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Abstract Evolutionary algorithms (EAs) have been
widely used to search for optimal strategies for the
planning and management of water resources systems,
particularly reservoir operation. This study provides a
comprehensive diagnostic assessment of state of the art
of the non-animal–inspired EA applications to reservoir
optimization. This type of EAs does not mimic biologic
traits and group strategies of animal (wild) species. A
search of pertinent papers was applied to the journal
citation reports (JCRs). A bibliometric survey identified
14 pertinent non-animal–inspired EAs, such as the ge-
netic algorithm (GA), simulated annealing (SA), and
differential evolution (DE) algorithms, most of which
have a number of modified versions. The characteristics
of non-animal–inspired EAs and their modified versions
were discussed to identify the difference between EAs
and how each EAwas improved. Additionally, the type
of application of non-animal–inspired EAs to different

case studies was investigated, and comparisons were
made between the performance of the applied EAs in
the studied literature. The survey revealed that the GA is
the most frequently applied algorithm, followed by the
DE algorithm. Non-animal–inspired EAs are superior to
the classical methods of reservoir optimization (e.g., the
non-linear programming and dynamic programming)
due to faster convergence, diverse solution space, and
efficient objective function evaluation. Several non-an-
imal–inspired EAs of recent vintage have been shown to
outperform the classic GA, which was the first evolu-
tionary algorithm applied to reservoir operation.

Keywords Bibliography.Metaheuristic algorithm .

Dam operation . Optimization . State-of-the-art review

Introduction

The efficient allocation of water and optimized opera-
tion of water system is essential in an environment of
scarce water resources (Labadie 2004; Bozorg-Haddad
et al. 2013). In this context, the planning and analysis of
reservoir systems are key components of integrated
water resources management (Bozorg-Haddad et al.
2008; Jahandideh-Tehrani et al. 2014; Ashofteh et al.
2015). Optimization methods are designed to overcome
the high dimensional, dynamic, non-linear, and stochas-
tic features of reservoir systems (Labadie 2004). Nu-
merous optimization methods have been developed and
applied in reservoir operation (Bozorg-Haddad et al.
2011a, b; Fallah-Mehdipour et al. 2011; Jahandideh-
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Tehrani et al. 2015; Bozorg-Haddad et al. 2017). Reser-
voir operation optimization methods can be categorized
in two main groups: classical methods and evolutionary
or metaheuristic algorithms (EAs). Linear programming
(LP), dynamic programming (DP), stochastic dynamic
programming (SDP), and non-linear programming
(NLP) are classical methods, which all suffer from large
dimensionality and slow convergence. Therefore, EAs
(inspired by biologic phenomena) were developed and
have been widely used due their search capacity to find
near globally optimal solutions. The genetic algorithm
(GA) and particle swarm optimization (PSO) are com-
monly employed EAs (Bozorg-Haddad et al. 2015;
Neboh et al. 2015).

EAs are inspired by evolutionary processes, in-
cluding the mutation, crossover, selection, and re-
production stages (Nicklow et al. 2010). EAs derive
optimal solutions from a population of alternative
solutions or designs. EAs identify sets of Pareto
optimal solutions applying randomized operators.
The randomized operators simulate genetic mutation
and recombination to derive new individuals. Indi-
viduals’ fitness improves the chance of survival
through the selection processes framed in terms of
fitness functions (Back et al. 2000). On the one
hand, EAs are characterized by multi-dimensional,
non-linear, non-convex, and discrete problems with-
out having detailed knowledge of the problems’
mathematical structure (Fogel 2000) and optimize
multi-objective functions (Sarker and Ray 2009).
On the other hand, EAs involve heavy computation-
al burden and also require the specification of algo-
rithmic parameters. In spite of these shortcomings,
they conclusively outperform classical methods in
the solution of complex and multi-objective prob-
lems (Blickle 1997).

EAs are inspired by biologic and physical
phenomena. Esat and Hall (1994) reported the first
application of the GA to optimize reservoir operation
with power generation and irrigation functions.
Wardlaw and Sharif (1999) assessed the GA’s perfor-
mance with different combinations of parameters,
crossover, and mutation probabilities. Teegavarapu and
Simonovic (2002) introduced simulated annealing (SA)
to reservoir operation problems. Differential evolution
(DE) is a stochastic and population-based algorithm,
which was proposed by Storn and Price (1995). The
immune algorithm (IA), introduced by Forrest et al.
(1994), is inspired by the workings of the human

immune system. Harmony search (HS) is another ex-
ample of EA, which is inspired by musical phenomena
(Geem et al. 2001).

Reed et al. (2013) reviewed the application of multi-
objective EAs in water resources, and Neboh et al.
(2015) investigated the application of EAs to hydropow-
er reservoir operation. Reviews of the application of
EAs inspired by non-animal phenomena to reservoir
operation have not been reported. Countless papers have
been published in various outlets dealing with the ap-
plication of non-animal–inspired EAs to reservoir oper-
ation optimization. This work surveys electronic data-
bases, specifically journals published by Elsevier, the
American Society of Civil Engineers (ASCE), Springer,
John Wiley, the Institution of Civil Engineers (ICE), the
International Water Association (IWA), and Taylor and
Francis from 1997 to 2018. The present review attempts
to identify and highlight the knowledge gaps in the
realm of reservoir operation optimization using non-
animal–inspired EAs. Several single and multi-
objective non-animal–inspired EAs are compared, pro-
viding readers with a comprehensive bibliography
which assesses the past performance of non-nature–
inspired EAs in the field of reservoir operation optimi-
zation. The remainder of this paper comprises an outline
of the search strategy employed in the survey of the non-
animal–inspired EA-based papers dealing with reservoir
operation. This is supplemented with a brief summary of
the selected non-animal–inspired EAs, their variants,
and their features. Comparisons are also made to evalu-
ate the performance of the non-animal–inspired EAs in
solving the reservoir operation problems. The paper
ends with a comparison and discussion of the results
of present work’s survey.

Search strategy

There are various outlets that publish papers in the area
of applications of the non-nature–inspired EAs to the
optimization of reservoir operation. Regarding the large
number of published papers, the present overview sur-
veyed the journal citation report (JCR) papers published
by the previously cited seven main outlets. Therefore,
this work’s bibliometric search relies on the JCR papers
that have appeared in publications by (1) Elsevier, (2)
ASCE, (3) Springer, (4) John Wiley, (5) ICE, (6) IWA,
and (7) Taylor and Francis from 1997 to 2018. This
survey is limited to papers that consider the application
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of non-animal–inspired EAs to reservoir operation. An
advanced search for Bevolutionary algorithm^ was ap-
plied to identify relevant publications. This was follow-
ed by a search for the word Breservoir^ to identify the
papers dealing with EA applications to reservoir opera-
tion. The search relied on the keywords Bevolutionary
algorithm,^ Breservoir,^ and Boptimization.^

According to the search results, the top three journals
are BWater Resources Management,^ BJournal of Water
Resources Planning and Management,^ and BJournal of
Irrigation and Drainage Engineering^ with the largest
number of relevant research. The journal Water Re-
sources Management is a leading publisher of non-
animal EAs and reservoir operation optimization. The
characteristics and definition of the non-animal–inspired
EAs, which have been applied to reservoir operation
optimization, are discussed in the following sections.
The results of the literature compare the performance
and potential of the non-animal–inspired EAs.

Algorithms

Numerous researchers reported the application of non-
animal–inspired EAs to optimization of reservoir oper-
ation and have documented their successful perfor-
mance in solving reservoir operation problems. Table 1
lists the non-animal–inspired EAs that have been ap-
plied to reservoir operation. The GA and the water cycle
algorithm (WCA) are the oldest and most recent EAs,
respectively.

This survey prospected 135 papers dealing with ap-
plications of the non-animal–inspired EAs to reservoir
optimization. The GA has been the leading algorithm
with major applications in reservoir operation optimiza-
tion, followed by the DE. Similarly, the largest number
of modified versions of the original algorithm belongs to
the GA, such as the binary-coded GA and chaos GA.
The DE takes second place in the number of modified
versions of the original algorithm (i.e., self-adaptive
multi-objective DE and fuzzy DE). The next section
reviews the definition and features of the non-animal–
inspired EAs applied to reservoir optimization.

The genetic algorithm

The GAwas introduced by Holland (1975). It has been
the most commonly applied EA in water resources
planning and management. The GA is a population-

based algorithm. It imitates natural evolution and Dar-
winian principles of selection, mutation, and recombi-
nation (crossover) with various mathematical operators
(Affenzeller et al. 2009). Many varieties of the GA have
been developed since its introduction. Table 2 lists those
varieties in chronological order, with the oldest (i.e.,
earliest appearance) ones placed at the top of the list.

The binary-coded GA

The binary-coded GA was introduced by Goldberg
(1985). This variety of the GA solves optimization
problems using strings (chromosomes), which are com-
prised of binary bits. These bits encode integers, sets,
real numbers, and others in finite length binary strings.
Cui and Kuczera (2003) applied the binary-coded GA
and the shuffled complex evolution (SCE) method to a
water supply system consisting of single reservoir. They
discussed that GA is efficient when small population
size is selected, while large population size will decrease
the GA efficiency; overall, SCE appeared to be more
efficient than GA as SCE requires 25% fewer objective
evaluations. However, in the simple water supply sys-
tem considered in this study, binary-coded GA

Table 1 List of non-animal–based EAs in chronologic order with
the oldest listed at the top and the most recent listed at the bottom
of the list

Algorithm Abbreviation Year of
appearance

Genetic algorithm GA 1975

Simulated annealing SA 1983

Shuffled complex evolution SCE 1992

Artificial life algorithm ALA 1992

Immune algorithm IA 1994

Differential evolution DE 1995

Harmony search HS 2001

S-metric selection evolutionary
multi-objective algorithm

SMS-EMOA 2005

Weed optimization algorithm WOA 2006

The multi-objective evolutionary al-
gorithm based on decomposition

MOEA/D 2007

Imperialist competitive algorithm ICA 2007

Biogeography-cased optimization BBO 2008

Borg multi-objective evolutionary al-
gorithm framework

Borg MOEA 2012

Water cycle algorithm WCA 2012
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performed better due to its inherent advantages in par-
allel computing. Jothiprakash and Shanthi (2006) ap-
plied single-objective binary-coded GA to the
Pechiparai reservoir, India. They extracted a number of
rule curves with the binary-coded GA model, which
performed better than the actual release due to higher
supply of irrigation demand. Moreover, in 2009, the
latter authors also compared the binary-coded GA and
SDPwith respect to the calculation of operating rules for
a reservoir in India. Their results indicated that the
binary-coded GA reduced the irrigation deficits as the
GA model release was equal to the actual demand for

almost all months. Therefore, they recommended that
the binary-coded GA model was superior over SDP in
the selected case study. Kumar and Reddy (2007) com-
pared elitist-mutated particle swarm optimization
(EMPSO) with the GA and PSO to obtain optimal
operation policies for the multi-purpose reservoir sys-
tem. Kumar and Reddy’s (2007) results indicate that the
EMPSO outperformed the PSO and GA in terms of
higher quality solutions with fewer functional evalua-
tions. They indicated that the average fitness values are
72.504, 80.26, and 73.389 for the EMPSO, PSO, and
GA, respectively. Fallah-Mehdipour et al. (2013)

Table 2 Varieties of the GA

Algorithm Abbreviation Year of
appearance

Reference

Binary-coded genetic algorithm Binary-coded
GA

1985 Goldberg

Noisy genetic algorithm NGA 1988 Fitzpatrick and
Grefenstette

Constrained genetic algorithm CGA 1989 Richardson et al.

Real-coded genetic algorithm RCGA 1991 Wright

Self-adaptive genetic algorithm Self-adaptive
GA

1992 Bäck

Multi-objective genetic algorithm MOGA 1995 Cieniawski et al.

Non-dominated sorting genetic algorithm NSGA-II 1995 Srinivas and Deb

Hyper cubic distributed genetic algorithm HDGA 1997 Herrera and Lozano

Self-learning genetic algorithm SLGA 1997 Han and May

Genetic-neuro fuzzy GNF 1999 Seng and Khalid

Hybrid genetic algorithm and linear programming GA-LP 2001 Cai et al.

Chaos genetic algorithm Chaos GA 2002 Yuan et al.

Alternating fitness genetic algorithm AFGA 2004 Zou and Lung

Self-organizing map-based multi-objective genetic algorithm SBMOGA 2004 Kubota et al.

The non-dominated sorting genetic algorithm with support vector regression SVR-NSGA-II 2004 Xu et al.

Non-dominated sorting genetic algorithm with artificial neural network NSGA-II-ANN 2005 Nain and Deb

A combination of genetic algorithm and discrete differential dynamic
programming

GA-DDDP 2005 Tospornsampan et al.

Genetic algorithm–based support vector machine GA-SVM 2005 Lessmann et al.

Epsilon dominance non-dominated sorting genetic algorithm Ɛ-NSGA-II 2005 Kollat and Reed

Macro-evolutionary multi-objective genetic algorithm MMGA 2007 Chen et al.

GA-based fuzzy proportional derivative GA-fuzzy PD 2007 Bagis and Karaboga

Adaptive neural network embedded genetic algorithm Adaptive
NN-GA

2009 Zou et al.

Grammatical evolution incorporated with parallel genetic algorithm GEGA 2008 Chen et al.

Multi-tier interactive genetic algorithm MIGA 2011 Wang et al.

Hybrid incremental dynamic programming and genetic algorithm Hybrid IDP-GA 2012 Li et al.

Aggregation hybrid genetic algorithm AHGA 2014 Huang
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compared the performance of the GA, PSO, and shuf-
fled frog leaping algorithm (SFLA) in maximizing the
total net benefit of a reservoir irrigation system. Based
on their results, the maximum objective function for the
GA and PSO was 65.53 and 62.34%, respectively,
which were worse than the best value calculated by
SFLA. Therefore, it was concluded that SFLA outper-
forms the GA and PSO. Li et al. (2014) applied seven
heuristic algorithms to minimize the amount of water
use and maximize the total power generation by the
Three Gorges Reservoir, including the binary-coded
GA, PSO, SA, dynamically dimensioned search
(DDS), dynamic coordinate search using response sur-
face models (DYCORS), and stochastic radial basis
function method (SRBF). The latter authors concluded
that PSO performed best in optimizing two objectives of
the selected case study, which occurred due to increase
in diversity of solutions and less dependent on the
previous generation compared with other discussed
approaches. Zeng et al. (2014) extracted hedging rules
for 12 hydropower reservoirs with the binary-coded GA
and indicated that the application of the binary-coded
GA reduces the power shortage significantly. However,
no comparison was performed in the stated research to
identify the most efficient algorithm. The artificial bee
colony (ABC) algorithm was compared with the GA in
a reservoir release optimization problem by Hossain and
El-Shafie (2014), who reported that ABC outperformed
GA due to lower RMSE values for monthly release
curves. According to their results, ABC obtained effi-
cient reliability, resiliency, and vulnerability in release
curves. Considering the honeybee mating optimization
(HBMO), Bozorg-Haddad et al. (2006, 2009) compared
the performance of HBMO with the GA algorithm to
optimize reservoir operation using test problems, and
the superiority of HBMO over the GA with respect to
search capacity, accuracy, and convergence speed was
confirmed. Ming et al. (2015) also compared the cuckoo
search (CS) algorithm with GA to maximize the energy
production of a multi-reservoir system in China. Ming
et al.’s (2015) results established that CS improved the
energy production by 0.52, 0.32, and 1.64% in three
defined scenarios, respectively (wet year, normal year,
and dry year), compared with the GA. Bozorg-Haddad
et al. (2014a) have applied the bat algorithm (BA) to
optimal operation of a single andmulti-reservoir system.
The average rating convergence of the BA was com-
pared with the GA. The results indicated that the amount
of variation in objective function is insignificant for the

BA, and the coefficient of variation of the BA is almost
16 times less than that of the GA over 10 runs. In
another study, the performance of firefly algorithm
(FA) was compared with the GA for optimizing irriga-
tion supply and hydropower generation (Garousi-Nejad
et al. 2016). According to the comparison, the average
values of objective function were closer to the NLP
compared with that of the GA, which indicated the
superiority of the FA over the GA. Ehteram et al.
(2017a) also compared the GA’s performance with the
shark algorithm. The comparison was made by compar-
ing the performance indexes to optimize the operation of
both single and multi-reservoir system. The latter au-
thors reported that the volumetric reliability was 96%
for shark algorithm and 94% for the GA, and the vul-
nerability index was 31% for shark algorithm and 38%
for GA. Hence, they concluded that the shark algorithm
outperformed the GA. Ehteram et al. (2017b) compared
the monarch butterfly algorithm (MBA) with the GA in
the operation optimization of a four-hydroelectric reser-
voir system. They demonstrated that the MBA im-
proved the accuracy of the GA in power production by
1.16% in the wet year, 1.28% in the dry year, and 1.34%
in the normal year. Hossain et al. (2018) applied the
ABC algorithm to develop an optimization water release
policy for a reservoir. They also compared the perfor-
mance of the proposed model with the binary-coded
GA. Their results revealed that the binary-coded GA
release policy failed to meet the water demand 63 times,
while the ABC release policy failed only four times.
Furthermore, the GA performed poor in terms of resil-
iency, which confirmed the superiority of the ABC over
the GA. Parasanchum and Kangrang (2018) applied the
binary-coded GA to search the optimal reservoir rule
curves under climate change for a reservoir in Thailand.
Although this study lacked comparisons, the latter au-
thors concluded the GA model under future climate
change conditions indicated a better performance com-
pared with the current rule curves.

Our search of the pertinent literature indicates
that the binary-coded GA almost always outper-
forms classical methods (SDP, DP, and NLP). Al-
though the binary GA is efficient and accurate in
extracting reservoir rule curves and hedging rules,
new developed algorithms (e.g., CS, BA, ABC,
HBMO, and MBA) are more suitable for solving
reservoir operation problems by providing higher
performance indexes, smaller coefficient of varia-
tion, and more efficient convergence.
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The noisy genetic algorithm

This approach was introduced by Fitzpatrick and
Grefenstette (1988). The noisy genetic algorithm
(NGA) operates in noisy or uncertain environments. It
applies a special kind of fitness function, called effective
fitness function, to deal with uncertain environments.
Yun et al. (2010) implemented this algorithm for sto-
chastic reservoir operation. They also compared the
NGA and the Monte Carlo GA. Their results indicated
that the NGA outperformed the Mont Carlo GA in a
single stochastic reservoir operation due to shorter com-
putational time and better optimal objective function.
The annual cumula t ive opera t ion loss was
US$206.9384 × 104 and US$40.4469 × 104 for the
Mont Carlo GA and the NGA, respectively, which con-
firmed the priority of the NGA.

The constrained genetic algorithm

This algorithm was proposed by Richardson et al.
(1989). This algorithm is applied to non-linearly
constrained problems. Chang et al. (2010) applied the
constrained genetic algorithm (CGA) to the Shih-Men
Reservoir, Taiwan, considering human water demand
and ecological base flow. They concluded that the
CGA approach led to efficient water supply for both
noted purposes in terms of generalized shortage index
(GSI). Ngoc et al. (2014) optimized the rule curves of s
multi-purpose reservoir operation with the CGA. They
also demonstrated that the CGAwas an effective tool for
optimal searching of multi-purpose reservoir operations
as the CGA-generated efficient reservoir water releases
with small value of GSI (0.33), the smallest value of
environmental water shortage (0.11 m3/s), and the larg-
est water usage (63.8%) compared to the current opera-
tion of the studied reservoir.

The real-coded genetic algorithm

Wright (1991) introduced this algorithm. The real-coded
genetic algorithm (RCGA) uses real parameter vectors
as chromosomes, real parameters as genes, and real
numbers as alleles. As a result, solutions are
represented in a more straightforward manner than the
classic GA. Oliveira and Loucks (1997) applied the
RCGA to two hypothetical systems. Oliveira and
Loucks (1997) concluded that the RCGA is a practical
and robust way of calculating efficient operating

policies of multi-reservoir systems. Chang and Chen
(1998) compared the efficiency of the RCGA and the
binary-codedGA for optimal flood control. Their results
indicated that, based on efficiency and precision consid-
erations, the RCGA performed better than the binary-
coded GA. Chang and Chen (1998) have also demon-
strated that higher mean values of objective function and
smaller standard deviation were obtained from the
RCGA. Wardlaw and Sharif (1999) applied the RCGA,
the gray GA, and the binary-coded GA to a four- and
ten-reservoir system to maximize total benefits.
Wardlaw and Sharif (1999) concluded that the GA per-
formed three times faster than discrete differential dy-
namic programming (DDDP) and also the RCGA per-
formed the best among various GAs. Tung et al. and
Chen (2003) demonstrated that contrary to methods
based on dynamic programming, the RCGAwas highly
efficient in extracting reservoir operating rule curves.
According to results of Tung et al. (2003), the shortage
index, days of deficit, and average deficit percentage
equaled 7.13, 6806, and 37%, respectively, when oper-
ation was optimized by the RCGA, while they equaled
9.81, 1962, and 86% corresponding to the shortage
index, days of deficit, and average deficit percentage,
respectively, without using the GA. Chang et al. (2005)
and Jian-Xia et al. (2005) reported that the RCGA is
more efficient than the binary-coded GA. Chang et al.
(2005) reported that in terms of water release deficit, the
RCGA obtained a slightly better objective function.
Normally, the RCGA is more efficient for reservoir
operation optimization and is faster than the binary-
coded GA because the increase in the number of vari-
ables reduces the efficiency of the binary-coded GA.

The superiority of the HBMO over the RCGA was
confirmed by Afshar et al. (2011). They concluded that
with the same number of functional evaluations, the
improved HBMO enhanced results by more than 8%.
Furthermore, Khan and Tingsanchali (2009), Fowe et al.
(2015), and Rashid et al. (2015) extracted rule curves
with the RCGA. They concluded that the obtained rule
curve improved the efficiency of the reservoir operation.
However, only the RCGA has been reported in the
literature without comparison with other EAs.

The reviewed literature indicates that the RCGA is
significantly more efficient than the binary-coded GA
and classic methods for solving reservoir operation
problems. However, Afshar et al. (2011) have claimed
that the HBMO improved the results of the reservoir
operation optimization by more than 8% with the same
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number of function evaluations compared with the
RCGA.

The self-adaptive GA

This algorithm was proposed by Bäck (1992). In this
approach, the constraints of the system are developed
systematically through the simulation process. Ahmadi
Najl et al. (2016) applied the proposed algorithm to
extract rule curves of a multi-reservoir system. The latter
authors emphasized the benefits of the self-adaptive GA
for generating optimal strategies. However, they have
not reported performance comparisons with other EAs.

The multi-objective genetic algorithm

This algorithm was proposed by Cieniawski et al.
(1995). The multi-objective genetic algorithm
(MOGA) is capable of solving multi-objective problems
simultaneously without converting to a weighted objec-
tive function. Yang et al. (2007) applied the MOGA to a
multi-reservoir system for water supply. They linked the
MOGAwith constrained differential dynamic program-
ming (CDDP) to generate non-inferior solution sets.
Kumphon (2013) applied the MOGA to a multi-
reservoir hydropower system to maximize reservoir re-
leases and storage. According to their results, the
modeled release was typically higher than the actual
value, and the modeled average storages mainly reached
the actual minimum storage value, which presented that
MOGA has improved the reservoir operation compared
with the actual operation. It is clear that few authors
have applied MOGA to reservoir operation; however,
this algorithm is suitable for multi-reservoir systems
with multiple objectives.

The non-dominated sorting genetic algorithm

The non-dominated sorting genetic algorithm (NSGA)
was introduced by Srinivas and Deb (1995), and the
NSGA-II was developed by Deb et al. (2002). The
NSGA-II is widely used to solve multi-objective prob-
lems. The NSGA-II sorts a population of solutions into
different non-dominated solution levels. Operation rules
of hydropower reservoirs were calculated with the
NSGA-II in many investigations (Kim et al. 2008;
Hassaballah et al. 2012; Sreekanth et al. 2012; Ahmadi
et al. 2014; Yang et al. 2015; Vonk et al. 2016). Shiau
(2009) applied the NSGA-II to a non-hydropowermulti-

purpose reservoir to obtain a hedging rule. Vonk et al.
(2016) compared the NSGA-II and the multi-objective
PSO (MOPSO), and their results indicated that both
algorithms yielded almost the same Pareto fronts for
all assumed scenarios. On the other hand, Baltar and
Fontane (2008) indicated that the MOPSO provided
more acceptable performance than the NSGA-II and
micro GA for solving test functions in terms of genera-
tional distance (closeness of the resulting non-
dominated solutions) and the spacing metric (the distri-
bution of non-dominated solutions). Generational dis-
tances were calculated equal to 0.0365, 0.0842, and
0.1508 with the MOPSO, NSGA-II, and micro GA,
respectively, and the calculated spacing metrics were
0.1095, 0.0985, and 0.3150 with the MOPSO, NSGA-
II, and micro GA, respectively. Li et al. (2010) com-
pared the NSGA-II with the multi-objective SFLA.
They employed five test problems adapted to a multi-
objective reservoir flood operation and compared the
mean and variance of the multi-objective SFLA with
the NSGA-II for five test problems. The latter authors
concluded that solution space diversity and convergence
were improved by the multi-objective SFLA compared
with the NSGA-II.

Salazar et al. (2016) compared the NSGA-II, epsilon
NSGA-II (Ɛ-NSGA-II), epsilon multi-objective evolu-
tionary algorithm (Ɛ-MOEA), multi-objective evolu-
tionary algorithm based on decomposition (MOEA/D),
optimized multi-objective particle swarm optimization
(OMOPSO), third evolution step of generalized differ-
ential evolution (GDE3), and Borg MOEA. They dem-
onstrated the Ɛ-NSGA-II, Ɛ-MOEA, and Borg MOEA
have consistently exhibited successful performance. On
the other hand, MOEA/D and OMOPSO had poor per-
formance. The GDE3 and NSGA-II revealed poor
search convergence. Chen et al. (2016a, b) applied an
improved version of the NSGA-II, named the p-NSGA-
II, which incorporates multiple recombination opera-
tors. The Qingshitan hydropower reservoir, China, was
selected as the case study. They concluded that the p-
NSGA-II algorithm improves the solution quality in
terms of convergence and diversity compared with the
NSGA-II.

Overall, the NSGA-II is an efficient algorithm for
solving many multi-objective reservoir problems, par-
ticularly operating rule and rule curve extraction prob-
lems. However, other multi-objective algorithms such as
the epsilon dominance non-dominated sorting genetic
algorithm (Ɛ-NSGA-II), Ɛ-MOEA, Borg MOEA,
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MOPSO, and SFLA may perform better than the
NSGA-II due to improved diversity of the solution
space and convergence.

The hyper cubic distributed genetic algorithm

Herrera and Lozano (1997) introduced this algorithm.
Current literature review revealed that the stated algo-
rithm was applied by Chen and Chang (2007), who
compared the hyper cubic distributed genetic algorithm
(HDGA) and the GA. Their results indicated that the
HDGA exhibited much better performance than the
conventional GA in terms of achieving near optimal
objective functions and avoiding local optimal solu-
tions. Two scenarios have been considered based on
the absence of a reservoir. The total deficits were
116.8 × 106 m3 and 71.1 × 106 m3 for scenarios 1 and
2, respectively. using HDGA, while the conventional
GA obtained the total deficit of 145.9 × 106 m3 and
85.4 × 106 m3 for scenarios 1 and 2, respectively. Hence,
the HDGA enhanced the performance of the reservoir
optimization efficiently compared with the conventional
GA.

The self-learning genetic algorithm

This algorithm was introduced by Han and May (1997)
and modified by Hakimi-Asiabar et al. (2010). The self-
learning genetic algorithm (SLGA) is an improved ver-
sion of the self-organizing map-based multi-objective
GA (SBMOGA). The SLGA combines self-organizing
map (SOM) and variable neighborhood search (VNS)
algorithms and added those two features to the GA,
which leads better local search accuracy. Hakimi-
Asiabar et al. (2010) compared the SLGA with the
NSGA-II and the SBMOGA and concluded that the
SBMOGA outperformed the NSGA-II. However, the
efficiency of the SBMOGAwas limited by the number
of SOM neurons. Hence, the SLGA was applied to
overcome this limitation of the SBMOGA by saving
SOM’s non-dominated solutions in the NSGA-II’s non-
dominated solution set.

The genetic-neuro fuzzy algorithm

This algorithm was introduced by Seng and Khalid
(1999). Pinthong et al. (2009) applied the GNF algo-
rithm to satisfy water demand and prevent flooding in a
multi-purpose reservoir operation problem. Input and

output data pairs were required in the GNF for training
(calibrating) the neuro fuzzy network. The input-output
data pairs were also required in the training process to
generate the fuzzy rules according to the GA. In other
words, the GA was used to search the optimal input
combination of a neuro fuzzy system. Their results
demonstrated that the proposed algorithm led to higher
reliability for the two stated purposes compared with the
actual operation.

The hybrid genetic algorithm and linear programming

Cai et al. (2001) applied the hybrid genetic algorithm
and linear programming (GA-LP) to solve two non-
linear models, including (1) a reservoir operation model
with non-linear hydropower generation equations and
non-linear reservoir topologic equations and (2) a long-
term dynamic river basin planning model with numer-
ous non-linear relations. Many studies have applied the
GA-LP tomulti-reservoir systems (Reis et al. 2005; Reis
et al. 2006; Taghian et al. 2013). Reis et al. (2005)
demonstrated the superior performance of the GA-LP
over stochastic dual dynamic programming (SDDP)
considering advantages such as its calculation of opera-
tional decisions and its simple implementation. Reis
et al. (2006) and Taghian et al. (2013) extracted hedging
rules of non-hydropower multi-reservoir system with
the GA-LP and reported effective performance.

The chaos genetic algorithm

Yuan et al. (2002) proposed the chaos GA optimization
approach. This algorithm was introduced to address
shortcomings of the chaotic optimization method and
the GA by combining the chaotic optimization algo-
rithm (COA) and the GA. Cheng et al. (2008) and
Jothiprakash and Arunkumar (2013) applied this ap-
proach to single hydropower reservoir. Cheng et al.
(2008) compared the chaos GAwith the simple GA for
maximizing power generation. They concluded that the
chaos GA outperforms the standard GA in terms of
convergence speed and solution accuracy. Moreover,
Jothiprakash and Arunkumar (2013) extracted storage
rule curves using the chaotic GA and chaotic differential
evolution (CDE) algorithms. They concluded the latter
two algorithms performed better than the standard GA
and DE algorithms in maximizing power production.
Additionally, both the chaotic GA and CDE satisfied the
constraints within 400 generations, while simple GA
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and DE could satisfy the constraints within 700
generations. Higher fitness values have also been
observed in the results of the chaotic GA and CDE.
Arunkumar and Jothiprakash (2013) developed the fully
chaotic genetic algorithm (FCGA) to maximize hydro-
power production of multi-reservoirs in India. The
FCGA applies the chaos technique in the mutation and
crossover operations except when generating the initial
population of solutions of the GA. The latter authors
compared their results with the simple GA and DE
algorithms and concluded that the FCGA exhibited
faster convergence rate.

According to the reviewed literature, the chaotic GA
outperforms the standard GA and DE due to faster
convergence and higher solution accuracy in reservoir
operation optimization.

The alternating fitness genetic algorithm

Zou and Lung (2004) developed and implemented the
alternating fitness genetic algorithm (AFAG) algorithm
to overcome the diversity-maintaining problem in the
GA solution process. This method alternates functional
forms of the GA search for fitness evaluation. Zou and
Lung (2004) applied this approach to a single reservoir
to control pollution. They concluded that the AFGA
outperformed the standard GA because the former algo-
rithm led to higher diversity among the solutions.

The self-organizing map-based multi-objective genetic
algorithm

This approach was introduced by Kubota et al. (2004).
The SBMOGA was developed to maintain genetic di-
versity of a population of solutions. A set of new chro-
mosomes in the next generation of solutions is produced
by learning with the SOM. Hakimi-Asiabar et al. (2009)
applied this approach to improve the genetic diversity of
solutions. The SBMOGA features a grid of neurons that
applies the concept of the learning rule with a SOM to
improve local and global searches. They compared the
performance of the SBMOGA and the NSGA-II by
solving a hydropower multi-reservoir system. The con-
vergence of the SBMOGA to the optimal Pareto front
was much faster than that of the NSGA-II, and the
diversity of the non-dominated solutions of SBMOGA
was considerably better than that of the NSGA-II.

The non-dominated sorting genetic algorithm
with support vector regression

Xu et al. (2004) combined SVR andNSGA-II. NSGA-II
calculates the parameters of SVR and selects historical
variables as predictors. Aboutalebi et al. (2015) applied
the non-dominated sorting genetic algorithm with sup-
port vector regression (SVR-NSGA-II) to optimize
monthly operation rules of hydropower generation.
Their results demonstrated that this approach performed
well in extracting reservoir operation rules in real time
with almost 90% accuracy.

Non-dominated sorting genetic algorithm with artificial
neural network

Nain and Deb (2005) integrated NSGA-II with ANN to
achieve precise functional evaluations and high
diversity of the Pareto front. Shokri et al. (2013) applied
this algorithm to address the optimal operation of a
reservoir in Iran. They concluded that the hybrid non-
dominated sorting genetic algorithm with artificial neu-
ral network (NSGA-II-ANN) decreased the required
time for optimization up to 50 times. Hence, the coupled
NSGA-II-ANN led to higher speed of convergence.

Combination of the genetic algorithm and discrete
differential dynamic programming

This algorithm was introduced by Tospornsampan et al.
(2005b). They extracted operation policies of a multi-
hydropower reservoir system in Thailand and concluded
that the genetic algorithm and discrete differential dy-
namic programming (GA-DDDP) performed better than
the GA in terms of convergence speed.

The genetic algorithm–based support vector machine

Lessmann et al. (2005) combined the GA and SVM.
They formed the solution space combining various ker-
nel parameters and SVM’s kernel functions. Su et al.
(2013) applied the genetic algorithm–based support vec-
tor machine (GA-SVM) to a single reservoir in China to
predict monthly reservoir storage. They also compared
the GA-SVM with grid search–based SVM (GS-SVM)
and particle swarm optimization-support vector ma-
chine (PSO-SVM) and claimed that the best perfor-
mance in calibration and prediction was obtained with
the GA-SVM. In another study by Soleimani et al.
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(2016), a data mining model, the LIBSVM model, was
coupled with GA to minimize the deviation between the
natural temperature regime and the river water temper-
ature downstream of the reservoir using selective with-
drawal. It was concluded the that combination of the GA
with the LIBSVM reduced optimization process time
with the objective of minimizing water temperature in
the downstream river.

Epsilon dominance non-dominated sorting genetic
algorithm

Kollat and Reed (2005) combined epsilon dominance
archiving with NSGA-II to improve the efficiency, reli-
ability, and ease of use of the NSGA-II. This algorithm
is based on the NSGA-II, which classifies solutions
through a fast non-dominated sorting approach, and it
also preserves solution diversity applying a crowding
distance operator. Hurford et al. (2014) implemented
this algorithm to extract rule policies for a multi-
reservoir hydropower system. Furthermore, Zhou et al.
(2016) applied the Ɛ-NSGA-II to a single hydropower
reservoir in China. The latter authors proved the fore-
casting skill of the Ɛ-NSGA-II.

The macro-evolutionary multi-objective genetic
algorithm

The macro-evolutionary multi-objective genetic algo-
rithm (MMGA) was inspired by the dynamics of species
extinctions over large timescales. It was developed by
Chen et al. (2007), who compared rule curves obtained
from the MMGA and the NSGA-II. Their results
showed that MMGA generates more diverse solutions
and closer convergence to the true Pareto front than the
NSGA-II.

GA-based fuzzy proportional derivative

This approach was applied by Bagis and Karaboga
(2007) to a single reservoir in Turkey. The GA was
applied to improve the main parameters of the fuzzy
proportional derivative (fuzzy PD) controller. Their
results yielded reservoir operation rules that were
accurate and efficient than those of the GAs and led
to an improvement in the dynamic response of the
system under control.

The adaptive neural network–embedded genetic
algorithm

Zou et al. (2009) applied this approach to water quality
modeling of a single reservoir in the USA. A set of NN
models was developed and incorporated into a GA
framework to search near-optimal solutions. They con-
cluded that the adaptive neural network–embedded ge-
netic algorithm (NN-GA) method can identify multiple
parameter patterns.

The grammatical evolution incorporated with parallel
genetic algorithm

Chen et al. (2008) incorporated the grammatical evolu-
tion (GE) into the parallel GA. The grammatical evolu-
tion incorporated with parallel genetic algorithm
(GEGA) applies the GE to transfer the real-coded string.
The GAwas combined with the GE to optimize objec-
tive functions. Chen et al. (2008) demonstrated that the
GEGA is better than traditional linear multiple regres-
sion (LMR) given its lower estimation errors.

The multi-tier interactive genetic algorithm

Wang et al. (2011) proposed the multi-tier interactive
genetic algorithm (MIGA), which is suitable for com-
plex systems with high-dimensional variables. This new
approach decomposes a complex system into small-
scale subsystems. The GA is applied to each subsystem,
and multi-tier integration is implemented to the subsys-
tems. Wang et al. (2011) applied this approach to a
single hydropower reservoir and compared the calculat-
ed rule curves with those obtained with the GA. They
reported that the MIGA increased the probability of
obtaining an optimal solution. Additionally, the MIGA
reduced the computational time by up to 80%.

The hybrid incremental dynamic programming
and genetic algorithm

Li et al. (2012) proposed the hybrid incremental dynam-
ic programming and genetic algorithm (IDP-GA) for
long-term operation optimization of large-scale reser-
voirs. They combined IDP and the GA. The IDP nar-
rows the search space with iterations in high-
dimensional problems with large feasible domains, and
the GA solves highly non-linear, non-convex, problems.
Li et al. (2012) applied this method to a hydropower
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multi-reservoir in China. Their results featured that the
hybrid IDP-GA outperformed the IDP and the standard
GA due to its almost 10 times faster convergence rate.

The aggregation hybrid genetic algorithm

Huang (2014) applied this approach to the Pepacton
Reservoir in the USA. The aggregation hybrid genetic
algorithm (AHGA) relies on a weighted sum of scaled
simulation errors as the objective function. Huang
(2014) showed that their model results matched the
observed data well.

Clearly, numerous studies have applied and modified
the GA to overcome its shortcomings with specific
optimization models. Various combinations of the GA
with other EAs or data-driven approaches (e.g., SVM,
ANN, and SVR) have improved optimization perfor-
mance compared with that of the standard GA in terms
of convergence speed, accuracy of solutions, and diver-
sity and density of the Pareto fronts of solutions. How-
ever, many EAs, including both animal-inspired (e.g.,
PSO, HBMO, CS, FA, ABC, SFLA, and BA) and non-
animal–inspired (e.g., SA and SCE in the case of large
population size) are preferred in reservoir optimization
problem due to provision of higher performance index-
es, smaller coefficient of variation, and more efficient
convergence.

Simulated annealing

The simulated annealing (SA) was introduced by
Kirkpatrick et al. (1983). The SA is a single-point meth-
od inspired by homonymous thermodynamical process.
Nature finds the minimum state of energy for slowly
cooled thermodynamical systems, yet the systems might
end in a higher state of energy if it is cooled quickly. The
SAwas not commonly applied to reservoir optimization.
The surrogate-enhanced evolutionary annealing simplex
(SEEAS) is the only variety (or modified version) of the
SA. Teegavarapu and Simonovic (2002) and
Tospornsampan et al. (2005a) applied the SA to a hy-
dropower multi-reservoir system to calculate operation
rules. The latter two studies have indicated that the SA is
more efficient than the GA due to its faster convergence.
Tospornsampan et al. (2005a) demonstrated that the
calculated total deficits of defined policy 1 (target stor-
ages were set two-thirds active storage curve levels)
were 2.255 and 2.282% for the SA and GA, respective-
ly. The total deficits of policy 2 (target storages were set

three-fourths active storage curve levels) were 8.479 and
8.500% for the SA and GA, respectively. Hence, the
superiority of the SA over the GA was reported.
Kangrang et al. (2010) applied the SA to two separate
hydropower reservoirs in Thailand to obtain rule curves.
They concluded that the SA outperformed the GA in
determining optimal rule curves of reservoirs. Tsoukalas
et al. (2016) proposed the SEEAS by applying it to a
hydropower multi-reservoir system in Greece. The
SEEAS algorithm combines the strength of surrogate
modeling with the evolutionary annealing-simplex
method.

In summary, several papers have validated the effi-
ciency of the SA compared with the GA. The surveyed
papers indicated that the SA is capable of estimating
operating rules and rule curves of various hydropower
reservoirs. However, the comparative performances of
the GA and SA normally depend on the type of the
problem; the SA significantly depends on the choices
of parameters as well as fine-tuning of the parameters,
while the GA requires high computational costs to ob-
tain accurate solutions, particularly in complex
problems.

Shuffled complex evolution

The SCE was developed by Duan et al. (1992). It is a
heuristic global optimization scheme. The SCE samples
and partitions a random set of points. Each set of points
evolves and improves by using competitive evolution
techniques according to the downhill simplex method.
A variety of this algorithm was developed at the Uni-
versity of Arizona (SCE-UA) and was reported in three
papers to optimize reservoir operation. Valeriano et al.
(2010), and Kang and Park (2014) applied this algo-
rithm to single hydropower reservoirs to minimize the
difference between the simulated and threshold
discharges and the difference between simulated and
supply irrigation water, respectively. Yang et al. (2014)
introduced the multi-objective complex evolution algo-
rithm (MOCOM) based on the development of the SCE-
UA named multi-objective shuffled complex evolution
with principal component analysis and crowding dis-
tance operator (MOSPD) algorithm (Yapo et al. 1998).
The latter authors applied the MOSPD to a hydropower
multi-reservoir in California and eight test problems.
They also compared the MOSPD algorithm with the
multi-objective differential evolution (MODE),MOGA,
multi-objective simulated annealing (MOSA), MOPSO,
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and MOCOM. Their results demonstrated that MOSPD
shows the most consistent performance as well as the
best speed and convergence of non-dominated solu-
tions. Overall, reviewed papers suggested that MOSPD
outperformed several multi-objective EAs, such as
MODE, MOGA, MOSA, MOPSO, and MOCOM.

The artificial life algorithm

The artificial life algorithm (ALA) was introduced by
Assad and Packard (1992). This algorithm has been
rarely applied to reservoir optimization problems.
Hayashi et al. (1996) applied the ALA to solve a non-
linear optimization problem. The ALA is inspired on the
interaction of biology and computer sciences (Adami
1998). The ALA was also applied by Dessalegne and
Nicklow (2012). The latter paper evaluated the ALA’s
efficiency in solving a multi-reservoir system with a
single objective considering three test problems and
demonstrated that the ALA is a global search technique
that requires no gradient information, and this algorithm
can determine multiple optimal or near optimal
solutions.

The immune algorithm

The immune algorithm (IA) was introduced by Forrest
et al. (1994). This algorithm imitates the body’s immune
system’s actions in its approach to solving optimization
problems. Lou et al. (2015) applied a multi-objective
variety of the IA, called multi-objective algorithm with
preference-based selection (MOIA-PS). The MOIA-PS
calculates a set of preferred Pareto-optimal solutions
rather than a good approximation to the Pareto front.
Lou et al. (2015) also compared the MOIA-PS with the
NSGA-II and the multi-objective immune algorithm
with non-dominated neighbor-based selection (NNIA)
for four typical floods at a reservoir. They concluded
that the MOIA-PS achieved more non-dominated solu-
tions that were scattered in the preferred area of the
Pareto front and successfully reduced the flood peak to
no more than 14,000 m3/s. In another study, Qi et al.
(2016) developed a variety of the IA inspired by the
memetic algorithm, named multi-objective immune al-
gorithm 2 (M-NNIA2), and solved seven test problems.
They made a comparison between the M-NNIA2,
NNIA2, NSGA-II, NNIA, and MOEA/D and reported
that M-NNIA2 achieved a representative set of best
tradeoff scheduling plans, and M-NNIA2 converged to

the objective function after 2000 fitness evaluations
when the other algorithms had not converged yet.

The surveyed papers suggested that multi-objective
IA is capable of solving multi-objective reservoir prob-
lems. Although multi-objective IA outperforms some
multi-objective algorithms (e.g., NSGA-II, MOEA/D),
it has been rarely applied to reservoir optimization.
Hence, it is suggested to use this algorithm in optimizing
complex reservoir operation problems.

The differential evolution algorithm

The differential evolution (DE) algorithm was intro-
duced by Storn and Price (1995). The DE is a stochastic
and a population-based algorithm that applies a parallel
search method. The DE has fast convergence and
adaptive parameter setting. Guedes et al. (2015) applied
the standard DE algorithm to a single hydropower res-
ervoir (in Brazil) to minimize thermal generation and to
maximize the future water value. Varieties of the DE are
listed in Table 3. The varieties were applied in reservoir
optimization papers as recounted in the next sections.

Multi-objective differential evolution

The MODE was proposed by Xue et al. (2003). They
developed the DE for multi-objective optimization
problems by proposing a Pareto-based approach to ap-
ply the differential vectors. Reddy and Kumar (2007)
applied theMODE to single hydropower reservoir using
five test problems and compared the MODE with the
NSGA-II. The average spacing metric was calculated by
0.425.15 and 124.81 for the MODE and NSGA-II,
respectively. Therefore, it was reported that the MODE
obtained better Pareto optimal solutions than the
NSGA-II. The MODE was applied in two papers
(Reddy and Kumar 2008; Schardong et al. 2013) deal-
ing with non-hydropower reservoirs. Schardong et al.
2013 compared the MODE with the NSGA-II consid-
ering three test functions and reported that the MODE
outperformed the NSGA-II in terms of convergence and
coverage of the true Pareto front. Qin et al. (2010)
applied multi-objective cultured differential evolution
(MOCDE) to a multi-reservoir hydropower system with
six test functions. The MOCDE implements cultural
algorithms as its framework and the DE to its space of
solution populations. Qin et al.’s (2010) results indicated
that the MOCDE has uniform coverage and conver-
gence to the true Pareto front. The surveyed papers
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reported that the MODE outperforms the NSGA-II in
solving multi-objective reservoir optimization
problems.

Self-adaptive multi-objective differential evolution

This algorithm was introduced by Qin and Suganthan
(2005). The self-adaptive multi-objective differential
evolution (SMODE) applies a learning strategy and sets
parameters in a self-adaptive and gradual manner guided
by the learning experience. Schardong et al. (2015)
applied the SMODE to a multi-reservoir system in Bra-
zil considering three test functions (ZDT1, KITA, and
Kursawe). They compared the SMODE with the
NSGA-II and SMODE integrated with out-of-kilter
method (SMODE + OFK). The calculated generational
distance (GD) was 0.00211, 0.00556, and 0.00179 for
SMODE, NSGA-II, and SMODE + OFK, respectively.
Furthermore, the spacing metric (SP) was calculated by
0.0641, 0.0614, and 0.0799 for the MODE, NSGA-II,
and SMODE + OFK, respectively. Hence, it was con-
cluded the SMODE + OFK outperformed the SMODE
and NSGA-II in terms of convergence and accuracy of
calculating the true Pareto front.

Fuzzy differential evolution

Vucetic (2012) proposed the fuzzy differential evolution
(FDE). Initialization and mutation procedures are
improved by applying fuzzy and stochastic theory in
the FDE algorithm. Vucetic and Simonovic (2013) im-
plemented the FDE to the Wildwood hydropower res-
ervoir in Canada. They concluded that the FDE per-
formed better than the standard DE in terms of conver-
gence speed to near optimal solutions.

Harmony search

The harmony search (HS) was proposed by Geem et al.
(2001), who applied it to solve optimization problems.
The HS is a population-based metaheuristic algorithm
which is inspired by musical phenomena that searches
for the most harmonious state. HS was employed as a
reservoir optimization method in two studies (Dariane
and Karami 2014; Bashiri-Atrabi et al. 2015). The latter
authors compared the HS with the HBMO, and they
concluded that the HS showed promising results in
terms of its convergence speed.

The S-metric selection evolutionary multi-objective
algorithm

This algorithm was developed by Emmerich et al.
(2005). This approach introduced a selection method
based on hyper-volume calculations. Only one paper
has applied this algorithm to a non-hydropower, multi-
reservoir, system. Stagge andMoglen (2014) applied the
S-metric selection evolutionary multi-objective algo-
rithm (SMS-EMOA) to five reservoirs in the Washing-
ton metropolitan area to obtain operating rule modifica-
tions. The latter authors demonstrated the efficiency of
this algorithm for the purpose of improving system
performance.

The weed optimization algorithm

Mehrabian and Lucasc (2006) developed the weed op-
timization algorithm (WOA). The WOA is a numerical
stochastic optimization algorithm inspired by weed col-
onizing strategies. Asgari et al. (2015) published a paper
based on the application of the WOA to a hydropower
reservoir optimization. The latter authors compared the
HBMO with the GA, LP, and NLP. Moreover, two
benchmark functions were applied to validate the
efficiency of the WOA. The results by Asgari et al.
(2015) determined that the best value of the
(minimization) objective function was 0.225 for the
GA and 0.1624 for the WOA. Additionally, the WOA
obtained smaller standard deviation and coefficient of
variation compared with the GA. Asgari et al. (2015)
concluded that the WOA had fast convergence to solu-
tions, which were near the global optimal solutions in
reservoir optimization problems.

The multi-objective evolutionary algorithm based
on decomposition

The multi-objective evolutionary algorithm based on
decomposition (MOEA/D) was developed by Zhang
and Li (2007). This algorithm decomposes a multi-
objective optimization problem into scalar sub-
problems and optimizes them simultaneously. Two pa-
pers applied this algorithm to optimize single reservoir
with multiple objectives (Ma et al. 2015; Qi et al. 2016).
Eight test problems were used, and a comparison
between the MOEA/D and other EAs was made in both
papers. Ma et al. (2015) compared the MOEA/D with
the light beam search NSGA-II (LBS-NSGA-II) and
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reported that the MOEA/D performs better than LBS-
NSGA-II in terms of uniformity and convergence.
Similarly, Qi et al. (2016) compared the self-adaptive
MOEA/D (SaMOEA/D), MOEA/D, ensemble of differ-
ent neighborhood size (ENS-MOEA/D), MOEA/D-
FRRMAB (fitness-rate-rank-based multi-armed bandit
in MOEA/D), and indicator-based evolutionary algo-
rithm (IBEA). They indicated that the SaMOEA/D out-
performs or performs similarly to the other algorithms
and stated that the SaMOEA/D performs better in large-
scale multi-objective optimization problems.

The imperialist competitive algorithm

Atashpaz-Gargari and Lucas (2007) introduced the impe-
rialist competitive algorithm (ICA). The ICA is inspired
by the hypothetical competition between imperialist
countries in their quest to control and improve the quan-
tity and quality of their colonies. Two papers were pub-
lished reporting applications of the ICA to reservoir
optimization (Afshar et al. 2014; Hosseini-Moghari
et al. 2015). Afshar et al. (2014) compared the ICA and
the ant colony optimization (ACO) approach in a single-
objective hydropower reservoir and reported that the ICA
exhibited fast convergence to near-optimal solutions to
linear operating rule curves, and it slightly outperformed
ACO in their case study. Hosseini-Moghari et al. (2015)
compared the performance of the ICA, COA, GA, and
NLP with a single-objective hydropower reservoir using
benchmark problems. The latter authors concluded the
COA had the best performance in terms of convergence
rate and approaching the global optimum. Thus, it ap-
pears that the ICA is not always superior to the other EAs
since COA performed better than ICA in the cited paper
by Hosseini-Moghari et al. (2015).

Biogeography-based optimization (BBO): is this truly
non-animal?

The biogeography-based optimization (BBO) was intro-
duced by Simon (2008). This algorithm is inspired by the

geographical distribution of living organisms, which is
affected by species migration between habitats, their ap-
pearance, adaptation, evolution, and extinction. Bozorg-
Haddad et al. (2015) applied the BBO for single-reservoir
and multi-reservoir system optimization in 2015. Three
test problems and a benchmark function were employed
to compare the performance of the BBO and GA. They
have indicated that the BBO outperforms the GA in terms
of minimization of the benchmark functions as the BBO
converged 99.94% of the optimal solution, while the GA
converged to 97.46% of the optimal solution.

The Borg multi-optimization evolutionary algorithm
framework

The Borg multi-optimization evolutionary algorithm
framework (Borg MOEA) is an open-source evolution-
ary computational library developed byHadka and Reed
(2012). It consists of six separate search operators which
incorporate many features of other MOEAs in order to
improve complex solution spaces in multi-objective
problems (Smith et al. 2015). Three papers applied the
Borg MOEA (Giuliani et al. 2014; Giuliani et al. 2015;
and Smith et al. 2015). Giuliani et al. (2014, 2015)
applied Borg MOEA to single hydropower reservoir
with multiple purposes to derive operation policies.
Giuliani et al. (2014) introduced a variety of the Borg
MOEA to obtain operating policies that are adaptive to
hydroclimatic uncertainties. Next, they combined the
optimal policies with visual analytics to propose a deci-
sion analytic framework. Smith et al. (2015) combined a
water supply model with the Borg MOEA for solving a
seven-objective problem with the purpose of multiple
reservoir balance. Smith et al. (2015) concluded that the
proposed coupled model improves management of
existing water infrastructure.

The water cycle algorithm

The water cycle algorithm (WCA) was introduced by
Eskandar et al. (2012). This algorithm is based on the

Table 3 Varieties of DE

Algorithm Abbreviation Year of appearance Reference

Multi-objective differential evolution MODE 2003 Xue et al.

Self-adaptive multi-objective differential evolution SMODE 2005 Qin and Suganthan

Fuzzy differential evolution FDE 2012 Vucetic
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water cycle and the manner in which rivers flow to lakes
and seas. Bozorg-Haddad et al. (2014b) applied the
WCA to hydropower single reservoir and multi-
reservoir systems in Iran. Three test problems and one
benchmark function were employed, and the results
were compared with those of the GA. Based on the
compassion, the WCA generated optimum close to
97% of the global optimum, whereas the GA converged
to 79% of the global optimum. The average calculated
objective functions of theWCAwere closer to the global
optimal solution compared with that of the GA. The
latter authors reported the WCA is superior to the GA
in terms of convergence to near-optimal solutions, faster
convergence rate, and higher reliability.

Conclusion

This survey established that non-animal–inspired EAs
have gained popularity in solving reservoir optimiza-
tion problems and have outperformed classical
methods, such as LP and NLP. This paper’s search
strategy was limited to electronic database of JCR
papers of seven publishers: (1) Elsevier, (2) ASCE,
(3) Springer, (4) JohnWiley, (5) ICE, (6) IWA, and (7)
Taylor and Francis, from 1997 to 2018. Among the
publishers, Springer has the largest number of papers
in the field of non-animal–inspired EAs and reservoir
optimization. The top three journals with the highest
percentage of non-animal–inspired EA-reservoir op-
t imizat ion papers are (1) BWater Resources
Management,^ (2) the BJournal of Water Resources
Planning and Management,^ and (3) the BJournal of
Irrigation and Drainage Engineering.^ Additionally,
14 non-animal–inspired EAs were identified in the
surveyed papers, and specific analysis of each non-
animal–inspired EA was conducted. The characteris-
tics and definition of the non-animal–inspired EAs
have also been discussed in order to help researchers
with the proper selection of an EA in their case study.
It was found that the non-animal–inspired EAs have
been widely used in optimizing reservoir operation
which involved hydropower, flood control, water dis-
tribution system, drinking water supply, irrigation
supply, ecological base flow, rule curve extraction,
and inflow forecasting. From our review of non-ani-
mal–inspired EAs, it is concluded the GA had the
largest numbers of applications and modified versions
in the studied literature. This survey concludes that

constrained variants of the non-animal–inspired EAs
outperform the unconstrained and classic optimiza-
tion algorithms. Regarding the performance of the
GA and SA, it is concluded that the SA’s performance
relies on the choice of parameters and fine-tuning
parameters and the GA requires high computation
costs and relatively small population size to obtain
accurate solutions. However, the SA is more efficient
for solving hydropower reservoir optimization prob-
lems and converges faster than the GA. The GA is one
of the oldest and efficient evolutionary algorithms, yet
this review revealed that in terms of convergence, the
CS, ABC, HBMO, BA, FA, HDGA, AFGA, chaotic
GA, IDP-GA, GA-DDDP, BBO, and WCA perform
better than the conventional GA. Concerning multi-
objective optimization problems, it is concluded that
MODE, SMODE, MMGA, Borg MOEA, Ɛ-NSGA-II,
SBMOGA, and NSGA-II-ANN have shown superior
performance relative to the classic NSGA-II. The stat-
ed conclusion is drawn from a survey of applications
to reservoir optimization problems, including single,
multi-, hydropower, and non-hydropower reservoir
systems.

This paper attempts to highlight the role of non-
animal–inspired EAs in water resources systems,
concerning non-animal–inspired EA application to res-
ervoir operation optimization. The identification of the
research gaps and development of non-animal–inspired
EAs applications to reservoir optimization problems
constitutes the main purpose of the present study. Sur-
veyed applications of non-animal–inspired EAs re-
vealed limited consideration of climate change impacts
on the operation of reservoirs. These findings are pre-
sented as an incentive to encourage the evaluation of
climate change impacts on reservoir optimization apply-
ing diverse EAs. Additionally, more studies are required
to evaluate the efficiency of the existing algorithms on
solving reservoir operation problems to identify im-
proved solutions. It is remarked that the current study
relied on papers published by the JCR journals. Future
surveys including non-JCR publications might yield
other helpful insights on the capacities of EAs.
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