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Despite the high relevance of anaerobic ammonium oxidation (anammox) for nitrogen

loss from marine systems, its relative importance compared to denitrification has less

been studied in freshwater ecosystems, and our knowledge is especially scarce for

groundwater. Surprisingly, phospholipid fatty acids (PLFA)-based studies identified zones

with potentially active anammox bacteria within two superimposed pristine limestone

aquifer assemblages of the Hainich Critical Zone Exploratory (CZE; Germany). We found

anammox to contribute an estimated 83% to total nitrogen loss in suboxic groundwaters

of these aquifer assemblages at rates of 3.5–4.7 nmol L−1 d−1, presumably favored

over denitrification by low organic carbon availability. Transcript abundances of hzsA

genes encoding hydrazine synthase exceeded nirS and nirK transcript abundances

encoding denitrifier nitrite reductase by up to two orders of magnitude, providing further

support of a predominance of anammox. Anammox bacteria, dominated by groups

closely related to Cand. Brocadia fulgida, constituted up to 10.6% of the groundwater

microbial community and were ubiquitously present across the two aquifer assemblages

with indication of active anammox bacteria even in the presence of 103µmol L−1 oxygen.

Co-occurrence of hzsA and amoA gene transcripts encoding ammonia mono-oxygenase

suggested coupling between aerobic and anaerobic ammonium oxidation under suboxic

conditions. These results clearly demonstrate the relevance of anammox as a key

process driving nitrogen loss from oligotrophic groundwater environments, which might

further be enhanced through coupling with incomplete nitrification.
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INTRODUCTION

Over the last decades, human impact on the nitrogen cycle has
resulted in increasing concentrations of nitrate in groundwater,
which is of growing concern on a global scale (Galloway,
2005; Burgin and Hamilton, 2007; Schlesinger, 2009). However,
sources and sinks of nitrate in aquifers and the interconnecting
biogeochemical processes are still not fully understood. Globally,
25% of the drinking water for the human population originates
from karstic aquifers, which are especially vulnerable to nitrate
contamination due to their potential for rapid infiltration and
temporary inflow of oxygenated water (Auckenthaler et al., 2002;
Ford and Williams, 2007; Huebsch et al., 2014).

Traditionally, nitrogen losses from freshwater environments
including aquifers have primarily been attributed to
heterotrophic denitrification (Seitzinger et al., 2006; Burgin
and Hamilton, 2007; Rivett et al., 2008). However, especially
under conditions of organic carbon limitation as they may occur
in pristine limestone aquifers, autotrophic nitrate reducing
processes such as autotrophic denitrification or anaerobic
oxidation of ammonium (anammox) are likely to become more
competitive. Burgin and Hamilton (2007) suggested that the
relative availability of labile carbon or reduced sulfur and iron as
potential inorganic electron donors for chemolithoautotrophic
denitrification are the key determinants of nitrate removal
pathways. Despite the high relevance of anammox for nitrogen
losses from marine systems, e.g., oxygen minimum zones
(Thamdrup and Dalsgaard, 2002; Jensen et al., 2011; Lam and
Kuypers, 2011), this process has only recently become the
focus of studies addressing nitrogen loss from freshwater or
semiterrestrial environments (Schubert et al., 2006; Clark et al.,
2008; Moore et al., 2011; Yoshinaga et al., 2011; Yang et al., 2015;
Zhu et al., 2015; Shen et al., 2016). Anammox bacteria thrive
in low temperature environments, which makes groundwater
a suitable environment for anammox to occur (Dalsgaard and
Thamdrup, 2002; Rysgaard and Glud, 2004; Isaka et al., 2008;
Canion et al., 2014). In fact, isotope-based studies and molecular
surveys provided first evidence of the potential for anammox
in groundwater environments (Clark et al., 2008; Smits et al.,
2009; Humbert et al., 2010). Subsequent studies suggested
that anammox could be an important process responsible for
nitrogen loss from ammonium- and nitrate-contaminated
groundwater with up to 90% of nitrogen loss being attributed to
anammox (Clark et al., 2008; Moore et al., 2011; Robertson et al.,
2012; Hanson and Madsen, 2015; Smith et al., 2015).

Two recent studies carried out within the carbonate-rock
aquifer assemblages of the Hainich Critical Zone Exploratory
(Thuringia, Germany; Küsel et al., 2016) provided first evidence
of active anammox bacteria in uncontaminated, oligotrophic
groundwater (Schwab et al., 2017; Starke et al., 2017). These two
superimposed aquifer assemblages are largely pristine with low
microbial biomass, very low concentrations of organic carbon,
and limited impact of agricultural land-use on groundwater
nitrate concentrations (Kohlhepp et al., 2016; Küsel et al.,
2016). Based on the presence of [3]-ladderane and [5]-ladderane
phospholipid derived fatty acids (PLFAs), Schwab et al. (2017)
suggested an important role of anammox in anoxic groundwater

of these assemblages at higher NH+
4 concentrations, which was

further supported by a metaproteomics study showing that one
third of the identified protein groups in anoxic groundwater
samples was associated with Brocadiales (Starke et al., 2017).
However, the role of anammox compared to denitrification
for nitrogen loss from this oligotrophic aquifer system has
remained unclear. In this study, we aimed to assess the relevance
of anammox vs. denitrification by rate measurements at a
representative site for which these previous studies suggested
a high potential for anammox, and determine the genetic
potential for anammox and denitrification across the two aquifer
assemblages. While studies of marine environments suggested
that nitrite originating from incomplete nitrification may fuel
the anammox process in oxygen minimum zones (Lam et al.,
2007, 2009), the relevance of a potential coupling of these two
processes for the removal of fixed nitrogen from groundwater
environments has not yet been addressed. Consequently, we
also aimed to analyze potential links between anammox and
nitrification targeting transcriptional activity of genes involved in
anammox and aerobic ammonia oxidation.

METHODS

Study Site, Sample Collection, and
Chemical Analysis
Groundwater samples were obtained from groundwater
ecosystems in the temperate carbonate-rock terrain of the
Hainich Critical Zone Exploratory (CZE) located in Thuringia,
Germany. A monitoring well transect offers access to two
superimposed limestone aquifer assemblages, established in
the framework of the Collaborative Research Center (CRC)
AquaDiva (Küsel et al., 2016). The location, geological setting,
and groundwater well construction have been described in more
detail by Küsel et al. (2016). Bedrocks containing the aquifers of
the investigated area belong to the lithostratigraphic subgroup
Upper Muschelkalk of the German Triassic (Kohlhepp et al.,
2016). Here, superimposed aquifer assemblages are developed in
alternating sequences of fractured limestones (fracture aquifers)
and marlstones (aquitards), aggregated to the upper aquifer
assemblage (HTU: wells H32, H42, H43, H52, H53) and the
limestone-dominated lower aquifer assemblage (HTL: wells
H31, H41, H51; Küsel et al., 2016; Figure 1) with recharge areas
covered by forest, pastures, or cropland (HTU) or mostly forest
(HTL) (Kohlhepp et al., 2016; Küsel et al., 2016).

Within the coordinated long-term monitoring program of
the CRC AquaDiva, regular sampling of groundwater is carried
out, which allowed access to monthly groundwater samples from
January 2014 to August 2015 and additionally from November
2015 for this study. Samples were obtained from eight wells
using submersible motor pumps (MP1, Grundfos, Denmark)
after steady state in the physical and chemical conditions were
established. Water temperature, dissolved oxygen concentration,
pH, and redox potential were measured in a flow-through
cell in the field using respective probes (Küsel et al., 2016).
Groundwater was then filtered through 0.2 µm-pore size sterile
polyvinylidine fluoride (PVDF) syringe filters for subsequent
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FIGURE 1 | Characteristics of the Hainich aquifer assemblages. Sampling sites investigated in this study (encircled) included five wells from the Hainich transect upper

aquifer assemblage (HTU): H32, H42, H43, H52, H53, and three wells from the Hainich transect lower aquifer assemblage (HTL): H31, H41, H51. Parameters and

units presented per well are explained at the bottom in the left corner. Data represent means of samples obtained between January 2014 and June 2015 (n = 19).

More information about groundwater hydrochemistry is provided in Supplementary Table 1. ku, Lower Keuper; moW, Warburg formation; moM, Meissner formation;

moTK, Trochitenkalk formation; mm, Middle Muschelkalk; based on Kohlhepp et al. (2016).

analyses of nitrate, nitrite and ammonium concentrations using
standard colorimetric procedures (DEV, 1975; Grasshoff et al.,
1983). The concentration of sulfide was determined by the
modified methylene blue method after fixation of samples with
2% (v/v) Zn-acetate (Trüper and Schlegel, 1964). Concentrations
of sulfate were determined by ion chromatography [IC 20
system (Dionex, Sunnyvale, CA) equipped with an IonPac AS11-
HC column and an IonPac AG11-HC precolumn], and total
organic carbon (TOC) concentrations were determined by using
a TOC analyzer (AnalytikJena, Germany). Concentrations of Ca
and K were determined by ICP-OES (725 ES, Varian/Agilent,
USA) after filtration through 0.45µmpore size polyether-sulfone
(PES) filters (Kohlhepp et al., 2016). Groundwater samples for
molecular analysis were transferred to sterile glass bottles, filled
up to themaximumfilling level, and transported to the laboratory
at 4◦C, followed by filtration through 0.2µm PES filters (Supor,
Pall Corporation, USA) for DNA extraction and through 0.2µm
polycarbonate filters (Nuclepore, Whatman; Merck-Millipore)
for RNA extraction within 1 h, with 5–6 L of groundwater passing
through one filter. The filters were then transferred to sterile
2ml tubes and frozen on dry ice within 1min, followed by
storage at −80◦C. For sampling of groundwater particulate
organic matter (POM) for later PLFA analysis, ∼1,000 L of
groundwater were filtered on site using a stainless steel filter

holder (diameter 293mm; Millipore, USA) equipped with a
removable pre-combusted (5 h at 500◦C) glass fiber membrane
filter (pore size 0.3µm; Sterlitech, USA; Schwab et al., 2017).

Ladderane Lipids Extractions and
Measurements
Ladderane phospholipid derived fatty acids (PLFA) were
extracted from glass fiber filters and subsequently purified
using a slightly modified method of the common PLFA
extraction method, as previously described (Schwab et al.,
2017). The ladderane FAMEs were identified based on published
mass spectra (Sinninghe Damsté et al., 2005) using a gas
chromatograph (Trace 1310 GC) coupled to a triple quadrupole
mass spectrometer (TSQ-8000; Thermo-Fisher, Bremen,
Germany). While Schwab et al. (2017) expressed ladderanes
in percentage relative to the other measured PLFAs, we used a
different calculation procedure to allow a better estimation of
differences in the relative abundance of active anammox bacteria
between the different wells. Here, the peak area of the most
abundant ladderanes, C20[5]-ladderane and C20[3]-ladderane,
relative to the peak area of the internal standard C19:0 FAME
was used as an alternative calculation. Ladderane concentrations
were calculated relative to the internal standard nonadecanoic
acid-methyl ester (19:0) added prior to GC analysis and relative
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to a standard mixture (FAME-Mix, Thermo-Fisher, Bremen,
Germany) measured in 5 different concentrations between 2 and
40 ng/µl. This approach required a recalculation of ladderane
data already presented in Schwab et al. (2017) (samples from
July, September, and December 2014), and additional data from
a new time point (November 2015) were integrated in this study.

Anammox and Denitrification Rate
Measurements
A 15N-labeling approach (Dalsgaard et al., 2012) was used to
measure anammox and denitrification rates in the groundwater
samples from well H53 in November 2015, for which a previous
PLFA-based study had suggested high abundances of anammox
bacteria (Schwab et al., 2017). Anoxic incubations were set up
using 30ml of groundwater per incubation in serum bottles.
During sampling, the groundwater sample was allowed to flow
through a sterile pipette to the bottom of a 1 L sterile glass bottle,
followed by overflow for three volume exchanges, leaving the
bottles without headspace. The bottles were then closed with
rubber stoppers and transferred to the laboratory at 4◦C within
2 h. All the water samples were flushed with nitrogen, followed
by immediate processing inside an anaerobic chamber, where
each 30ml of the water samples were dispensed into serum
bottles with 8ml headspace volume. 15N-labeled NH+

4 and NO−
2

were added as two treatments: (1) 15NH+
4 (50µM) and 14NO−

2
(5µM); (2) 15NO−

2 (5µM) without adding additional 14NH+
4 .

The headspace of the serum bottles was purged with helium gas
for 5min. The bottles were incubated at 15◦C in the dark, and
triplicate serum bottles were destructively sampled after 0, 14,
24, 36, and 48 h by introducing 300 µl of saturated aqueous
Zinc chloride solution. The isotopic composition of the N2 gas
in the headspace of each sample was measured by coupled
gas chromatography isotope ratio mass spectrometry (Dalsgaard
et al., 2012). Rates of anammox and denitrification were derived
from the accumulation of the 15N-labeled N2 species 14N15N
(29N2) and 15N15N (30N2) as previously described (Thamdrup
and Dalsgaard, 2002). For the calculation of rates of anammox
and denitrification, the dilution of the 15N label by unlabeled
(background) nitrite and ammonium already present was taken
into account, with the labeled fraction determined as the ratio of
the concentration of 15N labeled nitrite or ammonium added to
the total concentration of nitrite or ammonium, respectively. For
nitrite, the total concentration was determined as the sum of the
background concentration and the concentration of 15N added,
and for ammonium, the total concentration was measured after
addition of 15NH+

4 .

Nucleic Acid Extraction, PCR
Amplification, and Cloning
Genomic DNA and total RNAwere extracted using the PowerSoil
DNA isolation kit (MO BIO Laboratories Inc., USA) and
the PowerWater RNA Isolation Kit (MO BIO Laboratories
Inc., USA), respectively, according to the manufacturer’s
protocol. Processing of RNA was performed as described
previously (Schwab et al., 2017). PCR for later clone library
construction to generate standards for quantitative PCR was

carried out using HotstarTaq Mastermix (Qiagen, Germany)
with previously published primer combinations and cycling
conditions: 526F/1857R5 for hzsA genes encoding hydrazine
synthase subunit A of anammox bacteria (Harhangi et al.,
2012), and F1aCu/R3Cu and cd3aF/R3cd, respectively, for nirK
and nirS genes encoding copper- and cytochrome c-dependent
nitrate reductase of denitrifiers (Hallin and Lindgren, 1999;
Michotey et al., 2000; Throbäck et al., 2004), following the cycling
conditions given in Throbäck et al. (2004). Clone libraries were
constructed using pGEM T-Easy cloning vector and chemically
competent Escherichia coli (JM109) in accordance with the
manufacturer’s protocols (Promega). Plasmids were extracted
using GeneJET plasmid miniprep kit (Thermo Fisher Scientific,
Germany) and sequencing of cloned inserts was performed at
Macrogen (The Netherlands).

Quantitative PCR
Quantification of bacterial 16S rRNA genes, and hzsA, nirK,
nirS, and amoA genes and transcripts was performed by
quantitative PCR (qPCR) on a Mx3000P qPCR cycler (Agilent
Technologies) using Maxima SYBR Green Mastermix (Thermo
Fisher Scientific). QPCR targeting bacterial 16S rRNA genes,
hzsA, nirK, and nirS genes was performed for monthly samples
from January 2014 to August 2015, while qPCR targeting
amoA genes and transcripts of hzsA, nirK, nirS, and amoA
was only performed for samples obtained in August and
November 2015. In detail, the following primer combinations
were used: Bac8Fmod/Bac338Rabc (Daims et al., 1999; Loy
et al., 2002) for bacterial 16S rRNA genes following Herrmann
et al. (2012), 1597F/1857R5 for hzsA genes (Harhangi et al.,
2012), F1aCu/R3Cu and cd3aF/R3cd, respectively, for nirK and
nirS genes (Hallin and Lindgren, 1999; Michotey et al., 2000;
Throbäck et al., 2004) with cycling conditions as given in
Throbäck et al. (2004), and primers Arch-AmoAF/Arch-AmoAR
(Francis et al., 2005) and AmoA-1F/AmoA-2R (Rotthauwe et al.,
1997) for archaeal and bacterial amoA genes as described in
Opitz et al. (2014). Standard curves were produced based on a
serial dilution of non-linearized plasmids containing inserts of
the respective target genes and were linear from 5 × 101 to 5 ×

108 copies per reaction with R2 > 0.99) for the functional genes
and from 5× 102 to 5× 108 copies per reaction for bacterial 16S
rRNA genes.

Illumina MiSeq Amplicon Sequencing
16S rRNA-gene based analysis to assess the structure and
taxonomic affiliation of the total bacterial community was
performed for samples taken in November 2015 when anammox
rate measurements were carried out. To confirm the observed
community patterns, we performed additional 16S rRNA gene-
targeted amplicon sequencing from previous time points to
link community structure information to the quantification of
functional gene transcripts (August 2015) and to characterize
the total bacterial population and the population with the
potential for protein biosynthesis (Blazewicz et al., 2013) by
comparing DNA- and RNA-based 16S rRNA amplicon data from
the same sample (August 2014). Bacterial 16S rRNA genes were
targeted using the primer combination Bakt_341F/Bakt_805R
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(Herlemann et al., 2011), covering the V3–V5 region of the
bacterial 16S rRNA gene. Amplicons of nirS and nirK genes were
generated from genomic DNA only (August 2014) using the same
primer combinations as for cloning and qPCR. Generation of
barcoded amplicons and amplicon sequencing using the Illumina
MiSeq platform was performed by LGC Genomics (Berlin). The
PCRs included about 5 ng of DNA extract, 15 pmol of the
respective forward and reverse primer in 20 uL volume of 1
× MyTaq buffer containing 1.5 units MyTaq DNA polymerase
(Bioline) and 2 µl of BioStabII PCR Enhancer (Sigma). For
each sample, the forward and reverse primers had the same
10-nt barcode sequence. PCRs were carried out for 30 cycles
using the following parameters: 2min 96◦C predenaturation;
96◦C for 15 s, 50◦C for 30 s, 70◦C for 90 s. For nirS, cycling
conditions were similar but annealing was at 56◦C. About 20 ng
amplicon DNA of each sample were pooled for up to 48 samples
carrying different barcodes. The amplicon pools were purified
with one volume AMPure XP beads (Agencourt) to remove
primer dimer and other small mispriming products, followed by
an additional purification on MinElute columns (Qiagen). About
100 ng of each purified amplicon pool DNAwas used to construct
Illumina libraries using the Ovation Rapid DR Multiplex System
1–96 (NuGEN). Illumina libraries were pooled and size selected
by preparative Gelelectrophoresis. Sequencing was done on an
Illumina MiSeq using V3 Chemistry (Illumina).

Sequence Analysis
Sequence analysis of bacterial 16S rRNA amplicons was
performed usingMothur (Schloss et al., 2009, v.1.39.1), following
theMothurMiSeq SOP (Kozich et al., 2013) along with the SILVA
bacteria reference alignment (Quast et al., 2013). Taxonomic
classification was done using the classify.seqs command in
Mothur with a reference database based on SILVA release v128.
Species-level operational taxonomic units (OTUs) were assigned
using a 0.03 distance cut-off. For comparisons of community
structure across samples, the library size of each sample was
normalized to the same number of reads using the sub.sample
command implemented in Mothur.

Because of insufficient amplification of nirK genes for MiSeq
Illumina sequencing at very low nirK gene abundances in
the groundwater, a detailed analysis of denitrifier community
composition focused on nirS-type denitrifiers only. nirS
sequences were analyzed using Mothur with few modifications
necessary to adjust the pipeline for the analysis of protein-
encoding genes, integrating BioEdit (Hall, 1999), and the ARB
package (Ludwig et al., 2004). After removing low quality
sequence reads following the standard settings of the Mothur
MiSeq SOP, nucleic acid sequences were translated to deduced
amino acid sequences using BioEdit, and sequences containing
stop codons were removed. Nucleic acid sequences were
then aligned to a nirS reference alignment generated in ARB
(Herrmann et al., 2017), and badly aligned sequences were
excluded from further analysis. OTU assignment was done at a
0.18 distance cut-off on nucleic acid level (Palmer et al., 2012).
Closest relatives were determined using nucleotide BLAST
(blastn) of one representative sequence per OTU against the
nucleotide collection (nr/nt) database at the National Center

for Biotechnology Information (NCBI; https://blast.ncbi.nlm.
nih.gov/Blast.cgi). For phylogenetic analysis of cloned hzsA
fragments, reference alignments of deduced hzsA protein
sequences were generated in ARB. Sequences obtained in
this study were translated to deduced protein sequences and
aligned against the reference alignment. Species-level OTUs
were assigned based on a 0.03 distance cut-off on protein level.
Closest relatives were determined based on a BLAST search
using blastx against the non-redundant protein sequence (nr)
database at NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
and using phylogenetic tree construction in ARB. Sequences
obtained in this study have been submitted to the European
Nucleotide Archive (ENA) for results of MiSeq Illumina
amplicon sequencing (study accession number: PRJEB20223,
sample accession numbers ERS1645471–ERS1645508) and
to Genbank for clone library-based sequencing (accession
numbers KY887284–KY887452 for hzsA genes, KY887453–
KY887461 for nirS genes, and KY887462–KY887471 for nirK
genes).

RESULTS

Elucidation and Characterization of
Potential Anammox Sites
Confirming previous observations (Kohlhepp et al., 2016; Küsel
et al., 2016), the groundwater is characterized by a slightly
alkaline pH (7.1–7.3 across all wells), low concentrations of
total organic carbon (TOC: 1.7–2.2 mg L−1) and generally low
microbial biomass as approximated by ∼108 bacterial 16S rRNA
genes per L. The two aquifer assemblages differ strongly in
oxygen availability with suboxic (<10 µmol oxygen L−1) to
anoxic conditions in the upper aquifer assemblage (HTU) and
oxic conditions in the lower aquifer (HTL) (Figure 1). Similarly,
nitrate concentrations are higher in the HTL wells compared to
the HTU wells except well H32, which shows the highest nitrate
concentration, while ammonium concentrations are higher in
HTU compared to the wells of HTL with highest concentrations
of 30 µmol L−1 in the groundwater of well H53 (Figure 1).

The highest relative concentrations of ladderanes were
observed in the suboxic to anoxic groundwater of wells H52
and H53 with maxima observed at well H53 for most of the
time points, as previously shown for samples obtained in July,
September, and December 2014 (Schwab et al., 2017). Ladderane
data of November 2015 were added here to confirm these
patterns for the time point when anammox rate measurements
were performed. Interestingly, ladderanes were also detectable
in the oxic groundwater of wells H31, H41, and H51, albeit
at much lower relative concentrations (Figure 2). Ladderane
concentrations found at well H53 exceeded those found in
oxic groundwater at H51 by a factor of 35. Since absolute
quantification of phospholipids derived [5]- and [3]-ladderanes
was not possible due to the absence of commercially available
standards, only changes of their relative concentration between
wells are presented here. Temporal fluctuations of ladderane
concentrations at wells H52 and H53 were more than one order
of magnitude but did not show any correlation with temporal
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FIGURE 2 | Relative concentrations of ladderane lipids (sum of ladderane-[3]-FAME and ladderane-[5]-FAME peak area relative to C19:0 internal standard peak area)

in the groundwater of eight wells along the Hainich groundwater observation transect. b.d., below detection (relative concentrations < 0.01); n.a., not analyzed. Data

of July, September, and December 2014 were also subject of analyses published in Schwab et al. (2017).

fluctuations of oxygen or ammonium concentrations (data not
shown).

The ladderane-based results agreed well with the distribution
patterns of total and active anammox bacteria suggested by
quantitative analysis targeting hzsA genes and transcripts, which
revealed maximum hzsA gene and transcript abundances in
the groundwater of wells H52 and H53 of the upper aquifer
assemblage (Figure 3A). Based on these observations, we selected
well H53 for rate measurements of anammox and denitrification
activity. Incubations with 15NH+

4 and 14NO−
2 or 15NO−

2 and
natural NH+

4 background showed a linear increase in 29N2

concentrations in the headspace (Supplementary Figure 1) and
yielded rates of anammox of 4.7 and 3.5 nmol N2 L−1 d−1,
respectively, while denitrification was detected at an activity
of 0.7 nmol N2 L−1 d−1. Based on the measured activities in
the incubations with added 15NO−

2 , we observed a total N2

production activity of 4.2 nmol N2 L−1 d−1 to which anammox
contributed an estimated 83%.

Co-occurrence with Denitrifiers and
Aerobic Ammonia Oxidizers Based on
Functional Genes
Abundances of nirK and denitrifier nirS genes ranged from
1.1 × 103 to 6.5 × 105 and 1.1 × 104 to 8.5 × 107 genes
L−1, respectively, across all sites and time points with nirS
usually outnumbering nirK genes by two orders of magnitude,
pointing to a strong predominance of nirS-type denitrifiers
in the groundwater denitrifier communities (Supplementary
Figure 2A). Relative proportions of denitrifiers approximated by
nirS/16S rRNA gene ratios followed a similar trend as observed
for the anammox population with maximum gene ratios of 0.068

and 0.095 at suboxic to anoxic wells H52 and H53, respectively,
and lower ratios in the anoxic groundwater at site 4 (0.014 and
0.015 at H42 and H43), or in the oxic wells (H31, H32, H41, H51:
0.028–0.046; Supplementary Figure 2B). Transcript abundances
of nirS and nirK remained below the quantification limit of 103

transcripts L−1 groundwater for all wells (data not shown).
To get first insight into potentially co-occurring activities

of aerobic and anaerobic ammonium oxidation, we quantified
amoA genes and transcripts of ammonia-oxidizing archaea and
bacteria for seven groundwater wells in August and November
2015. amoA gene abundances pointed to similar or only slightly
lower total abundances of aerobic ammonia oxidizers in suboxic
to anoxic wells H52 and H53 compared to the oxic well H41
and to even higher abundances compared to oxic well H51
(Figure 3B). However, comparison of amoA gene abundances
to bacterial 16S rRNA gene abundances suggested a smaller
relative fraction of ammonia oxidizers within the total microbial
communities of wells H52 and H53 compared to wells H41
and H51 (data not shown). For both time points, transcripts
of bacterial and archaeal amoA genes were detectable in the
oxic groundwater of HTL but also at H52 and H53. We
calculated gene and transcript ratios of [hzsA/sum of archaeal and
bacterial amoA] across sites as an indicator of a predominance
of either anaerobic or aerobic ammonium oxidation in the
genetic potential or transcriptional activity of the groundwater
microbial communities. hzsA/amoA ratios ranged from 0.1 to
444.7 and from 1.2 to 1087.6 on the gene and transcript level,
respectively (Supplementary Figure 3). Highest hzsA/amoA gene
and transcript ratios were observed for wells H52 and H53.
hzsA/amoA ratios were negatively correlated to groundwater
oxygen concentrations across sites (Spearman rank correlation
coefficient −0.85 and −0.875 for gene and transcript-based
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analysis, respectively, p < 0.01; Supplementary Figure 4) when
excluding wells H42 and H43 where hzsA and amoA transcript
numbers were close to the detection limit.

Identification of Key Organisms
Responsible for Nitrogen Loss in the
Groundwater
To complement the functional gene targeted quantitative
analysis, groundwater bacterial community structure was
assessed based on 16S rRNA gene-targeted MiSeq Illumina
amplicon sequencing for samples obtained in August and
November 2015. With few exceptions, bacterial communities
across both aquifer assemblages were primarily composed
of members of Parcubacteria (14–38% of sequence reads)
followed by Nitrospirae (1–32%), Betaproteobacteria (3–17%),
Deltaproteobacteria (4–12%), and Alphaproteobacteria (1–13%;
Figure 4A). Relative fractions of sequence reads affiliated with
Planctomycetes ranged from 1 to 9% with highest fractions in the
groundwater of anoxic well H52 (4.9–8.8%) followed by 4.6–6.5%
in oxic well H51 (Figure 4A). The fraction of sequence reads
within the Planctomycetes which were affiliated with anammox-
bacteria was lowest in the oxic aquifer (26–33%) and at site H4
of the anoxic upper aquifer assemblage (16–27%) and showed
maximum values of 93–96% at wells H53 and H52, indicating
that the Planctomycetes community in the groundwater of these
wells was almost exclusively composed of anammox bacteria.
On the 16S rRNA level representing the bacterial population
with protein biosynthesis potential (Blazewicz et al., 2013), the
representation of sequence reads affiliated with Planctomycetes
was especially high in the groundwater of wells H52 (27%) and
H53 (15%), out of which anammox-affiliated reads accounted for
95–96% (Supplementary Figure 5).

16S rRNA gene and transcript-targeted Illumina MiSeq
amplicon sequencing identified four candidate genera of
anammox bacteria. Among the sequence reads affiliated with
Brocadiaceae, up to 78% were affiliated with Candidatus
Brocadia, followed by Candidatus Kuenenia and Candidatus
Jettenia (Figure 4B) with similar results for DNA- and RNA-
based sequencing in August 2014 (Supplementary Figure 6A).
These results were supported by the hszA-targeted cloning
approach. Nine different OTUs were observed most of which
were affiliated with the Candidatus genus Brocadia, with
sequence identities of deduced hzsA protein sequences with
those of Cand. Brocadia fulgida ranging from 90 to 92%
(Supplementary Figure 6B).

MiSeq Illumina amplicon sequencing of the less abundant
nirK genes resulted in only poor sequence read yields.
Consequently, a detailed analysis of denitrifier community
composition focused on nirS-type denitrifiers only. Except for
wells H42 and H43, nirS-type denitrifier communities were
dominated by one OTU distantly related to Sulfurifustis variabilis
(nirS-OTU1: 85% sequence identity), and two OTUs related
to the genus Azospirillum (nirS-OTU2, nirS-OTU3: 82–83%
sequence identity). These OTUs accounted for more than 70%
of the sequence reads for wells H32, H52, and H53, while they
were only represented by few sequence reads at sites H42 and

FIGURE 3 | Abundances of genes and transcripts of (A) hzsA and (B)

archaeal and bacterial amoA in groundwater samples obtained from seven

wells of the upper and lower aquifer assemblage in August and November

2015. Bars represent mean (±standard deviation) of two time points and each

three technical replicates in qPCR analysis. b.d., below detection.

H43 (Figure 5). Here, nirS-type denitrifier communities were
mainly composed of denitrifiers closely related to Sulfuritalea
hydrogenivorans (90–95% sequence identity), Ideonella sp.
(83% sequence identity), and poorly characterized nirS-type
denitrifiers (nirS-OTU4, sequence identity<80%), with the latter
accounting for 20–28% of all the nirS sequence reads detected
at wells H42 and H43. Since the nirS primer set used in this
study may discriminate against some denitrifying genera due
to mismatches in the primer binding region (Herrmann et al.,
2017), we additionally identified potential denitrifiers based on
the 16S rRNA sequence information from the same samples
(August 2014). This comparison confirmed the presence and
distribution patterns of the genera Sulfurifustis, Sulfuritalea,
and Sulfuricella across sites, while it additionally identified the
denitrifying genera Hydrogenophaga and Sideroxydans, which
were especially abundant in the groundwater of wells H42 and
H43 (Hydrogenophaga: 0.09–1.6% of all 16S rRNA gene sequence
reads; Sideroxydans: 0.1–0.8%).
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FIGURE 4 | Structure of the total bacterial community (A) and of the anammox bacterial community (B) based on MiSeq Illumina amplicon sequencing of 16S rRNA

genes in the groundwater of seven wells across the two aquifer assemblages, analysis based on metagenomic DNA [August (A) and November (N) 2015]. For (B) Bars

represent fractions of sequences assigned to different Candidatus genera of anammox bacteria within the Brocadiaceae (corresponding to 39 up to 4,264 sequence

reads out of 16,383 total bacterial 16S rRNA sequence reads per well).

DISCUSSION

Reoccurring patterns of ladderane relative concentrations
pointed to the existence of potential active sites of anammox
in suboxic to anoxic groundwaters of the wells H52 and
H53 of the Hainich CZE (Schwab et al., 2017; Figure 2),
suggesting a hitherto unrecognized role of anammox in nitrogen
cycling in oligotrophic limestone aquifers. Our results not only
ultimately proved the occurrence of the anammox process at
rates of 3.5–4.7 nmol N2 L−1 d−1 in the groundwater of
suboxic to anoxic well H53 but also demonstrated its high
relevance compared to denitrification for the removal of fixed
nitrogen at an estimated contribution of 83%. Well H53 and the
neighboring well H52 showed a very high similarity regarding
hydrochemical properties supportive of the anammox process.
Moreover, previous findings from PLFA analysis and proteomics
provided strong support that active anammox is also ongoing

in the groundwater of well H52, where one third of the
identified proteins were associated with Brocadiales (Starke et al.,
2017). Along with the high representation of anammox-bacteria
based on 16S rRNA-targeted Illumina sequencing, maximum
abundances of hzsA genes, and two orders of magnitude higher
hzsA compared to nirS gene transcripts, these findings provided
strong support for these wells being an anammox hotspot within
the heterogeneous carbonate-rock aquifer system of the Hainich
CZE. Starke et al. (2017) not only demonstratedmetaproteomics-
based evidence of anammox by Cand. Brocadiales at well H52
but found that members of this order were also involved in
nitrate reduction to nitrite and to ammonium, nitrogen fixation,
ammonification, and CO2-fixation. In situ nitrite concentrations
were usually below the detection limit, suggesting that nitrite
was most likely subject to high turnover and could be a limiting
factor for in situ anammox activity. Hence, we cannot rule out
that addition of nitrite in our anammox and denitrification
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FIGURE 5 | Community structure and taxonomic affiliation of nirS-type denitrifiers in the groundwater of the two aquifer assemblages based on Illumina MiSeq

amplicon sequencing of nirS genes, August 2014. Sequences showing less than 80% nirS sequence identity with cultured denitrifiers were referred to as “unclassified.”

assays might have additionally stimulated anammox but also
denitrification activity.

The anammox activity observed in our study is similar to
average rates reported from off-shore marine oxygen minimum
zones (e.g., 1.9 and 3.0 nmol N2 L−1 d−1; Dalsgaard et al., 2012;
Kalvelage et al., 2013) but was substantially lower than anammox
activities measured in groundwater contaminated with nitrate
or ammonium (Table 1). The strikingly high contribution of
anammox to nitrogen loss under oligotrophic conditions agrees
with findings from oceanic oxygen minimum zones (Lam and
Kuypers, 2011) and with reports from ammonium-contaminated
aquifers at low organic carbon availability (<1.0 mg L−1 DOC,
Smith et al., 2015), while the contribution of anammox was found
to be lower (18–41%) in groundwater at DOC concentrations
up to 30 mg L−1 (Moore et al., 2011; Smith et al., 2015).
Consequently, limitation by labile organic carbon was most likely
a key factor underlying the observed high relevance of anammox
vs. denitrification in the oligotrophic carbonate-rock aquifers of
the Hainich CZE. In fact, carbon isotope-based studies in the
groundwater of wells H52 and H53 pointed to a tight internal
cycling of carbon including oxidation of sedimentary old organic
matter depleted in both 13C and 14C, and subsequent refixation
of 13C- and 14C-depleted CO2 by chemolithoautotrophs (Nowak
et al., 2017). For the same groundwater sampling wells, Schwab
et al. (2017) found a strong depletion of phospholipid [3]-
and [5]-ladderanes in 13C (δ13C values ranging from –48.0 ±

10.5 to –45.9 ± 11.7‰), indicative of active CO2-fixation via
the acetyl-CoA-pathway and characteristic of anammox bacteria
(Schouten et al., 2004), confirming the substantial contribution
of the anammox process to in situ autotrophic CO2-fixation.
Disconnection of these groundwater wells from surface-derived
organic carbon input further appeared likely due to thick

overlying soils, low infiltration potential, and low hydraulic
conductivities with estimated groundwater travel times ranging
from 295 to 587 years (Kohlhepp et al., 2016; Nowak et al., 2017).

Under in situ conditions, nitrite fueling the anammox process
could originate from nitrate reduction by anammox bacteria or
other nitrate reducers but also from incomplete nitrification.
Oxygen concentrations of 0–2.2 µmol L−1 in the groundwater
of suboxic well H53 may provide conditions supportive of a
coupling between aerobic and anaerobic ammonium oxidation as
described frommarine oxygen minimum zones (Lam et al., 2007,
2009; Lam and Kuypers, 2011) or recently also from intertidal
sediments (Fernandes et al., 2016). Detection of transcripts
of archaeal and bacterial amoA genes in the groundwater of
well H53 suggested ongoing aerobic ammonia oxidation at
suboxic conditions, albeit at a much lower transcriptional activity
compared to oxic well H41, where nitrification rates of 10.4–
14.4 nmol NOx L−1 d−1 were detected in a previous study
(Opitz et al., 2014). In line with these results, our molecular
analysis identified oxygen availability as an important factor
driving the predominance of anammox vs. aerobic ammonia
oxidation in the genetic potential or transcriptional activity of
the groundwater communities across the two aquifer assemblages
with anammox being the most favored over aerobic ammonia
oxidation at wells H52/H53 and the least at well H41. Here, future
studies assessing nitrification and anammox activity in parallel
are needed to get more insight into a potential coupling between
aerobic and anaerobic ammonium oxidation and its potential
effect on overall nitrogen losses from the groundwater of pristine
limestone aquifers.

Beyond the identified anammox hotspot, our results have
clearly demonstrated the ubiquitous presence of anammox
bacteria along the two limestone aquifer assemblages of the
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TABLE 1 | Anammox and denitrification rates in marine and freshwater environments.

Study site NH+

4
NO−

3
Anammox Denitrification References

(µmol L−1) (nmol N2 L−1 d−1)

Marine anoxic basin 0.2 7.2 24–480 (19–35%) 12–2,568 Dalsgaard et al., 2003

Marine oxygen-deficient water <0.05 <40 0.4–27 (74–100%) 0.4 Thamdrup et al., 2006

Marine oxygen minimum zone <0.1 <30 1–21 (35%) 3–190 Dalsgaard et al., 2012

Marine oxygen minimum zone (coastal) 0.25–0.5 <50 2.8–227 (30%) 2.2–5.4 Kalvelage et al., 2013

Freshwater lake 0–53 <0.1–10 24–240 (9–13%) 498–2,322 Schubert et al., 2006

Nitrate-contaminated groundwater 10.6–145 3,000–7,172 N/A 387,000–465,000 Tobias et al., 2001

Fertilizer-contaminated groundwater (DOC up to 30 mg L−1) 0.5–19,680 3.2–3,854 ∼319–751 (18–36%) N/A Moore et al., 2011

Wastewater-contaminated groundwater (DOC < 1.0 mg L−1) 0–47 0–209.4 9.1–458 (39–90%) 1.0–662 Smith et al., 2015

Carbonate-rock aquifers (DOC < 1.8 mg L−1) 3.4–30 12–572 3.5–4.7 (83%) 0.7 This study

N/A, no data given in reference. Estimated contribution of anammox to total N2 production given in parentheses.

Hainich CZE, albeit at a variation of hzsA gene abundances
by four orders of magnitude across all groundwater wells.
Surprisingly, we found hzsA gene abundances in the range of
2.3 × 105–3.7 × 106 L−1 and high hzsA transcriptional activity
also in the oxic groundwater of wells of the lower aquifer
assemblage. While anammox in marine waters, dominated
by Cand. Scalindua, is inhibited by oxygen levels ≤ ∼10
µmol L−1 (Jensen et al., 2011; Dalsgaard et al., 2014),
it remains unclear if groundwater anammox bacteria could
actually thrive and carry out anaerobic ammonium oxidation
in the presence of considerable concentrations of oxygen (43–
420 µmol L−1). Association with aerobic heterotrophs might
provide microenvironments at reduced oxygen concentrations.
Moreover, a recent study reported a contribution of anammox to
in situ N2 production of up to 58% in permeable riverbeds at an
oxygen concentration of 134 ± 14 µmol L−1 (Lansdown et al.,
2016). Among the four candidate genera of anammox bacteria
detected in the two aquifer assemblages, only Cand. Brocadia,
mostly described from terrestrial habitats (Humbert et al., 2010;
Hirsch et al., 2011) and the dominant anammox representative
in the communities of our study, has previously been reported to
cope with elevated oxygen concentrations of up to 63 µmol L−1

(Oshiki et al., 2011).
Denitrification activity observed in this study was in the lower

range of rates reported from contaminated aquifers at low labile
organic carbon availability or from marine oxygen minimum
zones (Table 1) and was substantially lower than rates reported
from lake water or from contaminated groundwater at higher
organic load. In fact, analysis of the groundwater denitrifier
community revealed large fractions of potential autotrophic
denitrifiers oxidizing reduced sulfur compounds, hydrogen, or
reduced iron such as the genera Sulfurifustis (Kojima et al., 2015),
Sulfuritalea (Kojima and Fukui, 2011), Sulfuricella (Kojima and
Fukui, 2010), or Sideroxydans (Emerson and Moyer, 1997),
confirming previous observations of a high genetic potential
for sulfur-driven autotrophic denitrification in the aquifers of
the Hainich CZE (Herrmann et al., 2015, 2017). Consequently,
we cannot rule out that addition of the respective electron
donors would have stimulated denitrification in our incubation
experiments. However, the low nirS transcriptional activity in

the groundwater of wells H52 and H53 pointed to low in situ
denitrification activity. In addition to low availability of suitable
organic and presumably also inorganic electron donors, a second
factor favoring anammox over denitrification was most likely
the constantly low groundwater temperature around 10◦C, as
studies of both natural and engineered systems found a lower
temperature optimum for anammox compared to denitrification
(Jetten, 2001; Dalsgaard and Thamdrup, 2002; Rysgaard and
Glud, 2004; Dosta et al., 2008; Hu et al., 2013; Lotti et al., 2014).

CONCLUSIONS

Our results have demonstrated a strong functional resemblance
between oligotrophic groundwater andmarine oxygenminimum
zones regarding anammox activity, its high contribution
to nitrogen loss, and its potential coupling with aerobic
ammonia oxidation. We provided first insight into the
quantitative relevance of anammox vs. denitrification in
pristine groundwater. Together with knowledge gained from
previous PLFA- and proteomics-based studies, our results
point to the existence of an anammox hot spot within the
heterogeneous carbonate-rock aquifer system of the Hainich
CZE, where anammox dominates nitrogen cycling in suboxic
to anoxic groundwater zones and could also make a substantial
contribution to autotrophic CO2-fixation under conditions of
strong organic carbon limitation. Future studies will address
whether coupling between anammox and nitrification enhances
nitrogen loss from oligotrophic groundwater environments
and will elucidate potential mechanisms which allow anammox
bacteria to thrive in oxic groundwater.
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