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Abstract
Objective. Detecting the shift of covert visuospatial attention (CVSA) is vital for gaze-
independent brain–computer interfaces (BCIs), which might be the only communication
approach for severely disabled patients who cannot move their eyes. Although previous studies
had demonstrated that it is feasible to use CVSA-related electroencephalography (EEG) features
to control a BCI system, the communication speed remains very low. This study aims to improve
the speed and accuracy of CVSA detection by fusing EEG features of N2pc and steady-state
visual evoked potential (SSVEP). Approach. A new paradigm was designed to code the left and
right CVSA with the N2pc and SSVEP features, which were then decoded by a classification
strategy based on canonical correlation analysis. Eleven subjects were recruited to perform an
offline experiment in this study. Temporal waves, amplitudes, and topographies for brain
responses related to N2pc and SSVEP were analyzed. The classification accuracy derived from
the hybrid EEG features (SSVEP and N2pc) was compared with those using the single EEG
features (SSVEP or N2pc). Main results. The N2pc could be significantly enhanced under
certain conditions of SSVEP modulations. The hybrid EEG features achieved significantly
higher accuracy than the single features. It obtained an average accuracy of 72.9% by using a
data length of 400 ms after the attention shift. Moreover, the average accuracy reached ∼80%
(peak values above 90%) when using 2 s long data. Significance. The results indicate that the
combination of N2pc and SSVEP is effective for fast detection of CVSA. The proposed method
could be a promising approach for implementing a gaze-independent BCI.

Keywords: brain–computer interface, covert visuospatial attention, gaze-independent, hybrid,
N2pc, steady-state visual evoked potential (SSVEP)

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–computer interfaces (BCIs) can provide an alternative
approach for patients who are severely disabled but preserve
intact cognition [1, 2]. Currently, electroencephalography
(EEG) is a preferable approach for BCIs than other non-

invasive functional brain monitoring methods, because of its
low requirements and acceptable properties of the recording
system. BCIs based on event-related potentials (ERPs) [3],
steady-state visual evoked potentials (SSVEPs) [4], and sen-
sory motor rhythms [5] are the three most popular BCI
paradigms.

In traditional views, reactive visual BCIs such as the
P300-based BCI and the SSVEP-based BCI for healthy
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people, could also be used by severely disabled patients as
long as they are conscious. However, many studies have
demonstrated that the traditional reactive BCIs are less
effective for users who are unable to shift their overt attention
from the central visual field, like the terminal amyotrophic
lateral sclerosis (ALS) patient [6–8]. The main reason for the
degraded performance is that, for patients who can only use
the covert visual attention to observe the target character,
brain responses to outside visual stimuli are much weaker
than those who can use the overt visual attention. Specifically,
the visual N1, which plays a vital role in the classification of
the target versus non-target responses for the P300 speller,
would be greatly compromised in the covert visual attention
[8]. Similarly, the differences between the target and non-
target SSVEPs would also be reduced during the covert visual
attention, leading to significantly decreased performance.
Therefore, most existing visual BCI systems work only for
healthy people who have the ability to control their eye
movements.

To overcome the aforementioned problems, efforts have
been made to develop gaze-independent BCIs, which could
be more effective for severely disabled patients. For instance,
Kelly et al proposed to use the covert visuospatial attention
(CVSA) modulated SSVEPs to perform a binary classification
of the left versus right attention sides [9]. Later, Allison et al
demonstrated that selective attention to one of two over-
lapping stimuli could also elicit sufficient SSVEP differences
for BCI control [10]. Zhang et al developed an online gaze-
independent BCI system based on SSVEPs modulated by
selective visual attention in 2010 [11]. In 2014, the SSVEP-
based gaze-independent BCI had a clinical test with locked-in
patients [12]. However, only 1 out of 4 patients could perform
online communication. For the field of transient ERP-based
BCIs, most attention was paid to design new paradigms
beyond the matrix speller, such as the Hex-o-Spell speller
[13, 14], Cake Speller [15, 16], Center Speller [15], Geospel
[17] and the rapid serial visual presentation [18], in which
ERP classifications were completely dependent on the endo-
genous component like the P300 potential. In 2013, a clinical
test of 10 ALS patients was conducted for the ERP-based
gaze-independent BCI [19]. The results showed an average
information transfer rate (ITR) of 6.3 bits min−1 after 4 d of
training. The posterior alpha rhythm-based BCI is another
important gaze-independent and stimulus-free system [20–
23]. It is based on the fact that when people attend to one side,
the contralateral alpha rhythm on the occipital area would
decrease while the ipsilateral alpha rhythm would increase. So
the hemispheric distribution of the posterior alpha power
could be used to determine which side the subject is paying
attention to. An online test showed that an average accuracy
of about 70% could be achieved by using 3 s long data for the
posterior alpha rhythm-based BCI system [23]. Overall, the
gaze-independent BCI could only obtain ITRs of several bits
per minute at current stage, which is much slower than that of
the gaze-dependent BCI system [1, 4].

The concept of the hybrid BCI demonstrates a substantial
improvement for the BCI development [24, 25]. It makes the
mental control faster and more flexible through adding

another channel of physiological control signals to the BCI
system. Specially, the ‘pure’ hybrid BCI improves accuracy
and universality by combining two or more different BCI
systems, such as the P300-SSVEP system [26–31], SSVEP-
ERD system [32–35] and P300-ERD system [36]. In part-
icular, for the reactive BCI, the incorporation of SSVEP into
other ERP paradigms would not only increase the amount of
useful EEG information but also enhance typical EEG fea-
tures [37], thereby facilitating the classification. Although the
hybrid BCI technique has made numerous progresses, there
are very few studies on applying hybrid EEG features to gaze-
independent BCIs. Currently, only the combination of SSVEP
and posterior alpha rhythm has been reported for controlling
the gaze-independent visual BCI system [38].

This study aims to realize a fast classification of CVSA
(left versus right sides) by using the hybrid EEG features
including N2pc and SSVEP. The N2pc component reflects
the focusing of covert attention on a peripheral location,
which contains a greater negative potential in the posterior
scalp when the attended item is contralateral to the recording
electrode than when the attended item is ipsilateral [39]. It
seems to be the earliest ERP signature on the scalp that is
related to the focusing of visual attention. Therefore, through
identifying the N2pc pattern, BCIs could recognize which
side the subject is paying attention to. Compared with pre-
vious EEG features used in the gaze-independent BCI, the
combination of N2pc and SSVEP would have several
potential advantages. First, the N2pc, which often happens
after 200 ms post-cue, reflects the earliest time when the
visual attention becomes focused within the ventral stream
[39]. So it is an important support for a fast classification.
Second, when the flickering stimulus becomes focused, the
SSVEP amplitude corresponding to that flickering frequency
would start to increase at about 300 ms post-cue [40]. Thus
the attention-modulated SSVEP would be a second indicator
of the visual attention even it is weak during the N2pc period.
Third, it has been demonstrated that a period of preceding
SSVEPs could influence the following ERP components
[30, 31, 37]. Therefore the N2pc might be enhanced under
certain SSVEP modulations, which would also facilitate the
subsequent classification. Based on the above analysis, this
study would investigate (1) the N2pc and SSVEP character-
istics of the hybrid paradigm; and (2) the performance
improvement using the hybrid feature.

This paper is organized as follows. Section 2 addresses
the methodology including the participants, offline experi-
ment, feature extraction, and classification algorithms.
Section 3 shows the EEG features and offline classification
results. The discussion and conclusion are stated in sections 4
and 5, respectively.

2. Materials and methods

2.1. Participants

Eleven healthy volunteers (22–29 years of age; 3 females; all
right handed) with normal or corrected to normal vision
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participated in this study. The experimental procedures were
approved by the Human Research Protections Program of the
University of California San Diego. A written informed
consent was obtained from all subjects after the nature and all
possible consequences of the study were explained.

2.2. Experimental design and procedure

Figure 1 shows the flow chart of a completed trial. At the
beginning, a preparation step would last 0.5 s. In this period, a
white cross within 1° of visual angle would be displayed at
the center of the screen, while two squares (11° high and 18°
wide, the nearest edge to the center is 2°) on the left and right
sides would flicker simultaneously at two different fre-
quencies f1 and f2. The flicker is an alternation of white and
black colors. There were three different combinations of f1
and f2 in this study. For condition ‘10-12’, f1 and f2 were
10 Hz and 12 Hz, respectively. However, they were both
12 Hz for condition ‘12-12’, and 0 Hz for condition ‘0-0’
(remained white all the time). The condition ‘0-0’ was used as
the control condition for exploring the effect of SSVEP to
N2pc. The selection of 10 and 12 Hz is because both of them
are in the alpha band, which is deemed to be the most relevant
band to the visual attention. Different combinations of these
two frequencies aims to investigate the modulation on the
N2pc by different background flickers. In each square, there
was a Gabor patch which was a 2° spot located 7° away from
the center. The dip angle of the two Gabor patches were both
45° or −45°. Then a cue of a red or blue dot (Cue 1) would be
shown in the center of the cross for another 0.5 s. After that, a
blank period which had the same stimulation with the prep-
aration period would be presented for 0.5 s. Next, it displayed

the second cue (Cue 2) which was either a pair of left blue and
right red dots or a pair of right blue and left red dots. The dots
were 1.5° away from the center. The side of the dot which
shows the same color to Cue 1 was the target side. Cue 2
would last for 2 to 2.5 s indeterminably. At the end of Cue 2,
the Gabor patch at the target side would rotate clockwise or
anticlockwise by 15° for 0.1 s and then recover immediately
for another 0.8 s. At the end, there was a rest period (2 s)
during which no flickers would be presented. The paradigm
which was designed by using the psychtoolbox-3 was run in
the Matlab-2014 environment. During the experiment, an eye
tracker (THE EYE TRIBE, 20 Hz sample rate) was used to
monitor subject’s eye movements. EEG was recorded by a
Biosemi amplifier (2048 Hz sample rate) with 20 active sen-
sors put on the posterior area of the scalp (see figure 2). All
channels were referenced to Fz in recording. The eye tracker
system and the EEG recording system were synchronized
using the lab streaming layer [41].

Subjects were seated 60 cm in front of the monitor screen
which was 41×25 cm2 in size, having 1440×900 pixels
and refreshing at 60 Hz. They were asked to gaze at the
central cross all the time during a trial, while shift their
attention covertly to the Gabor patch of the target side once
Cue 2 appeared. They were asked to press a button as soon as
possible when observing the rotation of the Gabor patch. The
detection of Gabor patch is commonly used in the field of
studying covert visual attention [42]. By analyzing the
detection performance, researchers could identify those trials
that the subjects successfully focus their attention to a spe-
cified location. An eligible trial required the subject to give a
correct and timely response and have no eye movement
during the period of Cue 2. A block consists of 24 trials,
which were equally from the three conditions in a random
sequence. There was a several minutes rest between two
consecutive blocks. During the rest time, a quick inspection
was conducted to count the number of eligible trials in the

Figure 1. Temporal evolution of the stimulation of a completed trial.
An example of typical stimuli is displayed on the right of the flow
chart, while the key information which would be delivered during
the period is shown on the left. The white squares on the left and
right sides of the central cross would flicker at the frequencies of f1
and f2, respectively. There are three different frequency combina-
tions, i.e. 10 versus 12 Hz, 12 versus 12 Hz and 0 versus 0 Hz.

Figure 2. Active sensor locations. The numbers were regarded as
their labels in this study, as the sensor locations are not according to
the 10–20 international system but identified by a space position
indicator. It should be noted that sensors 12, 15 and 18 correspond to
PO8, POz and PO7, respectively.
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past block. Two strict rejection criteria were applied in the
inspection. The first criterion was that the trial would be
eliminated if the eye tracker system reported an eye move-
ment (1° from the center) or blink during the Cue 2 period.
The second criterion was that the trial would not be selected if
subjects did not respond in the duration of 300–800 ms after
the rotation onset. Subjects were required to keep doing this
task until each condition had at least 50 eligible trials for each
attention side.

For the same Cue 2, subjects would either shift their
attention to the left or to the right, which depended on the
color of Cue 1. Therefore, the shift of attention was driven by
the information previously stored in the subject’s brain rather
than the outside stimulus shown by Cue 2. It meant EEG
features related to attention shift were endogenous in this
study.

2.3. Feature extraction and classification

2.3.1. Pre-processing. In order to get a convincible result,
the numbers of eligible trials were equal for all conditions, i.e.
fifty for each attention side. In pre-processing, EEG signals
for all 20 channels were first filtered to 0.1–100 Hz with a
third order band-pass Butterworth filter, and then down-
sampled at 256 Hz. For temporal waveform analysis, the EEG
signals were then filtered by 3 Chebyshev Type I filters into
2–6 Hz, 9–11 Hz and 11–13 Hz for analyzing the
characteristics of N2pc, 10 Hz SSVEP and 12 Hz SSVEP,
respectively. The EEG samples were extracted from −500 to
2000 ms around the Cue 2 onset. For classification, the EEG
signals were filtered into 2–70 Hz or 8–70 Hz by a Chebyshev
Type I filter. The band of 2–70 Hz was deemed to cover the
frequencies of N2pc and SSVEPs (including the harmonics),
while 8–70 Hz was regarded as the frequency band of SSVEP
and their harmonics in this study. The EEG samples for
classification were extracted by the time windows of
200–400 ms, 400–600 ms,K, 1800–2000 ms (from 200 to
2000 ms, window length: 200 ms) and 200–2000 ms after the
Cue 2 onset. As SSVEPs have a delay of about 150 ms and
need almost 300 ms to reach the strongest amplitude [40], it is
weak during the time segment of 200–400 ms and we referred
it as the immature SSVEP in this study. Therefore, the
duration of 200–400 ms contained the N2pc as well as the
immature SSVEP for the experimental conditions (‘10-12’
and ‘12-12’), but it only had the N2pc for the control
condition (‘0-0’). As to the durations of 400–600 ms, K,
1800–2000 ms, they only contained the mature SSVEP for the
experimental conditions. The duration of 200–2000 ms

contained all useful EEG features including N2pc and
SSVEPs. Therefore, there were five most interesting kinds
of EEG features to compare in this study, which were shown
in table 1.

2.3.2. N2pc and SSVEP analyzes. The N2pc is a posterior-
contralateral negative potential with a latency of about
200–300 ms, and the CVSA modulated SSVEP is also
posterior-contralateral. Thus subtracting the signal of
ipsilateral attention from that of contralateral attention was
the main analysis principle in this study. Specifically, for the
channels on the left hemisphere, we subtracted the signal of
left attention from that of right attention. Instead, for the
channels on the right hemisphere, the signal of right attention
were subtracted from that of left attention. After subtraction,
the amplitude of N2pc was calculated as the mean amplitude
within the specified time window of 180–310 ms after the
Cue 2 onset, while the SSVEP amplitude was represented by
its envelop which could be obtained by calculating the
absolute value of the Hilbert transform of the signal. The EEG
spectrum for illustration in this study was the grand average
of fast Fourier transforms of single trials which contained 2 s
long data after Cue 2 onset.

2.3.3. Classification algorithm. The classification of CVSA
(attent to left versus attend to right) was based on canonical
correlation analysis (CCA) in this study. CCA is a
multichannel data processing approach which has been
successfully applied to the BCI research, especially for the
SSVEP-based BCI [4, 43, 44]. The standard CCA algorithm
is a multivariable statistical method which aims to reveal the
underlying correlation between two sets of data. It finds a pair
of linear combinations for two sets to maximize the
correlation between the transformed data. Consider two
multidimensional random variables Î ´X Y R, ,N Nk s where
Nk is the number of channels and Ns is the length of the
sample, and their linear combinations =x X UT

X Y, and
= Y Vy T

X Y, ( Î ´U V R, ,X Y X Y
N d

, , k where d=min (rank(X),
rank(Y))), respectively. CCA finds the proper weight vectors,
UX Y, and V ,X Y, to maximize the correlation between x and y. It
equals to solve the following problem:

=
e

e e⋅

( )
( )[ ]

[ ] [ ]

X YCCA ,

max . 1
U V

U XY V

U XX U V YY V
,X Y X Y

X Y
T T

X Y

X Y
T T

X Y X Y
T T

X Y
, ,

, ,

, , , ,

In the conventional method for classifying SSVEPs, X refers
to the set of EEG signals and Y refers to the set of reference
signals Yf which have the same length as X. The reference

Table 1. Candidate EEG features for classifications.

Experimental conditions (‘10-12’ and ‘12-12’) Control condition (‘0-0’)

2–70 Hz 8–70 Hz 2–70 Hz 8–70 Hz

200–400 ms hybrid feature (N2pc and immature SSVEP) immature SSVEP N2pc /
400–600 ms,K, 1800–2000 ms / mature SSVEP / /
200–2000 ms All features / / /
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where f is the fundamental frequency, fs is the sample rate, Nh

is the number of harmonics. The CCA coefficient would be
large if the main oscillation frequency of X is the same with
the fundamental frequency of Y .f Therefore, the target
frequency of SSVEPs could be determined by finding the
maximum CCA coefficient.

In an extended approach [44], Nakanishi et al proposed
to use the SSVEP training data X̂ as the reference signals for
frequency f, which could be obtained by averaging the
training set across trials, i.e.
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år r r= ⋅
=

˜ ( ) ( )sign . 5
i

i i
1

4
2

Although the CCA-based approach has been widely used in
the SSVEP classification, it has never been applied to the
CVSA-based BCIs. Here, we proposed a new classification
strategy using the CCA algorithm, which is customized for
extracting N2pc and SSVEP features during the covert
attention, written as
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The predicted attention side was

r=ˆ ˜ ( )k argmax . 9k k

In this study, towards a more practical BCI diagram, we
performed channel selection for all three conditions, in which
the best combination of two active channels and one reference
channel were selected from all three-channel combinations by
comparing their accuracies. In order to get a balanced
comparison, Yf matrixes were the same for all conditions,
which contained both frequencies 10 and 12 Hz. Actually, as
condition ‘12-12’ had only a 12 Hz flicker and condition ‘0-0’
had no flickers in front of subjects, the redundant frequency
component in Yf seemed useless. A further investigation
found that, for these two conditions, the final accuracies were
less different for different Yf matrixes which either contained
the redundant flickering frequencies or not.

3. Results

3.1. Classification performance

This study first compared the accuracies between the hybrid
EEG features, i.e. the combination of N2pc and SSVEP, and
the single features, i.e. the pure N2pc or SSVEP. Figure 3
shows the accuracy comparison between the hybrid feature
and the single N2pc feature, and more details could be found
in table 2. The EEG features for classification were extracted
between 2 and 70 Hz from 200 to 400 ms for the three con-
ditions. Therefore, conditions ‘10-12’ and ‘12-12’ had the
combined features of N2pc and immature SSVEPs, while the
‘0-0’ condition only contained the N2pc feature. As a result,
both conditions ‘10-12’ and ‘12-12’ performed significantly
better than condition ‘0-0’, which could be demonstrated by
the Wilcoxon signed rank test (‘10-12’ versus ‘0-0’:
p=0.004; ‘12-12’ versus ‘0-0’: p=0.047). Specifically, the

5

J. Neural Eng. 13 (2016) 066003 M Xu et al



average accuracy was 72.9%, 72.6% and 68.6% for condi-
tions ‘10-12’, ‘12-12’ and ‘0-0’, respectively, while the
highest individual accuracy was 88%, 83% and 82%. These
results indicated that the hybrid EEG features performed
significantly better than the single N2pc feature.

Figure 4 shows the comparisons between the hybrid EEG
feature and the single SSVEP feature. For both conditions
‘10-12’ and ‘12-12’, the hybrid EEG feature had a higher
accuracy than the immature SSVEP and the mature SSVEP.
The Wilcoxon signed rank test demonstrated that the prio-
rities of hybrid features to immature SSVEPs were significant
(for condition ‘10-12’, p=0.0098; for condition ‘12-12’,
p=0.012). Specifically, the accuracy of the immature
SSVEP feature was 5.27% lower than that of the hybrid EEG
feature for condition ‘10-12’, while 3.91% for condition ‘12-
12’. For the mature SSVEP feature, the average accuracy had
a loss of 2.85% and 2.51% compared with the hybrid feature
for conditions ‘10-12’ and ‘12-12’, respectively. Therefore
the hybrid EEG features also outperformed the single SSVEP
feature.

Last, this study investigated the ultimate performance of
the proposed paradigm. So all useful features were employed
to calculate the accuracy, i.e. the feature from 200 to 2000 ms
after the Cue 2 onset in the frequency band of 2–70 Hz was
used. Table 2 shows the results. The average accuracies for
both conditions ‘10-12’ and ‘12-12’ were all around 80%
(79.1% versus 81.9%, p=0.334). There were two subjects
achieving above 90% for condition ‘10-12’, while only one
for condition ‘12-12’. However, the number of subjects
reaching above 80% was eight for condition ‘12-12’, which is
larger than six for condition ‘10-12’. The peak accuracy for
condition ‘10-12’ was 93%, while that was 90% for condition
‘12-12’. Note that, compared with condition ‘0-0’, the clas-
sification accuracy derived from all features was significantly
improved for both conditions ‘10-12’ and ‘12-12’ (‘10-12’
versus ‘0-0’: 79.1% versus 66.2%, p<0.001; ‘12-12’ versus
‘0-0’: 81.9% versus 66.2%, p<0.001).

3.2. N2pc analysis

To show how the ongoing SSVEP modulates the N2pc, this
study compared the N2pc differences among different con-
ditions. Figure 5 shows the temporal and spatial features of

the N2pc for all conditions. The left N2pc was obtained by
subtracting the EEG of left attention from that of right
attention, while it was in reverse for the right N2pc. From an
overall view of the N2pc distribution displayed in the middle
subgraphs, conditions ‘12-12’ and ‘0-0’ had a similar topo-
graphy, which was very different from that of condition ‘10-
12’. Generally, the ‘12-12’ and ‘0-0’ conditions showed an
obviously larger and wider N2pc for the left hemisphere than
the right hemisphere, but the right N2pc seemed to be larger
and wider than the left one for condition ‘10-12’. A further
analysis on specified locations showed that for the left N2pc,
the amplitudes of the three conditions were similar, but for the
right one, condition ‘10-12’ showed significantly larger
amplitude than the others, which could be demonstrated by
the Wilcoxon signed rank test (‘10-12’ versus ‘12-12’:
p=0.042; ‘10-12’ versus ‘0-0’: p=0.005). In particular,
the left N2pc amplitude was 0.32±0.26 μV,
0.52±0.48 μV and 0.46±0.44 μV for conditions ‘10-12’,
‘12-12’ and ‘0-0’, respectively, while the right N2pc ampl-
itude was 0.58±0.33 μV, 0.18±0.42 μV and
0.24±0.20 μV.

3.3. SSVEP analysis

The SSVEP response is another important character in this
study. Figure 6 shows the spectrum differences of SSVEPs
between attending left and right. For condition ‘10-12’,
attending left induced a significantly larger 10 Hz SSVEP
than attending right (left versus right: 0.609 μV versus
0.573 μV, p=0.042), revealed by the Wilcoxon signed rank
test. However, on the contrary, the amplitude of 12 Hz was
significantly larger for attending right than attending left (left
versus right: 0.622 μV versus 0.656 μV, p=0.032). It was in
accordance with the experimental design that the 10 Hz flicker
was in the left visual field while the 12 Hz in the right visual
field in this condition. For condition ‘12-12’, the 12 Hz
amplitude of attending left was 0.511 μV, which was slightly
less than 0.542 μV of attending right. However, there was no
significant difference between them (p=0.278), which could
be easily explained by that there was a same 12 Hz flickering
square in both visual fields. For condition ‘0-0’, no SSVEP
peaks could be found in the spectrum, as no flickers were
displayed in front of subjects in this condition.

For a better understanding of the SSVEP characteristic in
this study, figure 7 displays the amplitudes of 10 Hz EEG
oscillations for different conditions after subtraction. It is
clearly shown that the three lines in the left hemisphere
almost fluctuated in the same level from −500 to 2000 ms
after Cue 2 onset. A further analysis on the N2pc duration did
not find any significant differences among the three condi-
tions. It indicated that the experimental conditions had almost
the same amount of 10 Hz EEG oscillations with the control
condition, which was in accord with the fact that no 10 Hz
flicker appeared in the right visual field for the three condi-
tions. For the right hemisphere, the lines of conditions ‘12-12’
and ‘0-0’ stayed together and kept stable throughout the time.
As to condition ‘10-12’, it first kept at a low level just as the
others, then started to increase for a period of about 500 ms

Figure 3. Accuracy comparisons between the hybrid EEG feature
and the single N2pc feature. ‘##’ means p<0.01; ‘#’

means p<0.05.
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and then reached to an obviously higher level around 1600 ms
after the Cue 2 onset. It conformed to the experimental design
that only condition ‘10-12’ had a flicker of 10 Hz on the left
visual field. There was no significant difference of SSVEPs
among the three conditions during the N2pc period.

Figure 8 displays the amplitudes of 12 Hz EEG oscilla-
tions of different conditions after subtraction. For the left
hemisphere, the three lines were not separated until about
400 ms after the Cue 2 onset. Conditions ‘10-12’ and ‘12-12’
had an increasing trend after that time, while condition ‘0-0’
remained at the same level, which conformed to the fact that
the experimental conditions had a 12 Hz flicker in the right
visual field but the control condition did not have. The growth
rate was obviously larger for condition ‘12-12’ than condition
‘10-12’. After a growth lasting 400 ms, the two conditions
stepped into a new stable period from about 800 ms to the
end. No significant difference could be found in the N2pc
period for the three conditions. For the right hemisphere,
condition ‘12-12’ showed an evident ascending trend after
400 ms, while the changes of the other lines were not obvious.
The line of condition ‘12-12’ was evidently higher than the
others from 800 ms to the end, which was in accord with that
only the ‘12-12’ condition would produce a 12 Hz SSVEP on
the right hemisphere. A further analysis on the N2pc period
did not find any significant difference for 12 Hz amplitudes
among the three conditions.

4. Discussion

4.1. Comparison with previous studies

To verify the advancement of the proposed paradigm, the
results of this study were compared with that of previous
works on the gaze-independent BCI, shown in table 3. For
convenience, the estimated theoretical ITR was calculated
from the average accuracy in this table and the time cost for
each selection did not include the break between selections,
so it might be different from other references. It could be
found that the P300, SSVEP and alpha rhythm were the most
popular signals used in the gaze-independent BCIs. Generally
speaking, the consuming time for sending a command was
longer than 2 s in the past work. Specifically, by using the
P300, the classes of commands could be as many as 30 or
more, and the accuracy could be above 90%. However, it
costs tens of seconds for each output, which greatly affects

the ITR (only around 10 bit min−1). It should be noted Yin
et al developed a high-efficiency gaze-independent BCI by
using non-visual bimodal P300, which could achieve about
15 bit min−1. For the studies using the SSVEP or/and alpha
rhythm signals, the operation time for each output could be
reduced to around 4 s. However, there were only 2 or 4
classes and the average accuracy was near 70%. Therefore,
the estimated ITR was also only several bits min−1. Overall,
the speed and ITR of conventional gaze-independent BCIs
were very low, which could not meet the actual needs. This
study proposed a new paradigm which could have a fast
classification within 400 ms and an acceptable accuracy
around 72.9%. As a result, the estimated theoretical ITR
could be as high as 23.56 bits min−1 which was greatly higher
than that reported in previous studies. Note that, the practical
ITR in real use is generally lower due to the inclusion of data
analysis, feedback presentation, and determination of a target.

4.2. No exogenous information used in the classification

The main reason for infeasibility of gaze-dependent BCIs for
severe ALS patients is that the exogenous ERP components
which play an important role in classifications become sig-
nificantly smaller than those can be evoked in the healthy
people. Therefore, the conventional paradigms and classifi-
cation methods are impracticable when being applied to
clinical tests. As the EEG features modulated by the exo-
genous stimulation were never useful for an gaze-independent
BCI, researchers started focusing their attention on the
endogenous EEG features, such as the P300 potential, pos-
terior alpha rhythm and the attention-modulated SSVEP. In
previous offline studies, targets that were located in different
places were often be indicated by arrows with different
directions [22, 23]. Although the physical differences
between the visual cues might not produce an obvious EEG
difference, it risked evoking ERPs specific to the direction of
the cue. In this study, no exogenous information related to the
attention direction was used in the classification. Subjects
must shift their attention based on the target color which was
previously stored in their minds. For example, when the Cue
2 appears as a pair of left red and right blue dots, subjects
have to shift their attention to the left if looking for the red
dot, but to the right if blue. The EEG differences between the
left and right attentions were completely induced by the
endogenous factor. Therefore, the proposed paradigm is

Table 2. Accuracies obtained by using 0.2–0.4 s and 0.2–2 s data, respectively.

Subject 1 2 3 4 5 6 7 8 9 10 11 Ave.

‘10-12’ 0.2–0.4 s 0.88 0.72 0.75 0.74 0.63 0.71 0.65 0.81 0.74 0.68 0.71 0.729
0.2–2 s 0.93 0.80 0.91 0.85 0.66 0.77 0.63 0.75 0.84 0.80 0.76 0.791

‘12-12’ 0.2–0.4 s 0.83 0.68 0.72 0.76 0.74 0.71 0.63 0.76 0.74 0.72 0.69 0.726
0.2–2 s 0.88 0.73 0.88 0.87 0.80 0.90 0.66 0.83 0.89 0.76 0.80 0.819

‘0-0’ 0.2–0.4 s 0.82 0.73 0.68 0.64 0.61 0.71 0.62 0.76 0.67 0.62 0.69 0.686
0.2–2 s 0.77 0.65 0.67 0.58 0.64 0.65 0.58 0.71 0.69 0.70 0.64 0.662
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effective for developing an online gaze-independent BCI
system, in which the attention side is self-chosen by the user.

4.3. Hybrid feature for gaze-independent BCIs

Most studies on gaze-independent BCIs rely on only one type
of EEG feature. Normally, the SSVEP, P300 and alpha
rhythm are the three most popular features for this topic.
However, as the brain response to outside stimulation become
significantly weaker for the covert attention than the overt

one, the performances of SSVEP and P300 would deteriorate
correspondingly. Although the distribution of posterior alpha
rhythm could be an indicator of the brain state, it seems not as
effective as the other two features. The hybrid BCI was
proposed to combine two or more physiological signals (at
least one is the EEG) to control the system. Specifically, the
pure hybrid BCI only uses variety of EEG features as the
control signal. It is quite popular for the gaze-dependent BCI,
and shows an advantage over the conventional system.
However, few studies have developed a hybrid gaze-

Figure 4. Accuracy comparisons between the hybrid EEG features and the single SSVEP feature. ‘##’ means p<0.01; ‘#’

means p<0.05.

Figure 5.Grand average N2pc potential across subjects. The left most column shows the N2pc temporal waves (top) and amplitudes (bottom)
for the left hemisphere, while the right most one is for the right hemisphere. The left N2pc was calculated from the average of channels 3 and
4, while the right one was the average of channels 8 and 9. The selections of channel 3, 4, 8 and 9 are because the N2pc potentials are most
significant in these locations. The middle column displays the N2pc topographies of the three conditions. ‘##’ means p<0.01; ‘#’ means
p<0.05. 0 ms is the onset of Cue 2.
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independent BCI. Kelly et al first proposed to use the com-
bined features of posterior alpha rhythm and SSVEP for
classifying the CVSA [38]. It demonstrated that the hybrid
feature was more effective than the single one in tracking the

visual spatial attention. However, it required a long time
(∼3.39 s) to get an acceptable accuracy. This study designed a
new gaze-independent paradigm to evoke both the N2pc and
SSVEP features during the covert visual attention. N2pc

Figure 6.Grand average EEG spectra across subjects for the three different conditions. The data are collapsed across channels 1, 2, 10 and 11.
We did not choose the same locations in the N2pc analysis, because there were no significant differences between attending left and right in
those areas. The reason might be the stimulation inducing SSVEPs are located at more lateral area than that inducing N2pc in this study.
According to visual pathway in the brain, the more lateral image maps to the more lateral visual cortex, so the appropriate area for SSVEP
analyzes may be located outer than that for N2pc.

Figure 7. Grand average amplitudes of 10 Hz EEG oscillations across subjects. The left subgraphs show the amplitudes of EEG oscillations
recorded from the average of channels 1 and 2 which are in the left hemisphere, while the right ones are the average of channels 10 and 11
which are in the right hemisphere. The bottom histograms show the average amplitudes during the N2pc period. 0 ms is the onset of Cue 2.
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appears on the opposite side to the visual stimuli of interest to
the subject. So it is related to the process of selective atten-
tion. Its feasibility in constructing BCI systems has been
demonstrated by previous studies [47, 48]. This study first
combined it with the covert attention-modulated SSVEP to
realize a gaze-independent BCI system. The results show that,
compared with the single N2pc feature and the immature
SSVEP within 400 ms after the shift of attention, the com-
bination of them could achieve a significantly higher accuracy
with an average of 72.9% and a peak of 88%. When 2 s long
data were applied, the hybrid EEG feature could obtain an
average accuracy of about 80%. As the conventional
approach often needs more than 3 s to estimate the covert
attention state, our proposed method is indeed promising for a
fast classification of CVSA.

4.4. SSVEP effects on N2pc

Another interesting phenomenon which should be discussed
is the SSVEP effects on the N2pc. It could be obviously
found from figure 5 that the right N2pc of condition ‘10-12’
was significantly larger than those of conditions ‘0-0’ and
‘12-12’. These findings suggest that the N2pc attributes could

be influenced by the background SSVEPs. It is quite a useful
message for exploring the ERP mechanism which has a long-
time debate between the evoked model and the oscillation
model. The evoked model holds the view that ERPs are a
fixed-polarity and a fixed-latency neural response which is
superimposed onto the background EEG, while the oscillation
model argues that ERPs are generated by the partial phase
resetting of ongoing EEG oscillations [49]. As the ERP is so
small that it is often submerged under the background EEG, a
large number of trials are required to be averaged for a clear
ERP waveform. However, one problem in the traditional
approach to the average ERP is that the zero-mean baseline
which is deprived of the dynamic information could not
provide a clear ERP initial state, thereby seeming less useful
for evaluating the ERP dynamics. Xu et al proposed a new
method of using the steady-state baseline (i.e. a period of
SSVEP) to investigate the evolution process of visual evoked
potentials, in which the ERP initial state could be modulated
into a specified oscillation [37]. It revealed a ‘three-period-
transition’ for the generation of visual N1 and found a strong
evidence to balance the two contradictory models on N1.
However, the steady-state baseline has yet been applied to the
N2pc mechanism. As the N2pc is an endogenous potential,

Figure 8. Grand average amplitudes of 12 Hz EEG oscillations across subjects. The left subgraphs show the amplitudes of EEG oscillations
recorded from the average of channels 1 and 2 which are in the left hemisphere, while the right ones are the average of channels 10 and 11
which are in the right hemisphere. The bottom histograms show the average amplitudes during the N2pc period. 0 ms is the onset of Cue 2.
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Table 3. List of studies on gaze-independent BCIs.

Reference Subjects Signal Feature Classification method Classes
Time
cost (s)

Average accur-
acy (%)

Estimated ITR
(bit min−1)

Kelly et al 2005 [9] 11 (healthy) SSVEP Spectral power Threshold 2 4–12 ∼61.6 <1
Kelly et al
2005 [38]

10 (healthy) SSVEP+alpha
rhythm

Spectral power Linear discriminant ana-
lysis(LDA)

2 3.39 79.5 4.75

Gerven et al
2009 [20]

15 (healthy) Alpha rhythm Spectral power Support vector machine 4 2.5 41 2.12

Zhang et al
2010 [11]

18 (healthy) SSVEP CCA coefficients LDA 2 4 72.6 2.29

Treder et al
2011 [15]

13 (healthy) P300 Temporal wave LDA 36 25 97.1 11.60

Treder et al
2011 [21]

8 (healthy) Alpha rhythm Spectral power Logistic regression 2 2 74.6 5.47

Liu et al 2011 [14] 8 (healthy) P300 Temporal wave Stepwise LDA 36 20.3 84.1 11.00
Schaeff et al
2012 [16]

16 (healthy) Motion VEP Temporal wave LDA 30 32.65 96.2 8.25

Aloise et al
2012 [17]

10 (healthy) P300 Temporal wave Stepwise LDA 36 24.55 77.8 7.99

Andersson et al
2012 [45]

9 (healthy) BLOD signal Image volume Threshold 4 6.48 79.4 8.7

Tonin et al
2013 [23]

8 (healthy) Alpha rhythm Spectro-temporal pattern Quadratic discriminant
analysis

2 3 70.6 2.37

Acqualagna et al
2013 [18]

12 (healthy) P300 Temporal wave Shrinkage LDA 30 28.72 93.6 8.88

Marchetti et al
2013 [19]

10 (ALS) P300 Temporal wave SVM 4 6 71.39 6.83

Lesenfants et al
2014 [12]

24 (healthy) SSVEP Combination of spectral power,
CCA coefficients and lock-in
feature

LDA or SVM 2 7 ∼80 2.38

6 (ALS) ∼61 <1
Yin et al 2016 [46] 12(healthy) Bimodal P300 Temporal wave Bayesian LDA 4 5.27 88.67 14.94
This study 11(healthy) SSVEP+ N2pc CCA coefficients Threshold 2 0.4 72.9 23.56

2 81.9 9.53
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which is different from the N1 that is exogenous, the feasi-
bility of the SSVEP-based steady-state baseline remains
unknown. This study proposed a new paradigm which could
induce a period of SSVEP before the N2pc. It found that the
N2pc attribute is relevant to the baseline, so the steady-state
baseline also works for the N2pc potential even it is endo-
genous. Compared with condition ‘12-12’, condition ‘10-12’
had a stronger 10 Hz oscillation on the right hemisphere. It
could be a possible reason for the larger right N2pc in con-
dition ‘10-12’, as the 10 Hz might be a special frequency to
the N2pc. But another possible explanation to the larger N2pc
might be the asymmetric stimulation, i.e. the left 10 and right
12 Hz flickers. Therefore, it remains an open question what
factors would have an influence on the N2pc attribute.

5. Conclusion

This study first proposed to use the combination of the N2pc
and the attention-modulated SSVEP features to track the
CVSA. A new paradigm was designed to link users’ endo-
genous activities with their attention shifts, and a new clas-
sification strategy based on CCA was developed to decode the
CVSA side. Experimental results showed that the N2pc
amplitude would be augmented by certain background
SSVEPs. The offline classification analysis indicated that the
left vs. right covert attention could be effectively classified by
using the hybrid EEG features within a short time window,
which demonstrated that the proposed method could be a
promising approach for an efficient gaze-independent BCI
system.
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