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Purpose: Few models have been developed specifically for the epidemiology of diabetes. Diabetes inci-
dence is critical in predicting diabetes prevalence. However, reliable estimates of disease incidence rates
are difficult to obtain. The aim of this study was to propose a mathematical framework for predicting
diabetes prevalence using incidence rates estimated within the model using body mass index (BMI) data.
Methods: A generic mechanistic model was proposed considering birth, death, migration, aging, and dia-
betes incidence dynamics. Diabetes incidence rates were determined within the model using their rela-
tionships with BMI represented by the Hill equation. The Hill equation parameters were estimated by
fitting the model to National Health and Nutrition Examination Survey (NHANES) 1999e2010 data and
used to predict diabetes prevalence pertaining to each NHANES survey year. The prevalences were also
predictedusing diabetes incidence rates calculated from theNHANESdata themselves. Themodelwas used
to estimate death rate parameters and to quantify sensitivities of prevalence to each population dynamic.
Results: The model using incidence rate estimates from the Hill equations successfully predicted diabetes
prevalence of younger, middle-aged, and older adults (prediction error, 20.0%, 9.64%, and 7.58%
respectively). Diabetes prevalence was positively associated with diabetes incidence in every age group,
but the associations among younger adults were stronger. In contrast, diabetes prevalence was more
sensitive to death rates in older adults than younger adults. Both diabetes incidence and prevalence were
strongly sensitive to BMI at younger ages, but sensitivity gradually declined as age progressed. Younger
and middle aged adults diagnosed with diabetes had at least a two-fold greater risk of death than their
nondiabetic counterparts. Nondiabetic older adults were found to be under slightly higher death risk
(0.079) than those diagnosed with diabetes (0.073).
Conclusions: The proposed model predicts diagnosed diabetes incidence and prevalence reasonably well
using the link between BMI and diabetes development risk. Ethnic group and gender-specific model
parameter estimates could further improve predictions. Model prediction accuracy and applicability
need to be comprehensively evaluated with independent data sets.

Published by Elsevier Inc.
Introduction

Diabetes prevalence is rising dramatically worldwide and is
expected to rise from 366million in 2011 to 552million by 2030 [1].
More than 10% of world health care expenditure and about 14% of
U.S. healthcare costs are attributable to diabetes [2]. Quantifying
diabetes prevalence is important to allow rational planning of
prevention programs and allocating resources for people affected
by diabetes [2]. Mathematical models can be used effectively
to estimate disease prevalence and help understand factors
affecting disease development risk. The majority of diabetes-
cience, One Shield Avenue,
2-2401; fax: 540-752-0175.
. Appuhamy).

Inc.
related mathematical models explain clinical aspects of glucosee
insulin dynamics, whereas few models have been specific to the
epidemiology of diabetes [3]. Diabetes prevalence varies signifi-
cantly with age implying the mechanisms underlying risk of de-
veloping diabetes could be age specific. Boutayeb and Derouich [4]
proposed a mathematical model for predicting the age-specific
prevalence of diabetes and its complications. Accurate prevalence
predictions from such amodel require reliable estimates of diabetes
population dynamics, such as incidence rates and death rates.

Prevalence is the proportion of a population affected by a disease
at a particular time point, whereas the incidence rate is the rate of
occurrence of new cases of the disease. Incidence rates, indicative of
risk of contracting or developing the disease, can be also used to
measure the efficacy of disease prevention strategies. Nonetheless,
obtaining reliable diabetes incidence rate estimates is often
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Fig. 1. Schematic representation of the model. Boxes, solid arrows and dashed arrows represent pools (Q), flows (F), and effects of body mass index (BMI) on diabetes incidence,
respectively. Letter ‘D’ and ‘H’ denote diagnosed diabetic and nondiabetic individuals respectively. Time unit for the model is a year (y).
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challenging and requires larger survey samples than those required
for prevalence estimates. Therefore, a mathematical representation
calculating diabetes incidence rates within the model itself can
provide a better option for an efficient and more accurate predic-
tion of diabetes prevalence. Mathematical models also allow for
estimating parameters and determining sensitivities [3]. A model
representing all major population mechanisms such as births,
deaths, aging, migration, and diabetes incidence will help to assess
relative sensitivities or strength of associations of each of these
mechanisms to diabetes prevalence. Moreover, such a mathemat-
ical model also allows for estimating parameters of some critical
mechanisms, for example, death rates [5]. The death rates associ-
ated with diseases are often estimated based on the information
reported on death certificates. However, the reliability of death
certificate-oriented death rate estimates appears to be doubtful [6].

Obesity has been a major factor in the recent increase in diag-
nosed diabetes incidence in the United States [7]. Therefore, body
mass index (BMI) can potentially be a leading diabetes risk predictor.
Huang et al. [8] constructed a comprehensive Markov chain model
for predicting diabetes incidence and prevalence across different
BMI categories in the total U.S. population. However, Narayan et al.
[9] demonstrated that the link between BMI and diabetes develop-
ment risk can vary significantly with age, suggesting a need for
separate mathematical representations of age-specific associations
between BMI and diabetes incidence rates. An appropriate mathe-
matical representation quantifying the age-specific associations
between BMI and diabetes incidence can be postulated to predict
diabetes prevalence accurately. The main objective of this study was
to propose a mathematical model to predict diabetes prevalence
in different adult age groups. The specific objectives were to (1)
develop a mathematical representation for quantifying the effect of
BMI on diabetes development risk in adult age groups commonly
defined in epidemiology, (2) assess sensitivities of diabetes
prevalence to incidence, death andmigration rates, and (3) estimate
death rate constants and other parameters for diabetic and nondi-
abetic adults by fitting the model to National Health and Nutrition
Examination Survey (NHANES) 1999e2010 data.

Materials and methods

Model development

The time unit for themodel is a year (y). Total population sizewas
arbitrarily set at 10,000, held constant, and divided into four age
groups (x): (1) younger than 20, (2) 20 to 39, (3) 40 to 59, and (4)
60 years or older (Fig. 1). Individuals in each age group were allo-
cated to two pools: Diabetic (QD(x)) and nondiabetic (QH(x)), which
also includes undiagnosed cases. The diabetes incidence rate of each
age group (FH(x)_D(x)) was taken to be a linear function of QH(x) with
corresponding diabetes fractional incidence rate kH(x)_D(x):

FHðxÞ DðxÞ ¼ kHðxÞ DðxÞQ HðxÞ:

Death rates of nondiabetic (FH(x)death) and the diabetic (FD(x)death)
individuals in each age group were also taken as linear functions of
QH(x) and QD(x), respectively, with corresponding fractional death
rates kH(x)death and kD(x)death:

FHðxÞdeath ¼ kHðxÞdeathQ HðxÞ;

FDðxÞdeath ¼ kDðxÞdeathQ DðxÞ:

A fractional rate expresses an absolute rate or a flux (i.e., FH(x)death)
as a proportion of the pool of interest (i.e.,QH(x)). Because units of the
rates and pools are individuals per year and individuals respectively,
the unit of the fractional rates is y�1. For example, a fractional death
rate of 0.01 y�1 means that 1% of the population dies annually.



Table 1
Mean values and standard deviations (SD, n ¼ 6) for diagnosed diabetes prevalence, number of nondiabetics (QH(x)), number of diabetics (QD(x)), fractional diabetes incidence
rate (kH(x)_D(x)), net migration rate of individuals diagnosed with diabetes (FD(x)migr), and net migration rate of nondiabetic individuals (FH(x)migr) in each age group across the
period 1999e2010

Age group (yrs) BMI Prevalence QH(x) QD(x) kH(x)_D(x) FD(x)migr FH(x)migr

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

<20 ND ND 0.003 0.001 2681 48 9 3 0.0005 0.0004 0.04 0.003 8.77 0.70
20e39 27.9 0.32 0.019 0.005 2668 79 52 13 0.0027 0.0009 0.25 0.020 16.4 1.32
40e59 28.9 0.25 0.102 0.014 2492 33 284 43 0.0086 0.0022 0.34 0.022 8.09 0.54
�60 27.9 0.31 0.208 0.021 1435 22 378 53 0.0108 0.0017 0.48 0.037 2.52 0.2

ND ¼ not determined.
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Aging rates (Faging; Fig. 1) by which nondiabetic and diagnosed
diabetic individuals move to the next age group (from x to x þ 1)
were also represented as linear functions of preceding age group
pool size and relevant fractional rates, set at 0.05 y�1 (because the
age groups were 20 years). Related to the U.S. population, net
migration flows were assumed to be positive and represented as
immigration flows (FD(x)migr and FH(x)migr in Fig. 1). All births (Fbirth
in Fig. 1) were assumed to be nondiabetic. Rates of change in QH(x)
and QD(x) were represented by ordinary dynamic differential
equations. For example, rate of change of the nondiabetic younger
than 20 pool was represented by the following equation which
describes the balance between birth and migration inflows, and
diabetes incidence, death, and aging outflows (Fig. 1):

dQ Hð1Þ
dt

¼
�
Fbirth þ FHð1Þmigr

�
�
�
FHð1Þ Dð1Þ þ FHð1Þdeath þ FHð1Þaging

�
:

Similarly, rate of change in the diabetic pool was calculated as
a balance between incidence and migration inflows, and aging and
death outflows (Fig. 1):

dQ Dð1Þ
dt

¼
�
FHð1Þ Dð1Þ þ FDð1Þmigr

�
�
�
FDð1Þdeath þ FDð1Þaging

�
:

QH(x) and QD(x) were then determined by numerical integration
of the corresponding differential equations. Diabetes prevalence in
each age group (PRV(x)) was finally calculated using the corre-
sponding QH(x) and QD(x):

PRVðxÞ ¼ Q DðxÞ�
Q DðxÞ þ Q HðxÞ

� :
The kH(x)_D(x) of adult age groups (�20 years) were estimated

using average BMI of the nondiabetic pools and the Hill equation
from allosteric enzyme kinetics [10]. The Hill equation has three
parameters (Ymax, K, and n) and gives a nonlinear (sigmoidal)
relationship between two variables X (substrate concentration) and
Y (reaction rate):

Y ¼ Ymax

1þ
�
K
X

�n :

The fractional diabetes incidence rate in each healthy adult
group (Y ¼ kH(x)_D(x)) as a function of BMI (X ¼ BMI(x)) was therefore
represented by:

kHðxÞ DðxÞ ¼ kHðxÞ DðxÞmax

1þ
 

KðxÞ
BMIðxÞ

!nðxÞ ;
where kH(x)_D(x)max is the maximum fractional diabetic incidence
rate, K(x) is the affinity constant for BMI, BMI(x) is the average BMI of
nondiabetic individuals, and n(x) is the sigmoidicity parameter or
Hill coefficient.

Data and calculations

Diagnosed diabetes and BMI datawere obtained from six separate
NHANES surveys conducted during 1999 through 2010 [11]. The dia-
betes prevalence (observedprevalence) and incidence rates (observed
kH(x)_D(x)) in each age group were calculated for each survey year
(Table 1). Incidence rates were calculated using the ‘current age’ and
‘agewhendiabeteswasfirstdiagnosed’data. Thenumberofyearseach
person had been diagnosed with diabetes was calculated by sub-
tracting the latter fromthe former. Theparticipantswhohadavalueof
zero were identified as having been newly diagnosed within the
survey year. The observedQH(x) andQD(x) in each age groupwere then
calculated pertaining to a 10,000 population and adjusted for U.S.
population age structures in respective survey years [12]. Moreover,
three BMI categories: (i) below 25, (ii) 25 to 29.9, and (iii) at least
30 kg/m2, were formed within each adult age group. Such group
formationwas required as themodel predicts diabetes prevalence of a
group or a population using an average BMI. Diabetes prevalence and
incidence rates, average BMI of nondiabetic individuals, andQH(x) and
QD(x) were again calculated for each BMI category in each age group.
Annual birth rates (Fbirth ¼ 141 � 3.0 per10,000, during 2000e2010),
and the immigration ratesof eachagegroup (averagesgiven inTable1)
were calculated from the U.S. Census Bureau statistics [13,14] consid-
ering the age structures of immigrants [15] and diabetes prevalence
estimates of U.S. immigrants reported in Oza-Fran et al. [16].

Model simulation

The model was separately run to predict age-specific diabetes
prevalence in each NHANES survey year using each year’s birth
(Fbirth) and migration rate (FH(x)migr or FD(x)migr) estimates. For these
preliminary simulations, the Hill equation parameter values for
each age group were assigned in a trial-and-error manner by
plotting the NHANES incidence rate estimates of the BMI categories
against the average BMI of the nondiabetic individuals. Fractional
death rates were taken from Gu et al. [17]. In every simulation, total
population size was assumed to be 10,000. All 10,000 individuals
were assigned to QH(1) initially (time ¼ 0 years) and the rest of the
pools set to w0 (Fig. 2). The model was run to achieve steady state,
and QH(x) and QD(x) were being calculated iteratively using the
Runge-Kutta fourth-order method. The QH(x) and QD(x) at the steady
state correspond respectively with nondiabetic and diabetic pop-
ulation sizes in each age group in the survey year of interest
(1999e2000, 2001e2002, etc.). The steady-state QH(x) and QD(x)
were then used to calculate diabetes prevalence (predicted preva-
lence) in each age group in each survey year. The QH(x) and QD(x)



Fig. 2. Simulated time course to steady state of nondiabetic (QH(x)) and diabetic (QD(x))
individuals in younger than 20 (solid black), 20 to 39 (solid gray), 40 to 59 (dashed
gray), and 60 years or older (dotted black) age groups for a population of 10,000.
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(Fig. 2) and thereby the predicted prevalence achieved a steady
state by 300 years (time ¼ 300 years) in all cases.

Model fitting and parameter estimation

Hill equation parameters of adult age groups and fractional
death rates of all the age groups were estimated by fitting the
model simultaneously to observed QH(x) and QD(x) of each BMI
category in each age group of each NHANES year. Time for these
observed QH(x) and QD(x) was set to 300 years. The initial parameter
values were calculated from data in Gu et al. [17] and using the plots
of NHANES incidence rates versus average BMI. Model fitting was
carried out using the Nelder-Mead search algorithm [18] while
maximizing the log-likelihood function. The diabetes prevalence in
each age group pertaining to each survey year was predicted using
final parameter estimates of fractional death rates and kH(x)_D(x)
from the Hill equations. An additional round of prevalence
predictions was carried out using the NHANES kH(x)_D(x) estimates
(averages in Table 1). These predicted values were used in internal
model evaluations as described below.

Sensitivity analysis

A sensitivity analyses was conducted to quantify changes in
diabetes prevalence (response variable) for unit increases in dia-
betes incidence; birth, death, and migration rate parameters; and
BMI. Responsiveness of diabetes incidence (predicted by the Hill
equations) to BMI was additionally assessed. The parameter values
and BMI were set to age group averages and sensitivities were
analyzed simultaneously. The changes in the response variables
were calculated as partial derivatives and referred to as sensitivity
coefficients. Sensitivity coefficients were normalized for both
independent and response variables allowing comparison of
sensitivities across age groups and across parameters.

Internal model evaluation

Prediction errors associated with diabetes prevalence in each
age group were calculated as:

Prediction error ¼ observed prevalence � predicted prevalence.
As mentioned, the observed prevalences were from the six

NHANES surveys (n ¼ 6) conducted from 1999 through 2010. Mean
square prediction error statistics were calculated to determine
model accuracy [19]. Square root of mean square prediction error
(RMSPE) is directly comparable with the observed variable of
interest (diabetes prevalence herein) so that RMSPE was calculated
and expressed as a percentage of average observed diabetes prev-
alence to indicate uncertainty of prediction. Model development,
simulations, optimizations, sensitivity analysis, and evaluation
were carried out using acslXtreme software (AEgis Technologies,
Huntsville, AL).

Comparison of model predictions with literature data

The fractional diabetes incidence rates (kH(x)_D(x), y�1) predicted
by the Hill equation are equivalent to the average annual proba-
bility that an individual in a particular adult age group develops
diabetes. As per NHANES 1999e2010 data, average BMI of middle-
aged adults increased by 4% compared with the average BMI of
younger adults (27.9 vs. 28.9). When the adults became older
(�60 years) average BMI decreased and was similar to the value
they had when young (Table 1). For an adult presently 20 years old,
having a BM I of 28.0 kg/m2 and assumed to live for 80 years, our
model predicts an average annual diabetes development proba-
bility of 0.0008 (0.08%) and consequently a total probability of
0.016 (0.0008 � 20) in the 20- to 40-year age group. Similarly, the
model predicts total probabilities of 0.106 (0.0053� 20, considering
a 4% BMI increase) and 0.206 (0.0103� 20) in the 40- to 60-year and
60- to 80-year age groups, respectively. Thus, the projected total
lifetime diabetes development risk of an individual is 0.328 (32.8%).

The predictions from the model were compared with those re-
ported in Narayan et al. [9], who used a comprehensive Markov
scheme to predict lifetime diagnosed diabetes risk in different BMI
categories among U.S. adults. Similarly, total diabetes incidence
pertaining to middle-aged (average age, 45 years) Caucasian, Asian,
Hispanic, and Black women (baseline average BMI of 24.3, 22.7,
24.3, and 26.0, respectively) during the next 20 years were pre-
dicted using the model, and compared with observed incidence
values from a long-term (1980e2000) female cohort in the United
States [20]. Further, the incidence rates predicted for normal
weight, overweight, and obese middle-aged men (average
age, 50 years) were compared with the observed rates from a long-
term (20 years) Swedish cohort study reported by Arnlov et al. [21].

Results

The final estimates of the fractional death rates are given in
Table 2. The small standard deviations of the estimates indicate that
the observed QH(x) and QD(x) data from NHANES 1999e2010 were
adequate to determine the parameters. The death rate estimates for
younger (20- to 40-year-old) and middle-aged (40- to 60-year-old)
U.S. adults, diagnosed with diabetes were 0.0097 (9.7 per 1000) and
0.0156 (15.6 per 1000), respectively. These fractional rate estimates
represent average death risk of corresponding groups during the
last decade. The death risk in diabetic adults in younger and



Table 2
Death rate estimates (� standard deviation), and normalized sensitivity coefficients of diabetes prevalence and incidence ratewith respect tomodel parameters and bodymass
index (BMI) for different age groups

Age group (yrs)

<20 20e39 40e59 �60

Fractional death rate parameter estimates (y�1)
Nondiabetic 0.0045 � 0.00003 0.0048 � 0.00002 0.0056 � 0.00005 0.0791 � 0.00012
Diabetic 0.0145 � 0.00035 0.0097 � 0.00011 0.0156 � 0.00009 0.0732 � 0.00068

Sensitivity coefficients of diagnosed diabetes prevalence for model parameters
Fractional incidence rate 0.057 0.044 0.052 0.034
Birth rate �0.033 �0.031 �0.006 0.008
Fractional death rates
Diabetic �0.014 �0.009 �0.008 �0.067
Nondiabetic 0.003 0.009 0.014 0.096

Net migration rate
Diabetic 0.035 0.021 0.004 0.000
Nondiabetic �0.002 �0.012 �0.009 0.000

Sensitivity coefficients of diagnosed diabetes prevalence and incidence rate for BMI
Diabetes prevalence NA 3.384 2.568 1.869
Diabetes incidence rate NA 3.992 3.012 2.232

Note: Nondiabetic individuals also included undiagnosed cases. The sensitivity coefficients were normalized with respect to both independent (rate parameters and bodymass
index) and response variables (diabetes prevalence and incidence).
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middle-aged groups were two- to three-fold greater than the risk
among their nondiabetic counterparts. However, the nondiabetic
older adults were associated with a slightly greater death risk than
those diagnosed with diabetes. Average annual death rate of
nondiabetic older adults was 79 per 1000, whereas the estimate for
those with diabetes was 73 per 1000.

Sensitivity coefficients given in Table 2 show that diabetes
prevalence positively responded to diabetes incidence in every age
group. However, it was more sensitive to diabetes incidence in
younger and middle-aged than older adults (0.044 and 0.052 vs.
0.034). As expected, diabetes prevalence was negatively associated
with death rates of diabetic individuals, whereas increasing death
rates among nondiabetics were associated with increasing diabetes
prevalence in every adult age group. The sensitivities to death
rate became more pronounced as age progressed. For example,
compared with younger and middle-aged adults, sensitivity of
prevalence to diabetic death rate was about eight-fold greater
(�0.009 and �0.008 vs. �0.067) among older adults. The sensitiv-
ities of diabetes prevalence to migration rate were negligible in
older adults indicating a potential to simplify the model by
removing the migration effects from older adult groups. Effects of
birth and migration rates were notably stronger in younger than
older adults. Diabetes prevalence and incidenceweremore strongly
associated with BMI in younger adults than middle-aged and
older adults. The sensitivities to BMI gradually declined as age
progressed.

Results from model prediction accuracy analyses are presented
in Table 3. When NHANES fractional incidence rate estimates were
used, the model notably overpredicted diabetes prevalence in
younger and middle-aged adults (RMSPE ¼ 173% and 54.2% of the
Table 3
Fractional diabetes incidence rates predicted by the Hill equation, and accuracy of diabe
predicted using the rate estimates obtained from the Hill equation

Age group (yrs) Fractional diabetes incidence rate Diabetes pr

From NHANES From Hill equations Mean

Observed

20e39 0.0027 0.0008 0.019
40e59 0.0086 0.0052 0.102
�60 0.0108 0.0103 0.208

RMSPE % ¼ square root of mean square prediction error estimate, expressed as a percenta
and prevalence from six separate National Health and Nutrition Examination Survey (NH
average observedvalue; Table 3). Fractional incidence rateswere then
estimated with the Hill equation (parameter estimates � standard
deviations are given in Fig. 3) using BMI data. Consistent with the
overpredictedprevalence, theNHANES incidence rate estimateswere
considerably larger than the estimates obtained from the Hill equa-
tion in middle-aged and older groups (Table 3). This confirms the
greater sensitivity of diabetes prevalence to incidence rates in these
groups. Fractional incidence rate estimates from the Hill equation
significantly improved the accuracy of diabetes prevalence in both
younger andmiddle-aged adults as the RMSPE declined substantially
(from 173% to 20.0% and from 54.2% to 9.64%, respectively). The
model reasonably predicted diabetes prevalence in older adults
(RMSPE, 18.5%), even when using the diabetes incidence rate esti-
mates from NHANES. However, the estimates from the Hill equation
further reduced prediction errors (RMSPE, 7.58%) of this group
as well.

The model predicted lifetime diagnosed diabetes risk of adults
fairly close to the estimates from the Markov scheme used by
Narayan et al. [9]. The model predicted 14.8%, 29.5%, and 55.5%
lifetime risks for 18-year-old, normal weight, overweight, and
obese individuals, respectively. The corresponding projections by
Narayan et al. [9] were 14.2%, 32.6%, and 64.1% respectively. Our
model projections for the 45- and 65-year-old individuals in
respective BMI categories were 13.0, 26.0%, and 50.7%, and 7.8%,
16.5%, and 27.8%, respectively. The corresponding projections from
Narayan et al. [9] were 12.5%, 28.3%, and 54.8%, and 6.5%, 16.3%, and
31.9%, respectively. The model overpredicted the 20-year diabetes
risk of Caucasian women (86 vs. 58 per 1000) and underpredicted
the 20-year diabetes risk of Asian (74 vs. 84 per 1000), Hispanic (90
vs. 100 per 1000), and Black (109 vs. 127 per 1000) middle-aged
tes prevalence predicted using NHANES incidence rate estimates versus prevalence

evalence

With NHNES incidence rates With the Hill equations

Mean predicted RMSPE % Mean predicted RMSPE %

0.049 173 0.019 20.0
0.156 54.2 0.099 9.64
0.240 18.5 0.202 7.58

ge of the average observed value; the errors were calculated pertaining to incidence
ANES; 1999e2010) datasets.



Fig. 3. Hill equation parameter estimates and relationship of predicted fractional
diabetes incidence rate (kH(x)_D(x)) to average body mass index (BMI(x)) for 20 to
39 (gray solid, x ¼ 2), 40 to 59 (black dashed, x ¼ 3), and 60 years or older (black solid,
x ¼ 4) adult age groups. The parameter estimates (� standard deviation) of each Hill
equation were obtained by fitting the model to diagnosed diabetes prevalence from six
separate datasets of NHANES 1999e2010.
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women, compared with the observed rates in Shai et al. [20]. The
model predicted the 20-year diabetes risk of middle-aged, over-
weight (144 vs. 140 per 1000) and obese (270 vs. 306 per 1000)
middle-aged Swedish men with reasonable accuracy [21].
Conclusions

As expected, diabetes incidence rates were strongly associated
with diabetes prevalence in every age group. However, death rate
even dominated incidence rate in determining prevalence in older
adults. This is consistent with previous observations by Monesi
et al. [5]. Diabetes has been found to be the seventh leading cause of
death among U.S. adults [22]. Diabetes can cause death indirectly by
leading to strokes, heart attacks, and kidney failure, and as such it
may not be recorded as a principal cause on death certificates. For
this reason, the number of deaths attributable to diabetes could,
potentially, be underestimated [6]. The annual death rates of
younger and middle-aged diabetic adults considerably decreased
(by 27% and 60%, respectively) from estimates from 1971 through
1993 [17]. Nonetheless, diabetic death rates in these age groups still
remained at least two-fold greater than those of the nondiabetic
adults. Interestingly, older diabetic adults were found to be under
a slightly lesser (by 8%) death risk than older nondiabetic adults.
Gulliford and Charlton [23] found similar death rate comparisons
between elderly diabetic individuals and the general population in
the United Kingdom. These authors implied that this could be
a result of improved standards of chronic illness care leading to
increased uptake of medical interventions controllingmortality risk
factors. Gu et al. [17], on the other hand, suggested a greater
prevalence of more life-threatening diseases than diabetes among
older adults.

Because obesity is strongly associated with diabetes develop-
ment risk in the United States [24,25], we chose BMI of the
nondiabetic individuals for estimating diabetes development risk in
terms of fractional diabetes incidence rates. Colditz et al. [26] and
Ford et al. [27] clearly showed a curvilinear relationship between
BMI and risk of developing diabetes mellitus among U.S. adults.
Moreover, Chiu et al. [28] demonstrated a sigmoidal relationship
between diabetes development risk and BMI in Canadian adults.
We therefore chose the Hill equation to represent the relationship
between BMI and diabetes incidence rate in our model. As ex-
pected, diabetes incidence rates estimated with the Hill equation
led to more accurate prevalence predictions. This further stren-
gthens the idea that BMI is promising predictor of diabetes risk [29].
Furthermore, this model can be extended to include other diabetes
risk factors, such as fasting blood glucose and blood pressure. Our
results showed that sensitivity of diabetes risk to BMI in younger
adults was nearly twice that in older adults. These results agree
with previous observations that weight gain in early adulthood is
related to a higher risk of developing diabetes than weight gain in
older age groups [30]. Furthermore, this model could provide
a framework to develop a generic model for predicting risk and
prevalence of the other noncommunicable diseases, such as
cardiovascular diseases and cancer.

The absence of representation of ethnic and gender effects could
be a significant limitation of the model [17,28]. Presently, it predicts
average diabetes incidence and diabetes prevalence across ethnic
groups and genders, so that the predictions are positioned, for
instance, between the values of the Caucasian population in the
United States having less prevalence (overpredictions), and the
Hispanic and Black populations having greater prevalence (under-
predictions). The model seemed to significantly overpredict (by
48%) diabetes risk in Caucasian adults compared with the extents of
underprediction in Hispanic (by 10%) and Black (by 14%) adults. This
is potentially an artifact of oversampled minority groups in
NHANES data (i.e., 40% White, 32% Hispanic, and 23% Non-Hispanic
Black), for which the model parameter were estimated. Hence,
ethnic group-specific model parameter estimates can be expected
to improve corresponding model predictions. Diabetes incidence
estimates calculated from NHANES data seemed to be doubtful
specifically in younger and middle-aged adults. This is not
surprising; the NHANES surveys were not specifically designed to
estimate incidence rates. Surveys targeting reliable diabetes inci-
dence rates need to increase sample size for younger populations
compared with older populations.

NHANES data do not distinguish between types 1 and 2 diabetes,
so predicted prevalence gave general diabetes prevalence in U.S.
adults. Nonetheless, about 95% of diabetes cases in adults are type 2.
Therefore, the predictions can reasonably be ascribed to type 2. As
mentioned, the nondiabetic pools (QH(x)) in this model also include
undiagnosed cases, so the predictions are underestimates of abso-
lute diabetes prevalence. Given the significantly declining undiag-
nosed diabetes prevalence in the United States [31,32], effects of
this discrepancy could be minimal in the future. Additionally, the
Hill equation in this model describes a likelihood of overweight or
obese adults having their diabetes diagnosed rather than the
pathophysiologic link between BMI and diabetes development risk.
Projected diabetes risk changes in response to changes in BMI given
by the model need to be interpreted carefully. Nonetheless, Gregg
et al. [32] andWee et al. [33] demonstrated the ratio of undiagnosed
diabetes prevalence to diagnosed diabetes prevalence remains
unchanged across different BMI categories. Therefore, the model
provides opportunities to assess the pathophysiological link
between BMI and diabetes development risk at least in relative
terms.

We have proposed a generic mathematical framework for pre-
dicting age-specific diabetes development risk and prevalence
across ethnic groups and genders. The Hill equation appropriately
represents the link between BMI and diabetes risk and we have
parameterized three Hill equations to project diabetes develop-
ment risk in younger, middle-aged, and older adult groups. This
generic age-specific layout should predict lifetime diabetes risk
successfully. The sensitivity estimates obtained from this type
of mechanistic model would help select critical parameters in
an epidemiology model. This model also allows critical parameters
(i.e., death rates) to be estimated by fitting the model to observed
prevalence, which can be obtained more conveniently. Firm
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conclusions regarding the prediction accuracy and model applica-
bility should be made after a comprehensive model evaluation.
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