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Abstract 16 

Existing regulatory pollutant monitoring networks rely on a small number of centrally 17 

located measurement sites that are purposefully sited away from major emission sources. While 18 

informative of general air quality trends regionally, these networks often do not fully capture the 19 

local variability of air pollution exposure within a community. Recent technological 20 

advancements have reduced the cost of sensors, allowing air quality monitoring campaigns with 21 

high spatial resolution. The 100×100 black carbon (BC) monitoring network deployed 100 low-22 

cost BC sensors across the 15 km2 West Oakland, CA community for 100 days in the summer of 23 

2017, producing a nearly continuous site-specific time series of BC concentrations which we 24 

aggregated to one-hour averages. Leveraging this dataset, we employed a hierarchical spatio-25 

temporal model to accurately predict local spatio-temporal concentration patterns throughout 26 

West Oakland, at locations without monitors (average cross-validated hourly temporal ��=0.60). 27 

Using our model, we identified spatially varying temporal pollution patterns associated with 28 

small-scale geographic features and proximity to local sources. In a sub-sampling analysis, we 29 

demonstrated that fine scale predictions of nearly comparable accuracy can be obtained with our 30 



 

 2

modeling approach by using ~30% of the 100x100 BC network supplemented by a shorter-term 31 

high-density campaign. 32 

 33 

1 Introduction 34 

Short-term and long-term exposure to particulate air pollution, including black carbon 35 

(BC), is associated with adverse health effects1. Studies of short-term pollutant-health 36 

associations still often rely on centrally located regulatory monitors to estimate pollutant 37 

exposure for each study participant in the region2,3. However, concentrations can vary widely 38 

across a given area, such that a single measurement may not best describe population exposures 39 

everywhere, leading to possible biases in the estimates of health effects or identification of those 40 

most at risk. Our objective is to predict the spatially varying temporal patterns of BC 41 

concentrations in West Oakland during the summer months of 2017, a time that corresponds with 42 

intensive air pollutant monitoring in the area. Such predictions are of significant interest for use 43 

in a wide variety of applications, including epidemiological studies, as they allow researchers to 44 

calculate individual-specific short-term and long-term exposures based on finely resolved 45 

location information. From the perspective of air quality management and emissions control, 46 

more targeted management strategies such as regulatory agencies identifying times of day when 47 

areas are most affected by pollution might be possible. Vulnerable residents may be advised of 48 

times of day or week when they should be most cautious about spending time outdoors.   49 

A number of approaches have been employed to predict intra-urban air pollution levels 50 

based on ground-level monitoring data4,5. Land-use regression (LUR) fits the exposure surface to 51 

a linear model with a large number of geographic information system (GIS) covariates6, often 52 

using a combination of scientific and statistical learning techniques to reduce dimension of the 53 

covariate space7–11. Kriging models use a spatial random effect to construct a smooth prediction 54 

surface that predicts concentrations at unmonitored locations using an optimal weighted sum of 55 

nearby observations12. Researchers often combine LUR and kriging in a universal kriging (UK) 56 

that optimally combines regression and smoothing to improve prediction accuracy7,13,14. Recent 57 

advances in mobile monitoring technology and implementation have made comprehensive data-58 

only spatial mapping an option in some areas, and in some cases LUR models have been trained 59 

on mobile monitoring data15–18. Spatiotemporal air pollution models combine LUR or UK with 60 

models for spatially varying temporal trends to accommodate temporally sparse data and to 61 
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predict both spatial and temporal air pollution patterns in an urban environment. These models 62 

have been successful, especially at temporal scales of 1-2 weeks, although data availability is a 63 

limiting constraint19–21. 64 

Current reference-grade BC monitors cost ~$25,000, which places an economic 65 

constraint on the number of monitors that can be deployed in a network. To address this barrier, 66 

Caubel et al.22 developed a new, low-cost BC sensor with similar precision and accuracy as 67 

existing commercial aethalometers based on the filter-based absorption photometry technology. 68 

With these low-cost BC sensors, it was possible to monitor BC concentrations with much greater 69 

spatial resolution by creating a dense sensor network across the community of West Oakland, 70 

California, a neighborhood surrounded by major highways and close to regional seaport and rail 71 

facilities. As part of the West Oakland Community Air Quality Study, the 100×100 Network 72 

deployed BC sensors across 100 locations in this community for 100 days from May 19 to 73 

August 26, 201723. This measurement campaign produced a rich dataset of highly resolved BC 74 

concentrations in both space and time that we leverage in our modeling effort.  75 

Maintaining a large network of sensors can be difficult in practice, operationally 76 

intensive, and susceptible to equipment failure or loss. The 100×100 BC Network achieved an 77 

84% success rate at capturing valid hourly BC concentration measurements23. By the end of the 78 

100 days of deployment, over 30 samplers were no longer operating, which enabled us to assess 79 

prediction accuracy of our spatio-temporal model subject to realistic maintenance and reliability 80 

constraints. A notable strength of our spatio-temporal model is its ability to leverage spatio-81 

temporally sparse observations to improve predictions over the entire modeling period, as was 82 

similarly observed with the ability of a spatial only universal kriging model to leverage mobile 83 

monitoring data to predict spatial patterns BC concentrations across West Oakland15.   84 

In this paper, we use a spatio-temporal model to predict fine scale variation in BC 85 

concentrations across West Oakland, CA during part of the 100×100 Network monitoring period. 86 

We also subsample our dataset to evaluate how prediction accuracy is affected by monitor 87 

dropout patterns and to evaluate the implications of using a less dense monitoring network, 88 

possibly supplemented with a dense network over a shorter period. 89 

90 

2 Methods 91 

2.1 Monitoring Data 92 
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The measurement sites, data quality assurance methods, and temporal and spatial 93 

variability of observed BC concentrations by different land use types in the 100×100 BC 94 

Network have been reported previously23 and are summarized here. The 100×100 Network 95 

deployed 100 monitors throughout West Oakland outside of homes, local businesses, community 96 

organizations, and schools, and adjacent to the Port of Oakland. To verify sensor precision, nine 97 

network sites had sensors collocated in pairs and all sensors were calibrated based on 2–7 days 98 

operation collocated with a commercial BC instrument. Hourly average BC concentrations were 99 

calculated by averaging validated 1-minute averages, after correction for a filter loading artifact 100 

and errors in sample flow rate measurements. Due to the above-described equipment failure 101 

issues, an increasing number of sites were left unmonitored over the course of the 100 days. 102 

While 87% of potential hourly BC concentration measurements were successfully collected 103 

during the first 74 days of monitoring from mid-May to July, only 66% of were recorded during 104 

the last 26 days of monitoring in August. We primarily focused on analyzing data from June and 105 

July due to concerns that pollutant patterns at the end of May might have been qualitatively 106 

different from the summer seasonal patterns observed in June and July and due to data 107 

completeness limitations in August.  As described later in this section, we utilized the pattern of 108 

data missingness (i.e., missing observations) in August to help assess how well our modeling 109 

approach would perform in a scenario with significant monitor dropout.  110 

 111 

2.2 Hierarchical Spatio-Temporal Model  112 

We used a hierarchical spatio-temporal model to predict time varying concentrations of 113 

BC at unmeasured locations in West Oakland19,20,24,25. Since the data tend to have heavy right 114 

tails and appear log-normally distributed, all modeling was done on the log-transformed scale to 115 

improve model fit. Prediction accuracy evaluation statistics were calculated on the back-116 

transformed concentration scale.  The spatio-temporal field is conceptualized as being comprised 117 

of location-specific temporal trends, where the trend at each location is the sum of the area-wide 118 

average (i.e., a time-series that is spatially constant across the domain) and a linear combination 119 

of two temporal basis functions. We included two temporal basis functions, ��(�) and 120 

��(�), which were derived from the 100×100 Network data by first filling in missing values using 121 

an expectation-maximization-like approach26 and applying cubic smoothing splines to the first 122 
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two singular vectors. Preliminary exploratory analysis showed that including two temporal basis 123 

functions balanced model fit with interpretability of the temporal trends.   124 

The full hierarchical spatio-temporal model can be written as 125 

logY(s, t)� � μ(s, t) � ν(s, t) 

where log (Y(s, t)) is the log-concentration of black carbon at site s for time t and 126 

μ(s, t) � η(t) � β�(s) �  β�(s) f�(t)  � β�(s) f�(t). 
The location-specific coefficients for the temporal basis functions (including the intercept) are 127 

β�(s) for � � 0, 1, 2, and η(t) represents the area-wide average derived by averaging all128 

monitoring data at each time t. The spatial structure of each β�(s) is modeled by universal129 

kriging, with regression on spatial covariates X� with coefficients !" in the mean model and 130 

normally distributed residuals with exponential covariance structure Σ(θ") that accounts for131 

spatial correlation, i.e., β�(s) ∼ &(X�α�, Σ(θ())). The β�-fields are independent of each other, and 132 

the exponential covariance function is parameterized by θ� � (ρ�, σ��, τ��) with correlation range 133 

ρ�,  partial sill σ��, and nugget τ��.  Finally, ν(s, t) represents temporally independent spatial 134 

residual fields with exponential correlation structures that account for short-term events such as 135 

meteorology affecting large subsets of the domain at any given time. 136 

We calculated over 900 geographic information system (GIS) covariates to use in the 137 

model including proximity measures (distance to nearest major road, intersection, truck route, 138 

railway, railyard, coastline, airport, and port) and buffer measures (major road length, truck route 139 

length, land-use category, long-term vegetation index, population density, and emission sources). 140 

Following19, GIS covariates with little to no variation or those that are highly skewed were 141 

removed from the modeling process. Specifically, any variables with (a) missing values, (b) 142 

>80% identical values, or (c) >2% more than 5 standard deviations (SD) from the mean were143 

removed. Additionally, (d) any variables that describing land use at distances >5 km were 144 

removed, since the area of interest is only ~15 km2. Because of the high dimensionality of the 145 

geographic covariates, we used principal component analysis (PCA) on the GIS covariates and 146 

selected the first two principal components to use as spatial covariates in our model.  147 

This model is essentially the same model that was developed and applied in the MESA 148 

Air study19 at the hourly rather than two-week timescale, with two significant changes that we 149 

made based on preliminary analyses of this dataset. One is that we explicitly include the area-150 

wide average -(�) in our model since there is a very strong shared temporal pattern at the hourly 151 
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time scale. The other change is that we use PCA for dimension reduction of GIS covariates 152 

rather than partial least squares (PLS). 153 

154 

2.3 Model Estimation and Evaluation 155 

Parameter estimation was performed using the SpatioTemporal package in R and 156 

optimization by restricted maximum likelihood (REML)25. Model accuracy was assessed by 157 

leave-one-site-out cross-validation. Let .(/, �) be the observed BC concentration at location s at 158 

time t and .0(/, �) the associated cross-validated predictions. At each location /, we calculated a 159 

measure of cross-validated prediction accuracy as follows: 160 

�12�  � 345(0,1 6 789 :4;<=>⁄ )161 

where 162 

789 �  1
� @.(/, �" ) 6 .0(/, �")��A

"B�
163 

:4;<=>  �  1
C @ D.(/, �") 6 1

C @ .(/, �E)F
EB� G

�F

"B�
164 

Like the squared Pearson correlation coefficient, a value of 1 denotes perfect correlation. 165 

Additionally, the measure penalizes for bias and scaling errors whereas the Pearson 166 

correlation coefficient does not. 167 

We calculated these measures for two timescales, namely the hourly values over the 168 

entire period of June and July and the consolidated calendar week hourly values averaged over 169 

all weeks in June and July; i.e., for the latter, we collapsed the observed and predicted time series 170 

at each location to single average values for each hour of each day of the week (see bottom-right 171 

panel of Figure 1.   172 

Due to the computational burden associated with solving the nonlinear REML 173 

optimization problem25, we carried out this step only once on all of the data and used the 174 

resulting covariance parameter estimates to compute leave-one-out cross-validated �� for each 175 

site individually. There is minimal potential for overfitting because only the covariance 176 

(smoothing) parameters were estimated outside of the cross-validation loop, while regression 177 

coefficients were re-estimated for each cross-validation set.  The estimated parameter values are 178 

reported in Table S-1. 179 
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180 

2.4 Simulating Less Intensive Monitoring 181 

Significant data collection dropout occurred during the month of August, so we used only 182 

the June and July data for model fitting and evaluation. We conducted a sensitivity analysis to 183 

assess the impact on prediction accuracy if we had elected to also include data from August and 184 

make predictions during that time period. We started with the fully observed 100×100 dataset in 185 

June and July and then created a missingness pattern in July that matched the observed 186 

missingness pattern in August. Using this version of the dataset to represent a monitoring 187 

campaign with dropouts, we fit the spatio-temporal model and estimated the observed pollutant 188 

concentrations at each location using leave-one-out cross-validation. We compared cross-189 

validated prediction accuracy in July using the model with artificially created missingness 190 

against the original model, which used all available observations to understand how realistic 191 

long-term maintenance and logistical issues would affect prediction accuracy. 192 

We also evaluated how the number of continuously operating monitors and their 193 

placement impact predictive accuracy of the spatio-temporal model by systematically 194 

subsampling our dataset to simulate estimates from a smaller network. We considered having 5, 195 

10, 20, and 30 continuously operating monitors and sampled these monitors in three different 196 

ways:  197 

1. Simple random sampling (“Random”): Randomly sampled H monitors with equal198 

probability.199 

2. Stratified random sampling by GIS covariates (“GIS Covariates”): Clustered monitors at200 

locations with similar local characteristics by using principal components of their GIS201 

covariates in a H-means algorithm and then from each of the H clusters, randomly202 

selected a monitor with equal probability.203 

3. Stratified random sampling by location (“Space Filling”): Clustered monitors spatially by204 

first using a space-filling design to select H centers and then assigned monitors to clusters205 

by distance. Monitors are then randomly selected from each of the H clusters with equal206 

probability.207 

208 

For each of these subsampling approaches, we considered one scenario where only the smaller 209 

number of continuously functioning monitors is available (“Long-Term Monitors Only”) and 210 
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another where these monitors were supplemented by a larger number of monitors in June only by 211 

including all available data from the 100×100 campaign in June (“Long-Term Monitors + 212 

Supplementation in June”). For each of these, we evaluated prediction accuracy of the spatio-213 

temporal model on July data at all 100×100 locations.214 

215 

3 Results 216 

3.1 Monitoring Data 217 

The spatial and temporal patterns of BC in West Oakland are described extensively 218 

elsewhere15,23,27.  Briefly, key spatial features that are apparent in the 100x100 and mobile 219 

monitoring data include elevated levels near Interstate 880, along the major truck routes of the 220 

Port of Oakland, and near industrial clusters, with lower areas within predominantly residential 221 

zones.  Temporal patterns vary across the domain and differ between weekdays and weekends. 222 

Weekday patterns broadly are characterized by a peak concentration during the morning rush 223 

hour, declining levels over the afternoon owing to increased atmospheric mixing, a less 224 

prominent evening peak, and lower levels in the late night and very early morning.225 

226 

3.2 Model Description 227 

We first look at components of the spatio-temporal models individually to describe the 228 

systematically varying spatial and temporal patterns. The area-wide average is shown in red, and 229 

two temporal trend functions are shown in green and blue in Figure 1. The top panel shows every 230 

hour throughout June and July. The bottom four panels show more interpretable versions 231 

consolidated to four different time scales: average diurnal 24-hour weekday, average diurnal 24-232 

hour weekend day, average for each day of the week, and average for each hour during a typical 233 

week.  In each panel, the red line shows the absolute value of the area-wide average 234 

concentration, and the green and blue lines show the relative differences compared to the area-235 

wide average, with values < 0 equal to lower than area-wide average concentrations and values > 236 

0 equal to greater than area-wide average concentrations. 237 

The area-wide average concentration rises throughout the morning until 9 AM on 238 

weekdays, then slowly decreases throughout the day reaching its minimum value around 2 AM. 239 

On the weekends, there is a different pattern, with low concentrations throughout the day that 240 

slightly increase around 6 PM. On average, concentrations are lower on weekends and higher on 241 
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weekdays, with some variation in diurnal patterns between days of the week. The first temporal 242 

basis function describes a pattern where concentrations are higher than the area-wide average 243 

from early morning until late in the afternoon on weekdays, with a peak around 9 AM. 244 

Concentrations at locations with a positive coefficient for the first temporal basis function are 245 

slightly below the area-wide average after 5 PM until midnight on weekdays, and well below the 246 

area-wide average all day on weekends. The second temporal basis function also shows an 247 

increase on weekdays but shifted later in the day, where concentrations are higher than the area-248 

wide average from 7 AM until 8 PM. The above area-wide average concentration increases 249 

throughout the morning until about 1 PM, then slowly decreases over the afternoon. After 8 PM, 250 

this temporal basis function shows concentrations as below the area-wide average until the 251 

morning, with a minimum around 1 AM. On weekends, concentrations are higher than the area-252 

wide average from 1 PM to 2 AM and are lower than the area-wide average during the other 253 

hours of the day. 254 

Empirical estimates of the I-fields at locations with monitors are shown in Figure 2 255 

along with their predicted values across West Oakland, and supplementary Figure S-1 shows 256 

cross-validated predictions of the empirical values of the I-fields.  Locations in the southern part 257 

of West Oakland, especially the southeast corner downwind of major freeways and port 258 

activities, are associated with higher coefficient estimates for the I�-field. This suggests that 259 

these areas have higher concentrations in general compared to the area-wide average.  The I�-260 

field models the temporal average of log-transformed BC concentrations, so the difference in 261 

predicted values between the highest and lowest areas of the map in Figure 2 corresponds to a 262 

seven-fold difference in absolute concentrations.   263 

Areas where the I�-field are highest correspond to sites characterized as port and truck264 

routes in Caubel et al. (2019)23, and locations with lower coefficients align with locations 265 

described as being residential or upwind in Caubel et al. (2019)23. This is consistent with the fact 266 

that the first temporal basis function indicates concentrations higher than the area average during 267 

early morning hours, especially on weekdays when the port area is most active.  The I�-field is 268 

generally higher at industrial and residential sites in the northeast corner of West Oakland and 269 

lower in residential sites in the southwest corner of West Oakland.  It is also high around the 270 

northern section of I-880 that feeds into I-80.   The second temporal basis function is associated 271 

with higher than average concentrations starting in late-morning on weekdays and a modestly 272 
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decreasing trend later in the week, potentially influenced by industrial sources during weekday 273 

business hours.   274 

275 

3.3 Prediction Accuracy 276 

To demonstrate how the spatio-temporal model can improve fine-scale variation 277 

estimates across the region using temporal basis functions, we first compare the cross-validated 278 

predicted trends and the area-wide average to the actual observed trends for two example sites. 279 

Figure 3 shows the case study locations for this analysis, residential monitor 35 (R35) and truck 280 

route monitor 75 (TR75). While these monitors are located just three blocks apart and near the 281 

same arterial road, the average concentrations and temporal patterns at these two sites are 282 

different; monitored concentrations at TR75 are up to 0.5 JK 3LM higher than the area-wide 283 

average, whereas monitored concentrations at R35 are similar to the area-wide average but with 284 

a lower weekday morning peak. Predicting concentrations by the area-wide average at these 285 

locations results in poor prediction accuracy, as measured by temporal �12�  on the consolidated 286 

hour of week time scale (0.00 and 0.19 for R35 and TR75, respectively). Predictions from the 287 

spatio-temporal model at these two locations are much more accurate, with temporal �12�  values288 

on the consolidated hour of week time scale of 0.89 and 0.70 for R35 and TR75, respectively.   289 

Overall, prediction accuracy for the spatio-temporal model varies across sites and 290 

depending on the temporal scale (Figure 4).  Overall, the prediction accuracy is fair to good for 291 

locations near the port, with many of the most accurately predicted sites located in the northwest 292 

section of West Oakland. The mean temporal �12�  is 0.60 for all hourly measurements over June293 

and July and 0.58 for the consolidated hour of week time scale. These compare favorably to the 294 

corresponding values of 0.40 and 0.47 for the hourly and consolidated hour of week metrics, 295 

respectively, from using just the area-wide average to predict concentrations at all sites rather 296 

than predictions from the spatio-temporal model.   Using a single well-sited monitoring location 297 

to represent the entire area would perform similarly to the area-wide average.  On a site-by-site 298 

basis, using the spatio-temporal model yields a noticeable overall improvement in prediction 299 

accuracy at 72% of the observed sites over the area-wide average, showing the spatio-temporal 300 

model can capture fine scale gradients that would not be captured by the area-wide average. 301 

302 

3.4 Model Performance with Monitor Dropouts 303 
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To evaluate the effect of monitor dropouts like those experienced in August, a 30% 304 

dropout rate was simulated for the month of July. Predictions from this “masked” July dataset 305 

were compared to the full model run with all available June and July data. Using the full dataset 306 

shows a small, but noticeable improvement (Figure S-2, Figure S-3). The magnitude of this 307 

improvement is small and suggests that the effect of monitor dropouts, as observed in August, do 308 

not significantly impact prediction accuracy when using the spatio-temporal model.  Based on 309 

these results, we expect that if the spatiotemporal model were fit using the entire 100×100 310 

dataset (June–August), predictions for the August period would not be substantially less accurate 311 

than those for June and July, despite the higher missingness in monitoring data in August. 312 

313 

3.5 Systematic Subsampling Results 314 

Results from the subsampling studies are shown in Figure 5, comparing mean temporal 315 

�12�  for the consolidated hour of week time scale in July. It does not appear that the method used316 

to subsample monitor locations significantly impacts performance of the model. For a small 317 

number of continuously operating monitors such as 5 or 10, the spatio-temporal model 318 

predictions are less accurate than predicting based only on only the area-wide average, while 319 

with 20 or more continuously operating monitors the spatio-temporal model predictions 320 

consistently improve on the area-wide average. Adding more intensive short-term monitoring in 321 

June only (i.e., including all 100×100 monitors during that period) leads to an improvement 322 

regardless of the number of continuously operating monitors. This indicates that the model 323 

leverages data from the more intensive monitoring campaign in June to accurately predict 324 

concentrations in July when there were fewer monitors. Overall, our subsampling study suggests 325 

that 30 continuous monitors supplemented by a short-term, high-density monitoring campaign 326 

would allow us to construct a spatio-temporal model with prediction accuracy approaching that 327 

obtained with the full dataset. Performance is similar when the 30 monitors are selected at 328 

random compared to selecting them to representatively span the GIS covariate distribution or 329 

spatial distribution of the full dataset. 330 

331 

4 Discussion 332 

By using a flexible, hierarchical spatio-temporal model with monitoring data from the 333 

100×100 BC network, we were able to capture fine-scale differences in BC concentrations across 334 
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West Oakland. Our model predictions are significantly more accurate than what could be 335 

obtained by treating the pollution surface as spatially uniform and predicting the time series at 336 

each location based on data from a single well-placed regulatory monitor that might be found in 337 

a typical urban area, (mean temporal ��s 0.60 and 0.40, respectively). We are aware of one other 338 

paper that attempted to model urban BC concentrations on an hourly timescale21, with mixed 339 

success. A direct comparison is not possible because we report spatially varying temporal 340 

prediction accuracy, while Dons et al. (2013)21 report spatial prediction accuracy for one hour 341 

averages. While comparisons with spatiotemporal predictions of other pollutants would also be 342 

informative, we are not aware of papers that have reported spatially varying temporal prediction 343 

accuracy as in our study. In addition to prediction accuracy, an important strength of the spatio-344 

temporal model is its ability to help identify interpretable spatial patterns in temporal variation.  345 

For example, locations with larger positive values of the I� coefficient for the first temporal 346 

trend have relatively high weekday morning concentrations and tend to include sites identified in 347 

Caubel et al. (2019)23 as associated with port activity. Similarly, locations with larger positive 348 

values of the I� coefficient for the second temporal trend have relatively high concentrations in 349 

the mid-morning through afternoon hours on weekdays and afternoon hours on weekend.  These 350 

areas include industrial and residential sites in the northeast corner of West Oakland. While our 351 

model is specific to West Oakland and the 100×100 campaign, we expect that a similar approach 352 

would successful in other locales with similar intensive monitoring data. 353 

Recognizing that the 100×100 campaign was a unique opportunity to conduct intensive 354 

spatiotemporal monitoring in an urban region, it is important to understand whether similar 355 

modeling results can be obtained with less intensive monitoring.  The subsampling simulation 356 

demonstrates that it is possible to leverage spatially dense observations from a short-term 357 

monitoring campaign to make accurate predictions at a time with more limited spatially sparse 358 

monitoring.  In practice, this suggests that it is feasible to use a short-term monitoring campaign 359 

to improve long term predictions in areas that are not near continuously operated monitors. For 360 

example, one could design a future monitoring campaign that includes 30 fixed sites over an 361 

entire 12 month time period and either another 70 monitors that are only deployed for a few 362 

shorter 1 month periods or another 10–20 monitors that are rotated through additional locations 363 

for 1 month at a time.  Either design would be less operationally expensive than continuous 364 
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deployment of 100 monitors for the full period and our results suggest they could result in 365 

similar model prediction accuracy across the full region.  366 

Additional gains in prediction accuracy might be possible if a future campaign takes 367 

advantage of optimal monitor location-allocation strategies28, potentially modified to 368 

accommodate temporally varying network size. A recently developed algorithm for real-time 369 

spatiotemporal monitor allocation29 may be helpful, although with such an approach it will be 370 

important to consider the impact of preferential spatial sampling on inference30,31, If the air 371 

pollution surface is to be used as the exposure in an epidemiological analysis, then consideration 372 

should also be given to compatibility between monitor and main study locations32. Another 373 

promising strategy is mobile monitoring, which can cover a much larger number of locations 374 

than fixed monitoring over an extended period of time, albeit with temporally sparse coverage16. 375 

Data from mobile monitoring campaigns has been used successfully to fit spatial air pollution 376 

models15,17,33. It may be possible to incorporate mobile monitoring data in a spatiotemporal 377 

model like the one described here, especially if it can be calibrated and included in a model with 378 

continuous fixed site monitoring at a modest number of locations27.  379 

380 

4 Conclusion 381 

We have utilized a geostatistical spatiotemporal model applied to data from to 100×100 382 

campaign to predict hourly BC concentrations at all locations in West Oakland during the 383 

summer of 2017. These predictions provide insights into the complex spatially varying temporal 384 

air pollution trends and how they relate to local sources and neighborhood factors. Our 385 

subsampling analysis demonstrates that this modeling strategy can be employed to get similar 386 

prediction accuracy even with a less intense monitoring campaign in which some monitors are in 387 

service for only part of the modeled period. Future research is needed to determine optimal 388 

monitor placement strategies that will make it feasible to develop similar high resolution 389 

spatiotemporal air pollution predictions in other locations and over longer time periods. 390 
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516 

Figure 1:  Systematic time trends from the spatio-temporal model: The area-wide average and both temporal basis 517 

functions,  ��(�) and ��(�), shown on different time scales, (top) hourly scale over the full monitoring period, (middle left)518 

average diurnal trend over weekdays, (middle right)  average diurnal trend over weekends, (bottom left) average calendar week 519 

summarized by daily averages, and (bottom right) average calendar week summarized by hourly averages. In each panel, the red 520 

line shows the absolute value of the area-wide average concentration, and the blue and green lines show the relative differences 521 

compared to the area-wide average that are multiplied by the site-specific values of Beta1 and Beta2, respectively.  522 

523 

524 

525 
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526 

Figure 2 I-fields from the spatio-temporal model, where points indicate estimated values at observed locations.  Beta 0527 

corresponds to the difference in BC concentration from the area-wide average at each location.  Beta 1 and Beta 2 are 528 

coefficients for the respective temporal basis function shown in Figure 1.  Note that the relative contribution of the area-wide 529 

average and the two temporal basis functions to the overall time series at each location differs across the domain. Coefficients 530 

near zero reflect locations where a specific temporal pattern has relatively little influence on the concentration time-series, 531 

where coefficients with higher absolute value reflect locales where the relative contribution of a temporal pattern is higher. 532 

533 
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 537 
Figure 3: BC concentrations at example community sites Residential 35 (R35) and Truck Route 75 (TR75).  Left: Locations of 538 

Residential 35 and Truck Route 75, Right: Points show observed averages for each hour over a calendar week, while lines show 539 

estimates using the spatio-temporal model against the area-wide average. 540 
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542 

543 

544 
Figure 4: Prediction accuracy for each site from the 100×100 Network using the spatio-temporal model and the area-wide 545 

average. Reported �12� is for a typical week.  Left: �12�  for each site from the 100×100 Network. Right: �12�  compared at each site546 

using the spatio-temporal model and the area-wide average. 547 

548 



22 

549 

550 

551 

Figure 5: Cross-validated prediction accuracy on July data for each sub-sampled set of monitors.  Area-wide average (orange) 552 

show prediction accuracy if no modeling was done and the surface was assumed to be constant across West Oakland.  Long term 553 

monitors (Green) shows prediction accuracy from the spatio-temporal model without the supplementary monitoring in June.  554 

Long term monitors + supplement in June (Blue) shows prediction accuracy if short-term sampling is done at a large number of 555 

sites in June.  The dotted line represents the best possible spatio-temporal model, where all data (including July) is used. 556 




