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Sex-dependent autosomal effects on clinical
progression of Alzheimer’s disease
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Richard Mayeux,9 Gerard D. Schellenberg,10 Ole A. Andreassen,11 Rahul Desikan12,# and
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Sex differences in the manifestations of Alzheimer’s disease are under intense investigation. Despite the emerging importance

of polygenic predictions for Alzheimer’s disease, sex-dependent polygenic effects have not been demonstrated. Here, using a sex

crossover analysis, we show that sex-dependent autosomal genetic effects on Alzheimer’s disease can be revealed by characterizing

disease progress via the hazard function. We first performed sex-stratified genome-wide associations, and then applied derived sex-

dependent weights to two independent cohorts. Relative to sex-mismatched scores, sex-matched polygenic hazard scores showed

significantly stronger associations with age-at-disease-onset, clinical progression, amyloid deposition, neurofibrillary tangles, and

composite neuropathological scores, independent of apolipoprotein E. Models without using hazard weights, i.e. polygenic risk

scores, showed lower predictive power than polygenic hazard scores with no evidence for sex differences. Our results indicate that

revealing sex-dependent genetic architecture requires the consideration of temporal processes of Alzheimer’s disease. This has

strong implications not only for the genetic underpinning of Alzheimer’s disease but also for how we estimate sex-dependent poly-

genic effects for clinical use.
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Abbreviations: ADGC = Alzheimer’s Disease Genetic Consortium; GWAS = genome-wide association studies; NACC = National
Alzheimer’s Coordinate Center; f/mPHS = female/male polygenic hazard score; PRS = polygenic risk score; ROSMAP = Religious
Orders Study and Rush Memory and Aging Project; SNP = single nucleotide polymorphism

Introduction
Sex, as both an endogenous and an exogenous factor modu-

lating human biology, has a ubiquitous impact on the patho-

genesis of complex diseases (Khramtsova et al., 2019).

Evidence on sex-dependent clinicopathological progressions

of Alzheimer’s disease is just beginning to emerge (Ferretti

et al., 2018). Compared to males, females show later mani-

festation of verbal memory deficits, faster decline after dis-

ease onset (Caldwell et al., 2017), and some differences in

neuropathological characteristics, such as tau tangle density

(Damoiseaux et al., 2012; Oveisgharan et al., 2018). Results

from studies on incidence rate and prevalence are less con-

sistent (Winblad et al., 2016; Nebel et al., 2018), yet females

are often reported to have increased incidence of Alzheimer’s

disease in older ages (Ruitenberg et al., 2001) and higher

prevalence (Mazure and Swendsen, 2016). Although some

studies have suggested sex-dependent autosomal effects on

Alzheimer’s disease pathologies (Cellini et al., 2009; Li et al.,

2017; Deming et al., 2018), sex-dependent differences in

polygenic effects remain unresolved. So far only apolipopro-

tein E (APOE e4) has been found to have a differential im-

pact on age-at-onset between males and females (Farrer,

1997; Altmann et al., 2014), despite evidence suggesting

that Alzheimer’s disease is highly polygenic, with a heritabil-

ity as high as 79% (Gatz et al., 2006). Given this unmet

need for better understanding of sex differences in

Alzheimer’s disease, we wanted to investigate whether there

is sex-dependent genetic risk on disease processes of

Alzheimer’s disease.

This sex-agnostic status quo is particularly problematic for

disease prediction based on polygenic effects. By aggregating

the estimated regression weights of autosomal single nucleo-

tide polymorphisms (SNPs) from genome-wide association

studies (GWAS), polygenic scores have been used to assist in

several important clinical functions, including disease predic-

tion (Khera et al., 2018), risk stratification (Torkamani

et al., 2018), enriching clinical trials (Tan et al., 2018,

2019), and facilitating disease screening (Seibert et al.,

2018). However, because the standard practice in GWAS is

to treat sex as a confounding factor for autosomal effects,

the basis of polygenic scores, the estimated odds ratios are

devoid of sex-dependent effects. Given the complexity of the

moderating effects of sex on disease aetiology (Khramtsova

et al., 2019), applying sex-agnostic polygenic scores may

produce substantially biased risk quantifications. Such scores

could underestimate the genetic risk of Alzheimer’s disease

for females, since APOE e4, one of the most well-established

risk factors for Alzheimer’s disease, has stronger effects on

Alzheimer’s disease onset among females than among males

(Altmann et al., 2014). Given the heightened awareness of

utilizing polygenic effects beyond APOE as biomarkers for

Alzheimer’s disease (Sabuncu et al., 2012; Escott-Price et al.,

2015; Mormino et al., 2016; Desikan et al., 2017; Ge et al.,

2018; Tan et al., 2019), understanding the sex-dependent

polygenic effects for Alzheimer’s disease is imperative for

their application to clinical settings.

To investigate whether there are sex-dependent polygenic

effects in addition to APOE, we performed a sex crossover

study (see the ‘Materials and methods’ section and Fig. 1)

whereby we derived polygenic scores from separate GWAS

on males and females in the training cohorts (Alzheimer’s

Disease Genetic Consortium, ADGC, n = 17 855; see the

‘Materials and methods’ section and Table 1), and then

applied each of the sex-dependent regression weights to both

males and females in independent cohorts (National

Alzheimer’s Coordinate Center cohort, NACC, n = 6076;

Religious Orders Study and Rush Memory and Aging

Project, ROSMAP, n = 599) to determine if there was differ-

ential performance in predicting Alzheimer’s disease.

Importantly, as the sex differences in Alzheimer’s disease

onset can be the end results of complex interplays between

pathological process and cognitive resilience (Cellini et al.,
2009; Caldwell et al., 2017; Li et al., 2017; Deming et al.,

2018; Ferretti et al., 2018), we focused our validation on

predictive performance in different aspects of Alzheimer’s

disease manifestations, i.e. the age of Alzheimer’s disease

onset, cognitive decline, and neuropathological findings.

Materials and methods

Study design

The crossover analysis is illustrated in Fig. 1. The training sam-
ples and validating cohorts are described in the following section
and in Table 1. In all of our analyses, we restricted our sample
to participants with European ancestry only, as specified in pre-
vious main GWAS results of the ADGC (Naj et al., 2011). We
further used the allele frequency spectrums to calculate the pro-
portion of global ancestry and excluded any individuals with less
than 80% of European genetic ancestry (Chen et al., 2013). We
also excluded individuals with more than 20% of missing geno-
types and individuals with discordant self-report and genetically
inferred sex. For SNP quality control, we filtered SNPs based on
minor allele frequencies 41%, in Hardy-Weinberg equilibrium
(HWE P-value 4 1 � 10–7) and missing rate 510%.

First, we performed sex-stratified genome-wide analyses on
Alzheimer’s disease, using imputed genotypes and phenotypic
data from the ADGC (Naj et al., 2011; Lambert et al., 2013;
Kunkle et al., 2019). The ADGC datasets consist of case-con-
trol, prospective, and family based sub-studies of participants
with Alzheimer’s disease occurrence after age 60 years old
derived from Alzheimer’s Disease Centres across the USA and
healthy controls from the general community, enrolled from
1984 to 2012. Participants with APP, PSEN1, and PSEN2 were
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excluded. The training samples contain ADGC Phase 1 and
Phase 2 data, excluding individuals from the National Institute
of Aging Alzheimer’s Disease Center (NIA ADC) and
ROSMAP. To ensure independence between the training and
validation cohorts, we performed an extensive check on poten-
tial sample overlap and removed any overlapping individuals
from the training data. The final training data included 7158
males and 10 697 females (Table 1). Genome-wide Cox regres-
sion analyses were performed on males and females separately
to obtain sex-dependent weights. Detailed descriptions of the
analytical methods can be found in the following section and in
the Supplementary material.

After obtaining the sex-dependent Cox regression weights for
each autosomal SNP from the ADGC data, we applied these
weights to two independent cohorts (Table 1), generating male-de-
pendent polygenic hazard score (mPHS) and female-dependent
PHS (fPHS) for every participant. Thus, we can compare whether
sex-matched models (mPHS on males and fPHS on females) have
better predictive power than sex-mismatched models (fPHS on
males and mPHS on females), as a cross-over comparison (Fig. 1).

The first independent cohort was obtained from the NACC.
The NACC recruits case series as a nationwide recruiting effort
funded by the NIA, involving clinical centres across the USA.
Given the longitudinal design of the NACC, we examined
whether sex-matched PHS predicted dementia onset better than
sex-mismatched PHS. The cohort characteristics of the NACC
can be found in Table 1.

The second independent cohort was the ROSMAP. ROS and
MAP are two community-based cohort studies that enrolled
individuals without dementia, all of whom agreed to longitudin-
al follow-up and organ donation, enabling us to examine the
distribution of neuropathology among participants as a function
of sex-specific PHS. All participants signed an informed consent,
Anatomic Gift Act, and repository consent allowing their data
to be shared. Both studies were approved by an Institutional
Review Board of Rush University. Details of the studies, gener-
ation of genomic data, and neuropathological data collection
have been previously reported (Bennett et al., 2018; De Jager
et al., 2018). We investigated whether sex-matched PHS has
stronger associations with neuropathology in the brain than
sex-mismatched PHS. Those who have both genotyping data
and autopsy results were included in this analysis (n = 599).
Detailed characteristics of ROSMAP can be found in Table 1.

For comparison purposes, we also examined the performance
of polygenic risk scores (PRS) in the same manner as described
above, except using weights from logistic regressions while con-
trolling for age-at-ascertainment. This is intended to investigate
the benefit of using Cox regressions in contrast to the standard
GWAS approach.

Estimating sex-dependent hazards
for autosomal SNPs

To obtain sex-dependent weights for each SNP, we fitted
genome-wide Cox regression models on males and females sep-
arately. This stratified approach was intended to capture
sex-specific effects from autosomal SNPs without explicitly
modelling interaction terms. This stratified approach also allows
for differences in the shape of the baseline hazard function

Figure 1 Flow chart of the sex crossover analysis. We strati-

fied the ADGC cohort by sex and performed a GWAS on males

and females separately to obtain sex-specific weights for PHS and

PRS. We then generated the sex matched and sex mismatched PHS

and PRS on the validation datasets, i.e. NACC and ROSMAP. We

assessed the predictive performances of sex-matched and sex-mis-

matched PHS and PRS on Alzheimer’s disease processes in using

NACC and ROSMAP.

Table 1 Characteristics of training samples and independent validating cohorts

Training samples Independent validation cohorts

ADGCa NACC ROSMAP

Males Females Males Females Males Females

Total n 7158 10697 2628 3448 220 379

Age, years (SD) 75.4 (7.7) 75.9 (8.2) 78.6 (9.4) 79.1 (9.8) 86.4 (6.3) 89.4 (6.2)

Alzheimer’s disease cases/events 42.7% 47.6% 52.3% 41.5% 37.7% 43.8%

APOE e4 carriers 40.9% 43.3% 40.9% 37.9% 29.5% 28.4%

aExcluded any overlapping samples with NIA ADCs and ROSMAP.
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between males and females. As noted in prior studies on sex-de-
pendent genetic effects (Khramtsova et al., 2019), although the
total sample size for GWAS is thus reduced by half, stratified
models are computationally simple and avoid the need for add-
itional assumptions on the nature of sex interactions.
Furthermore, hazard ratio estimation is facilitated by utilizing
Martingale residuals under null (Therneau et al., 1990):

b̂ ¼ ðxTxÞ�1xTM0 (1)

where x is the mean centred genotype dosage and M0 is the
Martingale residuals of the null model. More detailed discussion
about the hazard estimates from case-control studies can be
found in the Supplementary material.

For ADGC data, we used the age-at-onset as the time-to-event
and the age-at-last-visit as the censoring time for Cox regression
while controlling for dosages of APOE e2 and e4, the first five
genetic principal components, and indicators of recruiting sites.
In addition to filtering SNPs that failed quality controls, we also
filtered SNPs located outside of APOE (19q13.32) and major
histocompatibility complex regions, resulting in 6 784, 887
imputed SNPs in our analyses. The resulting male- and female-
derived hazard ratios were used to generate the corresponding
sex-dependent PHS. For comparison purposes, we also per-
formed standard GWAS with logistic regressions for the same 6
784, 887 SNPs. All covariates are the same in the models except
age-at-last-visit is now treated as one of the covariates. The esti-
mated sex-dependent odds ratios were then used to generate the
corresponding PRS. Because our focus was on polygenic effects
over and above the effects of APOE, we excluded any SNPs
located within APOE region when we calculated all polygenic
scores.

Deriving polygenic hazard scores
and polygenic risk scores

The polygenic scores are the product sum of GWAS obtained
weights and genotypes of individuals in the two test cohorts:

Si ¼
XM

j¼1

Gijbj (2)

for individual i, the score Si is the product sum of genotypes Gij

and weights bj for M SNPs. To make PHS and PRS compar-
able, we used the identical pruning and clumping process to se-
lect independent SNPs for generating the scores. The parameters
include clumping within 250 kb and linkage disequilibrium
40.1, resulting in 251 040 independent SNPs for generating the
scores. Although our initial validation analyses indicated that
the predictive performance can benefit slightly from imposing a
liberal P-value threshold for SNP selection (P-value of 0.5;
Supplementary Fig. 1), the potential for over-fitting by choosing
optimal thresholding for each of the stratified models overshad-
owed the slight benefit of using P-value thresholding. Therefore,
in the main analyses, we imposed no P-value thresholds to avoid
using different numbers of SNPs between the PHS and the PRS,
ensuring the comparisons were based on the signals from the
same set of SNPs. Male-derived scores used weights for SNPs
based on the GWAS of males in ADGC, and similarly, female-
derived scores only used weights from GWAS of females in
ADGC. Both male- and female-derived scores were then com-
puted for each participant in the validation cohorts using the

same autosomal SNPs. Crossover analyses can thus be used to
compare the predictive performance of sex-matched vs. sex-mis-
matched scores in the validation cohorts.

Statistical analysis

We implemented genome-wide Cox regression for efficiently
estimating hazard ratios across millions of SNPs. P-values of the
Cox regressions were obtained using score tests (Chen et al.,
2014). The logistic regression GWAS were performed using
PLINK. All genome-wide analyses were done using ADGC data,
separately for males and females. To provide an intuitive inter-
pretation on the obtained weights, we also calculated gene-
based effect sizes using Pascal (Lamparter et al., 2016). Pascal
obtained gene-based P-values are based on a linkage-disequilib-
rium weighted average of effect sizes of SNPs located within 50
kb regions of the gene body.

Because sex is the matching factor, we included sex as covari-
ates in all validation analyses to ensure the association signals
are driven by the polygenic effects per se. In NACC, we used: (i)
Cox regression to examine the predictive power of polygenic
scores on Alzheimer’s disease age-at-onset; and (ii) linear mixed
effects model to examine the associations between polygenic
scores and rate of clinical progression, defined as changes in
Cognitive Dementia Rating – Sum of Boxes (CDR-SB). All mod-
els controlled for APOE status (dosages of e2 and e4) and edu-
cation levels. The main analysis of NACC included 2628 males
and 3448 females. We also examined whether the patterns of
association remained constant if we restricted analyses to neuro-
pathologically-confirmed cases; 817 males and 706 females
from the NACC had post-mortem neuropathological examina-
tions. To ensure the consistency of the units, all results are based
on standardized polygenic scores, comparing changes in 1
standard deviation (SD) of scores.

In ROSMAP, we analysed the relationship between the neuro-
pathological burden at autopsy and sex-dependent polygenic
scores. Four quantifications of neuropathology were included,
i.e. the percentage area occupied by amyloid-b, and the density
of tau-positive neurofibrillary tangles. Because those neuro-
pathological measures were skewed, we performed a square
root transformation to normalize the neuropathology data. We
also determined Braak stage, and Consortium to Establish a
Registry for Alzheimer’s disease (CERAD) score. All regression
models controlled for APOE status (dosages of e2 and e4), age-
at-death, and education level. To ensure the consistency of the
units, all results are based on standardized polygenic scores and
neuropathological data, comparing neuropathological variations
in 1 SD of scores.

For all comparisons between sex-matched and sex-mis-
matched models, we used bootstrapping to calculate the 95%
confidence intervals (CIs) and determine significance according-
ly. We chose this approach because we wanted to specifically
examine the differences in the polygenic estimation while con-
trolling for all other potential confounds.

Data availability

The summary statistics for genome-wide hazard estimates and
gene-based analyses can be found in the Supplementary material.
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Results

Distribution of hazard weights

First, we performed genome-wide Cox regressions for

Alzheimer’s disease outcomes on ADGC individuals (males/

females = 7158/10 697). The models controlled for first five

genetic principal components, APOE status, and recruiting

sites (‘Materials and methods’ section). The results showed

different top hits between males and females (Fig. 2A and

B). Males had a GWAS-significant locus on 1q32.2, encom-

passing CR1, and females had a GWAS-significant locus on

2q14.3, encompassing BIN1. In addition to GWAS-signifi-

cant loci, polygenic signals below the GWAS-significant

threshold are important for deriving polygenic scores. To

provide an intuitive summary on the sex-dependent polygen-

ic effects, we performed gene-based analyses using Pascal

(Lamparter et al., 2016). Figure 2C illustrates the sex-

dependent distributions from gene-based analyses. Gene

clusters on 19q13.32 continue to show consistent effects be-

tween males and females, with trends for sex-specific genetic

effects. For example, the effect sizes of BIN1, MS4A6A,

DNAJA2, and FERMT2 are larger among females while

FAM193B, C2orf47, TYW5 have larger effect sizes among

males. Additionally, the tau-related gene, MAPT, shows

stronger effects on males than on females.

Predicting clinical manifestations in
the NACC

By aggregating the hazard weights obtained from genome-

wide Cox regressions of ADGC, we derived fPHS and

mPHS using standard pruning and clumping process for

every individual in the NACC cohort (males/females =

2628/3448), resulting in sex-matched model (males with

mPHS and females with fPHS) and sex-mismatched model

(males with fPHS and females with mPHS). To avoid the

confounding of APOE due to imputations, we excluded any

genetic variants located in the APOE region (‘Materials and

methods’ section). For clinically determined Alzheimer’s dis-

ease onset, the sex-matched model consistently performed

more accurately than the sex-mismatched model (Fig. 3A).

After controlling for APOE status, sex-matched PHS has a

hazard ratio of 1.26 (95% CI: 1.26–1.32, P51 � 10–16)

and sex-mismatched PHS has a hazard ratio of 1.14 (95%

CI: 1.09–1.19, P = 1 � 10–10). Sex-matched PHS performed

significantly better than sex-mismatched PHS (P = 0.001).

Subgroup analyses indicate that stronger predictive power in

sex-matched models than sex-mismatched models is evident

for both males and females (Supplementary Fig. 1A). When

we limited our analysis to those with neuropathological dis-

ease confirmation (n = 1523), the crossover effects were con-

sistent (hazard ratio: 1.21, P = 2 � 10–9; Fig. 3B and

Supplementary Fig. 1B), and retaining significant difference

Figure 2 Effect size distributions of obtained hazard weights from sex stratified genome-wide Cox regressions. (A) Manhattan

plot from genome-wide Cox regression from males in ADGC. (B) Manhattan plot from genome-wide Cox regression from females in ADGC.

(C) Results from gene-based analysis. The diagonal dashed line represents the equivalent effect sizes given the sample size differences. We listed

top 10 rank genes in terms of –log10(P) from the Pascal. Genes in both top 10 rank list of males and females are coloured in red. Genes in only

top 10 rank list of females are coloured in green and of males are coloured in blue.
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between sex-matched and mismatched models (P = 0.008).

Figure 3C shows the performance of polygenic scores in pre-

dicting clinical progressions as CDR-SB changes during lon-

gitudinal follow-up in the NACC. Sex-matched PHS was

predictive of annual changes of CDR-SB (b: 0.057, 95% CI:

0.049–0.064, P5 1 � 10–16) and performed better than sex-

mismatched PHS (b: 0.043, 95% CI: 0.035–0.050,

P51 � 10–16). The difference between sex-matched PHS

and sex-mismatched PHS was statistically significant

(P = 0.006). In contrast, PRS from logistic regressions

showed lower effect sizes than PHS and showed no evidence

for sex-dependent effects (Fig. 3A–C).

Predicting neuropathology in
ROSMAP

Figure 4 demonstrates the association strengths across four

types of neuropathology. After controlling for age at death,

education levels, and APOE status, sex-matched models

showed significantly stronger associations than sex-mis-

matched models for all neuropathological measures (P-val-

ues for differences in effect sizes between sex-matched and

sex-mismatched PHS as 5 � 10–5, 4 � 10–7, 0.007, and

5 � 10–4 for amyloid deposition, CERAD score, tau-associ-

ated neurofibrillary tangles, and Braak score, respectively).

None of the sex-mismatched models reached statistical sig-

nificance in predicting neuropathology based on polygenic

components. Table 2 summarizes the variance explained for

subgroup analyses on each neuropathology. Compared to

sex-mismatched models, fPHS applied to females increased

the variance explained by 6%, 5%, 3%, and 6% for amyl-

oid deposition, CERAD score, neurofibrillary tangles, and

Braak score, respectively; applying mPHS to males increased

the variance explained for these same measures by 1%, 3%,

3%, and 4%, respectively. In general, variance explained at-

tributable to the polygenic components for sex matched

models can reach up to 89% of variance explained by

APOE only. In contrast, sex-matched PRS had no significant

association with any neuropathology except CERAD score,

with no evidence of sex differences after controlling for

APOE (Fig. 4 and Supplementary Fig. 2).

Discussion
By modelling the disease courses as time-to-clinical-onset, the

polygenic hazard approach revealed sex-dependent autosomal

effects on Alzheimer’s disease after controlling for APOE.

Sex-matched PHS showed better prediction of both clinical

age-at-onset and neuropathological manifestations than sex-

mismatched PHS, implying that genetic risk factors differ be-

tween males and females. These finding have implications not

only for the aetiology of Alzheimer’s disease, but also offer a

new approach to examine sex differences in genetic risks.

Many of the genes highlighted by our analyses have been

implicated in Alzheimer’s disease in prior reports

(Hollingworth et al., 2011; Naj et al., 2011; Lambert et al.,
2013; Kunkle et al., 2019). Yet, our survival analyses

revealed a complex landscape of sex-dependency across the

genome. Loci such as BIN1, MS4A6A, DNAJA2, and

FERMT2 contribute higher risk to females than to males.

Previous GWAS have identified BIN1 and MS4A6A as risk

loci for Alzheimer’s disease (Hollingworth et al., 2011), but

our results indicate that their effects may be sex dependent,

especially for pathological ageing processes. Experimental

studies have found that FERMT2 is associated with amyloid

deposition (Chapuis et al., 2017) whereas DNAJA2 interacts

with protein tau aggregation (Mok et al., 2018). When

aggregating those differences as PHS, the sex-dependency of

the genetic effects emerged, indicating there are divergent

pathological pathways between males and females.

In addition to the pathogenesis of Alzheimer’s disease,

these crossover analyses also highlight an important aspect

for modeling genetic risks: time. Alzheimer’s disease is an

Figure 3 Predictive performance of polygenic components in NACC. Weights from Cox regressions of training data were applied to

all participants in NACC, yielding both mPHS and fPHS for all participants. The hazard ratios of comparing 1 SD differences in PHS, after control-

ling APOE and education levels, are shown. (A) Prediction of clinically defined Alzheimer’s disease (AD). (B) Prediction in neuropathologically

confirmed Alzheimer’s disease cases. (C) Prediction of Cognitive Dementia Rating – Sum of Boxes (CDR-SB) changes.
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insidious, progressive disease. When the genetic effects on

disease risks are differentially expressed across time, the

mean liability model cannot readily capture differences in

the underlying genetic risks (Falconer, 1965). In our analy-

ses, PRS had limited predictive accuracy on both

Alzheimer’s disease onset and neuropathology, regardless of

sex dependencies. This does not discredit the utility of PRS,

as many have shown the unstratified PRS models with

APOE for Alzheimer’s disease can have 70% of accuracy in

classifying the prevalent cases and controls of Alzheimer’s

disease (Sabuncu et al., 2012; Escott-Price et al., 2015;

Mormino et al., 2016; Ge et al., 2018). However, our results

suggest that explicit modeling of time of clinical disease

onset using survival analyses is needed to reveal sex-depend-

ent effects in polygenic signals. Considering that one of the

key differences between males and females with respect to

Alzheimer’s disease is the temporal disease course, and hence

the underlying hazard function, sex-dependent polygenic

Figure 4 Associations with neuropathology in ROSMAP. Sex-dependent polygenic scores were obtained for all participants in ROSMAP.

The colouring schemes are consistent with Fig. 3. All models controlled for age at death, education levels, and APOE status. (A) Associations with

amyloid deposition. (B) Associations with CERAD score. (C) Associations with neurofibrillary tangles. (D) Associations with Braak score.

Table 2 Variance explained of neuropathological indices for crossover models in ROSMAP

Pathology Validation subjects Covariates only APOE + e2 + e4 + Sex-matched PHS

Amyloid-related pathology Amyloid Females 2% 12% 17%

Amyloid Males 5% 12% 13%

CERAD Females 1% 11% 16%

CERAD Males 3% 9% 12%

Tau-related pathology Tangles Females 2% 15% 19%

Tangles Males 4% 10% 13%

Braak Females 5% 11% 17%

Braak Males 8% 15% 19%

Sex-mismatched PHS not shown because of no improvement on the variance explained over covariates APOE + e2 + e4 model.
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effects may largely modulate the temporal disease course for

Alzheimer’s disease. Interestingly, prior reports on sex-de-

pendent autosomal effects on Alzheimer’s disease have been

discovered through analysing the endophenotype or molecu-

lar phenotype of Alzheimer’s disease instead of the binary

diagnostic Alzheimer’s disease status (Cellini et al., 2009; Li

et al., 2017; Deming et al., 2018). Taken together with our

results, this indicates that sex-dependent effects for

Alzheimer’s disease are particularly important for predicting

disease progression.

Meanwhile, because PHS explicitly take the age-at-

Alzheimer’s disease-onset into consideration, factors that im-

pact the determination of the age-at-onset would also impact

on the predictive performance of PHS. Given the insidious

nature of Alzheimer’s disease onset, the exact onset of

Alzheimer’s disease is oftentimes difficult to establish. The

sex differences can also be the end results of complex inter-

actions between cumulations of neuropathologies and the

cognitive reserves. This limitation further highlights the need

for validations not only in the prediction for age-at-onset,

but also in other metrics related to Alzheimer’s disease pro-

cess. We have validated the sex-dependent PHS for the age

of Alzheimer’s disease onset, cognitive decline, and neuro-

pathological findings. Our results show the sex-dependent

autosomal effects exist in multiple domains of Alzheimer’s

disease progressions.

Sex differences are ubiquitous in human biology and

disease manifestations, yet are rarely reported in terms of

genetic risks (Khramtsova et al., 2019). Our results indi-

cate that by explicitly modeling age-dependent hazards in

sex-stratified analyses, we can reveal these sex-dependent

effects. In addition to providing insight about sex-differen-

ces in Alzheimer’s disease pathophysiology, we also hope

this study will encourage improvements in GWAS study

design to consider sex differences regarding time of dis-

ease onset.
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