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Measuring local temperatures of open systems out of equilibrium is emerging as a novel approach
to study the local thermodynamic properties of nanosystems. An operational protocol has been
proposed to determine the local temperature by coupling a probe to the system and then minimizing
the perturbation to a certain local observable of the probed system. In this paper, we first show that
such a local temperature is unique for a single quantum impurity and the given local observable. We
then extend this protocol to open systems consisting of multiple quantum impurities by proposing
a local minimal perturbation condition (LMPC). The influence of quantum resonances on the local
temperature is elucidated by both analytic and numerical results. In particular, we demonstrate
that quantum resonances may give rise to strong oscillations of the local temperature along a multi-
impurity chain under a thermal bias.

I. INTRODUCTION

Local temperatures of systems out of equilibrium1

are of fundamental importance in many sub-fields of
modern science, including physics,2–5 chemistry6–8 and
biology.9–11 With the development of high-resolution
thermometric techniques,4,12,13 the measurement of local
temperature distributions in nonequilibrium nanoscopic
systems has been realized, such as in graphene-metal
contacts,14 aluminum nanowires,13 and two-dimensional
metallic films.15

A nonequilibrium system under an external driving
source, such as a bias voltage or a thermal gradient, often
possesses a local temperature somewhat higher than the
background temperature.16 Such a local heating effect
usually originates from the electronic and phononic exci-
tations occurring in the system, and has significant influ-
ence on some physical properties17 and processes.18–23

From theoretical perspective, extending the concept of
temperature from equilibrium systems to local subregions
of nonequilibrium systems can be based on the following
considerations:1,24–41 (i) Local temperature can be de-
fined by presuming the validity of a local equilibrium ap-
proximation. In the context of the zeroth law of thermo-
dynamics, such an approximation indicates that there is
no net flow of particle or energy between the local system
and its surrounding environment. (ii) Local temperature
can be associated with an energy scale that characterizes
the magnitude of local excitations. Thus, the deviation
of local temperature from the background temperature
quantifies how far the system is away from a global equi-
librium state. (iii) Local temperature can be determined
by probing the variation of intrinsic thermodynamic or
dynamic properties of the local system.
Ideally, the definition of local temperature should be

universal (so that it can be applied to as many nonequi-
librium situations as possible), unique (so that it yields

one and only one value of temperature), operationally
feasible (so that it can be measured experimentally), and
has the correct asymptotic limit (so that it retrieves the
thermodynamic temperature as the system approaches
towards an equilibrium state).1

For instance, Engquist and Anderson defined the local
temperature based on a local equilibrium condition42 re-
ferred to as zero-current condition (ZCC) in this paper.
In this definition, an ideal potentiometer/thermometer
(the probe) is weakly coupled to the nonequilibrium sys-
tem of interest. By varying the temperature (Tp) and
chemical potential (µp) of the probe until both the elec-
tric (Ip) and heat currents (Jp) flowing through the probe
vanish, the local temperature (T ∗) and local chemical po-
tential (µ∗) of the system are determined as T ∗ = Tp and
µ∗ = µp, respectively. This protocol has been used widely
to investigate the local temperature43–47 and local elec-
trochemical potential distribution48–50 of nanosystems
out of equilibrium.

The ZCC-based definition has been employed to study
the distribution of local temperature along a nanowire
connected to macroscopic electron reservoirs.51–53 It is
interesting to find that the local temperature profile ex-
hibits a periodic oscillation along the nanowire.52 The os-
cillatory behavior was predicted to occur from the emer-
gence of quantum coherence as the size of the system re-
duces to be comparable to or even smaller than the mean
free path of electrons.54 Therefore, the energy transport
process in a nanojunction is significantly different from
that in a bulk system, and consequently the classical
Fourier’s law is strongly violated.1,55–58 Such quantum
oscillations have also been observed in some other sys-
tems, such as the conjugated organic molecules59 and
graphene nanostructures.60

The ZCC-based definition has the advantage of yield-
ing a unique value of local temperature (T ∗,ZCC) for any
nonequilibrium system.61 However, its experimental re-

http://arxiv.org/abs/2007.15183v1


2

alization is rather challenging because of the difficulty in
measuring the heat current through a nano-sized sample
without knowing its priori local temperature.1 Moreover,
the effectiveness of the ZCC-based definition is question-
able if the energy level of the system is in quantum res-

onance with the states of the environment. This is be-
cause if the electron or energy transport is dominated by
quantum resonant states, the excitations pertinent to the
nonequilibrium processes are highly nonlocal, and hence
the local equilibrium approximation which forms the ba-
sis of T ∗,ZCC may no longer be valid. Indeed, it has been
shown that the T ∗,ZCC of a single-level quantum dot vary
very little as the dot level shifts from the off-resonance to
resonance region.62 Therefore, T ∗,ZCC fail to reflect the
quantum resonance feature of a nonequilibrium system.

Alternatively, an operational protocol to determine the
local temperature has been proposed, which is based on
a minimal-perturbation condition (MPC).54,62,63 In this
protocol, a probe is weakly coupled to the system, and
concomitantly a certain system observable (O) is moni-
tored. The local temperature and local chemical poten-
tial are determined by varying the Tp and µp until the
perturbation on the system observable O caused by the
probe gets minimized. The MPC-based protocol does
not require the direct measurement of heat current, and
hence its experimental realization is straightforward.

It has been demonstrated that, for a single-level quan-
tum dot, the T ∗,MPC determined by monitoring differ-
ent system observables coincide with each other and
agree closely with the T ∗,ZCC in the absence of quan-
tum resonance.62 This is because a quantitative corre-
spondence can be established based on the T ∗,MPC be-
tween the nonequilibrium system of interest and a ref-
erence system in thermal equilibrium, provided that the
pertinent system observable and excitations are fully lo-
cal. However, in contrast to the T ∗,ZCC, the T ∗,MPC de-
termined by certain observables exhibit sharp variations
in the near resonance region.62,63 This indicates that the
T ∗,MPC have the potential of resolving the quantum res-
onance features of a nonequilibrium system.

Despite the effectiveness and feasibility of the MPC-
based definition, there are still issues that remain unclear.
Some of them are as follows: (i) Does the MPC predict
a unique value of T ∗? (ii) When and why do T ∗,MPC

coincide with T ∗,ZCC in the absence of quantum reso-
nances? (iii) So far the application of the MPC has been
restricted to systems containing a single impurity. How
do we extend the definition of T ∗,MPC to multi-impurity
systems? (iv) Do quantum resonances lead to any dis-
cernible feature in the distribution of local temperatures
along a quantum wire?

This work aims at elucidating the above issues through
theoretical analysis and numerical calculations. In par-
ticular, to address the last two questions, we propose a
local minimal-perturbation condition (LMPC) by impos-
ing explicitly the nonequilibrium-equilibrium correspon-
dence relation. As a direct extension of the original MPC,
the LMPC enables the determination of the local temper-

ature and local chemical potential of each impurity in a
multi-impurity system out of equilibrium.
The remainder of this paper is organized as follows.

In Sec. II, we revisit the MPC protocol and discuss how
to reach a unique prediction of the local temperature of
a single quantum impurity. In Sec. III, we propose the
LMPC-based definition of local temperature. As a nu-
merical example we calculate the distribution of local
temperatures along a quantum wire consisting of four
impurities. Concluding remarks are given in Sec. IV.

II. EFFECT OF QUANTUM RESONANCES ON

LOCAL TEMPERATURES OF SINGLE

IMPURITY SYSTEMS

A. Quantum impurity systems

In the following, the Anderson impurity models
(AIMs)64 are adopted to describe the open systems. The
total Hamiltonian of the system-plus-environment is

Ĥ = Ĥimp + Ĥlead + Ĥcoup, (1)

where the three terms on the right-hand side (RHS) rep-
resent the Hamiltonian of the impurities, the Hamilto-
nian of the leads which serve as the electron reservoirs
and heat baths, and the Hamiltonian of the impurity-
lead couplings, respectively.
We consider first a single impurity described by

Ĥimp = ǫd n̂ + Un̂↑ n̂↓. Here, n̂ =
∑

s n̂s =
∑

s â
†
s âs,

with â†s (âs) creating (annihilating) an electron of spin-
s on the impurity level ǫd, and U is the Coulomb in-
teraction energy between the spin-up and spin-down

electrons. Ĥlead =
∑

αks ǫαk d̂
†
αks d̂αks and Ĥcoup =

∑

αks tαk â
†
s d̂αks +H.c. describe the noninteracting leads

and the impurity-lead coupling, respectively. Here,

d̂†αks(d̂αks) creates (annihilates) a spin-s electron on the
kth orbital of the αth lead, and tαk is the coupling
strength between the impurity level and the kth lead or-
bital.
To investigate the properties of the impurity, the hi-

erarchical equations of motion (HEOM) approach65–70

is employed, which takes the reduced density matrix of
the system ρ and a hierarchical set of auxiliary density
operators as the basic variables. The HEOM theory
is, in principle, formally exact, and its numerical out-
comes are guaranteed to be quantitatively accurate if the
results converge with respect to the truncation tier of
the hierarchy.71,72 The HEOM approach has been widely
used to study a variety of static and dynamic properties
of strongly correlated quantum impurity systems in and
out of equilibrium.62,63,73–79

In the framework of the HEOM, the influence of the
noninteracting leads on the impurity is fully captured by
the hybridization functions, Γα(ω) ≡ π

∑

k |tαk|
2δ(ω −

ǫαk). For numerical convenience, a Lorentzian form of

Γα(ω) =
∆αW

2

α

(ω−Ωα)2+W 2
α
is adopted, where ∆α is the effec-
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tive coupling strength between the impurity and the αth
lead, and Ωα and Wα are the band center and width of
the αth lead, respectively. We further set the band center
at the chemical potential of the lead, i.e., Ωα = µα. The
chemical potential of the equilibrium composite system
is set to the zero energy, i.e., µeq = 0.
In the following, ∆p (the subscript p denotes the probe)

is taken to be at least two orders of magnitude smaller
than all the other ∆α, and further reducing its value
does not influence the resulting T ∗ and µ∗.63 Hereafter,
we adopt the atomic units e = ~ = kB ≡ 1; and ∆ =
∑

α6=p ∆α is taken as the unit of energy.

B. Minimal-perturbation condition

Consider the scenario that a single impurity is coupled
to the left (L) and right (R) leads, whose background
temperatures (chemical potentials) are TL and TR (µL

and µR), respectively. By coupling an external probe to

the impurity, the local observable O = 〈Ô〉 = tr(Ôρ) is
subject to a perturbation of

δOp = Op(Tp, µp)−Oref . (2)

Here, Op(Tp, µp) is the value of O measured by setting
the temperature and chemical potential of the coupled
probe to Tp and µp, respectively. Oref is the minimally
perturbed value of O which serves as reference for Op.
For a single-impurity system, Oref is determined by

Oref = ζLOp(TL, µL) + ζROp(TR, µR), (3)

where the coefficients ζα (α = L and R) are acquired as63

ζα = 1−

∣

∣

∣

∣

Ip(Tα, µα)

Ip(TL, µL)− Ip(TR, µR)

∣

∣

∣

∣

. (4)

Here, Ip(Tp, µp) is the electric current flowing into the
probe with its temperature and chemical potential set to
Tp and µp, respectively. For AIMs, ζα = ∆α

∆L+∆R
.

The local temperature T ∗ and local chemical potential
µ∗ of the impurity are determined by

{

Ip(T
∗, µ∗) = 0

(T ∗, µ∗) = arg min
(Tp,µp)

|δOp(Tp, µp)|
. (5)

In particular, if δOp = 0 is achievable by tuning Tp and
µp, the MPC actually becomes the zero perturbation con-
dition (ZPC). The definition of Eq. (5) does not involve
the troublesome heat current, and all the involving quan-
tities (e.g. Ip and Op) can be measured directly in exper-
iments. Therefore, Eq. (5) provides an operational pro-
tocol for the determination of T ∗ and µ∗. In practice,
such a protocol for the system under a bias voltage may
be further simplified with a preset µ∗ as follows,

{

µ∗ ≈ ζLµL + ζRµR

T ∗ = argmin
Tp

|δOp(Tp, µ
∗)| . (6)

0.3 0.4 0.5 0.6 0.7 0.8

0
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×10-5

T*
c T*

h

FIG. 1. δχm
p /χm

ref as a function of Tp for a single-impurity
system under an antisymmetric bias voltage of µR = −µL =
V/2. T ∗

c and T ∗
h are two temperatures which satisfy the ZPC

of δχm
p = 0, as indicated by the horizontal line. The energetic

parameters of the system are (in units of ∆): TL = TR = 0.67,
ǫd = −3.33, ∆L = ∆R = 0.5, U = 2.5, and WL = WR = 6.67.

For a convenient and accurate measurement of T ∗, the
local observable O should vary sensitively with Tp. In
our previous works,62,63 the local magnetic and charge

susceptibilities of the impurity, χm = ∂〈m̂z〉
∂Hz

|Hz→0 and

χc = −∂〈n̂〉
∂ǫd

, respectively, have been chosen as the lo-

cal observables. Here, m̂z = 1
2g µB

(n̂↑ − n̂↓) is the im-
purity magnetization operator, with Hz being the local
magnetic field, g the electron gyromagnetic ratio, and
µ

B
the Bohr magneton. It has been shown that while

T ∗,MPC(χm) and T ∗,MPC(χc) agree closely with each
other in most cases, they do exhibit small discrepancy
in the near-resonance (NR) region.62

In the following, we explore the uniqueness/non-
uniqueness of the T ∗,MPC. First, we show that the MPC
of Eq. (5) or Eq. (6) may give rise to multiple values of
T ∗ with a certain O. Figure 1 depicts the relative per-
turbation of local magnetic susceptibility, δχm

p /χm
ref , as

a function of Tp for a single-impurity system under an
antisymmetric bias voltage. From the first line of Eq. (6)
we have µ∗ = 0 since ∆L = ∆R. Meanwhile, it is intrigu-
ing to find that there are two temperatures that could
satisfy the ZPC of δχm

p = 0, which are designated as T ∗
c

and T ∗
h (T ∗

c < T ∗
h ). Thus, the local temperature T ∗,MPC

appears to be non-unique. However, it is important to
note that, the whole system should approach towards an
equilibrium state as the bias voltage is reduced gradually.
In particular, in the limit of V → 0, T ∗,MPC should re-
cover the thermodynamic temperature of the equilibrium
system, i.e., T ∗,MPC = TL = TR. In Fig. 1 it is evident
that only T ∗

h achieves the correct asymptotic limit at the
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FIG. 2. T ∗,MPC(n), T ∗,MPC(χc) and T ∗,ZCC versus ǫd for a
noninteracting single-impurity system under an antisymmet-
ric bias voltage of µR = −µL = V/2 = 0.2∆. The energetic
parameters of the system are (in units of ∆): TL = TR = 1,
U = 0, ∆L = ∆R = 0.5, and WL = WR = 50. The shaded
areas represent the near-resonance (NR) regions.

zero bias. Therefore, although the MPC of Eq. (6) has
multiple solutions, the local temperature T ∗,MPC turns
out to be unique by considering the asymptotic limit of
the global equilibrium state.

C. Effect of quantum resonances on local

temperature

We then explore the uniqueness/non-uniqueness of
T ∗,MPC associated with different local observables in the
off-resonance, near-resonance, and resonance regions. To
this end, we consider a noninteracting single-impurity
system under an antisymmetric bias voltage. Figure 2
depicts the variation of T ∗,MPC determined by Eq. (6)
with the change of ǫd. The displayed T ∗,MPC are asso-
ciated with the electron occupation number on the im-
purity n = 〈n̂〉 or with the local charge susceptibility
χc. In both cases, we have µ∗,MPC = 0 since ∆L = ∆R.
For comparison, the T ∗,ZCC versus ǫd are also shown in
Fig. 2.
From Fig. 2, it is clear that T ∗,ZCC and T ∗,MPC(n)

vary smoothly and coincide closely with each other over
the whole range of ǫd. In contrast, while the T ∗,MPC(χc)
agree well with the other two local temperatures in the
off-resonance regions (|ǫd| is far away from the chemical
potentials of leads), they exhibit strong oscillations in
the NR regions. Such oscillations reflect the emergence
of nonlocal excitations as a quantum resonant state be-
gins to establish in the system.62 Consequently, T ∗,MPC

may serve as an indicator for the appearance of quan-
tum resonances, if the magnitude of the associated local
observable O varies sensitively with nonlocal excitations.
To understand the quantitative agreement between

T ∗,MPC(n) and T ∗,ZCC in Fig. 2, we carry out some theo-
retical analysis by using the nonequilibrium Green’s func-
tion (NEGF) method. In the wide-band limit (W → ∞),
the spin-s component of the steady-state electric current
flowing into the probe is

Ips = −
i

π

∫

dω Γp(ω)
{

G<
s (ω) + 2ifTp,µp

(ω) Im[Gr
s(ω)]

}

=
2∆p∆

∆+∆p

∫

dωAs(ω)
[

ζLfTL,µL
(ω)

+ ζRfTR,µR
(ω)− fTp,µp(ω)

]

, (7)

and the electron occupation number on the impurity is

n =
∑

s

ns =
∑

s

1

2πi

∫

dωG<
s (ω)

=
∑

α

∆α

∆+∆p

∫

dωA(ω)fTα,µα
(ω). (8)

Here, Gr
s(ω) and G<

s (ω) are the retarded and lesser
single-electron Green’s functions of the impurity, respec-
tively; A(ω) =

∑

s As(ω) = − 1
π

∑

s Im[Gr
s(ω)] is the

spectral function of the impurity; and fTα,µα
(ω) is the

Fermi distribution function.
The ZPC for the local observable n = 〈n̂〉 is expressed

as

δnp = np(Tp, µp)− nref

=
∆p

∆+∆p

∫

dω A(ω)
{

fTp,µp
(ω)

− [ζLfTL,µL
(ω) + ζRfTR,µR

(ω)]
}

= 0. (9)

By comparing Eqs. (7) and (9), it is immediately recog-
nized that the ZPC for the observable n is exactly equiv-
alent to the ZCC of Ip =

∑

s Ips = 0.
On the other hand, unlike the presumed µ∗,MPC(n) =

0, the ZCC also requires zero heat current, Jp = 0, which
often gives rise to a nonzero µ∗,ZCC. Such a minor dif-
ference in µ∗ in turn leads to the slightly different T ∗.
Consequently, as shown in Fig. 2, the resulting T ∗,ZCC

are very close but not exactly equal to T ∗,MPC(n).
We now elaborate on the quantitative agreement be-

tween T ∗,MPC(n) and T ∗,MPC(χc) apart from the NR re-
gions. In the NEGF formalism the local charge suscepti-
bility is expressed as

χc = −
∑

α

∆α

∆+∆p

∫

dω
∂A(ω)

∂ǫd
fTα,µα

(ω), (10)

and its perturbation by the coupled probe is

δχc
p = χc

p(Tp, µp)− χc
ref

= −
∆p

∆+∆p

∫

dω
∂A(ω)

∂ǫd

{

fTp,µp
(ω)

− [ζLfTL,µL
(ω) + ζRfTR,µR

(ω)]
}

. (11)
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From Eqs. (9) and (11) it is clear that the probe-induced
perturbation to any local observable O can be cast into
a general form of

δOp =

∫

dω g1(ω, Tp) g
O
2 (ω, ǫd), (12)

with

g1(ω, Tp) = fTp,µp
(ω)− [ζLfTL,µL

(ω) + ζRfTR,µR
(ω)]

=
1

1 + eω/Tp
−

1

2[1 + e(ω+V/2)/TL ]

−
1

2[1 + e(ω−V/2)/TR ]
(13)

being a window function centered at ω = 0. Here, the
second equality holds because we have ζL = ζR = 1

2 and

µp = µ∗ = 0 in the case of ∆L = ∆R and µR = −µL = V
2 .

In Eq. (12), the form of the function gO2 (ω, ǫd) depends
on the definition of the local observable O. Specifically,
since the spectral function of a noninteracting impurity
in the presence of a weakly coupled probe is

A(ω) =
2

π

∆+∆p

(ω − ǫd)2 + (∆ +∆p)2
, (14)

we have

gn2 (ω, ǫd) =
2∆p

π

1

(ω − ǫd)2 + (∆ +∆p)2
, (15)

gχ2 (ω, ǫd) = −
∂gn2
∂ǫd

= −
4∆p

π

ω − ǫd
[(ω − ǫd)2 + (∆ +∆p)2]2

.

(16)

By combining Eq. (6) and Eq. (12), the T ∗,MPC(O) is
determined by tuning Tp until the following ZPC is met:

δOp =

∫

dω g1(ω, Tp) g
O
2 (ω, ǫd) = 0, (17)

With TL = TR, g1(ω, Tp) is an odd function of ω, and its
nontrivial values appear only in a nonequilibrium activa-
tion window centered at ω = 0.
Off-resonance– The impurity system is in the off-

resonance region if the impurity energy level ǫd is far
away from the nonequilibrium activation window defined
by g1(ω, Tp). In such a case, it is the tail of gO2 that over-
laps the main body of g1. Since gO2 (ω, ǫd) varies rather
smoothly with ω in the nonequilibrium activation win-
dow, we may use the Taylor expansion and rewrite the
ZPC of Eq. (17) as

δOp =

∫

dω g1(ω, Tp)
[

gO2 (0, ǫd) + ∂ωg
O
2 (0, ǫd)ω

+
1

2
∂2
ωg

O
2 (ξ, ǫd)ω

2
]

= ∂ωg
O
2 (0, ǫd)

∫

dω g1(ω, Tp)ω

= 0. (18)

Here, ∂ω ≡ ∂
∂ω and ∂2

ω ≡ ∂2

∂ω2 , and ∂2
ωg

O
2 (ξ, ǫd) with ξ ∈

(0, ω) is the Lagrange remainder. The first equality uses
the fact that g1(ω, Tp) is an odd function of ω. It is thus
evident that, for the single-impurity system under study,
the ZPC holds universally for any local observable in the
off-resonance region, i.e., T ∗,MPC(n) = T ∗,MPC(χc) =
T ∗,MPC(O) for any O.

In-resonance– In contrast, the impurity system is in
the resonance region if ǫd is close to the lead chemical
potential and thus lies within the nonequilibrium activa-
tion window. In this case, the value of T ∗,MPC(O) may
vary with the specific choice of O, since different local ob-
servables may respond differently to nonlocal excitations.
Instead, we still see T ∗,MPC(n) ≈ T ∗,MPC(χc) in Fig. 2.
This is because of the following relation resulting from
the Taylor expansion and the first equality of Eq. (16),

gn2 (ω, ǫd) = gn2 (ω, 0)− ǫd g
χ
2 (ω, ξ1)

= gn2 (ω, 0)− ǫd g
χ
2 (ω, ǫd)

− ǫd(ξ1 − ǫd) ∂ǫdg
χ
2 (ω, ξ2). (19)

Here, ξ1 ∈ (0, ǫd) and ξ2 ∈ (ξ1, ǫd). gn2 (ω, 0) is an even
function of ω and its overlap integral with g1(ω, Tp) is
zero. The last term on the RHS of Eq. (19) is negligibly
small since ǫd(ξ1− ǫd) ∼ O(ǫ2d) and ∂ǫdg

χ
2 (ω, ξ2) is nearly

an even function of ω. Therefore, by combining Eq. (17)
and Eq. (19), we find that the ZPC for n is approximately
equivalent to the ZPC for χc, and hence T ∗,MPC(n) ≈
T ∗,MPC(χc).

Near-resonance– In the NR region, the product of
g1(ω, Tp) and gO2 (ω, ǫd) depends sensitively on the nature
of O, and so is the value of T ∗,MPC; see Fig. 2.

From the above theoretical analysis we can conclude
that the choice of local observable has little influence on
T ∗,MPC in the off-resonance regions. In contrast, in the
resonance or NR region, the value of T ∗,MPC depends
on how significantly the local observable is affected by
the emerging nonlocal excitations and how sensitively it
varies with Tp.

When quantum resonances come into play, the no-
tion of “local equilibrium” is no longer appropriate, and
the nonlocal excitations cannot be properly characterized
by T ∗,ZCC. In contrast, T ∗,MPC measured by monitor-
ing a suitable local observable (such as the T ∗,MPC(χc)
depicted in Fig. 2) are still capable of identifying and
quantifying the magnitude of the nonlocal excitations.
Even in the NR or resonance region, the T ∗,MPC(O) still
carry an unambiguous thermodynamic meaning mani-
fested through a correspondence relation,62 i.e., the local
observable O of the measured nonequilibrium system is
identical to that of a reference system in an equilibrium
state with the temperature T ∗,MPC(O).
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III. EFFECT OF QUANTUM RESONANCES ON

LOCAL TEMPERATURES OF

MULTI-IMPURITY SYSTEMS

A. Local minimal-perturbation condition

We now extend the MPC to the systems consisting of
more than one impurity. Consider a serially coupled N -
impurity system described by an AIM with

Ĥimp =

N
∑

i=1

ǫi n̂i +

N
∑

i=1

U n̂i↑n̂i↓

+

N−1
∑

i=1

[

t (â†i↑âi+1↑ + â†i↓âi+1↓) + H.c.
]

, (20)

where ǫi is the on-site energy of the ith impurity, and t is
the coupling strength between two adjacent impurities.
As illustrated in Fig. 3(a), the N -impurity system forms
a linear chain, in which the left (right) lead is coupled
only to the 1st (Nth) impurity with the coupling strength
being ∆L (∆R).
In principle the MPC of Eq. (5) can be formally ex-

tended to determine the local temperature and local
chemical potential of each individual impurity as follows,

{

Ip,i(T
∗
i , µ

∗
i ) = 0,

(T ∗
i , µ

∗
i ) = arg min

(Tp,µp)
|δOp,i(Tp, µp)|

. (21)

Here, the probe is weakly coupled to the ith impurity.
As a natural extension of the MPC, Eq. (21) is referred
to as the local MPC (LMPC). However, in practice the
extension from MPC to LMPC is not always straightfor-
ward. This is because it is often difficult to acquire the
minimally perturbed value of a particular local observ-
able Oref,i. To circumvent this problem, we can choose
a local observable whose reference value is known by the
intrinsic symmetry of the system.
For instance, if the investigated multi-impurity system

is spin-unpolarized, i.e, all the energetic parameters in
Eq. (20) are spin-independent, by coupling a probe to an
impurity, the electric current through the probe should
also be spin-unpolarized. In other words, if the local
observable O is chosen to be the magnetic susceptibility
of the electric current through the coupled probe, χI

p,i ≡
∂Ipz,i
∂Hz

|Hz→0 with Ipz,i = 1
2 (Ip,i↑ − Ip,i↓), its minimally

perturbed value is just χI
ref,i = 0, if the ith impurity is

spin-unpolarized in the presence of the probe. Note that
for the measurement of (T ∗

i , µ
∗
i ) the magnetic field Hz is

applied exclusively on the ith impurity.
For a single-impurity system, the thermodynamic

meaning of T ∗,MPC has been elucidated via a correspon-
dence condition between the nonequilibrium system un-
der study and a reference system in thermal equilib-
rium, i.e., Oneq = Oeq, provided that the T ∗,MPC(O) and
µ∗,MPC(O) of the nonequilibrium system coincide with
the equilibrium temperature and chemical potential of
the reference system.62

FIG. 3. (a) Schematic illustration of a serially coupled N-
impurity system. The first (Nth) impurity is coupled to the
left (right) lead. The probe is weakly coupled to the ith impu-
rity under study, and the spin-specific electric current flowing
into the probe Ip,is is monitored. (b) Schematic illustration of
the correspondence relation which states that the local mag-
netic susceptibility of the ith impurity in a nonequilibrium
system is equal to that in an equilibrium system, provided
that they have the same local temperature and local chemical
potential.

In the following, we demonstrate that a correspondence
relation can also be established for a multi-impurity sys-
tem with the χI

p,i chosen as the local observable.
To facilitate the theoretical analysis, we consider a seri-

ally coupled noninteracting double-impurity system. By
applying a local magnetic field Hz to the ith impurity,
the impurity level is subject to a Zeeman splitting which
is assumed to be linearly proportional to Hz . Conse-
quently, for the spin-unpolarized system under study, we

have χI
p,i = C

∂Ip,i↑
∂ǫi

with C being a constant. Without loss
of generality, the probe is coupled to the first impurity.
In the wide-band limit, the probe-induced perturbation
to χI

p,1 is expressed as

δχI
p,1 = −C

i

π

∫

dω Γp(ω) ∂ǫ1

{

G<
↑,11(ω)

+ 2ifTp,µp
(ω) Im[Gr

↑,11(ω)]
}

= C
2∆p

π

∫

dω
{

∆L

[

(ω − ǫ2)
2 +∆2

R

]

× [fTL,µL
(ω)− fTp,µp

(ω)] + t2∆R

× [fTR,µR
(ω)− fTp,µp

(ω)]
}

∂ǫ1 |Bp1(ω)|
2, (22)

where

Bp1(ω) =
1

[ω − ǫ1 + i(∆L +∆p)](ω − ǫ2 + i∆R)− t2
.

(23)
Similarly, for a spin-unpolarized system, the local mag-

netic susceptibility of the ith impurity can be rewritten
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as χm
i = C′ ∂ni↑

∂ǫi
, with C′ being a constant different from

C. In the nonequilibrium steady state characterized by
the temperatures and chemical potentials of the left and
right leads, (TL, µL, TR, µR), the value of χm

1 in the ab-
sence of the probe is

χm
neq,1 = C′ 1

2πi

∫

dω ∂ǫ1 [G
<
↑,11(ω)]

= C′ 1

π

∫

dω
{

∆L

[

(ω − ǫ2)
2 +∆2

R

]

fTL,µL
(ω)

+ t2∆RfTR,µR
(ω)

}

∂ǫ1 |B(ω)|2, (24)

where B(ω) = Bp1(ω)|∆p=0. For the reference sys-
tem in a thermal equilibrium state characterized by
the background temperature T ∗

1 and chemical potential
µ∗
1, the corresponding χm

1 is expressed in a form sim-
ilar to Eq. (24), but with (TL, µL, TR, µR) replaced by
(T ∗

1 , µ
∗
1, T

∗
1 , µ

∗
1). Therefore, the difference between χm

neq,1

and χm
eq,1 is

χm
neq,1(TL, µL, TR, µR)− χm

eq,1(T
∗
1 , µ

∗
1, T

∗
1 , µ

∗
1)

=
C′

π

∫

dω
{

∆L

[

(ω − ǫ2)
2 +∆2

R

] [

fTL,µL
(ω)− fT∗

1
,µ∗

1
(ω)

]

+ t2∆R

[

fTR,µR
(ω)− fT∗

1
,µ∗

1
(ω)

]

}

∂ǫ1 |B(ω)|2. (25)

By comparing Eq. (22) and Eq. (25), it is easy to recog-
nize that the relation

χm
neq,1(TL, µL, TR, µR) = χm

eq,1(T
∗
1 , µ

∗
1, T

∗
1 , µ

∗
1) (26)

holds provided that

δχI
p,1(T

∗
1 , µ

∗
1)

∆p

∣

∣

∣

∣

∣

∆p→0

= 0. (27)

A similar relation can be established for the second im-
purity of the double-impurity system, or any impurity of
a generic multi-impurity system; see Fig. 3(b).
Equation (27) is the local ZPC for the local observable

χI
p,1, and the thermodynamic meaning of the resulting

(T ∗
1 , µ

∗
1) is unambiguously given by Eq. (26). When the

local ZPC of Eq. (27) cannot be reached, such as in the
NR region, the LMPC of Eq. (21) with Oi = χI

p,i still
yields a unique T ∗

i which could characterize the emer-
gence of quantum resonance effects; see Sec. III B and
Sec. III C for details.

B. Validity of LMPC for single impurity systems

Before applying the LMPC-based protocol to multi-
impurity systems, we first examine its consistency with
the MPC-based protocol for single-impurity systems. In
principle, the LMPC-based protocol with χI

p as the lo-
cal observable is equivalent to the MPC-based defini-
tion with O = χm. This is because they both imply
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m
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FIG. 4. (a) T ∗ determined by the ZCC, MPC (with O = χm),
and LMPC (with O = χI

p) as functions of ǫd for a noninter-
acting single-impurity system under an antisymmetric bias
voltage of µR = −µL = V/2 = 0.2∆. (b) The relative devia-
tion from the correspondence relation, ∆χm = χm

eq/χ
m
neq − 1,

versus ǫd. (c) T ∗ determined by the ZCC, MPC, and LMPC
as functions of U for an interacting single-impurity system
with ǫd = −2∆ under the same antisymmetric bias voltage.
(d) The relative deviation ∆χm versus U . Other energetic
parameters adopted are (in units of ∆): TL = TR = 0.1,
∆L = ∆R = 0.5, and WL = WR = 20. The shaded areas
represent the NR regions.

the correspondence relation of χm
neq(TL, µL, TR, µR) =

χm
eq(T

∗, µ∗, T ∗, µ∗), provided that the ZPC for the local
observable can be achieved.

Figure 4(a) shows the T ∗ of a noninteracting single-
impurity system under an antisymmetric bias voltage as
a function of ǫd. It is found that, while the T ∗,LMPC

agree closely with the T ∗,MPC outside the NR region,
they display an appreciable difference in the NR region
despite the overall similar lineshape.

In the NR region, if the value of the monitored local
observable (such as χI

p and χm) is strongly affected by the
emergence of quantum resonances, it could be difficult for
O to reach the ZPC by just tuning the Tp. In such a case,
the T ∗ have to be determined by searching for the Tp

that yields a minimal nonzero perturbation of O (δOp).
Thus, the resulting T ∗,LMPC or T ∗,MPC often exhibit a
large oscillation because the minimal δOp tend to vary
sensitively due to the nonlocal excitations introduced by
the quantum resonances.

Figure 4(b) depicts the relative deviation of χm of the
nonequilibrium impurity system from that of the refer-
ence equilibrium system, ∆χm = χm

eq/χ
m
neq − 1. Evi-

dently, while ∆χm almost vanishes with either T ∗,MPC

or T ∗,LMPC, it remains of a finite magnitude in the NR
region where the ZPC cannot be reached. In contrast,
the T ∗,ZCC are almost constant in the whole range of ǫd
with a considerably larger ∆χm, and they show no sign
of quantum resonances at all.

Figure 4(c) and (d) depict the T ∗ and ∆χm of an in-
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teracting single-impurity system under an antisymmet-
ric bias voltage as a function of U , respectively. Similar
to the case of a noninteracting impurity, the T ∗,LMPC

and T ∗,MPC agree closely with each other with a mi-
nor difference which is possibly due to the finite band
width of the leads. It is worth pointing out that the
low background temperature enables the formation of
Kondo states,80 which provide resonant channels for the
electrons to transport across the impurity. Therefore,
the system remains in the resonance region with a suffi-
ciently large U (U > −ǫd). Again, the T

∗,ZCC vary rather
smoothly and do not reflect the formation of quantum
resonant states at all.
The above results verify that the newly proposed

LMPC is consistent with the original MPC for single-
impurity systems.

C. Local temperatures of multi-impurity systems

and the effect of quantum resonances

We now employ the LMPC-based protocol to investi-
gate the distribution of local temperatures in a double-
impurity system under an antisymmetric bias voltage.
Here, the two impurities are presumed to have the same
on-site energy, i.e., ǫi = ǫd.
Figure 5 depicts the evolution of (T ∗

i , µ
∗
i ) of the two

impurities with the variation of ǫd. In analogy with the

case of single-impurity systems, while the T ∗,LMPC
i agree

well with the T ∗,ZCC
i in the absence of resonance, they

are distinctly different in the two NR regions.
It is worth noting that T ∗

1 < T ∗
2 at almost any ǫd < 0,

which can be explained as follows. With ǫd < 0 the
total spectral function, A(ω), of the two impurities has
a distribution more on the negative energy side, and
this means that the double-impurity system has a posi-
tive Seebeck coefficient S.76,81 Consequently, the voltage-
generated heat current between the two impurities fol-
lows the opposite direction of the electric current, i.e.,
from left to right. Such a heat current thus creates an
internal thermal gradient across the two impurities with
T ∗
1 < T ∗

2 .
At ǫd = 0, A(ω) becomes an even function of ω. As a

result we have S = 0, and hence the voltage-generated
internal thermal gradient also becomes zero, i.e., T ∗

1 =
T ∗
2 . This is indeed confirmed by our calculation results

shown in Fig. 5(a). Furthermore, it is also inferred that
T ∗
1 > T ∗

2 at ǫd > 0 (data not shown).
It is also interesting to observe that, while the left

(right) lead has a lower (higher) chemical potential, the
µ∗
i of the neighboring impurity is not necessarily lower

(higher); see Fig. 5(b). The fluctuation of µ∗
i manifests

the quantum coherence nature of the electron transport
driven by the bias voltage. In particular, µ∗

1 = µ∗
2 = 0

at ǫd = −0.9∆, where a resonant state resides right at
the center of the nonequilibrium activation window; see
the A(ω) in the inset of Fig. 5(b). The uniformity of
µ∗
i indicates that the voltage-driven excitations are pre-
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FIG. 5. Evolution of (a) T ∗
i and (b) µ∗

i determined by the
ZCC and the LMPC with the variation of ǫi = ǫd for a non-
interacting double-impurity system under an antisymmetric
bias voltage of µR = −µL = V/2 = 0.2∆. Other energetic
parameters adopted are (in units of ∆): TL = TR = 0.1,
U = 0, t = 1, ∆L = ∆R = 0.5, and WL = WR = 20. The
shaded areas in the main panels represent the NR regions.
The inset of (b) depicts the total spectral function of the two
impurities A(ω) at different ǫd, where the shaded area indi-
cates the nonequilibrium activation window.

dominantly nonlocal as they occur via the resonant state
which involves both impurities.

In Fig. 5, it is again apparent that the (T ∗
i , µ

∗
i ) pre-

dicted by the ZCC vary smoothly with ǫd, and completely
neglect the existence of nonlocal excitations; whereas
those determined by the LMPC exhibit large oscillations
in the NR regions, which clearly accentuates the emer-
gence of a quantum resonance.

We proceed to study a linear chain comprised of four
noninteracting impurities subject to a thermal bias, i.e.,
TL < TR. The local chemical potential on each impu-
rity µ∗

i is nearly zero due to the absence of bias voltage.
Figure 6 depicts the distribution of T ∗

i along the chain
determined by the ZCC and the LMPC for various values
of t and ∆α (α = L,R).

As shown in Fig. 6(a), when the terminal impurities
are coupled strongly to the leads, both the ZCC and the
LMPC predict the T ∗

i vary almost linearly with i, i.e., the
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FIG. 6. Local temperature profile T ∗
i determined by the ZCC

and the LMPC for a noninteracting four-impurity chain under
a thermal bias with (a) a strong impurity-lead coupling of
∆α = 0.5∆ (α = L,R) and (b) a weak impurity-lead coupling
of ∆α = 0.0125∆. Other energetic parameters adopted are
(in units of ∆): ǫi = ǫd = 0, U = 0, µL = µR = 0, TL = 0.25,
TR = 0.5, WL = WR = 5. The inset depicts the system
spectral function A(ω) at different t and ∆α.

distribution of local temperature along the chain obeys
the classical Fourier’s law.1 Note that here the restora-
tion of the Fourier’s law is not because of disorder82 or
dephasing caused by an external source,83 which are ab-
sent from the AIM under study. Instead, the linear pro-
file of T ∗

i is associated with the substantial broadening of
the spectral peaks in A(ω).5 This means that the ther-
mal transport process involves electronic states in a wide
range of energies. The phases of these states are averaged
out when T ∗

i are measured, which leads to a classical-like
behavior. As the inset of Fig. 6 shows, the impurity-lead
coupling ∆α (α = L or R) affects significantly the sharp-
ness of the peaks, while the coupling strength t between
two adjacent impurities has important influence on the
distance of neighbouring peaks in a system.

In contrast, Fig. 6(b) concerns another scenario in
which the impurity-lead coupling is extremely weak, so
that the thermal transport occurs almost exclusively via
the quantum resonant states formed on the chain. In

such a scenario, the ZCC and the LMPC yield very dif-
ferent predictions on the distribution of T ∗

i . Specifically,

the T ∗,ZCC
i of all the four impurities are close to a cer-

tain value between TL and TR, while the T
∗,LMPC
i exhibit

large oscillations along the chain, which clearly violates
the Fourier’s law.

Inui et al.5 have reported strong oscillations of tem-
perature distribution in a graphene flake weakly coupled
to the electrodes under a thermal bias due to quantum
interference. But in their study the local temperatures

T ∗,ZCC
i still remain constant on a relatively small scale in

the weak-coupling regime, similar to the curve of T ∗,ZCC
i

in Fig. 6(b). Note that the chain in our work is very
short, so that even with weak impurity-lead couplings the
ZCC-defined T ∗

i cannot reveal prominent oscillations. In

contrast, the LMPC-defined T ∗,LMCP
i oscillations in our

work are much more significant. In the strong-coupling
regime, the temperature profile for the graphene flake is
much closer to that predicted by classical Fourier’s law,5

which is consistent with our results in Fig. 6(a).

IV. CONCLUDING REMARKS

In conclusion, our study of the single-impurity system
shows that the MPC predicts a unique local temperature
T ∗ for a given local observable Ô. The value of T ∗ may
be affected by the choice of local observable in the near-
resonance (NR) region, where local and nonlocal excita-
tions could both take place inside an impurity system.
It is noticed that the MPC-defined T ∗ deviates from the
that determined by the ZCC, although they reach a good
agreement outside the NR region. Such a difference in-
dicates that when quantum resonance effects are strong,
local temperatures based on different definitions may dif-
fer distinctly from one another.

Moreover, we have proposed the protocol of LMPC,
by extending the concept of MPC to multi-impurity sys-
tems. The LMPC satisfies a correspondence relation,
which relates the physical properties of a nonequilib-
rium system to that of an equilibrium system. Using the
LMPC, we studied the effect of quantum resonances on
local temperatures of multi-impurity systems. We found

that the T ∗,LMPC
i of double-impurity systems under an

antisymmetric bias voltage agree well with the T ∗,ZCC
i in

the absence of resonances. On the other hand, they are
distinctly different in the two NR regions, which is anal-
ogous to the case of single-impurity systems. Applying
the LMPC to a linear chain of four-impurities, we found
that the strong quantum resonance effects can lead to
prominent local temperature oscillations, which can not
be observed by using the ZCC protocol.

By means of the LMPC, some other interesting phe-
nomena in multi-impurity systems may be looked into,
such as Peltier cooling, which remains to be further in-
vestigated.
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