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Abstract 

Reasoning about sampling distributions is notably challenging 
for humans. It has been argued that the complexity involved in 
sampling processes can be facilitated by interactive computer 
simulations that allow learners to experiment with variables. In 
the current study, we compared the effects of learning 
sampling distributions through a simulation-based learning 
(SBL) versus direct instruction (DI) method. While both 
conditions resulted in similar improvement in rule learning and 
graph identification, neither condition improved more distant 
transfer of concepts. Furthermore, the simulation-based 
learning method resulted in unintuitive and surprising kinds of 
misconceptions about how sample size affects estimation of 
parameters while the direct instruction group used correct 
intuitive judgments more often. We argue that similar 
perceptual properties of different sampling processes in the 
SBL condition overrode learners’ intuitions and led them to 
make conceptual confusions that they would not typically 
make. We conclude that conceptually important differences 
should be grounded in easily interpretable and distinguishable 
perceptual representations in simulation-based learning 
methods.  

Keywords: education; statistics; learning with simulations; 
sampling distributions 

Introduction 

Making sense of statistical inference requires flexible 

reasoning regarding sampling distributions and the effect of 

sample size on the properties of a distribution (See Figure 1). 

However, sampling distributions have been shown to be 

notoriously difficult for novice learners to grasp (Garfield et 

al., 2008; Kahneman & Tversky, 1972; Saldanha & 

Thompson, 2002). Arguing that visualization of sampling 

distributions facilitates learning of them, some researchers 

have suggested for learners to be introduced to the topic with 

interactive computer simulations (Cobb & Moore, 1997; 

Chance et al., 2004). These simulations simultaneously plot 

two levels of processes; first, the process of randomly 

selecting samples from a population; second, collecting the 

mean of each sample a large number of times, which 

approximates and visualizes theoretical sampling 

distributions of means. In simulation-based learning 

activities, learners typically first generate a prediction of how 

sampling distributions will be affected by different 

parameters, and then test their prediction by manipulating the 

parameters of the simulations.  

A sampling distribution is a distribution of statistics 

obtained by selecting all the possible samples of a specific 

size from a population. If the obtained statistic is the mean 

of each sample, the distribution is called sampling 

distribution of means. See below two sampling 

distributions of means with two different sample sizes 

obtained from the same population with µ = 80, 𝞂 = 20. 
 
                        n = 4                               n = 100     
                       𝞂M= 10                            𝞂M= 2 

 
Notice that, as n gets larger, the standard deviation of the 

sampling distribution of means (𝞂M) gets smaller, with the 

sample means tending to approximate population mean (µ) 

more closely with larger sample size. However, people 

often believe 𝞂M gets larger, or stays stable with larger 

samples (Chance et al., 2004). 

Figure 1: Sampling distributions in relation to sample size. 

The descriptions and figures are adapted from Gravetter et al. 

(2020).   
 

Prior works support the promises of the simulation-based 

learning activities described above. First, dynamic 

visualizations have been found useful for people to see 

structure in scientific phenomena (Lindgren & Schwartz, 

2009). Second, generative activities can help novice learners 

appreciate the deeper structure of the content, as, otherwise, 

they do not have the necessary background information to 

discern the affordances of the domain (Kapur, 2015). Third, 

interactive simulations can foster a deeper conceptual 

understanding than non-interactive simulations as they 

encourage active inquiry for meaning (Evans & Gibbons, 

2007; Moreno et al., 2001).  
On the other hand, there is also broad evidence to suggest 

such inquiry-based activities have unintended consequences. 
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People often learn best when they are given full and direct 

instruction by explicit training on rules and their applications 

when dealing with new information.  By contrast, inquiry-

based activities can put too challenging demands on a novice 

learner’s working memory capacity (Kirschner et al., 2006; 

Klahr & Nigam, 2004). 
In the current work, we aimed to compare the effects of 

teaching people with interactive computer simulations 

(simulation-based learning) to direct instruction (without 

simulations) on people’s reasoning about sampling 

processes. For simulation-based learning, we adapt the 

materials from a previous study by Chance et al. (2004) 

which train people on graph-based questions about sampling 

distributions and then test them on related graph 

interpretation and story problems. 

Reasoning about Variability of Sampling 

Distributions 

People (correctly) believe that large samples generally allow 

for more accurate estimates of the population parameters than 

do small samples. That is, people generally have size-

confidence intuition (Sedlmeier, 1999).  However, even 

though people are generally able to use size-confidence 

intuition for questions that ask about individual samples, this 

understanding does not translate when they are asked the 

same concept in the context of distributions of sample 

statistics. Consider the following question originated by 

Kahneman and Tversky (1972) which was used in several 

experiments with two different prompts: 
Maternity ward problem 
A certain town is served by two hospitals. In the larger 

hospital about 45 babies are born each day, and in the smaller 

hospital about 15 babies are born each day. As you know, 

about 50% of all babies are boys. The exact percentage of 

baby boys, however, varies from day to day. Sometimes it 

may be higher than 50%; sometimes lower.   
Sampling distribution version: For a period of 1 year, each 

hospital recorded the days on which more than 60% of the 

babies born were boys. Which hospital do you think recorded 

more such days?1 
Individual sample version: Which hospital do you think is 

more likely to find on one day that more than 60% percent of 

the babies born were boys?2    
A meta-analysis found that the average correct solution rate 

for the first version is 33% while the second one is 77% 

(Sedlemeier & Gigerenzer, 1997) which indicates that 

humans spontaneously appreciate the impact of sample size 

on the mean of an individual sample, but not on the variance 

of sampling distributions. Moreover, the educational 

literature suggests that misconceptions regarding variability 

of sampling distributions are also resistant to training 

(Chance et al., 2004; van Dijke-Drookers, 2021). Following 

explicit training, learners still often believe the variability in 

 
1 Note that there are 365 samples for each hospital. The collection 

of proportion of boys for each sample (day) form an empirical 

sampling distribution (Sedlmeier, 1999).   

a sample distribution of means does not change with the 

sample size, or that it gets larger with an increase in sample 

size.  The confusion seems to stem from the lack of 

understanding that variability in the sampling distribution of 

means is based on the differences across the means obtained 

from one individual sample to another.  

The Current Study  

Given the increasing importance of statistical reasoning in 

our data-intensive society, and the aforementioned evidence 

of people’s difficulties in reasoning about sampling 

distributions, it is important to identify effective pedagogical 

approaches that facilitates people’s learning of the concept. 

In the current work, we train people on the effect of sample 

size on the mean of samples and the variability of the 

sampling distributions either with simulation-based learning 

or direct instruction method. We train the participants on a 

two-level process: 

Level 1 (mean of individual samples): Record the mean of 

a randomly drawn sample with a certain size from a 

population. Repeat the process with different sample sizes 

and attend to the direction of the change in the recorded 

values of the mean. 
Level 2 (standard deviation of sampling distribution of 

means): Repeat Level 1 a large number of times and 

accumulate a collection of sample means. Record the 

standard deviation of the collection. Attend to the direction 

of the change in the recorded values of the standard deviation 

with different sample sizes. 

Education research frequently faces the dilemma of 

varying one variable at a time between conditions to isolate 

each variable’s effect versus comparing instructional 

methods more holistically, by allowing them to differ along 

various dimensions, so as to maintain fidelity to their 

underlying pedagogical models (Schwartz et al., 2011). In 

this work, we chose the second approach because we are 

interested in educational interventions that are commonly 

used to teach students. More specifically, we are interested in 

investigating whether active exploration of content through 

interacting with a dynamic visualization tool leads to 

different learning outcomes than a more traditional mode of 

instruction. Thus, we compare two pedagogical approaches 

in our experiment: ‘direct instruction (DI)’ and ‘simulation-

based learning (SBL)’.   

For the DI condition, we adapted materials and procedures 

from a popular coursebook used in introduction to statistics 

classes (Gravetter et al., 2020) and designed the instruction 

based on the principles of direct instruction. According to the 

DI method, information that explains the concepts and 

procedures is provided fully to students from the beginning 

(Kirschner et al., 2006). The assumption is that working 

memory is limited, and processing new information is 

constrained by the working memory capacity. Accordingly, 

2 The correct answer is the small hospital for either version.  
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our DI group receives verbal rules and accompanying static 

visuals first, then attempts to solve related graph problems 

with feedback. To minimize learners’ cognitive load, we first 

provide Level 1 instruction, then Level 2 instruction.  
For SBL condition, we build upon a predict, observe, 

explain (POE) pedagogy. Using POE, students predict the 

outcome of an event, then they describe their observation, and 

then finally explain their observation. This approach assumes 

that when there is a conflict between their prediction and 

observation, students will reconcile it, which will result in 

effective conceptual change (White & Gunstone, 1992).  
Thus, we compare two instructional conditions. The DI 

group first receives direct instruction via verbal and pictorial 

information and then attempts to solve graph problems 

followed by feedback. The simulation-based learning group 

first attempts to solve graph interpretation problems with 

feedback and then compares their given answer to interactive 

simulations, augmented by guided self-explanation prompts. 

Informational equivalence in both conditions was 

approximately equated by a) giving feedback to fill-in the 

blank self-explanation prompts; when explanation prompts 

were completed, they produced the same verbal information 

to the DI condition, and b) providing several static pictures 

from the simulation for the DI group, which would be similar 

those observed by SBL-trained learners. 

Methods 

Undergraduate students participated in a single-session 

online experiment. The participants were randomly assigned 

to one of the two training conditions automatically when they 

started the experiment on their computer. The experiment 

consisted of pretest, pretraining, training, and posttest phases. 

The only manipulation between the two conditions occurred 

at the training phase (See Figure 2). The study was pre-

registered on OSF including all materials, analysis plans, and 

scripts. 

Participants  

Participants were 141 undergraduate students from the 

researchers’ university. They received partial course credit in 

exchange for participation. Based on self-reports, their ages 

were between 18-24, and 68% were female.  

Materials  
Pretraining Before training manipulations, a pretraining 

instruction phase targeted concepts that Chance et al. (2004) 

identified as prerequisites for understanding sampling 

distributions. This phase covered the following topics: 

population, sample, mean, standard deviation, and the 

distribution of sample means. Each topic was presented 

through verbal information adapted from Gravetter and 

Wallnau (2013) and were accompanied by histogram graphs. 

The presentation of each topic was followed by multiple-

choice questions on the topic with feedback. 

Training The DI condition was introduced the two levels of 

information separately. For the first level, participants were 

given the verbal rule that the sample mean will tend to be 

closer to the population mean as the sample size increases. 

The rule was exemplified by figures on a 3x3 grid. These 

figures consisted of screenshots from the simulation which 

depicted that the sample means got closer to each other and 

to the population mean with increasing sample size. Below 

the figures, the verbal rationale was given that the small and 

large values will tend to average each other out with a larger 

sample size.  

Figure 2: A scene from the training phase of the SBL condition.  On the right, the interactive simulation shows the 

graphs of a single sample (top) and the distribution of means from many separate samples (bottom). On the left, the fill-

in-the blank task prompts participants to self-explain the rule and rationale for what they are observing in the simulation. 

Meanwhile, participants in the DI condition received the same verbal information with accompanying static visuals (i.e., 

screenshots taken from the simulation).  
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For the second level, participants were given the rule that 

the standard deviation of the distribution of sample means 

will get smaller as the sample size increases. As in the first 

level, this verbal rule was exemplified by accompanying 

screenshots taken from the simulation on a 3X3 grid. Below 

the figures, the verbal rule and rationale for the first level 

information was repeated and connected to the second level 

rationale that sample means obtained with a larger sample 

size should fall relatively close to the population mean.  

Then, two multiple-choice questions were posed, each 

followed by corrective feedback. Each question asked for the 

identification of the sampling distribution graph with the 

smaller or larger sample size.  
The main difference in the SBL condition was a) the 

presentation order was reversed (first question, then 

information); b) the screenshots were replaced with the 

interactive computer simulation, and the verbal information 

was changed into self-explanation prompts (See Figure 2). c) 

Level 1 and Level 2 information was provided on the screen 

at the same time both through the prompts and simulations. 

The guided self-explanation prompts were given in fill-in-the 

blanks form. The participants were not able to proceed to the 

next stage without completing the form correctly.  

Pretest and Posttest Items Pretest and posttest items 

included 12 identical multiple-choice questions that we 

classify as isomorphic, transfer, and rule questions. 

Additionally, post-test included two open-ended questions.  
Isomorphic questions consisted of 5 graph questions that 

had a similar setup to the questions during the training phase. 

That is, each described a particular population and asked for 

identification of the sampling distribution graphs with either 

smaller or larger sample sizes. 
Transfer questions had the same structure but with stories 

that included no graphs; stories analogical to the maternity 

ward problem; and a graph question related to the empirical 

law of large numbers. 
The two rule questions asked participants to identify the 

correct rules that were presented in the training session.  
Posttest included two additional open-ended items which 

asked participants to explain the reasons for the rules that 

were presented at the training sessions.  

Scoring of Verbal Data  
Prior to the actual study, a pilot study was conducted. The 

written responses to the two open-ended items at the posttest 

were coded in a bottom-up manner. A coding-scheme was 

created based on observed categories of responses based on 

which the actual study was analyzed. The unit size for coding 

of the verbal data consisted of each participant’s full response 

to each singular question, which corresponded to one 

category. 20% percent of the data were independently coded 

by the first and the second author. The interrater agreement 

for assigning each response to categories was 85% for the 

first item with eight categories, 84% for the second item with 

ten categories. After the two coders discussed the cases of 

divergence and achieved a mutual agreement on final 

decisions, the first author completed the coding of all verbal 

data. The coders were blind to the conditions throughout the 

coding process.  

Results 

We compared the time spent on task, measured learning gains 

for each problem type across conditions and from pre- to 

posttest, and conducted a verbal analysis of the participants’ 

responses to open-ended items.  

Time on Task 

We ran a between-subjects t-test on time-on-task. The time 

spent on the intervention was not significantly different 

between the two groups (MDI = 21.69 min, MSBL = 23.00 min, 

t(136.55) = 0.48, p = 0.63. 

Multiple-Choice Items   

We ran two separate analyses for each multiple-choice 

problem type. First, we ran an ANCOVA on the posttest 

scores with prior knowledge (the sum of the correct answers 

on pretest and pretraining) as a covariate and the condition 

(DI vs SBL) as an independent variable. Second, we 

collapsed the data across the conditions and ran a dependent 

t-test to measure overall learning from pre- to post-tests (See 

Figure 3). For each problem type, we present the results from 

the ANCOVA and t-test, respectively.  
For isomorphic problems, there was not a significant effect 

of condition, F(1, 138) = 1.01, p = 0.31. However, there was 

an overall learning gain from pre (M = 1.53, SD = 1.12) to 

posttest (M = 2.46, SD = 1.43), t(140) = 7.14, p < 0.01. 
For transfer problems, there was not a significant 

difference between the DI and SBI conditions, F(1, 138) = 

1.89, p = 0.17. Further, there was not any significant 

difference between pre (M = 2.60, SD = 1.15) and posttest 

performance (M = 2.45, SD = 1.27),  t(140) = 1.59, p = 0.11. 
For rule problems, there was not a significant difference 

between the DI and SBI conditions, F(1, 138) = 0.19, p = 

0.65. However, there was a significant learning gain from pre 

(M = .96, SD = 0.69) to posttest (M = 1.20, SD = 0.77), t(140) 

= 3.61, p < 0.01.  

 

 

Figure 3: Average percentage of correct answers in pre and 

post tests for each group. Error bars represent ±1 SE.  
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Open-ended Items   

We ran a Pearson’s chi-square test on the verbal data from 

the responses to open-ended questions at posttest. We present 

the results from the first item and the second item 

respectively.  
The first item prompted participants with the sentence 

“Sample mean tends to get closer to the population mean as 

sample size increases. Explain why this is correct.” There was 

a significant association between the condition and the 

response categories, χ2(7) = 16.08, p = 0.02. We represent the 

most commonly appearing categories across the conditions 

(See Table 1).  

 

Table 1:  % responses to the first item: Explain why sample 

mean tends to get closer to the population mean as sample 

size increases 

Response category DI SBL 

Larger sample is a better representation of the 

population  
55 37 

Bigger sample size results in less likelihood 

and/or impact of outliers  
10 18 

As sample size increases, the standard 

deviation increases 
0 12 

Insufficient explanation 15 17 

 
The second item prompted participants with the sentence 

“As the sample size increases, the distribution of sample 

means will have a smaller and smaller standard deviation. 

Explain why this is correct.” There was not a significant 

association between the condition and the response 

categories, χ2(5) = 6.53, p = 0.25. We represent the most 

commonly appearing categories across the conditions (See 

Table 2). 
 
Table 2: % responses to the second item: Explain why the 

standard deviation of the distribution of sample means will 

get smaller as sample sizes increases.  

Response category DI SBL 

Insufficient explanation 60 52 

More sample means are closer to the 

population mean as sample size increases. 
15 21 

More data are closer to the average as sample 

size increases  
8 11 

A larger sample size leads to less likelihood 

and/or impact of outliers in data 
11 4 

Discussion 

In the current study, we compared a simulation-based 

learning (SBL) method to a direct instruction (DI) method for 

a sampling distribution task. In the DI group, participants first 

received direct instruction via verbal and pictorial 

information and then attempted solving graph problems with 

feedback, whereas the SBL group first attempted solving 

graph problems with feedback and then explored their answer 

through interactive simulations and guided self-explanation 

prompts. We measured learning through graph problems, 

story problems, rule statement items, and open-ended 

explanation items.  
Both groups increased performance similarly from pre- to 

post-test for graph problems while neither group improved on 

story problems at all, even though both types of questions had 

a very similar setup (notice that graph questions also 

contained a story element). Thus, learners were only able to 

answer story problems when a graph accompanied it which 

suggests that they mostly gained a superficial understanding 

of the concepts (i.e., the sampling distribution looks narrower 

with larger sample size). The current results suggest that it is 

challenging for learners to transfer their learning when left to 

their own device even for very similar questions. However, 

prior work suggests promising techniques to elicit transfer 

with guidance. Namely, hinting participants learning and 

transfer tasks are related, or prompting self-explanation of the 

abstract principle underlying the transfer task, have been 

shown to increase transfer across analogous examples by 

helping people generate schema (Loewenstein, 2010). The 

promise of these techniques should be tested in future 

sampling distribution studies. 

There was some improvement from pre- to post-test for 

rule questions at similar levels for both groups, however, not 

an underlying model-based account of the rules. For the first 

open-ended explanation item, participants in the DI group 

mostly responded in a way that would be expected without 

exposure to any training (See Table 1). In other words, they 

used size-confidence intuition (that is, a larger sample is a 

better representation of the population). Further, a more 

detailed analysis of the verbal data revealed that participants 

mostly thought that it was the proportion of the sample to the 

population size, not the absolute size of the sample that made 

larger samples more stable, a common misconception 

previously observed in classroom studies (Garfield et al., 

2008).  These results suggest that the rationale provided 

during training (if one has a large sample size, then values 

smaller and large than the population mean will average each 

other out, so it will be more likely that the mean will 

approximate the population mean) was mostly not helpful. 

An interesting result is that participants in the SBL group 

responded with size-confidence intuition less often than did 

the DI group for the first open-ended explanation item (See 

Table 1). Rather, their responses focused on the variability of 

the sample. Some believed that outliers, hence, the standard 

deviation would decrease in a sample with larger sample size 

(note that students generally mean “observations under the 

tail” with the word “outliers” (Garfield et al., 2008)).  Others 
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believed that standard deviation of the sample increases with 

larger samples (note that this answer never appeared in DI 

condition). Thus, participants in the SBL group responded as 

if they were asked about the variability of sampling 

distributions instead of the mean of an individual sample at 

the first item. Note that, if that were the case, the latter 

explanation (that is, “as sample size increases, the standard 

deviation increases”) would be a typical misconception 

related to sampling distribution of means (Chance et al., 

2004). In the current case, however, it is a surprising kind of 

confusion about the means of individual samples. Thus, 

simulation-based learning method seems to have overridden 

the size-confidence intuition and elicited an unusual and 

unintuitive kind of misconception. We suspect this resulted 

from simultaneous engagement with Level 1 (individual 

sample distribution) and Level 2 (distribution of sample 

means) graphs which bear highly similar perceptual 

properties (See Figure 2).  
One of the best ways to teach people difficult concepts is 

to ground them in spatially explicit representations that 

people's well-honed perceptual routines can process 

effectively (Goldstone et al., 2010).  However, the current 

work suggests that this strategy comes with a risk  ̶  that 

people will assume that similar perceptual processes entail 

similar concepts. In the case of our SBL simulations, similar 

perceptual properties in our Level 1 and Level 2 graphs led 

participants to make conceptual confusions between these 

levels that they would not typically make without their salient 

perceptual similarity.   
However, our recommendation is not to avoid perceptual 

scaffolds for difficult concepts.  Rather, we recommend 

devising perceptual representations so that conceptually 

important differences have easily and intuitively 

decipherable perceptual differences as well. As a design 

implication of this recommendation, we suggest that the 

collection of data at the Level 1 and sample statistics at Level 

2 graph represented through identical bars and bins be 

replaced by iconic representations, perceptually 

differentiated across the two levels. Future work should test 

learning of sampling processes with perceptual 

representations that better align with core concepts to further 

investigate the promises of simulation-based learning.  

Open Practices Statement 

Pre-registration can be accessed at https://osf.io/rjad4. 
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