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Abstract

Human language is often assumed to make “infinite use of fi-
nite means”—that is, to generate an infinite number of possible
utterances from a finite number of building blocks. From an
acquisition perspective, this assumed property of language is
interesting because learners must acquire their languages from
a finite number of examples. To acquire an infinite language,
learners must therefore generalize beyond the finite bounds of
the linguistic data they have observed. In this work, we use an
artificial language learning experiment to investigate whether
people generalize in this way. We train participants on se-
quences from a simple grammar featuring center embedding,
where the training sequences have at most two levels of embed-
ding, and then evaluate whether participants accept sequences
of a greater depth of embedding. We find that, when partic-
ipants learn the pattern for sequences of the sizes they have
observed, they also extrapolate it to sequences with a greater
depth of embedding. These results support the hypothesis that
the learning biases of humans favor languages with an infinite
generative capacity.
Keywords: language acquisition; extrapolation; inductive bi-
ases; center embedding; artificial language learning

Introduction
During language acquisition, a learner’s set of input sen-
tences must have some maximum length, yet the languages
acquired are often taken to be unbounded; language is of-
ten claimed to make “infinite use of finite means” (Chomsky,
1965, quoting von Humboldt, 1836). However, this view is
not uncontroversial. It has been contested on logical grounds
(Pullum & Scholz, 2010; Tiede & Stout, 2010), based on
corpus data (Karlsson, 2010), and for particular languages
(Everett, 2005). Further, even if we assume that learners do
acquire an unbounded language, there are multiple possible
explanations for why they might do so. One possibility is that
language-external factors encourage unboundedness. For in-
stance, using a form of semantic bootstrapping (Pinker, 1984,
pg. 87), learners might generalize from the child’s mother to
the larger phrase the child’s mother’s mother based on the
world knowledge that mothers have mothers of their own.
Other aspects of experience that might promote unbounded-
ness include nursery rhymes which gradually build recursive
structures (e.g., “This is the House that Jack Built”; de Vil-
liers & de Villiers, 2014) and sentences that are contextually
implied to be infinitely long: The meeting ran on and on and
on and... (Ziff, 1974). An alternative explanation is that un-
boundedness arises from some preference on the part of the
learner—an inductive bias—that favors unbounded languages

over bounded ones.1 This explanation predicts that, for exam-
ple, even without semantic grounding, people will generalize
syntactic patterns beyond the finite bounds of their input.

To test this prediction, we use an artificial language learn-
ing paradigm, in which we train and test participants on a
miniature language that has no semantics. We train partic-
ipants on (bounded) center-embedded pairs of words, such
as A1 A2 A3 B3 B2 B1, where there are two categories of
words (category A and category B) and each word has a sym-
metrically opposite word that it depends on (e.g., A2 and B2
depend on each other: which B-word B2 can be depends on
which A-word A2 is). How learners acquire such a gram-
mar has been the focus of much past work with human learn-
ers (e.g., Perruchet & Rey, 2005; Hochmann, Azadpour, &
Mehler, 2008; Poletiek et al., 2018) and connectionist mod-
els (e.g., Christiansen & Chater, 1999; Kirov & Frank, 2012;
Lakretz, Dehaene, & King, 2020), as center embedding is of-
ten (albeit controversially) claimed to be a key type of struc-
ture in human languages and perhaps even only learnable by
humans (Hauser, Chomsky, & Fitch, 2002).

Critically, it is unclear from past work whether people
who learn center-embedded patterns also generalize them
to greater sequence lengths than were seen during train-
ing. In naturally-occurring text and speech, even though
deep embedding is fairly common for tail recursion, hav-
ing more than one level of center embedding is extremely
rare (Karlsson, 2010).2 Moreover, deep center embedding
poses substantial processing difficulties (Gibson & Thomas,
1999) which have led some to conclude that human language
does not permit unbounded center embedding (Reich, 1969;
Christiansen, 1992). Others counter by invoking the com-
petence/performance distinction to argue that center embed-
ding is not bounded in speakers’ competence but only ap-
pears bounded due to memory constraints (Miller & Chom-
sky, 1963). In artificial language learning, Gentner, Fenn,

1If people have such an inductive bias, an additional question is
what the nature of this bias is. For example, Perfors, Tenenbaum,
Gibson, and Regier (2010) show that an inductive bias for simplicity
can sometimes favor unbounded languages. See the Discussion.

2The presence of deep tail recursion in natural corpora is why we
used center embedding in our experiment even though tail recursion
is a simpler source of unboundedness. If we had used tail recur-
sion, participants might have accepted deep embedding purely due
to transfer from prior linguistic experience, rather than extrapolation
from the experimental training set.
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Margoliash, and Nusbaum (2006) found evidence that song-
birds extrapolate center embedding to novel lengths, but did
not test humans. Fitch and Hauser (2004, supplement) tested
such extrapolation in humans, but later work that controlled
for several confounds concluded that participants had learned
a non-linguistic heuristic rather than the intended grammati-
cal pattern (Perruchet & Rey, 2005; Hochmann et al., 2008).
Poletiek (2002) also investigated human extrapolation, but in
one experiment did not get clear evidence of learning even
for the sequence lengths participants had seen, and in another
only found generalization to novel lengths when the instruc-
tions indicated that sequences could be longer than the ones
shown during training. Similarly, in Cho, Szkudlarek, and Ta-
bor (2016), participants were given feedback after each test
item, and such feedback also gave a direct signal that long
sequences were acceptable. See the online supplement for a
thorough review of prior work.3

To test whether people generalize center embedding to
novel lengths, we use an extrapolation paradigm (Wilson,
2006; Culbertson & Adger, 2014): We train participants on a
dataset that is ambiguous between two grammars of interest,
and then test them on examples that disambiguate these pos-
sibilities, thus revealing learners’ biases. In our case, the two
grammars of interest are one that is bounded at the greatest
depth of center embedding seen during training, and another
that is not bounded at this level. We evaluate whether partic-
ipants interpolate and extrapolate the pattern they are taught.
By interpolate, we mean that they will have learned the in-
tended pattern for (seen and unseen) sequences of lengths less
than or equal to the maximum length they have seen. By ex-
trapolate we mean that they will extend this pattern to allow
sequences of a length greater than they have seen.

If participants have learned the bounded grammar, they
should interpolate but not extrapolate; if they have learned the
unbounded grammar, they should both interpolate and extrap-
olate. Importantly, some participants might fail to interpolate,
making their behavior not consistent with either grammar. As
is typical in work using the extrapolation paradigm, such par-
ticipants are considered irrelevant: if they have not learned
the relevant pattern in the training data, they cannot extrap-
olate it. For our core analyses, therefore, we ask whether
participants who successfully interpolate also extrapolate.

To anticipate our results: We find that, when participants
successfully interpolate the grammatical pattern we teach
them, they also robustly extrapolate that pattern to a greater
sequence length. This result supports the hypothesis that peo-
ple have a learning bias which favors unbounded grammatical
patterns over bounded ones.

Methods
Except where noted, all methods and analyses were prereg-
istered.4 Due to space constraints, not all preregistered anal-

3https://github.com/tommccoy1/center embedding
extrapolation

4https://osf.io/dft6r

yses appear in the paper, but they are available in the online
supplement. A demo of the experiment is also online.5

Participants
103 adult participants were recruited on Amazon Mechanical
Turk.6 We restricted the participant pool to those with a 95%
approval rate and over 5000 approved Human Intelligence
Tasks (HITs), under the Mechanical Turk blog’s recommen-
dations for improving the quality of participants.7 Informed
consent was obtained prior to the experiment. Participants
took approximately 18 minutes and were paid $4.00 USD.

Materials
Our materials were based on the grammar in Figure 2. Gen-
erating sentences from this grammar involves center embed-
ding, the process of embedding one structure in the center
of another structure of the same type (in our case, S). The
sequences generated by the grammar have the form AnBn,
meaning n words from category A followed by n words from
category B. There are nested dependencies between the A
and B elements: which B word can appear in a given posi-
tion is dictated by which A word appears in the symmetri-
cally opposite position. Such a sequence might have the form
A1A2B2B1, where A1 and B1 depend on each other, and A2
and B2 depend on each other.

All words in the grammar are single syllables, following
most artificial language learning work on center embedding
(e.g., Fitch & Hauser, 2004). The words in category A have
the vowel i, while those in category B have the vowel o. Each
A word has exactly one B word that can appear in the sym-
metrically opposite position; specifically, this B word is the
one that has the same syllable structure as the A word. For
example, gri is always matched with klo because both have
consonant-consonant-vowel syllable structure. An example
sequence generated by the grammar is gri djirn vi fo cholm
klo, whose derivation is in Figure 3. That example has two
levels of embedding because it contains the sequence vi fo
embedded inside the sequence djirn cholm, in turn embedded
inside the sequence gri klo.

In our extrapolation design, the training set contained 114
grammatical sequences, using 0, 1, or 2 levels of embedding
(see Figure 1 for a breakdown of the training set). Further
levels of embedding were withheld, so the training set is am-
biguous as to whether embedding deeper than 2 levels is per-
mitted. The test set contained 24 grammatical sequences and
24 ungrammatical sequences with 0, 1, 2, or 3 levels of em-
bedding. Critically, the test examples with 3 levels of em-
bedding will indicate whether participants extrapolated to se-
quences longer than those seen during training. All training
and test examples obeyed the constraint that no word could
appear twice within a given sequence, to prevent participants
from looking for spurious patterns in such repetitions. No

5http://rtmccoy.com/center embedding.html
6https://www.mturk.com/
7https://blog.mturk.com/improving-quality-with

-qualifications-tips-for-api-requesters-87eff638f1d1
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Levels of
embedding

Count in
training set

Count in
test set Grammatical example Ungrammatical example

0 54 6 djirn cholm djirn klo xxx
1 36 10 zin vi fo som zin vi fo plom
2 24 16 i djirn vi fo cholm o i djirn vi fo o cholm
3 0 16 zin id brin gri klo plom ot som zin id brin gri klo ot plom som

Figure 1: Composition of the training and test sets. In the training set, all examples are grammatical. In the test set, half of the
examples for each depth of embedding are grammatical, and the other half are ungrammatical. The bolding of ungrammatical
examples was not present in the experiment. The counts in the training set use the length distribution given by a simple
probabilistic version of our grammar in which each sequence size has 1.5 times the probability of the size one greater than it,
but with the progression truncated after two levels of embedding.

S→ i S o S→ gri S klo
S→ vi S fo S→ brin S plom
S→ id S ot S→ djirn S cholm
S→ zin S som S→ ε

Figure 2: The grammar. ε indicates the empty string.

S

klo

S

cholm

S

fovidjirngri

Figure 3: A tree generated by the grammar in Figure 2 (omit-
ting the final null S), yielding the sequence gri djirn vi fo
cholm klo. This sequence has two levels of embedding: an S
embedded inside an S embedded inside another S.

sequence was used more than once across the training and
test set, except for the sequences with 0 levels of embedding,
since there were too few of those to avoid repetition.

Grammatical examples were generated randomly from the
grammar. We used two methods to generate ungrammatical
sequences. For ungrammatical sequences with 2 or 3 levels of
embedding, we used the swap method: Generate a grammat-
ical sequence, then select two words from the second half of
the sequence and swap them to break the sequence’s nested
dependency structure. Neither of the selected words could
be part of the innermost pair of words. The swap method
ensured that the ungrammatical sequences preserved the fol-
lowing properties:

(1) The number of A words is equal to the number of B
words.

(2) Every pair of consecutive words can grammatically
appear in sequences generated by the grammar.

(3) Each word’s partner from the other A or B class is also
present (albeit potentially in the wrong place).

Preserving these properties ensures that participants must
have acquired the grammar’s nested dependency structure
in order to differentiate grammatical and ungrammatical se-
quences. They could not succeed by simply counting A and B
words (ruled out by property 1), observing only local transi-
tions between words (ruled out by property 2), or treating the
sequences as unordered sets (ruled out by property 3).

To generate ungrammatical sequences with 0 or 1 levels of
embedding, we used the point mutation method: change the
last word in the sequence to a different B word, breaking the
dependency between the sequence’s first word and last word.
These examples lacked property (3), and the ones with 0 lev-
els of embedding further lacked property (2); it is impossible
to generate ungrammatical sequences with 0 or 1 levels of
embedding that have all 3 properties. Therefore, we excluded
these test examples from our primary analyses (although for
completeness we report results on all test examples).

Both the training set and the test set were generated ran-
domly for each participant.

Procedure
Training phase: Participants were told that they would see
sequences that were sentences in an alien language. The 114
sequences in the training set were presented in random order.
For each sequence, a fixation cross was presented for 1 sec-
ond, and then the sequence was presented one word at a time.
As each word appeared, the participant had to press a button
corresponding to that word (Figure 4, left). These buttons
were arranged in a way that was intended to help highlight
the dependencies between words. If a participant pressed the
wrong button, an error message appeared and the sequence
started over from the beginning.

Testing phase: Participants were told they must judge
whether new sequences are possible sentences in this lan-
guage. The 48 test sequences were then presented in random
order. Each entire sequence was presented at once to mitigate
the memory limitations that arise with processing center em-
bedding (e.g., Gibson & Thomas, 1999), and participants had
to click a button indicating whether the sequence was a valid
sentence in the alien language (Figure 4, right).
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Figure 4: Experimental interface. Left: example training screen; right: example testing screen.

We asked for absolute judgments rather than relative judg-
ments (e.g., selecting which of two sentences is better) be-
cause only absolute judgments can establish if participants
had extrapolated the pattern: even if participants did not ex-
trapolate, they might still find grammatical extrapolation ex-
amples to be less bad than ungrammatical extrapolation ex-
amples. Thus, with relative judgments, participants could
show similar behavior whether they had extrapolated or not,
whereas absolute judgments would differentiate these two
types of participants.

To discourage participants from rapidly clicking through
the test without looking at the sequences, there was a brief
delay before the response buttons could be clicked. In addi-
tion, we paid a bonus ($1.00) to participants scoring ≥ 75%
on items with 0, 1, or 2 levels of embedding.

Results
We divide the test set into three parts: examples with 0 or 1
levels of embedding; examples with 2 levels of embedding
(the interpolation subset); and examples with 3 levels of em-
bedding (the extrapolation subset). The preregistered statis-
tical analyses below (https://osf.io/dft6r) support the
following hypotheses, qualitatively suggested by Figures 5
and 6: on all three test subsets, average performance is above
chance (Figure 5, top); further, interpolation accuracy and ex-
trapolation accuracy are strongly positively correlated (Figure
5, bottom; Figure 6).

All participants: Comparisons to chance
We first test whether participants indeed scored significantly
above chance on the three test subsets. For each of these sub-
sets, we ran an intercept-only mixed-effects logistic regres-
sion with by-item and by-participant random intercepts. The
binary response variable was a 1 if the participant responded
correctly or 0 otherwise. These analyses showed that partici-
pants scored significantly above chance on the 0 or 1 levels of
embedding trials (mean = 0.61; p < 0.001), the interpolation
subset (mean = 0.61; p < 0.001), and the extrapolation subset
(mean = 0.59; p < 0.001).

Interpolation success implies extrapolation success
To analyze the relationship between interpolation accuracy
and extrapolation accuracy, we performed three analyses.
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Figure 5: Accuracy summary. Top plot includes all partici-
pants, bottom plot contains only participants who scored 75%
or above on the interpolation subset. Dots are individual par-
ticipants (with x and y jitter). Boxplots show the mean, one
standard deviation above or below the mean, and the range.

First, we ran a correlation test which revealed a strong
positive correlation between interpolation accuracy and ex-
trapolation accuracy (Pearson’s correlation coefficient: 0.82;
p < 0.001). This shows that higher accuracy at identifying
grammatical sequences with 2 levels of embedding (the great-
est depth seen during training) is associated with higher ac-
curacy at identifying grammatical sequences with 3 levels of
embedding (not seen during training).

Second, we investigated the performance of the subset of
participants whose interpolation accuracy was higher than
chance. We did this because our hypothesis is about how
participants will generalize the pattern that they have learned
to a novel length. This hypothesis is thus best evaluated by
looking at participants who have actually learned the pattern
for the lengths they have observed. Our preregistered crite-
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rion for successful interpolation was 75% or above on the
interpolation test subset: this is the minimum score x such
that achieving a score of x or above has a probability less
than 0.05 under a binomial model with p(success) = 0.5 (i.e.,
the probability of success that participants would have by
chance if guessing). 30 participants met this criterion. To see
whether these successful interpolators also extrapolated the
language to 3 levels of embedding, we ran an intercept-only
mixed-effects logistic regression with by-participant and by-
item random intercepts. This regression had a singular fit, so
(following our preregistration) we backed off by removing the
by-participant random intercept. The resulting model showed
that these participants scored significantly above chance on
the extrapolation subset (mean = 0.83, p < 0.001).

It is especially noteworthy that extrapolation accuracy was
high on the grammatical extrapolation trials (mean = 0.87).
This provides particularly strong evidence that participants
have extrapolated: The accuracy on these trials would be 0.00
if participants had learned a grammar bounded at two levels
of embedding, or 0.50 if participants had guessed randomly
on extrapolation. Less importantly, extrapolation accuracy
was also high on the ungrammatical trials (mean = 0.78); i.e.,
participants correctly rejected ungrammatical sequences, as
predicted under the bounded or unbounded grammar.

As a final way to evaluate whether successful interpola-
tion implied extrapolation, we conducted a non-preregistered
(post-hoc) analysis of the performance of individual partic-
ipants (presented in the online supplement). This analysis
reveals no clear examples of individuals who acquired the
grammar in a bounded way, while providing strong evidence
that some individuals have extrapolated the grammar.8

Discussion
In this experiment, we tested the hypothesis that learners are
biased in favor of inferring unbounded structures in language.
We predicted that participants learning a grammar with nested
dependencies would extrapolate to a level of embedding not
present in their training data. As in previous artificial lan-
guage experiments on the learning of center embedding, this
task was difficult for participants. On average, however, our
participants displayed successful learning, albeit with a small
effect size (average accuracy of 61%, where chance is 50%).
Crucially, individuals who successfully learned this pattern
also robustly extended the pattern to larger sequences, with an
average accuracy of 83% on the extrapolation cases. This re-
sult is consistent with the hypothesis that people have a learn-
ing bias which favors extrapolation of grammatical patterns.

Why did participants do so well? Even ignoring extrap-
olation, merely finding above-chance interpolation of cen-
ter embedding is noteworthy. In prior work, several appar-
ent cases of success have later been cast into doubt because

8Other participants learned neither the bounded grammar nor the
unbounded grammar; most of these participants appear to have been
guessing randomly, though there was also a sizable proportion who
labeled all test items as grammatical.
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Figure 6: Extrapolation vs. interpolation accuracy. Dots are
individual participants (with x and y jitter). The blue line is a
regression line with a 95% confidence interval in gray.

the relevant test sets had not observed the 3 properties iden-
tified as crucial above: property (1) (Hochmann et al., 2008;
De Vries, Monaghan, Knecht, & Zwitserlood, 2008), prop-
erty (2) (Perruchet & Rey, 2005; De Vries et al., 2008), or
property (3) (De Vries et al., 2008).9 The prior experiment
most similar to our setup is the “random” condition in Exper-
iment 2 from Poletiek et al. (2018), in which the average ac-
curacy was 0.51 (which was not significantly above chance).

Two manipulations that have improved learning of center
embedding are the use of a long training phase spread over
multiple days (Uddén et al., 2009) and the use of a so-called
starting small set-up, in which training items are ordered
from smallest to largest (Conway, Ellefson, & Christiansen,
2003; Poletiek et al., 2018). However, we found successful
learning while controlling for the properties listed above, and
without either of these manipulations.

We suspect that two novel components of our design con-
tributed to successful learning. First, we believe that our use
of syllable structure (both phonological and orthographic) as
a cue to dependencies makes these dependencies more salient
than they are in past work: most past work either used no

9Three previous papers have found successful learning while also
ruling out the heuristics that the three properties avoid. These pa-
pers achieved this by requiring participants to generate full or par-
tial sequences, rather than discriminating between grammatical and
ungrammatical sequences. Specifically, Rey, Perruchet, and Fagot
(2012) and Ferrigno, Cheyette, Piantadosi, and Cantlon (2020) re-
quired participants to rearrange a provided set of units to form a full
sequence, and Jiang et al. (2018) required participants to complete a
partial sequence. We did not use these paradigms because they only
show relative preferences between potential sequences, whereas our
question required absolute judgments of acceptability. That is, when
a participant generates a sequence, it is unclear if the participant be-
lieves that the sequence is grammatical, or if it is the least bad option
from a set of options that are all ungrammatical.
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phonological cues to the dependencies (e.g., Conway et al.,
2003) or used only the place of articulation of a word’s on-
set (e.g., Poletiek et al., 2018), which we believe is likely less
salient than our property of syllable structure (which was also
in most cases accompanied by place-of-articulation cues).

Second, the button arrangement used during training may
have provided helpful spatial or motor cues. We note, how-
ever, that participants could not succeed at the test if all they
learned was a certain motor pattern applicable to the buttons,
because the buttons were not present during the test phase.

Unbounded generalization? Our results show that partici-
pants generalized the grammar one level of embedding deeper
than they had witnessed. Does this mean that they have
learned an unbounded grammar, or simply a grammar that
is bounded at a level higher than the one they have observed?

One way to think about the difference between a gram-
mar with bounded center embedding and a grammar with un-
bounded center embedding is that the former would likely
need to include one component for every level of embedding.
For instance, the language {AnBn, 0 ≤ n ≤ 3} (without A-B
dependencies) could be expressed with the context-free gram-
mar in (4), which has one rule per sequence size, or with the
context-sensitive grammar in (5), which has one context per
sequence size (‘#’ marks edges):

(4) S→ ε; S→ AB; S→ AABB; S→ AAABBB

(5) S→ ASB
/

[ # # | #A B# | #AA BB# ]; S→ ε

(6) S→ ASB; S→ ε

If participants have in fact acquired a bounded grammar along
the lines of (4) or (5), then in order to generalize to unseen
levels of embedding, they would have needed to posit a spe-
cific part of the grammar for that specific level of embedding
without ever having seen a sequence that used that part of the
grammar. While that is in principle possible, it seems less
likely than that they have acquired a grammar with a recur-
sive rule that generates any level of embedding, as in (6).

Nature of the inductive bias: Our results show that people
have an inductive bias that leads them to extrapolate a center-
embedded pattern that they have learned. What is the nature
of this bias? We are aware of two possibilities. The more
obvious possibility is a bias which favors unbounded over
bounded nesting. The other possibility is a bias for simplic-
ity (Perfors et al., 2010): in many cases, including ours, an
unbounded grammar—e.g., (6)—provides a simpler explana-
tion of the training data than a bounded grammar does—e.g.,
(4)—under a Bayesian definition of simplicity that factors in
the size of the grammar (the prior) and the probability that
the grammar assigns to the training corpus (the likelihood). A
learner could therefore prefer the unbounded grammar solely
because of a general bias for simplicity, rather than a bias for
unboundedness. The current study cannot differentiate these

biases, but it verifies a crucial behavioral prediction made by
both of them, namely that people will generalize center em-
bedding beyond the bounds they have observed, even without
real-world grounding that could encourage unboundedness.
This fact is not clear from existing natural language acquisi-
tion data, so establishing it is an important first step in inves-
tigating these biases. Now that we have verified the behavior
that must be explained, follow-ups are in progress to tease
apart the possible explanations for that behavior.

Ecological validity: By design our artificial language is
much simpler than natural language, and participants learn
it in a way that is in some sense unnatural. However, the
main strength of artificial language learning paradigms is that
they enable us to carefully control the input to learning in a
way that is impossible when studying natural language ac-
quisition. In particular, here we can ensure that there is no
direct evidence for depths of embedding greater than 2. That
said, there may be interesting ways in which enriching the in-
put might affect our results. For example, future work could
test whether learning behavior changes when the stimuli are
semantically meaningful.

There remains the concern that laboratory language learn-
ing experiments might not tap into the learning mechanisms
relevant for natural language acquisition. For example, pre-
vious research on center embedding has in some cases shown
that participants use heuristics (Perruchet & Rey, 2005).
While we have designed our stimuli to make those heuris-
tics unhelpful, it is still worth noting that here, as elsewhere,
converging evidence is needed to convincingly determine
what biases learners bring to language acquisition. In past
work, ALL has corroborated or enhanced insights from natu-
ral language acquisition (Wonnacott, Newport, & Tanenhaus,
2008), language typology (Culbertson, Smolensky, & Legen-
dre, 2012), and computational modeling (Schuler, Yang, &
Newport, 2016), so we conclude that ALL can—and does—
play an important role in piecing together our understanding
of learning biases. See Culbertson and Schuler (2019) and
Morgan and Newport (1981) for further discussion of what
ALL can tell us about language acquisition.

Conclusion
In this study, we used an artificial language learning paradigm
to show that, when participants learned a center-embedded
pattern from sequences containing at most 2 levels of embed-
ding, they extrapolated it to a greater depth of embedding.
Interestingly, we found successful learning of the intended
grammar with a simple design (i.e., without manipulations
like starting small or using a multi-day training period that
were necessary in previous studies) and while controlling for
common confounds present in previous work. Our results are
consistent with the hypothesis that people have a bias for gen-
eralizing syntactic patterns to greater sizes than they have ob-
served. Such a bias would support long-standing claims that
human languages “make infinite use of finite means.”
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