even though leaf nodes (object instances) are not included in the global

schema, the schema is often too large to display as a single graph; therefore, the

user may view the global schema as several graphs rather than a single graph. The

system provides an interactive graphics browser that permits users to explore the

schema. An object is selected as the current point of interest. This node and the

nodes which are directly connected to it by a single IS-A or role arc are displayed

in a window for the user. For example, when displaying the PEOPLE object's node

in figure 1 nodes representing CARS and NAMES would also be shown (without any

further detail). The user can navigate through the schema (change the point of

interest) by moving a mouse pointer to an object and pressing the appropriate

mouse button. The new node's object then becomes the point of interest. Many



objects and arcs in a schema are not bast but derived (shown as dashed boxes and

arrows). Base objects have a concrete representation stored in the database while

derived (or virtual) data (described in more detail later) axe calculated by applying

riiles when a user tries to "retrieve" that data. In the day to day interactions with

the database, there is no visible difference between virtual and stored data for the

user except that virtual data cannot be directly updated.

2.3. Derived Data

Much of the semantic richness of this model comes from its support of a

variety of derived data. There are two types of derived data: sets and roles, which

are represented by rules that are part of an object description. The syntax of

these rules is beyond the scope of this short paper but we do discuss the derived

data available and, in the next section, the data retrieval algorithms including the

instructions necessary for retrieving data from virtual objects and axes. To better

illustrate the three kinds of union-subset and aggregate data, we present a non-

trivial example (shown in figure 2) which is based on examples in [McLeod78].

Note that dashed nodes and arcs represent derived data.

2.3.1, Derived Sets

Union-subset nodes are a grouping mechanism which allow the formation

of heterogeneous sets. AU union-subset nodes contain pointers to the base sets

that are the basis for a set abstraction. There are three types of union-subset

abstraction called category, collection and power sets. To define a derived set a

user must specify: its name, its type, the sets whose union are the basis for the

(maximal) derived set, restrictions on each set's roles (if any), and any new roles

which are associated with objects in the virtual set.

Collection sets "automatically" include all leaves in all base sets which are

in the union and whose descriptions are consistent with any restrictions placed on

that set's roles. In figure 2 oil tankers is a collection because its members are all

military and merchant ships whose class is "oil tanker". Unlike collection sets,

a category set's node contains explicit pointers to its members which have been

specifically inserted into that category. Banned Ships (see figure 2) are an example

of a category. There is no rule associated with the banned ships object. Any ship

may be banned but a user must explicitly ban it. Power sets can be thought of

as a generalization of the category. The major difference between them is that the



power set is based on the power set of the union of some base sets instead of their

union — each element of a power set is a category. In figure 2 convoys are modeled

as a power set because each convoy is a set of ships and not a single ship. Notice

that the roles (location and max-speed) are associated with the convoy and not

the individual ships in that convoy.

2.3.2. Derived Roles

Virtual role abstractions are classified by the action taken by the system when

it instantiates them. Actions correspond to substituting a subquery for the virtual

role, spawning the new query which is reprocessed by the node and "creating" a

virtual arc or a virtual node. A VR-arc rule causes a virtual arc to be "created"

while a VR-node causes a virtual node to be "created".

To create a VR rule a user must specify: the name of the role, the set on

which it is defined, the domain of the operation (where the rule is mapped to)

and the operation itself (which may be anything from a simple "restriction list"

to a general purpose (external) procedure or both). In addition, the user must

determine whether the rule will be evaluated at the set or instance level of the IS-A

lattice.

An example of a VR-node abstraction is aggregate data. Aggregate data are

defined by aggregate operators which abstract a single object from a set of objects.

Examples of aggregate operations are: calculating the maximum speed of a convoy

(see figure 2) or determining the average length of an oil tanker (not shown in the

figure).

VR-arc abstractions are inference rults^ so called because the relationship

which they make explicit can be inferred from the structure of schema anyway.

Information is retrieved by substituting a role request subquery for a VR-arc

"role" thereby "creating" the virtual arc. For example, consider the grandfather

relationship between people. This could be represented explicitly as a role (arc)

from an individual to his parents' fathers or it could be represented implicitly by

including a rule which states: "To find a person's grandfather, first find his parents

and then find their fathers."

To the user, derived data of both kinds can be used to retrieve information

in exactly the same way as any base role.





3. Message-Driven Processing

In an object-oriented environment, each object is an abstract data type which

includes a description of the data it represents and a set of operations {methods) for
manipulating that data. These methods are triggered when messages are received

from other objects. The data representation is not visible to the outside world; the

user "sees" a "black box" and the actions (which may vary from one abstraction to

another) for the manipulation data inside the box. In our model, a similar situation

exists except that communication between objects is achieved by a small number

of generic methods.

The object-oriented paradigm with its abstract data types and message pass

ing semantics mcike our model suitable for implementation on a highly parallel

loosely coupled multiprocessor. The ideal architecture has no centralized control

or memory and each node may be mapped onto a different processing element (PE)
as long as there are physical communication paths for each logical arc. There eire

many architectures that satisfy this requirement.

3.1. Internal Representation of Arcs and Objects

Objects are data structures that are mapped onto the local memory of a

processor (PE). The description of an object contains information about all data

within that object. It must include components that represent arcs, derived data

and operations (or methods) that are triggered by incoming messages. In addition,

the description contains information about individual roles: i.e. which of them are

key and where they are to be displayed. We have shown that roles' nodes may be

displayed inside and outside of their "super" object's node. The semantics of these

differences are in some sense "external". This means that, although the placement

of a role node may make a difference to the way in which a user perceives a concept,

placement makes no difference to the way that the system processes a query on

an object. On the other hand, the difference between key and non-key roles are

internsd since they are absolutely essential to the description of an object.

Arcs represent either IS-A or ROLE relationships between objects; they are

implemented by using pointers where each pointer identifies a PE and an address

within that PE's local memory space. All arcs are bi-directional which means that

each arc is actually represented by two pointers, one at each of its ends. Atomic

roles are not represented by independent objects. Since atomic objects are simple



values, it would be wasteful to have independent objects that just return a vedue.

Instead, we store singleton roles locally so that they can be retrieved from an

object's local memory without hooding the system with unnecessary messages.

3.2. Information Retrieval

Queries are formulated and processed against the external schema. There

are two kinds of information retrieval queries. The first variety of retrieval request

refers to an object as a set while the second refers to it as a type. A user may

want to retrieve all elements of a set which have particular properties (we call

this kind of request a subset query) or a user may want information about the

objects associated with a particular role. (This second type of query is called a

role query.) The basic strategy is for the user to send a message to the injection

point node which either replies to the request directly or propagates the query

to other objects and waits for their response. When all objects have responded,

the node can combine the results and return the result to the sender. This query

processing strategy and the two query types are implemented using four types of

generic message. These messages are called: (1) the subset query request message,

(2) the role query request message, (3) the subset query result message and (4) the

role query result message. The four message types are illustrated in figure 3. Note

that the arcs at the top and bottom of the object represent IS-A relationships and

arcs on the sides represent role relationships.

By examining the message, an object can determine which action it should

take (there is exactly one action for each message type). We now describe the

general strategy and show high-level descriptions of the procedures used to process

user requests.

Conceptually, a request for information either points to a set of objects and

retrieves the subset of those that satisfy some list of restrictions on their outgoing

roles or retrieves information about some of an object's roles. Restrictions are

recursively decomposed and applied to objects reached via role arcs starting at the

original object, until the entire restriction is satisfied or fails. First we give the

basic syntax of queries. Each query can be thought of as a four-tuple:

((set); (query-type); (query-restriction); (query-output)) where:

(set) the name of the injection point node.

(query-type) identifies the query as a role request or a subset request.



(2) role
query request

(i) subset
query

request

Object

(3) subset
t ' query

result

(4) role
query result

Figure 3

The Four Message Types

(query-restriction) a set of paths which define the restrictions on roles

involved in the query. Its format is comparable to the body of the is-there?

query in Omega [Attardi86]. The processing, however, is not the same.

(query-output) decribes roles and format of the output of the query.

To illustrate the expressive power of these queries and to provide a set of

concrete examples for subsequent discussions, consider the list of queries in figure 4.

When processing any query, the system must differentiate between key and

non-key roles. The reason for this is obvious: If a role is key to a set's object then

it definitely exists for all instances of that set; if it is non-key then it may exist

in some of a set's instances. Notice that this definition of key is quite different

from a key attribute in many traditional database models since uniqueness is not

necessary.

There are two kinds of question that can be asked about a role: (1) does the

role exist and (2) if it exists, does it map to a particular set of objects or values.

The semantics of a role request query are captured by the two procedures shown

in figure 5. A query names an injection point r and lists the roles (and restrictions

on those roles) which are the focus of the query. A status value is calculated for



English "equivalents" of the queries are shown in iialics; comments are shown in roman font..

1. List all Red Cars Owned by a Person Named Fred: The key word here is "list" the system

produces a list of cars.

(Red Cars; subset-request; owner.name - "Fred"; List(Value(All))).

2. Are there any Red Cars Owned by a Person Named Fred: This time a "yes" or "no" answer

will be produced.

(Red Cars; subset-request; owner.name = "Fred"; Exists(All)).

3. Is it possible thai a Person Named Fred could be the owner of a Red Car. This is a query

about the owner role and not the set of Red Cars.

(Red Cars; role-request; owner.name = "Fred"; Exists(All)).

Figure 4

Sample Queries

all roles named in the query by sending a role request (sub)query message along

each of the named arcs. Each role object processes it's subquery independently

of all other role objects and the strategy is exactly the same as that followed at

the injection point. The overall strategy is that the query is dynamicly recursively

decomposed for parallel processing. Eventually, for each role path a terminal node

is reached. A terminal node is a node which can determine a status (and a value)

for a particular (sub)role; it is not necessarily a leaf node. Once the status is

known it is returned (on a role query result message) along the arc on which the

original request arrived. When a non-terminal node has collected results from all

its subqueries, they are used to determine its own status which is then sent back

to the sender of the request. Note that because of the distributed structure of the

database and the absence of centralized control in this strategy, the subqueries are

distributed and the results collected in an asynchronous manner.



Procedure Role-*Query-Reque8t (Triggered by a message of type 2)
create activity record for pending query t
for each path R in query-restriction

if head(R) is a base role then
if it is a singleton or node is terminal

then send a Role-Query-Result message to self
otherwise remove R from the restriction list ft

send a Role-Query-Request message
containing tail(R) along arcs that match head(R)

otherwise (R is a virtual role)
if node is not a leaf and R is a "set-level" rule

OR if node is a leaf and R is a "instance-level" rule

spawn appropriate subquery

Procedure Role-Query-Result (Triggered by a message of type 4)
store result

if last result for corresponding activity
determine status of query
Case 1; the original query was a Role-Query-Request

Subcase 1.1: the object is a base set
send a Role-Query-Result message to sender ft destroy activity record

SubCase 1.2: the object is union-subset node
ft its base sets have not been visited

ft the query has NOT definitely succeeded or failed
for each base set in union

send a Role-Query-Request message containing only \mfound roles
adjust activity record to reflect change in query

Subcase 1.3: the object is union-subset node
ft its base sets have not been visited

ft the query has definitely succeeded or failed
send a Role-Query-Result to sender ft destroy activity record

SubCase 1.4: the object is union-subset node
ft the result comes from a base set

store result ft destroy activity record
if it also is the last result for original activity record

then determine status of original query (minimum status found) ft
send Role-Query-Result to sender ft destroy activity record

Case 2: the original query was a Subset-Query-Request
if node is not a leaf ft status is not 5

then for each non-leaf child send Subset-Query-Request message to child
if status is 1, 2 or 3

then for each leaf child send Subset-Query-Request message to child
adjust original activity record to reflect change in query

otherwise (the node is a leaf)
send a Subset-Query-Result to sender
destroy activity record

Figure 5

Role Request Procedures



There are five possible status values for individual roles; their most general

meanings are listed below. Note that, although all five status values are not

necessjiry for processing role request queries, they are all necessary when processing

subset requests.

1. This role was found and (the restrictions on it) satisfied for all possible

instances of the set rooted at this node (for key roles only).

2. This role definitely exists for all possible instances, however, the restriction

on this role may not be satisfied (once again key roles only).

3. This role was found and exists for some instsinces of the rooted set (for

non-key roles only).

4. This role was not found.

5. This role was found and is definitely not satisfiable for any instance of the

rooted set.

The maximum value of the individual roles' status values is taken as the status

of the query for the entire object. The basic meanings of the object status values

(used by all query types) are listed below:

1. All restrictions (on roles) were satisfied.

2. All restricted roles definitely exist but some may not be satisfied.

3. Some restricted roles may exist for some instances and not others.

4. Some resticted roles were not found.

5. Some restricted roles are definitely not satisfiable.

The semantics of subset query request processing is slightly more compli

cated because subset queries spawn role queries. Figure 6 shows sketches of the

two procedures executed by a database object when it receives a subset query

message. The processing strategy depends on the propagation of messages from

the injection point down through the IS-A hierarchy possibly all the way to the

leaves. At each node visited, subset query requests spawn role request subqueries

to determine whether individual restrictions have been satisfied. There are four

basic assumptions about what happens to object descriptions as the IS-A hierarchy

is traversed towards the leaves: (1) more role descriptions may be added, (2) any

role's definition may become more restricted, (3) non-key roles may become key or

so restricted that they "disappear" and (4) virtual roles are treated like non-key

roles.



Procedure Subset-Query-Request (Triggered by a message of type 1)
if the node is a leaf ft query originated from a category node ft

object is not directly connected to that category node
then (report failure) send a Subset-Query-Result to sender
otherwise create activity record for pending query

for each path R in query-restriction
if head(R) is a base role then

if it is a singleton or node is terminal
then send a Role-Query-Result message to self
otherwise remove R from the restriction list ft

send a Role-Quexy-Request message
containing tail(R) along 2ircs that match head(R)

otherwise (R is a virtual role)
if node is not a leaf and R is a "set-level" rule

OR if node is a leaf and R is a "instance-level" rule

spawn appropriate subquery

Procedure Subset-Query-Result (Triggered by a message of type 3)
store result ft

if last result for corresponding activity
then determine status of query ft send Subset-Query-Result to sender ft

destroy activity record

Figure 6

Subset Request Procedures

The semantics of a subset request query are captured by the two recursive

procedures shown in figure 6. They are applied as follows: the query names a node

s as the target set, from which elements are to be retrieved; S represents the set

of nodes reachable from s by following IS-A arcs and L is a subset of S containing

only leaf nodes (elements). Each element of L is an object which may be retrieved

by the query, if it satisfies the specified restrictions.

In each element of S, the status of all roles named in the query is determined

by sending role request queries along all role arcs listed on the query restriction

hst. In each node of the set S-L (i.e., non-leaf nodes), a status is determined for

each role by the role request query which is compared with the status obtained by

the node's paxent. This is necessary because some non-key roles "disappear"; if

the previous status was 3 and the current status is 4 then the current status must

be changed to 5. The object's status is then calculated and if it is not 5 then the

query (including the status values) is passed to its descendants. Nodes in the set

L determine the status in a similar way. This final value determines whether the



object satisfies the given query; if it does, the data specified in the query's output

field are retrieved and output.

Notice that all non-singleton role status values are calculated independently

and that an object must wait for all of its roles to report their status before it con

tinues processing a query. The first observation suggests a potentially high degree

of parallelism if the system is implemented on a loosely coupled multiprocessor

architecture. The second observation seems to imply that any benefit from this

parallelism is lost because objects spend much of their time waiting for results from

other objects. This conclusion is incorrect for several reasons: First, the fact that

objects spend much of their time waiting does not imply that PEs are busy waiting

or even idle. When a PE receives a request message, it creates an activity record

for the request and when all the necessary subqueries have been spawned, it stores

the activity record until it receives result messages for that request. When a result

message is received, the PE determines whether it is the last result for the query; if

it is not, the message is stored with the activity record. Otherwise, it is combined

with the other results in order to calculate the object's status. This strategy allows

for true asynchronous processing of queries and enables a high degree of paralleHsm

without using a database management system query optimizer.

3.2.1. An Example — Processing a Simple Query

To clarify our asynchronous query processing strategy, we will describe the

processing of the first sample query shown in figure 4. In order to satisfy that

request, it is propagated through the schema shown in figure 1. We assume that all

roles are key and that, initially, the status of the query and all of its roles are 4 (not

found). Since the user requested all information about red cars the system will add

all RED_CARS' roles that are not explicitly mentioned in the query to the (query-

restriction) (in this case there are just two: propulsion-system and color). Note that

these new roles can be assigned a status of 1 and, therefore, do not add significantly

to the processing time. When the RED_CARS object receives the subset request,

it decomposes the (query-restriction), stores the status of propulsion-system and

color, and sends a role request message to PEOPLE. The (query-restriction) of this

new message contains name = "Fred" and since name is a singleton the PEOPLE

object determines that "Fred" is a (not the) valid name and, therefore, returns

a status of 2 to RED-CARS. The RED_CARS object then calculates the status of



the query by taking the maximum of the roles' status values: 2. From this status

RED-CARS determines that any of its children may satisfy the query and it sends

subset request messages to the Red_Racer, the Red_Hatchback and the Red_Wagon.

If each of these objects is mapped to a different PE then each will be able to look

up its singleton roles and send role request messages to its non-singleton roles

independently and in parallel with the other objects. Eventually, Red-Hatchback

determines that its status is 5 and, therefore, it returns its status but no data. At

the same time Red_Racer and Red-Wagon determine that their status values are

1 2uid they, therefore, do return data. When RED_CARS has received subset results

from each of its children it combines the successful results and returns the objects'

descriptions to the user.

4. Conclusions

Similar to other semantic and object-oriented database models, our approach

has a clear advantage over the classical database models. The classical models are

relatively low-level and capture little of the semantics of the application domain.

There have been many research efforts directed towards improving the se

mantics of database modeling and several surveys have been published on the

subject — see, for example, [Bic86, HuLL86j. Some research has produced signif

icant enhancements to the relational model. For example, J. Smith and D. Smith

added aggregation and generalization abstractions to the relational model (both

of which are integral parts of our model) to produce their hierarchical semantic

model [Smith77]. Codd also introduced an enhancement to the relational model

[Codd79] (known as the Tasmania relational model) which includes many forms of

abstraction (including aggregation and generalization). Another approach has been

to develop new semantic models which replace the relational data model; Hammer

and McLeod's SDM [HammerSI] is a good example of this. A major drawback of

both the latter models is their extreme complexity — only the most sophisticated

users may find them useful modeling tools. By comparison, object-oriented models

like ORION [Banerjee87] and this model axe very simple to use.

We believe that object-oriented models have some advantages over each of

the semantic models. In particular, in object-oriented approaches, objects include

the procedures (methods) for manipulating the data which they contain. Because



objects communicate by sending each other messages and their methods are in

dependent local procedures, there is an excellent potential for parallel processing.

Finally, because of the generic methods which are built into its objects, our model

provides a general framework for the development of database applications.



References

[Agha85] Agha, G.A. Actors: A Model of Concurrent Computation In
Distributed Systems. Tech. Rep. No. 844. MIT Artificial Intelligence
Lab., MIT, Cambridge, Mass..

[ArvindTS] Arvind, Gostelow, K.P. and Plouffb, W. An Asynchronous
Programming and Computing Machine. Tech. Rep. No. 114a. Univ.
of CA., Irvine, Dept. of Info, and Comp. Sci..

[Attardi86] Attardi, G. and Simi M. A Description-Oriented Logic for Building
Knowledge Bases. Proc. of the IEEE 7^, 10 (Oct., 1986), 1335-1344.

[BanerjeeST] Banerjee, J. et al. Data Model Issues for Object-Oriented Ap
plications. ACM Trans, on Office Information Systems 5, 1 (Jan.,
1987), 3-26.

[Bic86] Big L. and Gilbert J.P. Learning from AI: New Trends in Database
Technology. Computer 19^ 3 (Mar., 1986), 44-54.

[Bobrow77] Bobrow D.G. and Winograd T. An Overview of KRL. Cognitive
Science 1 (1977), 3-36.

[Borgida87] Borgida, a. Conceptual Modeling of Information Systems. In On
Knowledge Base Management Systems, Brodie, M.L. and Mylopou-
los, J., Ed., Springer-Verlag, 1987.

[BrodieSO] Proceedings of the Workshop on Data Abstraction, Databases and
Conceptual Modelling, Brodie, M.L. and Zilles, S.N, Ed., Sponsored
by the Nat'l. Bureau of Standards, ACM SIGART, SIGMOD and
SIGPLAN, Pingree Park, Colordo, 1980.

[Codd79] Codd, E.F. Extending the Database Relational Model to Capture
More Meaning. ACM Trans, on Database Systems 4 (Dec., 1979),
397-434.

[Dayal84] Dayal, U. and Hwang, H.-Y. View Definition and Generalization
for Database Integration in a Multibase System. IEEE Trans, on
Software Engineering SE-10, 6 (Nov., 1984), 628-645.

[Findler79] ASSOCIATIVE NETWORKS Representation and Use of Knowl
edge by Computers, Findler, N., Ed., Academic Press, 1979.



[Hammer.81] Hammer M. and McLeod D.J. Database Description with SDM:
A Semantic Data Model. ACM Trans, on Database Systems 3
(Sept., 1981), 351-386.

[Hull86] Hull, R. and King R. Semantic Database Modeling: Survey, Ap
plications, and research Issues. Tech. Rep. No. TR-86-201. U.S.C.,
Comp. Sci. Dept..

[McLeod78] McLeod, D. A Semantic Data Base Model and its Associated
User Interface. Rep. No. MIT/LCS/TR-214. Lab. for Computer Sci.,
MIT, Cambridge.

[Shipman81] Shipman, D.W. The Functional Data Model and the Data Language
DAPLEX. ACM Trans, on Database Systems 1 (Mar., 1981),
140-173.

[Smith77] Smith, J.M. and Smith D.C.P. Database Abstractions: Aggrega
tion and Generalization. ACM Trans, on Database Systems 5, 2
(June, 1977), 105-133.

Stefik, M. and Bobrow D.G. Object-Oriented Programming:
Themes and Variations. The AI Magazine 4 (Jan., 1986), 40-62.




