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Self-normalization: Taming a wild population in a

heavy-tailed world

SHAO Qi-man1 ZHOU Wen-xin2

Abstract. The past two decades have witnessed the active development of a rich probability

theory of Studentized statistics or self-normalized processes, typified by Student’s t-statistic as

introduced by W. S. Gosset more than a century ago, and their applications to statistical prob-

lems in high dimensions, including feature selection and ranking, large-scale multiple testing

and sparse, high dimensional signal detection. Many of these applications rely on the robust-

ness property of Studentization/self-normalization against heavy-tailed sampling distributions.

This paper gives an overview of the salient progress of self-normalized limit theory, from Studen-

t’s t-statistic to more general Studentized nonlinear statistics. Prototypical examples include

Studentized one- and two-sample U -statistics. Furthermore, we go beyond independence and

glimpse some very recent advances in self-normalized moderate deviations under dependence.

§1 Introduction

As one of the most important statistics, Student’s t-statistic [71] has a wide range of appli-

cations in probability, statistics, finance and other fields of science. During the past century,

the t-statistic has evolved into much more general Studentized statistics and self-normalized

processes, and as noted in [28], it is finding applications today that were never envisaged when

it was introduced. The past two decades have also witnessed the significant development of a

rich probability theory of self-normalized processes, beginning with weak convergence [55], laws

of the iterated logarithm [39] and exponential and moment bounds [38] and culminating in large

and moderate deviations for self-normalized sums of both independent and dependent random

variables [63, 64, 46, 19]. The main goal of this paper is to provide an overview of the devel-

opments of self-normalized limit theory, from Student’s t-statistic to more general Studentized

nonlinear statistics.
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LetX1, X2, . . . , Xn be independent and identically distributed (IID) random variables drawn

from X , a real-valued random variable with mean μ and variance σ2 > 0. For some prespecified

μ0 ∈ R, we consider testing

H0 : μ = μ0 versus H1 : μ �= μ0,

which is one of the most fundamental hypothesis testing problems in statistics. Without loss

of generality, we assume μ0 = 0; otherwise, it suffices to replace Xi with Xi − μ0. Define

X̄n =
1

n

n∑

i=1

Xi, σ̂2
n =

1

n− 1

n∑

i=1

(Xi − X̄n)
2, Sn =

n∑

i=1

Xi and V 2
n =

n∑

i=1

X2
i .

Using the above notation, we can write the z-statistic and Student’s t-statistic as

Zn =

√
nX̄n

σ
and Tn =

√
nX̄n

σ̂n
=

Sn/Vn√{n− (Sn/Vn)2}/(n− 1)
, (1)

respectively. Student’s t-statistic is one of the statistics which are most commonly used to

conduct hypothesis testing for μ when σ is unknown, while Zn is invoked when σ is known, and

to construct the confidence interval.

Under the normality assumption X ∼ N(μ, σ2) and the null hypothesis H0 : μ = μ0, it

is known that Zn has a standard normal distribution and Tn follows Student’s t-distribution

with n− 1 degrees of freedom. When normality is violated, based on the central limit theorem

(CLT) and the law of large numbers, quite often statisticians recommend using the normal

distribution as an approximation to the (unknown) distribution of Tn as long as the sample size

is sufficiently large, say n ≥ 30. This naturally leads to the question of how good this normal

approximation can be, or equivalently how accurate the estimated p-value (based on normal

calibration) is. In this paper, we review the asymptotic properties of Tn when the distribution

of X deviates from the normal distribution and may even have very heavy tails.

Unlike the z-statistic, Student’s t-statistic is a highly nonlinear statistic, that is, Tn =

f(X1, . . . , Xn) for some nonlinear function f : Rn �→ R, which makes the study of its distribu-

tional properties much more difficult. A key observation that facilitates analysis is the following

equivalence between Tn and Sn/Vn [30]:

{Tn ≥ t} =

{
Sn

Vn
≥ t

√
n

n+ t2 − 1

}
, t ≥ 0.

This enables us to consider only the distributional properties of the less complex Sn/Vn, which

is referred to as the self-normalized sum. It turns out that the limiting properties of Sn/Vn

usually require much less stringent moment conditions than those for Zn and hence provide a

much wider practical applicability. The key intuition behind these properties is that erratic

fluctuations in Sn tend to be canceled, or at least dampened, by those of Vn, much more so

than if Vn were replaced by its population counterpart.

The rest of this paper is organized as follows. In Section 2, we briefly review the history

and development of Student’s t-statistic. Sections 3 and 4 review the self-normalized limit

theory for t-statistics, including weak convergence, Berry-Esseen bounds, large deviations and

Cramér-type moderate deviations. In Section 5, we go beyond the t-statistic and focus on more

general Studentized nonlinear statistics, typified by the Studentized U -statistic. Some recent
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normal approximation results for Hotelling’s T 2-statistics are given in Section 6. Finally, in

Section 7, we mention some recent progress on self-normalized moderate deviation results for

Studentized two-sample U -statistics and self-normalized sums of weakly dependent data.

§2 History of Student’s t-statistic

The t-statistic was introduced by W. S. Gosset in his work entitled “The probable error of

a mean,” which he published under the nom de plume of “Student” [71]. As a chemist working

at the Guinness Brewery in Dublin, Ireland, Gosset was interested in the chemical properties of

barley where sample sizes might number as few as three. His first studies resulted in a report,

“The Application of the ‘Law of Error’ to the work of the Brewery” dated November 3, 1904,

although it has never been published. A meeting with Professor Karl Pearson in July 1905

had a big impact on Gosset’s research. Thanks to Guinness’s enlightened policy that allowed

technical staff leave for study, Gosset spent the first two terms of the 1906/07 academic year in

Karl Pearson’s Biometric Laboratory at University College London [78].

To prevent disclosure of confidential information, Guinness prohibited its employees from

publishing any papers regardless of the contained information. Gosset pleaded that his math-

ematical and philosophical conclusions were of no possible practical use to competing brewers,

and finally was allowed to publish them under a pseudonym to avoid difficulties with the rest of

the staff. The pseudonym “Student” was selected by Christopher Digges La Touche, the Man-

aging Director of Arthur Guinness & Company. Pearson, the co-founder and editor-in-chief of

the journal Biometrika, helped Gosset with the 1908 paper. Pearson had little appreciation

of its importance because the paper addressed the brewer’s concern with small samples, while

biometricians typically had hundreds of observations and saw no urgency in developing small-

sample methods. Student’s t-distribution became well known through the work of R. A. Fisher,

who called the distribution “Student’s distribution” and represented the test value with the

letter t [36]. For detailed discussions of the development of t-distributions, see [60], [30], [11]

and [78], among others.

Student’s t-statistic, along with the t-test, has become one of the most commonly used

methods in statistics and related fields. A self-normalized statistic refers to a statistic that is

normalized by an estimator of the nuisance parameter instead of the nuisance parameter itself.

According to Delaigle, Hall and Jin [28], “Student’s t-statistic is finding applications today

that were never envisaged when it was introduced more than a century ago. Many of these

applications rely on properties, for example robustness against heavy-tailed distributions, that

were not explicitly considered until relatively recently.”

Motivated by various applications of t-statistics/t-tests to high dimensional statistical anal-

ysis, including large-scale multiple testing [34, 13, 54], signal detection [28], classification [33]

and feature screening [15, 16], in the following sections we review and explore Berry-Esseen

type bounds, moderate and large deviations of Student’s t-statistics and some other important

self-normalized/Studentized statistics. These results reveal several attractive advantages of self-
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normalization/Studentization that are indispensable to understanding even common procedures

for analyzing high dimensional data and also motivate new methods.

§3 Central limit theorem and Berry-Esseen bounds

3.1 Central limit theorem and invariance principle

Proceeding with the notation introduced in Section 1, we assume that E(X) = 0. Efron [30]

may be the first to investigate the limiting behavior of Student’s t-statistic Tn, or equivalently

the self-normalized sum Sn/Vn, in some special cases. The general research begins with Logan

et al. [55], who proved, among many other results, that if X is in the domain of attraction

of an α-stable law with 0 < α ≤ 2, centered if α > 1 and symmetric if α = 1, then Sn/Vn

converges in distribution to a limit, which is sub-Gaussian. In particular, if X is symmetric,

the moments of Sn/Vn also converge to those of this limit. Moreover, the authors conjectured

that Sn/Vn is asymptotically normal if and only if X is in the domain of attraction of the

normal law, and the only possible nontrivial limiting distributions of Sn/Vn are those obtained

when X follows a stable law. The “if” part, as Maller [56] noted, is relatively easy based on

Raikov’s theorem. See [25] and [40] for more discussions. The “only if” remained open until

Giné, Götze and Mason [38] proved the result for the general case of not necessarily symmetric

random variables.

Giné, Götze and Mason [38] also showed that if the sequence {Sn/Vn}n≥1 is stochastically

bounded, then it is uniformly sub-Gaussian, i.e., there exists some constant c > 0 such that

supn≥1 Ee
tSn/Vn ≤ 2ect

2

for all t ∈ R. The second conjecture of Logan et al. [55] was addressed

by Chistyakov and Götze [22]. In the independent but not necessarily identically distributed

case, Mason [57] studied the limiting behaviors for self-normalized triangular arrays. The

extension of self-normalized CLT to Donsker-type functional CLT was established by Csörgő,

Szyszkowicz and Wang [26], who also proved an invariance principle for self-normalized, self-

randomized partial sum processes of independent random variables.

As we assume E(X) = 0, the aforementioned investigation of the asymptotic behaviors for

Sn/Vn is specifically related to centralized t-statistics. The limiting behaviors of the non-central

Student’s t-statistic was discussed in Bentkus et al. [7]. Under the assumption of E(X2) < ∞,

the limiting behaviors of the non-central t-statistic are different under the two scenarios of

E(X4) < ∞ and E(X4) = ∞.

3.2 Berry-Esseen bounds

Assume that E(X) = 0. The self-normalized CLT states that if X is in the domain of

attraction of the normal law, then

sup
x∈R

|P(Sn ≥ xVn)− {1− Φ(x)}| → 0 as n → ∞.

The CLT is useful when x is not too large or when the error is well controlled. There are two

ways to measure the normal approximation error. The first is to study the absolute error via
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a Berry-Esseen bound or an Edgeworth expansion, and the second is to estimate the relative

error of P(Sn ≥ xVn) to 1− Φ(x). In this section, we focus on the former.

Define bn = sup{x ∈ R : E{X2I(|X | ≤ x)} ≥ x2/n} and

δn = nP(|X | > bn) + nb−1
n |E{XI(|X | ≤ bn)}|+ nb−3

n E{|X |3I(|X | ≤ bn)}. (2)

Making major progress in this direction, Bentkus, Bloznelis and Götze [5] refined the results of

Slavova [70] and Hall [42] and proved the following theorem.

Theorem 3.1. If X is in the domain of attraction of the normal law, then supx∈R
|P(Sn ≤

xVn)− Φ(x)| ≤ C δn, where C > 0 is an absolute constant and δn is given in (2).

We refer to [31] and [58] for explicit constants in both uniform and non-uniform Berry-Esseen

bounds. The preceding result was extended to the case of independent but not necessarily

identically distributed random variables by Bentkus, Bloznelis and Götze [5] and Shao [65].

The Berry-Esseen bounds provide an upper bound for the rate of convergence in the CLT.

To fully characterize the convergence rate, [43] investigated the exact rate and leading term in

the CLT. They showed that the rate of convergence of the t-statistic to normality is strictly

faster than that for the z-statistic when the second moment is only just finite. In the case of

finite third moment, this leading term is asymptotic to its conventional form in an Edgeworth

expansion. More results on the Edgeworth expansion for Student’s t-statistics can be found in

[41] and [10].

Wang and Jing [76] were the first to investigate the non-uniform Berry-Esseen bound for

Sn/Vn. Their result was later extended by Robinson and Wang [62], who established an ex-

ponential non-uniform bound which was established under optimal moment conditions. The

following result is taken from Theorem 3 in [62].

Theorem 3.2. If X is in the domain of attraction of the normal law, then there exists some

η ∈ (0, 1) such that |P(Sn ≤ xVn) − Φ(x)| ≤ C δn e
−ηx2/2 for all x ∈ R, where C > 0 is an

absolute constant and δn is given in (2).

§4 Large and moderate deviations

In this section, we review the self-normalized large and moderate deviation results, which

characterize the relative error of the normal approximation. More specifically, a Cramér-type

moderate deviation is used to consider the problem of estimating the relative error of the tail

probability of Tn against the tail probability of its limiting distribution, that is,

P(Tn ≥ x)

1− Φ(x)
for x ≥ 0.

Assume that the p-value of the test is P(Tn ≥ x0). As the exact p-value is usually unknown,

it is a common practice to use the limiting tail probability P(Z ≥ x0) to estimate the p-value.

As such, the Cramér-type moderate deviation quantifies the accuracy of the estimated p-value.

Moderate deviation results have been successfully applied to multiple hypothesis tests based on
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t-statistics [34, 24, 28], feature selection in classification [35] and square-root Lasso for recovery

of sparse signals [4].

It is well known that moment conditions or other related conditions are necessary and

sufficient for many classical limit theorems for the conventional mean. On the contrary, its

Studentized counterpart admits accurate large deviation approximations in heavy-tailed cases

where the sampling distribution has only a small number of finite moments. The classical

Cramér-Chernoff large deviation [20] states that if E(et0X) < ∞ for some t0 > 0, then for every

x > E(X),

lim
n→∞

1

n
lnP(Sn/n ≥ x) = ln ρ(x),

where ρ(x) = inft≥0 e
−tx

E(etX). The self-normalized large deviation [63], however, holds with-

out any moment assumptions:

lim
n→∞P(Sn/Vn ≥ x

√
n ) = sup

b≥0
inf
t≥0

Eet{bX−x(X2+b2)/2}

for x > 0 if E(X) = 0 or E(X2) = ∞. Moreover, Shao [63] showed that the tail probability

of Sn/Vn is Gaussian-like when X is in the domain of attraction of the normal law and sub-

Gaussian like when X is in the domain of attraction of a stable law. Specifically, assuming only

a finite second moment, he proved that

lim
n→∞

lnP(Tn ≥ x)

lnP(tn−1 ≥ x)
= lim

n→∞
lnP(Tn ≥ x)

ln{1− Φ(x)} = 1

holds uniformly in x in the interval 0 ≤ x ≤ o(
√
n), where tn−1 has a t-distribution with

n − 1 degrees of freedom. These results also lead to a precise constant in Griffin and Kuelbs’

self-normalized law of the iterated logarithm [39]. In a subsequent paper, Shao [64] proved a

Cramér-type moderate deviation result: if E(X) = 0 and E(|X |3) < ∞, then

lim
n→∞

P(Sn ≥ xVn)

1− Φ(x)
= 1

holds uniformly in 0 ≤ x ≤ o(n1/6). On the contrary, a finite moment generating function

of |X |1/2 is necessary for a similar result in relation to the z-statistic. The following large

and moderate deviation results for the z-statistic are borrowed from Linnik [52]. Suppose

X,X1, . . . , Xn are IID random variables with E(X) = 0 and E(X2) = 1.

(i) If E(et0|X|α) < ∞ for some t0 > 0 and 0 < α ≤ 1, then

lim
n→∞

1

x2
n

lnP(Sn/
√
n ≥ xn) = −1/2

for any sequence {xn}n≥1 satisfying xn → ∞ and xn = o(nα/(4−2α)).

(ii) If E(et0|X|α) for some t0 > 0 and 0 < α ≤ 1/2, then

P(Sn/
√
n ≥ x)

1− Φ(x)
→ 1

holds uniformly for 0 ≤ x ≤ o(nα/(4−2α)).

(iii) Assume E(et0X) < ∞ for some t0 > 0. Then,

P(Sn/
√
n ≥ x) = {1− Φ(x)} exp

(
x3

EX3

6
√
n

){
1 +O

(
1 + x√

n

)}
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holds uniformly for 0 ≤ x ≤ o(n1/4).

The results in Shao [64] were further extended to independent (not necessarily identically

distributed) random variables by Jing, Shao and Wang [46] under a Lindeberg-type condition,

where the authors actually established more general frameworks and considered applications of

the iterated logarithm and Studentized bootstrap to the self-normalized law. For 0 < δ ≤ 1, let

dn,δ =

( n∑

i=1

EX2
i

)1/2/( n∑

i=1

E|Xi|2+δ

)1/(2+δ)

.

The following result is a version of Theorems 2.1 and 2.3 in [46].

Theorem 4.1. Let X1, . . . , Xn be independent random variables satisfying E(Xi) = 0, E(X2
i ) >

0 and E(|Xi|2+δ) for 0 < δ ≤ 1 for all i. Then, there exists an absolute constant C > 0 such

that ∣∣∣∣
P(Sn ≥ xVn)

1− Φ(x)
− 1

∣∣∣∣ ≤ C

(
1 + x

dn,δ

)2+δ

(3)

holds for all 0 ≤ x ≤ dn,δ.

Wang [75] established a refined, second-order Cramér-type moderate deviation theorem for

Sn/Vn under the condition when the fourth moments are finite, the best result known to date.

There are several further extensions in the IID setting. For example, Chistyakov and Götze

[21] proved the sharpness of the result in [46]. Robinson and Wang [62] proved a Cramér-type

result under the optimal condition of X being in the domain of attraction of the normal law.

Assuming E(X) = 0 and E(X4) < ∞, Wang [74] proved that

P(Sn ≥ xVn) = {1− Φ(x)} exp
(
− x3

EX3

3σ3
√
n

){
1 +O

(
1 + x√

n

)}

holds uniformly in 0 ≤ x ≤ O(n1/6). The result of Wang [74] was recently extended by

Gao, Shao and Shi [37] to a more general self-normalized sum
∑n

i=1 Xi/(
∑n

i=1 Y
2
i )

1/2, where

(X1, Y1), . . . , (Xn, Yn) are independent random variables.

In addition, Bercu, Gassiat and Rio [8] obtained large and moderate deviation results for

self-normalized empirical processes. To obtain a better estimate of P(Sn ≥ xVn) in a median or

large range of x, we need completely different techniques. Jing, Shao and Zhou [47] and Zhou

and Jing [79] investigated saddle-point approximations for the tail probability P(Sn ≥ xVn) in

the IID setting when x is very large, that is, x = c
√
n for some 0 < c < 1. Still, it remains

an open question whether the techniques in [47] and [79] can be used to provide a better

approximation for P(Sn ≥ xVn) in a median range of x, say O(n1/6) ≤ x ≤ O(n1/2). Jing,

Shao and Zhou [48] established a universal self-normalized moderate deviation when X is in the

centered Feller class. We refer to [27] for a systematic presentation of the general self-normalized

limit theory and its statistical applications, and to [66] and [68] for two comprehensive surveys.

§5 Moderate deviations for Studentized U-statistics

The purpose of this section is to go beyond self-normalized sums and catch a glimpse of

more general self-normalized processes.
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5.1 Studentized nonlinear statistics

The research on self-normalized processes is motivated by Studentized nonlinear statistics.

Nonlinear statistics are the building blocks in various statistical inference problems. Many of

them can be written as a partial sum plus a negligible term, for example, due to the Hoeffding

decomposition or Bahadur representation. Typical examples include U -statistics, multi-sample

U -statistics, L-statistics, random sums and functions of nonlinear statistics. We refer to Chen

and Shao [18] for a unified approach to uniform and non-uniform Berry-Esseen bounds for

standardized nonlinear statistics.

Assume that the nonlinear statistic of interest can be decomposed as a standardized par-

tial sum of independent random variables plus a remainder, say, σ−1(
∑n

i=1 ξi + D1n), where

ξ1, . . . , ξn are independent random variables satisfying

Eξi = 0 for i = 1, . . . , n, and

n∑

i=1

Eξ2i = 1, (4)

and where D1n = D1n(ξ1, . . . , ξn). As σ is typically unknown, a Studentized statistic

Tn =
1

σ̂

( n∑

i=1

ξi +D1n

)

is more commonly used in practice, where σ̂ is an estimator of σ that can be written as σ̂ =

{(∑n
i=1 ξ

2
i )(1 +D2n)}1/2, where D2n = D2n(ξ1, . . . , ξn) satisfies 1 +D2n > 0. Without loss of

generality, we assume σ = 1. Under (4), Tn can be written as

Tn =
Wn +D1n

Vn(1 +D2n)1/2
, (5)

where Wn =
∑n

i=1 ξi and Vn = (
∑n

i=1 ξ
2
i )

1/2. The basic observation underpinning (5) is that

for a nonlinear statistic that be can written as a partial sum plus a negligible remainder, the

corresponding normalizing term should be dominated by a quadratic form. Examples satisfying

(5) include the t-statistic, Studentized U -statistics and L-statistics. We refer to Wang, Jing

and Zhao [77] and the references therein for more detailed discussions.

Shao and Zhou [69] established a general Cramér-type moderate deviation theorem for Tn

in the form of (5), which is reproduced as follows. For x ≥ 1, write

Ln,x =

n∑

i=1

δi,x, In,x = E exp(xWn − x2V 2
n /2) =

n∏

i=1

E exp(ξi,x − ξ2i,x/2), (6)

where δi,x = Eξ2i,xI(|ξi,x| > 1) + E|ξi,x|3I(|ξi,x| ≤ 1) with ξi,x := xξi. For i = 1, . . . , n, let D
(i)
1n

and D
(i)
2n be arbitrary measurable functions of {ξj}nj=1,j �=i, such that {D(i)

1n , D
(i)
2n} and ξi are

independent. Moreover, define

Rn,x = I−1
n,x ×

(
E{(x|D1n|+ x2|D2n|)e

∑n
j=1(ξj,x−ξ2j,x/2)}

+
n∑

i=1

E[min(|ξi,x|, 1){|D1n −D
(i)
1n |+ x|D2n −D

(i)
2n |}e

∑
j �=i(ξj,x−ξ2j,x/2)]

)
.

Here, we use
∑

j �=i =
∑n

j=1,j �=i for simplicity. We are now ready to present the main results

from [69].
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Theorem 5.1. Let Tn be as in (5) under condition (4). Then, there exist positive absolute

constants C1–C4 and c1 such that

P(Tn ≥ x) ≥ {1− Φ(x)} exp(−C1Ln,x)(1 − C2Rn,x)

and

P(Tn ≥ x) ≤ {1− Φ(x)} exp(C3Ln,x)(1 + C4Rn,x)

+ P(x|D1n| > Vn/4) + P(x2|D2n| > 1/4)

for all x ≥ 1 satisfying max1≤i≤n δi,x ≤ 1 and Ln,x ≤ c1x
2.

The quantity Ln,x in (6) is essentially the same as the factor Δn,x in [46], which is the leading

term that describes the accuracy of the relative normal approximation error. Theorem 5.1

provides upper and lower bounds of the relative errors when x ≥ 1. For completeness, the

following result covers the case of 0 ≤ x ≤ 1 [69]. We refer to [68] for general Berry-Esseen

bounds for Studentized nonlinear statistics.

Theorem 5.2. There exists an absolute constant C > 1 such that for all x ≥ 0,

|P(Tn ≤ x)− Φ(x)| ≤ CR̆n,x,

where

R̆n,x := Ln,1+x + E|D1n|+ xE|D2n|

+

n∑

i=1

E[|ξiI{|ξi| ≤ 1/(1 + x)}{|D1n −D
(i)
1n |+ x|D2n −D

(i)
2n |}]

for Ln,1+x as in (6).

In particular, when 0 ≤ x ≤ 1, the quantity Ln,1+x satisfies

Ln,1+x ≤ (1 + x)2
n∑

i=1

Eξ2i I(|ξi| > 1) + (1 + x)2
n∑

i=1

Eξ2i I(1/2 < |ξi| ≤ 1)

+ (1 + x)3
n∑

i=1

E|ξi|3I(|ξi| ≤ 1),

which can be further bounded, up to a constant, by
n∑

i=1

Eξ2i I(|ξi| > 1) +
n∑

i=1

E|ξi|3I(|ξi| ≤ 1).

When D1n = D2n = 0, Tn reduces to the self-normalized sum of independent random

variables, and thus Theorems 5.1 and 5.2 together immediately imply the main result from

[46]. Also, D1n and D2n in the definitions of Rn,x and R̆n,x can be replaced by any non-

negative random variablesD3n and D4n, respectively, provided that |D1n| ≤ D3n, |D2n| ≤ D4n.

Condition (4) implies that ξi actually depends on both n and i; that is, ξi denotes ξni, which

is an array of independent random variables.

5.2 Studentized U-statistics

As a prototypical example of the Studentized nonlinear statistic given in (5), the Studentized

U -statistic is of particular interest. Based on Theorems 5.1 and 5.2, Shao and Zhou [69] obtained
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a sharp Cramér-type moderate deviation for Studentized U -statistics under optimal moment

conditions.

Let X1, X2, . . . , Xn be a sequence of IID random variables and let h : R
m → R be a

symmetric Borel measurable function of m variables, where 2 ≤ m < n/2 is fixed. Hoeffding’s

U -statistic with a kernel h of degree m is defined as [44]

Un =
1(
n
m

)
∑

1≤i1<···<im≤n

h(Xi1 , . . . , Xim),

which is an unbiased estimate of θ = Eh(X1, . . . , Xm). Let

h1(x) = E{h(X1, X2, . . . , Xm)|X1 = x}, x ∈ R

and

σ2 = var{h1(X1)}, σ2
h = var{h(X1, X2, . . . , Xm)}.

Assuming 0 < σ2 < ∞, the standardized non-degenerate U -statistic is given by

ZU
n =

√
n

mσ
(Un − θ).

The U -statistic is one of the most commonly used nonlinear and nonparametric statistics,

and its asymptotic theory has been well studied since the seminal work of Hoeffding [44].

However, because σ is usually unknown, the Studentized U -statistic [2], denoted by

TU
n =

√
n

ms1
(Un − θ),

is of more practical interest, where s21 denotes the leave-one-out Jackknife estimator of σ2 given

by

s21 =
(n− 1)

(n−m)2

n∑

i=1

(qi − Un)
2 with

qi =
1(

n−1
m−1

)
∑

1≤�1<···<�m−1≤n

�j �=i, j=1,...,m−1

h(Xi, X�1 , . . . , X�m−1).

In contrast to the standardized U -statistic ZU
n , few optimal limit theorems are available for

Studentized U -statistics in the literature. A uniform Berry-Esseen bound for Studentized U -

statistics was proved by Wang, Jing and Zhao [77] for m = 2 when E|h(X1, X2)|3 < ∞. Partial

results on Cramér-type moderate deviation were obtained in [72], [73] and [51]. Recently, Shao

and Zhou [69] established the following sharp Cramér-type moderate deviation theorem for the

Studentized U -statistic TU
n .

Theorem 5.3. Assume that σp := (E|h1(X1)−θ|p)1/p < ∞ for some 2 < p ≤ 3. Suppose there

are constants c0 ≥ 1 and τ ≥ 0 such that

{h(x1, . . . , xm)− θ}2 ≤ c0

[
τσ2 +

m∑

i=1

{h1(xi)− θ}2
]
. (7)

Then, there exist constants C1, c1 > 0 independent of n such that

P(TU
n ≥ x)

1− Φ(x)
= 1 +O(1)

{
(σp/σ)

p (1 + x)p

np/2−1
+ (

√
am + σh/σ)

(1 + x)3√
n

}

holds uniformly for 0 ≤ x ≤ c1 min{(σ/σp)n
1/2−1/p, (n/am)1/6}, where |O(1)| ≤ C1 and am =
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max(c0τ, c0 +m). In particular,

P(TU
n ≥ x)

1− Φ(x)
→ 1 (8)

holds uniformly in x ∈ [0, o(n1/2−1/p)).

Condition (7) is satisfied for the t-statistic (h(x1, x2) = (x1 + x2)/2 with c0 = 2 and τ =

0), sample variance (h(x1, x2) = (x1 − x2)
2/2, c0 = 10, τ = θ2/σ2), Gini’s mean difference

(h(x1, x2) = |x1 − x2|, c0 = 8, τ = θ2/σ2) and one-sample Wilcoxon’s statistic (h(x1, x2) =

I(x1 + x2 ≤ 0), c0 = 1, τ = 1/σ2). Result (8) was proved earlier by Lai, Shao and Wang [51]

for m = 2.

§6 Hotelling’s T 2-statistics

Testing the equality of two mean vectors μ1 and μ2 based on two random samples is a

canonical testing problem in multivariate analysis, and it arises in many scientific applications,

including genomics, finance and signal processing. Let {Xi}n1

i=1 and {Yj}n2

j=1 be two samples of

IID d-dimensional random vectors with mean vectors μ1 and μ2 and positive definite covariance

matrices Σ1 and Σ2, respectively. Assume the two samples are independent. The classical test

for testing

H0 : μ1 = μ2 versus H1 : μ1 �= μ2

is Hotelling’s T 2-test, with the test statistic given by [45]

T 2
n1,n2

= (X̄− Ȳ)T
(

1

n1
Σ̂1 +

1

n2
Σ̂2

)−1

(X̄− Ȳ),

where X̄ = (1/n1)
∑n1

i=1 Xi and Ȳ = (1/n2)
∑n2

j=1 Yj are the sample means and Σ̂1 =

(1/n1)
∑n1

i=1(Xi − X̄)(Xi − X̄)T and Σ̂2 = (1/n2)
∑n2

j=1(Yj − Ȳ)(Yj − Ȳ)T are the sam-

ple covariance matrices. The properties of Hotelling’s T 2-statistic under normality have been

well studied in the conventional low dimensional setting. The properties are desirable when the

dimension d is fixed [1].

In the one-sample case, the T 2-statistic is defined by

T 2
n1

= n1(X̄− μ1)
TΣ̂−1

1 (X̄− μ1).

If {Xi}n1

i=1 is a sample from a multivariate normal population N(μ1,Σ1), then {(n1 − d)/d}
{T 2

n1
/(n1 − 1)} follows an F -distribution. When d is fixed and if the underlying distribution

has a finite second moment, the limiting law of T 2
n1

is the chi-squared distribution with degrees

of freedom d. Large and moderate deviations (the logarithm of the tail probabilities) were

obtained by Dembo and Shao [29].

Recently, Liu and Shao [53] established a Cramér-type moderate deviation theorem for

Hotelling’s T 2-statistic in both one- and two-sample cases. Specifically, they proved that if

E(‖X1‖3+δ
2 ) + E(‖Y1‖3+δ

2 ) < ∞ for some δ > 0 and n1 � n2, then under H0 : μ1 = μ2,

P(T 2
n1,n2

≥ x2)

P(χ2
d ≥ x2)

→ 1 as n → ∞

uniformly for x ∈ [0, o(n1/6)), where n = n1 + n2 and χ2
d has a chi-squared distribution with
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degrees of freedom d. A similar result holds for the one-sample T 2-statistic: if E(‖X1‖3+δ
2 ) < ∞

for some δ > 0, then
P(T 2

n1
≥ x2)

P(χ2
d ≥ x2)

→ 1 as n1 → ∞
uniformly for x ∈ [0, o(n

1/6
1 )). As proved in [64] and [46], the preceding results hold under finite

third moments when d = 1 and the range [0, o(n1/6)) ([0, o(n
1/6
1 )) in the one-sample case) is

the widest possible. An open question is whether they remain valid for d ≥ 2 under finite third

moments.

Another interesting problem arises when the dimension d is large or proportional to the

sample size. Pan and Zhou [59] studied the asymptotic distribution of T 2
n1

when d = dn1

satisfies d ≤ n1 and d/n1 → c ∈ (0, 1) as n1 → ∞. We refer to [3] for discussion of the two-

sample T 2-statistic T 2
n1,n2

under the assumption that the coordinates of X1 and Y1 are normal

random variables.

§7 Recent development

7.1 Studentized two-sample U-statistics

Two-sample U -statistics, typified by the two-sample Mann-Whitney test statistic, have been

widely used in a broad range of scientific research. For example, they are commonly used to

compare the different (treatment) effects of two groups, such as an experimental group and a

control group, in scientifically controlled experiments. Unfortunately, many of these application-

s rely on a misunderstanding of what is being tested and the implicit underlying assumptions,

which were not explicitly considered until relatively recently by Chung and Romano [23]. More

importantly, these authors provided evidence for the advantage of using the Studentized statis-

tics both theoretically and empirically. However, due to structural complexities, the theoretical

properties of Studentized two-sample U -statistics are lacking in general. Recently, Chang, Shao

and Zhou [14] proved a Cramér-type moderate deviation theorem in a general framework for

Studentized two-sample U -statistics, with typical examples include the two-sample t-statistic

and Studentized Mann-Whitney test statistic. A refined moderate deviation theorem with the

second-order accuracy was established for the two-sample t-statistic under a finite fourth mo-

ment condition; see Theorem 2.4 therein. In contrast to the one-sample case, the two-sample

t-statistic cannot be reduced to a self-normalized sum of independent random variables, and

thus the results for self-normalized ratios [46, 74, 75] cannot be directly applied. Instead,

Chang, Shao and Zhou [14] modified Theorem 2.1 in [69] to obtain a more precise expansion

that could be used to derive a refined result for the two-sample t-statistic.

7.2 Self-normalized limit theory under dependence

There are many variations of asymptotic theories related to self-normalized sums in the

literature, and some allow for dependent data; see, for example, [9] and [49]. We refer to

[27] and [66] for a comprehensive study and a recent review. Among the existing theories,
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the Cramér-type moderate deviations of self-normalized sums may be the most useful for con-

structing simultaneous confidence sets for ultra-high dimensional statistics [34, 54]. It remains

as an important open question whether Theorem 4.1 can be generalized to dependent random

variables, as such a generalization is useful for ultra-high dimensional statistical inference on

dependent data with heavy-tailed marginal distributions.

Recently, Chen et al. [19] showed that the general result (3) is not valid for the range

of type 0 ≤ x ≤ nρ for any ρ > 0 if the dependence of the underlying process {Xt} decays

algebraically. In this case, only a much narrower range 0 ≤ x ≤ (κ logn)1/2 for some con-

stant κ > 0 is available; see Section 3 in [19]. Using block versions of Vn instead, the authors

established Cramér-type moderate deviations results for self-normalized sums of weakly de-

pendent processes with geometrically decaying dependence, under mild polynomial moment

conditions. In particular, three types of self-normalized sums were introduced based on the

big-block-small-block scheme, the equal-block and the interlacing scheme, respectively, and the

associated Cramér-type moderate deviations were established. In the context of resampling

theory for weakly dependent processes, block bootstrap procedures were proposed to adjust

for dependence; see, for example, [12], [61] and [50]. However, the accuracy of a tail Gaus-

sian approximation of type (3) has not been studied for dependent data. As shown by Chen

et al. [19], due to dependency, the range of Gaussian approximation is narrower than that

in the independent case, while under the same moment conditions, it is still wider than their

non-Studentized counterparts. A time series two-sample moderate deviation extension was also

presented. These results are useful for conducting ultra-high dimensional statistical inferences

on dependent data with heavy-tailed marginal distributions, such as multiple hypothesis testing

of mean vectors of ultra-high dimensional time series models in one or two samples.

The proof techniques in [19] may be used to extend the additional self-normalized limit

theorems in [46], [53] and others surveyed in [66] from independent data to weakly dependent

data with finite polynomial moments.

7.3 Non-normal approximation

For general non-normal approximation, Chatterjee and Shao [17] and Shao and Zhang [67]

developed a concrete Stein’s method to identify the limiting distribution as well as a Berry-

Esseen type bound via an exchangeable pair approach. In particular, Shao and Zhang [67]

proved a Berry-Esseen type bound of order O(n−3/4) for the Curie-Weiss model at the critical

temperature. Still, the self-normalized Cramér-type moderate deviation for general non-normal

approximation remains open.
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