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ABSTRACT OF THE DISSERTATION

Localization-type Results for Singular Random Schrödinger Operators

By

Nishant Rangamani

Doctor of Philosophy in Mathematics

University of California, Irvine, 2021

Professor Svetlana Jitomirskaya, Chair

In this thesis we will prove various types of localization for some classes of one-dimensional

random Schrödinger operators. The central theme for all models considered will be singu-

larity. Here, we use the term singularity mainly to refer to the possible lack of continuity in

the probability distribution governing the randomness of the potential terms; although, we

also deal with the other notion of singularity: that of Jacobi matrices and its counterpart,

the unboundedness of the potential.

In particular, we will prove spectral localization for unbounded one dimensional random

Jacobi operators. Such operators are obtained by incorporating independent and identically

distributed randomness into the off-diagonal terms of the standard Anderson model. The

operators exhibit spectral localization if almost surely the spectrum is pure point and all of

the eigenfunctions decay exponentially.

We also consider so-called random word models. These generalizations of random Schrödinger

operators have potential terms given by (row) vectors of bounded but random length which

permits consideration of local correlations within the potential. These operators sometimes

have a finite set of critical energies where the rate of localization tends to zero as one ap-

proaches these energies. Nevertheless, we will prove that these operators exhibit exponential

dynamical localization in expectation on compact sets not containing any critical energies.
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Chapter 1

Introduction

In the following two sections we define the models that will be considered in this work.

1.1 Random Jacobi Operators

We first define a family of random Jacobi operators on `2(Z) by:

Hωψ(n) = tω(n− 1)ψ(n− 1) + tω(n)ψ(n+ 1) + Vω(n)ψ(n), (1.1)

where {Vω(n)}∞n=−∞ and {tω(n)}∞n=−∞ are two i.i.d processes, independent of each other on

some probability space Ω.

More specifically, let Ω0 be R+ × R with probability measure µ1 on R+, µ2 on R and µ :=

µ1×µ2 on Ω0. Then, with Ω = ΩZ
0 , P = µZ, and ω(n) = (ω1(n), ω2(n)), we let tω(n) = ω1(n)

and Vω(n) = ω2(n). Additionally, we have the associated shift operator on Ω given by

T (ω(n)) = ω(n − 1), which is ergodic. Ergodicity provides the foundation for the study of
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such random models.

We shall further suppose that Vω(0) or tω(0) is almost surely (a.s.) non-constant. The

only other conditions will be given by finiteness of certain moments of these processes. In

particular, we require E[|Vω(0)|α] < ∞, E[(1/tω(0))α] < ∞, and E[(tω(0))α] < ∞, for some

α > 0. Our central result for this model states that for almost every (a.e.) ω ∈ Ω, Hω has

pure point spectrum and all of its eigenfunctions decay exponentially. This phenomenon is

known as spectral localization.

We now describe some of the historical localization results for the standard Anderson model

in one dimension (when tω(n) = 1 for all n and all ω). Firstly, it is worth pointing out

that many proofs exist when the probability measure governing the Vω(n)’s is regular. Here,

regularity refers to the existence of f ∈ L1(R) such that µ2(E) =
∫
E
f(x)dx for all Lebesgue

measurable subsets E of R. The first proof under these conditions (in addition to the

assumption that f ∈ L∞ with compact support) was obtained by Kunz and Souillard in

1980 [49]. In 1987, Carmona, Klein, and Martinelli [10] resolved the spectral localization

problem for the one-dimensional Anderson model with singular potentials using a technique

known as multi-scale analysis (MSA). The MSA is a versatile multidimensional technique

that we will elaborate on below. Another technique developed by Simon and Wolff, which

can only be applied in the one dimensional setting when the underlying distribution has a

non-trivial absolutely continuous component, involves spectral averaging [57]. Finally, while

the fractional moment method originally developed by Aizenman and Molchanov in [3] (and

extended in [4] to cover the case of Hölder continuous probability distribution) does not

require one-dimensionality, it does not solve the singular distribution issue in one dimension.

The multi-scale analysis presented in [10] is a robust method based on the work by Frölich

and Spencer in [26]. As mentioned above, the techniques in [26] are multi-dimensional and

in [10], these techniques are applied in the presence of high disorder in dimension greater

than one. The argument in [26] proves almost sure expoential decay of the Green’s function
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(in terms of the distance between two points in Z) for a single energy. The results in

[26] were significantly improved in [25], with [25] providing a proof of localization in the

multidimensional high disorder regime, but absolute continuity of the single-site distribution

remained a requirement. The MSA is based on Wegner’s lemma [60] which requires regularity

and the authors in [10] were able to overcome this requirement in one dimension by obtaining

Hölder regularity of the integrated density of states based on LePage’s results on large

deviations for random matrix products [50]. The arguments from [26, 25] were substantially

simplified by von Dreifus and Klein in [48] while still allowing for singular potentials as in [10]

and these simplifications played an important role in the subsequent extensions discussed

below. Indeed, Klein and various collaborators have further developed the MSA over several

papers to not only cover a wide variety of models, but also to provide an axiomatic framework

for deriving stronger dynamical statements [33, 34, 31, 32]. In fact, the MSA has also been

applied in conjunction with a unique continuation principle for harmonic functions on Z2

to obtain localization at the bottom of the spectrum in dimensions two and three [18, 51]

and in [62] the results from [18, 51] are taken as a starting hypothesis to obtain dynamical

results following the MSA framework from [34]. Finally, we mention that an alternative

method to obtain Hölder regularity of the integrated density of states has been explored

from a harmonic analysis perspective in [54].

The MSA-based proofs did not take full advantage of one-dimensionality and the existence

of well-defined dynamical quantities, such as the Lyaunov exponent. Recently, in 2017,

three new proofs of spectral localization for the one-dimensional Anderson model requiring

boundedness (but no regularity of the potential) were found. All three works rely on the

uniform positivity of the Lyapunov exponent but employ different approaches to leverage said

quantity. In particular, the approach in [9] adapts rather sophisticated techniques developed

in [8] for the deterministic case and is similar in length and complexity to an MSA-based

proof. In [37], Gorodetski and Kleptsyn employ a purely geometric approach based on the

action of transfer matrices on the boundary of the unit circle in R2. Finally, the techniques

3



in [44] are adapted from the so-called non-perturbative approach developed in [45] to prove

spectral localization for the quasi-periodic Almost-Mathieu operator.

The proof presented in [44] provides the most direct route to spectral localization for singular

potentials beginning with uniform positivity of the Lyapunov exponent. The techniques

developed therein lend credence to the idea that whenever appropriate analogs of quasi-

periodic techniques can be developed for the random case, proofs in the random setting can

be greatly simplified. In fact, this is accomplished by using the positivity of the Lyapunov

exponent to effectively replace parts of the multi-scale analysis; yet, it requires boundedness

as an important input and so do the other proofs described above.

Since the proof presented in [10] requires only a moment assumption on the potential rather

than boundedness, it is natural to question whether the argument in [44] extends under these

assumptions. In this thesis, we prove that said arguments can in fact be extended to cover

the following cases:

i) Vω(0) is unbounded and tω(0) = 1 a.s.,

ii) Vω(0) is bounded (but not a.s. constant), while tω(0) is unbounded and/or singular i.e.

tω(0) ∈ (0,∞) a.s. (as opposed to tω(0) ∈ [M1,M2] a.s. with 0 < M1 ≤M2) and, finally,

iii) Vω(0) is unbounded, tω(0) is unbounded and/or singular in the same sense as case ii).

We note that case i) is simply the Anderson model with an unbounded potential, recovering

the result of Carmona, Klein, and Martinelli [10]. The precise statement of the main theorem

is as follows:

Theorem 1.1.1. Suppose E[|Vω(0)|α] < ∞, E[(1/tω(0))α] < ∞, E[(tω(0))α] < ∞ for some

α > 0 and Vω(0) or tω(0) is almost surely not constant. Then, with Hω defined as in

eq. (1.1), for almost every (a.e.) ω, the spectrum of Hω is pure point and its eigenfunctions

decay exponentially.
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1.2 Random Word Models

In the fourth chapter of this work, we consider random word models on `2(Z) given by

Hωψ(n) = ψ(n+ 1) + ψ(n− 1) + Vω(n)ψ(n).

The potential is a family of random variables defined on a probability space Ω. To construct

the potential V above, we fix an m ∈ N (a maximum word length) then consider words

. . . , ω−1, ω0, ω1, . . . which are vectors in Rn with 1 ≤ n ≤ m, so that Vω(0) corresponds

to the kth entry in ω0. A precise construction of the probability space Ω and the random

variables Vω(n) is carried out in Section 4.1.1 and the precise definition of Hω is given in

eq. (4.4).

These models are of particular interest not only because they cover a wide class of general-

izations of the Anderson model such as the random dimer model, random polymer models,

and generalized Anderson models [13], but also because they provide natural examples of the

subtleties involved in the various forms of localization: spectral, dynamical, and exponential

dynamical (in expectation).

As mentioned in the previous section, spectral localization occurs when almost surely, the

spectrum is pure point and all of its eigenfunctions decay exponentially. Another type

of localization, dynamical localization, is best understood by first discussing the solutions

to the Schrödinger equation i∂tψ = Hωψ. In this case, the functional calculus implies

that ψ(t) = e−itHωψ(0). Thus, the study of e−itHw is essential for understanding the time

evolution of the state ψ and it is dynamical localization (defined below) which implies that

the wave packet is suitably localized and there is an absence of transport in the corresponding

medium. We say that Hω exhibits dynamical localization on the interval I if for a.e. ω, and
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any ψ ∈ `2(Z) which decays exponentially,

sup
t
〈PI(Hω)e−iHωtψ, |X|qPI(Hω)e−iHωtψ〉 <∞, (1.2)

where PI(Hω) is the spectral projection of Hω onto the set I and q > 0.

While it was well known that dynamical localization implies spectral localization, that dy-

namical localization was a strictly stronger notion was not understood until the authors

in [15] constructed an artificial model which was spectrally but not dynamically localized.

Indeed, the example in [15] showed that pure point spectrum with exponentially decaying

eigenfunctions (spectral localization) could coexist with lim supt→∞
||xe−itHδ0||2

tα
= ∞ for all

α < 2. In summary, spectral localization is not a sufficient condition to ensure an absence

of transport, while the stronger notion of dynamical localization does imply this absence.

A well-known physically relevant model which sheds more light on these phenomena is the

random dimer model. This model was first introduced in [19] and in the random word

context introduced above, ωi takes values (λ, λ) or (−λ,−λ) with Bernoulli probability. It is

known that the spectrum of the operator Hω is almost surely pure point with exponentially

decaying eigenfunctions. On the other hand, when 0 < λ ≤ 1 (with λ 6= 1√
2
), there are

critical energies at E = ±λ where the Lyapunov exponent vanishes [14]. These so-called

critical energies are precisely what prevent the absence of transport and lead to localization-

delocalization phenomena.

In particular, the vanishing Lyapunov exponent at these energies can be exploited to prove

lower bounds on quantum transport resulting in almost sure overdiffusive behavior [43]. The

authors in [43] show that for almost every ω and for every α > 0 there is a positive constant

6



Cα such that

1

T

∫ T

0

〈δ0, eiHωt|X|qe−iHωtδ0〉dt ≥ CαT
q− 1

2
−α. (1.3)

This was later extended to a sharp estimate in [42].

In light of these remarks, the over-diffusive behavior above contrasts with the fact that

not only does the random dimer model display spectral localization, but also dynamical

localization on any compact set I not containing the critical energies ±λ [14].

We strengthen this last result by showing that there is exponential dynamical localization

in expectation (EDL) on any compact set I with ±λ /∈ I. We say the family of operators

Hω display EDL on the interval I if there are C, α > 0 such that for any p, q ∈ Z,

E
[
sup
t∈R
|〈δp, PI(Hω)e−itHωδq〉|

]
≤ Ce−α|p−q|. (1.4)

EDL has several interesting physical consequences including exponential decay of the two

point function in the ground state [2] and thus it is important to prove such results in

physically relevant contexts such as the dimer and random polymer cases. Our results,

however, when taken in conjunction with the over-diffusive behavior above illustrate that

the strength of localization does not necessarily impact transport when the localization

regime excludes critical energies.

One of the central challenges in dealing with random word models is the lack of regularity

of the single-site distribution. The absence of regularity is exactly what allows random word

models to encompass singular Anderson models, random dimer models, and more generally,

random polymer models. The issues presented by singularity were previously overcome
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using multi-scale analysis in various stages; first, in the Anderson setting [10], then in the

dimer case [14, 30], and finally for random word models themselves in [13]. The multi-scale

approach leads to weaker dynamical localization results than those where sufficient regularity

of the single-site distribution allows one to instead appeal to the fractional moment method

(e.g. [21], [4]). In particular, EDL always follows in the framework of the fractional moment

method and the one dimensional techniques in [49, 16], but of course regularity is required.

Loosely speaking, the multi-scale analysis shows that the complement of the event where one

has exponential decay of the Green’s function has small probability. One of the consequences

of this method is that while this event does have small probability, it can only be made sub-

exponentially small.

A recent new proof of spectral and dynamical localization for the one-dimensional Anderson

model for arbitrary single-site distributions [44] uses positivity and large deviations of the

Lyapunov exponent to replace parts of the multi-scale analysis. The major improvement

in this regard (aside from a shortening of the length and complexity of localization proofs

in one-dimension) is that the complement of the event where the Green’s function decays

exponentially can be shown to have exponentially (rather than sub-exponentially) small

probability. These estimates were implicit in the proofs of spectral and dynamical localization

given in [44] and were made explicit in [29]. The authors in [29] then used these estimates

to prove EDL for the Anderson model and we extend those techniques to the random word

case.

There are, however, several issues one encounters when adapting the techniques developed

for the Anderson model in [29, 44] to the random word case. Firstly, in the Anderson

setting, a uniform large deviation estimate is immediately available using a theorem in [59].

Since random word models exhibit local correlations, there are additional steps that need

to be taken in order to obtain suitable analogs of large deviation estimates used in [29, 44].

Secondly, random word models may have a finite set of energies where the Lyapunov exponent

8



vanishes and this phenomena demands care in obtaining estimates on the Green’s functions

analogous to those in [29, 44]. Dealing with these issues does however, produce an unexpected

benefit. Since we must consider Green’s functions for non-symmetric intervals, we are able

to obtain exponential decay of the Green’s function centered around even and odd points

simultaneously, while the arguments in [29, 44] require separate considerations.

Theorem 1.2.1. With Hω defined in eq. (4.4) (and satisfying eq. (4.1)), for a.e. ω, the

spectrum of Hω is pure point and all of its eigenfunctions decay exponentially.

Our main result is:

Theorem 1.2.2. For Hω defined in eq. (4.4) (and satisfying eq. (4.1)), there is a finite

D ⊂ R such that if I is a compact set and D ∩ I = ∅, then Hω exhibits exponential

dynamical localization in expectation in the interval I.

9



Chapter 2

Preliminaries

Before we can prove our desired results, we must first establish some preliminaries. We

divide this task into two sections: deterministic preliminaries and random preliminaries. In

the first section we describe the various notations and conventions one needs to understand

the eigenvectors of our operator. We also provide the details on relationships between these

objects which are not found in the literature for the off-diagonal case. As these relationships

hold for the deterministic analog of our random operators (eq. (1.1)), the results will be stated

in this context. As suggested by its name, the results in the random section rely heavily on

randomness. Additionally, the results contained therein are of an advanced nature as they

are proven in various well-known papers within the field.

2.1 Deterministic Preliminaries

We begin with the deterministic analog of our random Jacobi operators:
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Hψ(n) = t(n− 1)ψ(n− 1) + t(n)ψ(n+ 1) + V (n)ψ(n), (2.1)

where {V (n)}∞n=−∞ and {t(n)}∞n=−∞ are real-valued and non-negative sequences on Z.

Remark 1. The operator H above acts on `2(Z).

For this operator on `2(Z), we will study its eigenvectors and define the objects needed to

prove localization in the random setting. In particular, we will eventually apply the results

below to Hω where ω ∈ Ω is fixed. We note that we include the proofs of several elementary

results in this section largely because they do not appear in the literature for the off-diagonal

case.

Before proceeding with the task described above, we describe the setting under which H is

self-adjoint.

2.1.1 Self-Adjointness of H

Based on the Weyl m-function theory, Lemma 2.16 in [58] gives a simple criterion for self-

adjointness of H. Namely, H is self-adjoint if
∑∞

n=−∞ 1/t(n) = ∞. We will impose this

condition on {t(n)}∞n=−∞ for the remainder of this section.

Remark 2. We will later observe in Section 2.2.2 that the conditions provided in the random

case imply almost sure self-adjointness.

2.1.2 Generalized Eigenfunctions

Definition 2.1.1. We call ψ : Z → R a generalized eigenfunction of H with generalized

eigenvalue E if Hψ = Eψ and |ψ(n)| ≤ (1 + |n|) for all n ∈ Z.
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Generalized eigenfunctions are best understood via the transfer matrices defined below. That

is for k ∈ Z and E ∈ R, we define a one-step transfer matrix:

Definition 2.1.2.

Tk,E :=

E−V (k)
t(k)

−1
t(k)

t(k) 0

 . (2.2)

The connection between transfer matrices and generalized eigenfunctions follows from the

fact that:

Tk,E

 ψ(k)

ψ(k − 1)t(k − 1)

 =

ψ(k + 1)

ψ(k)t(k)

 . (2.3)

By setting S[a,b],E =
∏a

k=b Tk,E where a ≤ b, a, b ∈ Z, we can understanding the evolution of

ψ from a to b since:

S[a,b],E

 ψ(a)

ψ(a− 1)t(a− 1)

 =

ψ(b+ 1)

ψ(b)t(b)

 . (2.4)

Finally, the concepts above can be connected by considering the restriction of H to intervals

[a, b] ∩ Z where a, b ∈ Z.

We let {δk} denote the standard basis on `2(Z) (i.e. δk(n) = 1 if k = n and 0 otherwise) and

let I[a,b] be the operator defined by I[a,b](δk) = δk if k ∈ [a, b] ∩ Z and 0 otherwise. Now we

define:
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H[a,b] := I[a,b]HI[a,b].

so that H[a,b] is the restriction of H to [a, b]∩Z with Dirichlet (i.e. zero) boundary condition.

For E /∈ σ(H[a,b]) (the spectrum of H[a,b]), we let G[a,b],E = (H[a,b] − E)−1.

Finally, we let:

P[a,b],E = det(H[a,b] − E) (2.5)

and

P̃[a,b],E = det(E −H[a,b]). (2.6)

Note that P̃[a,b],E = (−1)b−a+1P[a,b],E.

2.1.3 Transfer Matrices - Determinants

Below, we express the products of transfer matrices along the interval [a, b] ∩ Z through

determinants of H[a,b] − E.

We prove the following lemma by induction.
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Lemma 2.1.1. If a, b ∈ Z with a+ 1 ≤ b and c = t(a)t(a+ 1) · · · t(b), then

S[a,b],E =

 P̃[a,b],E

c

−P̃[a+1,b],E

c

P̃[a,b−1](t(b))
2

c

−P̃[a+1,b−1](t(b))
2

c

 . (2.7)

Proof. For the base case, (b = a+ 1), we have:

S[a,b],E = S[a,a+1],E = Ta+1,ETa,E

=

E−V (a+1)
t(a+1)

−1
t(a+1)

t(a+ 1) 0


E−V (a)

t(a)
−1
t(a)

t(a) 0


=

 (E−V (a+1))(E−V (a))
t(a+1)t(a)

− t(a)
t(a+1)

−E−V (a+1)
t(a+1)t(a)

t(a+1)
t(a)

(E − V (a)) − t(a+1)
t(a)

 .

Now,

E −H[a,a+1] =

E − V (a) −t(a)

−t(a) E − V (a+ 1)

 .
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Thus,

P̃[a,a+1],E = (E − V (a))(E − V (a+ 1)) + (t(a))2

−P̃[a+1,a+1],E = −(E − V (a))

−P̃[a,a],E(t(a+ 1))2 = (E − V (a))(t(a+ 1))2

−P̃[a+1,a],E(t(a+ 1))2 = −(t(a+ 1))2.

Dividing the quantities above by t(a)t(a+ 1) shows that the base case holds.

Now suppose the result holds for [a, b]. We wish to show it holds for [a, b + 1]. By the

inductive hypothesis, we have:

S[a,b+1] =

E−V (b+1)
t(b+1)

− 1
t(b+1)

t(b+ 1) 0

 · S[a,b]

=

E−V (b+1)
t(b+1)

− 1
t(b+1)

t(b+ 1) 0


 P̃[a,b],E

c
− P̃[a+1,b],E

c

P̃[a,b−1],E(t(b))
2

c
− P̃[a+1,b−1],E(t(b))2

c


=

a11 a12

a21 a22

 ,

where
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a11 =
E − V (b+ 1)

t(b+ 1)

P̃[a,b],E

c
−
P̃[a,b−1],E(t(b))2

t(b+ 1)c
,

a12 =

(
E − V (b+ 1)

t(b+ 1)

)(
−P̃[a+1,b],E

c

)
+
P̃[a+1,b−1],E(t(b))2

t(b+ 1)c
,

a21 =
P̃[a,b],Et(b+ 1)

c
, and

a22 =
−P̃[a+1,b],Et(b+ 1)

c
.

Note that

E−H[a,b+1] =



E − V (a) −t(a) 0 0 · · · 0

−t(a) E − V (a+ 1) −t(a+ 1) 0 · · · 0

0 −t(a+ 1) E − V (a+ 2) −t(a+ 2) · · · 0

0 0
. . . . . . . . .

...

...
...

... −t(b− 1) E − V (b) −t(b)

0 0 · · · 0 −t(b) E − V (b)


.

We compute the determinant of the above matrix via the cofactor expansion along the last

row to obtain:

P̃[a,b+1],E = (E − V (b+ 1)) · P̃[a,b] − (−t(b))2 · P̃[a,b−1],E.

Similarly,
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P̃[a+1,b+1],E = (E − V (b+ 1))P̃[a+1,b],E − (−t(b))2 · P̃[a+1,b−1],E.

Dividing the determinants above by t(a) · · · t(b)t(b + 1) gives our desired result in the first

row. Multiplying the expressions for a21 and a22 by t(b+ 1)/t(b+ 1) gives the desired result

in the second row and completes the proof.

2.1.4 Green’s Function - Transfer Matrix

Since G[a,b],E is a linear operator on a finite-dimensional vector space (Span({δa, ..., δb}), we

can express G[a,b],E as a matrix with respect to the above basis. For a ≤ x ≤ y ≤ b (x, y ∈ Z),

we let G[a,b],E(x, y) denote the corresponding matrix element of said representation. We

express these matrix elements via determinants of H[a,b] − E through the following lemma.

Lemma 2.1.2. If a, b, x, y ∈ Z with a ≤ x ≤ y ≤ b, then

|G[a,b],E(x, y)| =
|P[a,x−1],Et(x) · · · t(y − 1)P[y+1,b],E|

|P[a,b],E|
. (2.8)

where

P[a,b],E := 1, if b < a,

t(a) · · · t(b) := 1, if b < a, and

t(a) · · · t(b) := t(a), if a = b.
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Proof. G[a,b],E(x, y) is given by the xth coordinate of (G[a,b],E)δy. By Cramer’s rule,

G[a,b],E(x, y) =
det(H

(x,y)
[a,b] − E)

det(H[a,b] − E)
.

Here, H
(x,y)
[a,b] − E represents the matrix obtained by replacing the xth column of H[a,b] − E

with δy.

We have:

H
(x,y)
[a,b] −E =



 H[a,x−1] − E


t(x− 1)


t(x)

V (x+ 1)− E . . .

t(y − 1)


t(y)

 H[y+1,b] − E





.

We again employ the cofactor expansion along the row containing t(x − 1) and t(x) to

compute the determinant of the above matrix. We show that the minor corresponding to

the t(x − 1) entry does not contribute to the determinant. Successive cofactor expansions

using t(x − 1), t(x − 2), and so on produces a matrix with first row consisting of all zeros

after (x − a)-many steps. We can deal with the minor corresponding to t(x) similarly by

expanding along the row containing t(x), t(x+ 1), . . ., and t(y−1). Thus, the absolute value

of the determinant in question is (up to a sign) equal to the product of t(x) · · · t(y − 1) and
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the determinant of the block matrix:


[
H[a,x−1] − E

]
[
H[y+1,b] − E

]
 . (2.9)

The result now follows.

2.1.5 Green’s Function and Generalized Eigenvectors

Finally, we establish the relationship between the inverse of H[a,b]−E and generalized eigen-

functions (with generalized eigenvalue E).

Lemma 2.1.3. For a generalized eigenfunction ψ of H with generalized eigenvalue E, and

x ∈ [a, b],

ψ(x) = −G[a,b],E(x, a)ψ(a− 1)t(a− 1)−G[a,b],E(x, b)ψ(b+ 1)t(b).

Proof. We “decouple” the operator H by defining

H̃δk(m) =



t(b) if k = b and m = b+ 1,

t(b) if k = b+ 1 and m = b,

t(a− 1) if k = a and m = a− 1,

t(a− 1) if k = a− 1 and m = a,

0 otherwise.
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H1δk(m) =


(Hδk)(m) if k,m ∈ [a, b],

0 otherwise.

H2δk(m) =


(Hδk)(m) if k,m /∈ [a, b],

0 otherwise.

We then have H = H1 +H2 + H̃. If Hψ = Eψ with x ∈ [a, b], then (H1−E)ψ(x) = −H̃ψ(x)

since H2 vanishes on [a, b].

Applying G[a,b],E on both sides of the above equality yields:

ψ(x) = −G[a,b],EH̃ψ(x)

= −G[a,b],E(x, a)ψ(x)t(a− 1)−G[a,b],E(x, b)ψ(x)t(b).

2.2 Random Preliminaries

2.2.1 Notations and Conventions

We let Hω,[a,b] denote the operator Hω restricted to the interval [a, b] with zero boundary

condition, σ(Hω,[a,b]) denote its spectrum, and for j ∈ [1, b− a + 1] ∩ N, Ej,[a,b],ω be the jth

eigenvalue of Hω,[a,b].
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For a discrete Jacobi operator Hω, we denote the Green’s function on the interval [a, b] with

energy E /∈ σ(Hω,[a,b]) and zero boundary condition as

G[a,b],E,ω = (Hω,[a,b] − E)−1. (2.10)

G[a,b],E,ω can be viewed as a (b− a+ 1)× (b− a+ 1) matrix and we denote the x, y entry of

this matrix as G[a,b],E,ω(x, y).

We also let P[a,b],E,ω = det(Hω,[a,b] − E) and P[a,b] be µ[a,b]∩Z on Ω
[a,b]∩Z
0 .

Definition 2.2.1. For c > 0 and n ∈ N, we say x ∈ Z is (c, n, E, ω)-regular if

|G[x−n,x+n],E,ω(x, x− n)| ≤ 1

tω(x)
e−cn

and

|G[x−n,x+n],E,ω(x, x+ n)| ≤ 1

tω(x+ n)
e−cn.

Definition 2.2.2. We say x ∈ Z is (c, n, E, ω)-singular if it is not (c, n, E, ω)-regular.

We first discuss some consequences of ergodicity, then set some conventions and list some

additional objects and formulas below.

We let

Tk,E,ω :=

E−Vω(k)
tω(k)

−1
tω(k)

tω(k) 0

 ,
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so that for a generalized eigenfunction ψω of Hω, we have:

Tk,E,ω,

 ψω(k)

ψω(k − 1)tω(k − 1)

 =

 ψω(k + 1)

ψω(k)tω(k)

 .

Moreover, for any interval [a, b], we set S[a,b],E,ω =
∏a

k=b Tk,E,ω,

so that

S[a,b],E,ω

 ψω(a)

ψω(a)tω(a− 1)

 =

ψω(b+ 1)

ψω(b)tω(b)

 . (2.11)

Since the shift operator T on Ω is ergodic and E[ln+ ||Tk,E,ω||] <∞, we can apply Kingman’s

subadditive ergodic theorem [46] to obtain the Lyapunov exponent:

γ(E)
a.e. ω
:= lim

n→∞

ln ||S[1,n],E,ω||
n

.

Remark 3. Note that the above limit exists a.e. ω for a fixed energy E.

We now apply the formulas from the previous section to Hω.

For a generalized eigenfunction ψ of Hω, and x ∈ [a, b], by Lemma 2.1.3 we have

ψ(x) = −G[a,b],E,ω(x, a)ψ(a− 1)tω(a− 1)−G[a,b],E,ω(x, b)ψ(b+ 1)tω(b). (2.12)
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For x ≤ y, by Lemma 2.1.2 we have:

|G[a,b],E,ω(x, y)| =
|P[a,x−1],E,ω|tω(x) · · · tω(y − 1)|P[y+1,b],E,ω|

|P[a,b],E,ω|
,

where

P[a,b],E,ω := 1, if b < a,

tω(a) · · · tω(b) := 1, if b < a, and

tω(a) · · · tω(b) := tω(a), if a = b.

By Lemma 2.1.1,

S[a,b],E,ω =

 P[a,b],E,ω

tω(a)···tω(b)
−P[a+1,b],E,ω

tω(a)···tω(b)
P[a,b−1](tω(b))

2

tω(a)···tω(b)
−P[a+1,b−1](tω(b))

2

tω(a)···tω(b)

 . (2.13)

2.2.2 Unboundedness

There are a variety of results that the argument given in [44] relies on; however, the most

important results pertain to the positivity of the Lyapunov exponent, an estimate by Craig-

Simon [11] that provides uniform bounds on transfer matrices, and certain large deviation

estimates [59]. That these theorems can be applied to bounded random Schrödinger opera-

tors is well known and described here. In the following section, we describe their extension

to the singular-unbounded Jacobi case.

We begin with self-adjointess of the operators Hω, almost sure constancy of the spectrum,

and Schnol’s theorem.

1. As noted in Section 2.1.1, a sufficient condition for almost sure self-adjointness of the
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Hω’s is
∑∞

n=−∞
1

tω(n)
=∞ for a.e. ω. This condition holds by our assumptions on the

tω(n)’s. In particular, since the tω(n)’s are positive i.i.d. random variables, the law of

large numbers ensures that Hω is self-adjoint for a.e. ω.

2. A classical result known as Schnol’s theorem states that the spectral measures of the

standard Anderson model are supported by the set of generalized eigenvalues. These

results were extended by Han in [39] to long range operators with off-diagonal decay.

In particular, by [39], we can analyze the generalized eigenfunctions en route to lo-

calization as in the bounded case (i.e. for a.e. ω, the spectral measures of Hω are

supported by the set of generalized eigenvalues).

3. With regards to the almost sure constancy of the spectrum, Kirsch and Martinelli [47]

extended the result of Pastur [53] to cover unbounded ergodic potentials. Thus, by

[47], we have a non-random set Σ such that σ(Hω) = Σ for a.e. ω.

We now continue our discussion with the extension of various estimates on the Lyapunov

exponent from the bounded to unbounded case.

1. (Unbounded) Craig-Simon Estimates.

We begin by describing the exact conditions under which Craig and Simon [11] prove

their upper-bounds on products of transfer matrices.

Suppose Mω = ∆ + Vω is a one-dimensional discrete random Schrödinger operator

where the potential V is a bounded ergodic process, with

Ak,E,ω :=

E − Vω(k) −1

1 0

 ,
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and R[a,b],E,ω :=
∏a

k=bAk,E,ω. Additionally, let

γ+(ω,E) = lim sup
n→∞

ln ||R[1,n],E,ω||
|n|

,

γ−(ω,E) = lim sup
n→∞

ln ||R−1[−n,−1],E,ω||
|n|

,

and γ(E) denote the associated Lyapunov exponent.

Theorem 2.2.1 (Craig-Simon [11]). In the above setting, for a.e. ω and all E,

γ±(ω,E) ≤ γ(E).

The proof given in [11] only requires that the random process through which the

operator is defined is ergodic, in addition to the finiteness of E[ln+ ||Ak,E,ω||]. Both

these requirements hold for Hω, given that the diagonal and off-diagonal elements are

i.i.d. and our assumptions on the expectations of tω(0), 1/tω(0),and Vω(0). Specifically,

the finiteness of the above quantity is used to ensure the application of Kingman’s

subadditive ergodic theorem which not only results in the almost sure existence of the

Lyapunov exponent for each energy E, but also that γ±(ω,E) is submean and γ(E) is

subharmonic. It is this last fact that is proved in the Craig-Simon paper and is then

used to give a proof of the theorem as stated.

With Tk,E,ω and S[a,b],E,ω defined as in Section 3, γ+(ω,E) = lim sup
n→∞

ln ||S[1,n],E,ω||
|n|

,

γ−(ω,E) = lim sup
n→∞

ln ||S−1[−n,1],E,ω||
|n|

, and γ(E) the Lyapunov exponent, we have:

Theorem 2.2.2 (Unbounded Craig-Simon [11]). For a.e. ω and all E, γ±(ω,E) ≤

γ(E).

This result’s primary role in our argument is through the following restatement and

subsequent corollary.
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Corollary 2.2.1. For a.e. ω, for all E, we have

max

{
lim sup
n→∞

ln ||S−1[−n,−1],E,ω||
n

, lim sup
n→∞

ln ||S[1,n],E,ω||
n

}
≤ γ(E) (2.14)

and

max

{
lim sup
n→∞

ln ||S[n+1,2n],E,ω||
n

, lim sup
n→∞

ln ||S[2n+2,3n+1],E,ω||
n

}
≤ γ(E). (2.15)

Remark 4. The first statement in Corollary 2.2.1 is an immediate consequence of

Theorem 2.2.2 and the second statement can be obtained by the same proof.

Corollary 2.2.2. For a.e. ω, for every E and any ε > 0, there is N2(ω,E, ε) such that

for every n > N2 we have

max{||S−1[−n,−1],E,ω||, ||S[1,n],E,ω||} < e(γ(E)+ε)(n) (2.16)

and

max{||S[n+1,2n],E,ω||, ||S[2n+2,3n+1],E,ω||} < e(γ(E)+ε)(n). (2.17)

We now turn to the positivity of the Lyapunov exponent.

2. Uniformly Positive Lyapunov Exponent .

As above, we describe the setting of the theorem first. Suppose {tω(n)} and {Vω(n)}

are two i.i.d. processes independent of each other with Vω(0) a.s. non-constant, for

some c > 0, tω(0) > c a.s., and E[ln(1 + tω(0) + |Vω(0)|)] <∞.

Theorem 2.2.3 (Figotin-Pastur [52]). Suppose the Hω’s are random Jacobi operators

as in eq. (1.1) defined through the processes {tω(n)}∞n=−∞ and {Vω(n)}∞n=−∞, satisfy-

ing the above conditions, then the corresponding Lyapunov exponent γ(E) is strictly
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positive for any E ∈ R.

We first note that condition on the expectation in the above theorem is required to

ensure that E[ln+ ||Tk,E,ω||] < ∞. While they suppose tω(0) is bounded from below,

this is only needed to ensure E[ln+ ||Tk,E,ω||] < ∞. As such, their result applies in

our setting since we have a condition on the expectation of 1/tω(0) which implies the

finiteness of E[ln+ ||Tk,E,ω||]) as well.

Moreover, we remark that the argument of [52] proceeds by showing that the conditions

from a theorem by Fürstenberg [27], which guarantees positivity of the Lyapunov ex-

ponent, hold. In particular, they show that the transfer matrices (Tk,E,ω) with common

distribution in SL(2,R) denoted by ρ and the smallest closed subgroup containing the

support of ρ denoted by Gρ satisfy

ii) Gρ is not compact.

iii) There is no non-trivial Gρ invariant probability measure on RP1.

These two facts will become relevant in showing not only that ν > 0 (see Theorem 2.2.4

and Theorem 2.2.5 below), but also that the result on large deviations of matrix ele-

ments [59] applies in our setting.

Theorem 2.2.4. γ(E) is continuous on R.

Proof. Fix E ∈ R and let Ek be a sequence in R such that Ek → E as k → ∞. Let

µE denote the probability measure on SL(2,R) obtained through the transfer matrices

Tn,E,ω. That is, let B denote the Borel σ-algebra on SL(2,R) and for any O ∈ B,

µE(O) = P[{ω : T1,E,ω ∈ O}]. Moreover, let GµE denote the smallest closed subgroup

containing the support of µE. Note that by iii) above, there is no non-trivial subspace

W ⊂ R2 such that W is GµE -invariant. Thus, the hypothesis of Theorem B in [28]

holds (i.e. that there can be at most one such W).
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Now let Xk : Ω → SL(2,R) be defined by Xk(ω) = T0,Ek,ω and X : Ω → SL(2,R) be

defined by X(ω) = T0,E,ω. By Theorem B in [28], to prove γ(Ek) → γ(E) as k → ∞,

it suffices to show:

(1) For any h : SL(2,R)→ C with h continuous and of compact support, E[h(Xk)]→

E[h(X)] as k →∞,

(2) E[log+(||Xk||χ{||Xk||≥n})]→ 0 as n→∞ uniformly in k,

(3) E[log+(||X−1||χ{||X−1||≥n})]→ 0 as n→∞.

Remark 5. We note that µE is well defined since measurability of V, t, and 1
t

implies

measurability of the maps ω → Tn,E,ω. Additionally, µE is independent of n since V, t,

and 1
t

are each i.i.d. processes.

Remark 6. Condition (1) above is known as weak convergence and conditions (2) and

(3) together are known as bounded convergence.

Returning to the proof, (1) follows by dominated convergence since Xk → X for a.e. ω

and h is continuous and of compact support. Now choose M ∈ R so that |Ek| ≤M for

all k. Note we have ||Xk(ω)|| ≤ Y (ω) =
√

2 max{(M + |Vω(0)|)/tω(0), 1/tω(0), tω(0)}.

Thus, α log+ ||Xk|| ≤ Y α and we have E[Y α] < ∞ by our hypotheses. It follows that

{log+ ||Xk||} is a uniformly integrable family, so (2) holds. Finally, (3) follows since

E[log+ ||X−1||] <∞. This completes the proof.

Theorem 2.2.5. If ν = inf{γ(E) : E ∈ I}), then ν > 0.

Proof. By Theorem 2.2.3 (in particular, the discussion following the theorem), we have

γ(E) > 0 for all E ∈ R. The result now follows by Theorem 2.2.4 and compactness of

I.
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We now deal with the aforementioned large deviation result.

3. Large Deviation Theorems for the Lyapunov Exponent.

Again, we begin with the setting of the theorem.

Suppose {Yk} are i.i.d. 2 × 2 matrices with common distribution µ, where µ is a

probability measure on SL(2,R). Let l(M) = max{ln+ ||M ||, ln+ ||M−1||} and suppose

for some τ > 0,
∫

exp(τ l(M)) d(µ(M)) < ∞. Moreover, suppose Gµ, the smallest

subgroup containing the support of µ, is both strongly irreducible and contracting.

Finally, let γ denote the Lyapunov exponent.

Theorem 2.2.6 (Tsay [59]). In the above setting, there is L > 0 such that for each

ε > 0, there is an a > 0 so that for all unit vectors u, v ∈ R2,

P

{
| 1
n

log |〈
n∏
k=1

Yku, v〉| − γ| ≥ ε

}
≤ e−an (2.18)

for sufficiently large n.

Tsay goes on to extend this result when the matrices (and distributions) depend on

a real parameter E in a fixed compact set F . That is, suppose Yk,E are i.i.d. 2 × 2

matrices in SL(2,R) with respective probability measures µE and Lyapunov exponent

γ(E). If there is C > 0 and τ > 0 such that
∫

exp(τ l(M)) d(µE(M)) < C for all E ∈ F

(in addition to Yk,E satisfying the conditions in Theorem 2.2.6), then Theorem 2.2.6

holds uniformly in E.

Theorem 2.2.7 (Tsay [59]). In the above setting, for each ε > 0, there is an a > 0 so

that for all unit vectors u, v ∈ R2, P{| 1
n

log |〈
∏n

k=1 Yk,Eu, v〉| − γ(E)| ≥ ε} ≤ e−an for

sufficiently large n uniformly in E.

We call the a in the above theorem the ‘large deviation parameter’ associated with ε.
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We now show that the conditions of Theorem 2.2.6 and Theorem 2.2.7 hold in our

setting. We begin by explaining the terminology used in the statement. The term

strongly irreducible means that there is no finite union of proper subspaces W ⊂ R2

such that M(W ) = W for all M ∈ Gµ. The term contracting means that there is a

sequence in Gµ say {Mn} such that Mn/||Mn|| converges to a rank one matrix. Firstly,

by taking Mn in Gµ with ||Mn|| → ∞ and considering a convergent subsequence of

Mn/||Mn||, it follows that condition ii) (non-compactness of Gµ) implies contracting.

Next, if strong irreducibility does not hold, this implies the existence of a non-empty,

finite L ⊂ RP1 such that M(L) = L for all M ∈ Gµ. Indeed, taking the sum of point

masses with weight 1/|L| at each of the points of L gives a non-trivial Gµ invariant

probability measure on RP1 and we conclude iii) implies strong irreducibility. Finally,

the required moment condition is easily seen to be satisfied given our assumptions on

the various moments of Vω(0), tω(0),and 1/tω(0) and compactness of I.

Theorem 2.2.7 finds its use in our argument through the following corollary:

Corollary 2.2.3. (Large Deviations [59]) For any ε > 0, there is η > 0 and N0 ∈ N

such that for b− a > N0,

P
{
ω :

∣∣∣∣( 1

b− a+ 1
log

|P[a,b],E,ω|
tω(a) · · · tω(b)

)
− γ(E)

∣∣∣∣ ≥ ε

}
≤ e−η(b−a+1). (2.19)

Proof. The transfer matrices Tk,E,ω are certainly i.i.d. Additionally, by the above

discussion, they also satisfy the irreducibility, contracting, and expectation condition.

The corollary now follows by taking u = v = (1, 0) and applying formula eq. (2.13).
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Chapter 3

Spectral Localization

3.1 Preliminaries

We use this section to reestablish certain notations and conventions in addition to providing

a simpler precursor to the ‘good’ and ‘bad’ sets that appear in the multi-scale analysis.

Since we aim to prove localization at energies in a finite interval Ĩ, we fix Ĩ = [s, t], a compact

interval with non-empty interior in R and let I = [s− 1, t+ 1]. We then define the following

‘large deviation’ sets:

B+
[a,b],ε =

{
(E,ω) : E ∈ I,

|P[a,b],E,ω|
tω(a) · · · tω(b)

≥ e(γ(E)+ε)(b−a+1)

}
, (3.1)

B−[a,b],ε =

{
(E,ω) : E ∈ I,

|P[a,b],E,ω|
tω(a) · · · tω(b)

≤ e(γ(E)−ε)(b−a+1)

}
, (3.2)
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and denote the corresponding sections by

B±[a,b],ε,ω =
{
E : (E,ω) ∈ B±[a,b],ε

}
(3.3)

and

B±[a,b],ε,E =
{
ω : (E,ω) ∈ B±[a,b],ε

}
. (3.4)

Additionally, we let

B[a,b],∗ = B+
[a,b],∗ ∪B

−
[a,b],∗.

By rescaling the operator in question, we may assume that E[(1/tω(0))α] = c1 < 1. Further-

more, we let E[tω(0)α] = c2 and E[|Vω(0))|α] = c3.

Lastly, we let ν = inf{γ(E) : E ∈ I} and note here that ν > 0. For the proof, see

Theorem 2.2.5.

3.2 Lemmas

Given that we can express Green’s function via ratio of determinants, a viable strategy ap-

pears to be showing that the numerator of eq. (2.8) cannot be too large and the denominator

cannot be too small. The lemmas in this section formalize these heuristics and pave the road

for the proof of spectral localization found in the next section.

We begin with an elementary lemma that shows singularity forces points into the ‘bad’
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deviation sets.

Lemma 3.2.1. Let n ≥ 2 and suppose 0 < 8ε0 < ν. If x is (γ(E) − 8ε0, n, E, ω)-singular,

then (E,ω) ∈ B−[x−n,x+n],ε0 ∪B+
[x−n,x−1],ε0 ∪B+

[x+1,x+n],ε0 .

Proof. This follows by the definition of (γ(E)− 8ε0, n, E, ω)- singularity and the definitions

given in eq. (3.1) and eq. (3.2).

Remark 7. Lemma 3.2.2 and Lemma 3.2.3 follow [44] very closely with some minor modi-

fications needed to deal with unbounded and/or singular {tω(n)} and unbounded {Vω(n)}.

Roughly speaking, the first of the two lemmas below controls the Lebesgue measure of the

so-called ‘bad’ deviation sets and the second shows that eigenvalues of disjoint boxes with

length are rarely in ‘far enough’ bad deviation sets.

Let m denote Lebesgue measure on R.

Lemma 3.2.2. Suppose 0 < ε0 < ν, η0 is the corresponding large deviation parameter (from

Corollary 2.2.3), and 0 < δ0 < η0, then for a.e. ω, there is N1(ω) such that for n > N1,

max
{
m(B−[n+1,3n+1],ε0,ω

),m(B−[−n,n],ε0,ω)
}
≤ e−(η0−δ0)(2n+1).

Proof. We have

m× P
(
B−[a,b],ε0

)
= E

(
m
(
B−[a,b],ε0,ω

))
=

∫
R
P
(
B−[a,b],ε0,E

)
dm(E)

≤ m(I)e−η0(b−a+1).

The first two equalities are simply Fubini’s theorem, and the inequality follows by Corol-

lary 2.2.3.
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Let

Fn =
{
ω : m

(
B−[n+1,3n+1],ε0,ω

)
≥ e−(η0−δ0)(2n+1)

}
,

and

Gn =
{
ω : m

(
B−[−n,n],ε0,ω

)
≥ e−(η0−δ0)(2n+1)

}
.

We have, e−(η0−δ0)(2n+1)P(Fn) ≤ E
(
m
(
B−[n+1,3n+1],ε0,ω

))
≤ m(I)e−η0(2n+1), with a similar

estimate holding for Gn. The first inequality is Chebyshev and the second follows by the

first line of the proof.

Thus,

P(Fn ∪Gn) ≤ 2m(I)e−δ0(2n+1),

and the result follows by Borel-Cantelli.

Lemma 3.2.3. Suppose 0 < ε < ν, ηε > 0 is the corresponding large deviation parameter

and p > 6/ηε. For n ∈ N, put

Cn = {ω : ∃y ∈ [−n, n], |−n−y| ≥ ln(np), and Ej,[n+1,3n+1],ω ∈ B[−n,y],ε,ω for some 1 ≤ j ≤ 2n+1}

and

Dn = {ω : ∃y ∈ [−n, n], |n− y| ≥ ln(np), Ej,[n+1,3n+1],ω ∈ B[y,n],ε,ω for some1 ≤ j ≤ 2n+ 1}.

Then P[Cn ∪Dn infinitely often ] = 0.

Proof. Fix n ∈ N, y with | − n− y| ≥ ln(np), and 1 ≤ j ≤ 2n+ 1, and put

An,y,j = {ω : Ej,[n+1,3n+1],ω ∈ B[−n,y]}.
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Since [n+ 1, 3n+ 1] ∩ [−n, n] = ∅, by independence and Corollary 2.2.3 we have

P
(
B[−n,y],ε,Ej,[n+1,3n+1],ω

)
= P[n+1,3n+1]c

(
B[−n,y],ε,Ej,[n+1,3n+1],ω

)
≤ e−ηε|−n−y|.

(3.5)

Indeed, for each n, if Q
′
n = {y ∈ [−n, n] : | − n− y| ≥ ln(np)},

Cn =
⋃

y∈Q′n, 1≤j≤2n+1

An,y,j.

By the above, we have P[Cn] ≤ (2n + 1)2e−ηε ln(n
p). Thus P[Cn infinitely often ] = 0 by

Borel-Cantelli. The result follows by applying the same argument to Dn.

The remaining lemmas provide bounds on the growth of Vω(n)s and tω(n)s.

Lemma 3.2.4. Suppose p > 0 and r > 1. Let Jn = {ω : ∃k ∈ [−n, n], | − n− k| ≤ ln(np) or

|k − n| ≤ ln(np) and |Vω(k)| ≥ nr/α or |tω(k)| ≥ nr/α}. Then P[Jn infinitely often ] = 0.

Proof. Put Qn = {k ∈ [−n, n] : | − n − k| ≤ ln(np) or |n − k| ≤ ln(np)}, and Ak = {ω :

|Vω(k)| ≥ nr/α or tω(k) ≥ nr/α}. Then

Jn =
⋃
k∈Qn

Ak.

By Chebyshev and stationarity, for any k ∈ Qn, P[Ak] ≤ (c2 + c3)/n
r. Thus,

P(Jn) ≤ 2(c2 + c3)(ln(np) + 1)n−r. By Borel-Cantelli, P[Jn infinitely often ] = 0.

Corollary 3.2.1. If p > 0 and r > 1, for a.e. ω, there is N(ω) such that for n > N and any

k ∈ [−n, n] st. | − n− k| ≤ ln(np) (respectively, |n− k| ≤ ln(np)),

|P[−n,k],ω| ≤ n
2r
α
(ln(np)+1)
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(respectively, |P[k,n],ω| ≤ n
2r
α
(ln(np)+1)).

Remark 8. Proceeding in the same manner as in the above lemma, we can obtain the

following three lemmas. We prove Lemma 3.2.5, Lemma 3.2.6 and exclude the proof of

Lemma 3.2.7, as its proof is identical to the proof of Lemma 3.2.6.

Lemma 3.2.5. Suppose r > 2. If

An =

{
ω : ∃k ∈ [−n, n] s.t.

1

tω(k)
> n

r
α

}
,

then P[An infinitely often ] = 0.

Proof. Put Jk,n = {ω : 1/tω(k) ≥ nr/α}, then by Chebyshev, nrP[Jk,n] ≤ E[1/(tω(k))α] = c1

and this holds for all n ∈ N and k ∈ [−n, n] because the process {tω(m)}∞m=−∞ is stationary.

Since

An =
⋃

k∈[−n,n]

Jk,n,

we obtain,

P[An] ≤ c1(2n+ 1)

nr
.

The result now follows by Borel-Cantelli.

Lemma 3.2.6. Suppose r > 1. If

An =
{
ω : ∃k ∈ [−n, n], | − n− k| ≤ ln(np)and 1/(tω(−n) · · · tω(k − 1)) ≥ nr/α

}
,

(3.6)

then P[An infinitely often ] = 0.

Proof. Put Q
′
n = {k ∈ [−n, n] : | − n− k| ≤ ln(np)}, and

Jk,n =

{
ω :

1

tω(−n) · · · tω(k − 1)
≥ n

r
α

}
.
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Then An =
⋃
k∈Q′n

Jk,n.

Hence,

nrP[Jk,n] ≤ E [1/(tω(−n) · · · tω(k − 1))α]

= (c1)
|−n−k+1| ≤ 1,

for all k ∈ Q′n. The first inequality is Chebyshev, the equality follows by stationarity together

with independence, and the final inequality follows as c1 < 1. Thus, P(An) ≤ (ln(np)+1)n−r

and by Borel-Cantelli, P[An infinitely often ] = 0.

Lemma 3.2.7. Suppose r > 1. If

An = {ω : ∃k ∈ [−n, n], |k − n| ≤ ln(np) and 1/(tω(k + 1) · · · tω(n)) ≥ n
r
α}, (3.7)

then P[An infinitely often ] = 0.

Proof. The argument is identical to the one given for Lemma 3.2.6.

3.3 Proof of Theorem 1.1.1

We recall the main result (Theorem 1.1.1) and then present two reductions.

Theorem 1.1.1 For almost every (a.e.) ω, the spectrum of Hω is pure point and its eigen-

functions decay exponentially.

Theorem 3.3.1. For a.e. ω, for every generalized eigenvalue E, the corresponding general-
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ized eigenfunction ψω,E(n) decays exponentially in n.

We now prove Theorem 3.3.1 implies Theorem 1.1.1.

Proof. (Theorem 3.3.1 implies Theorem 1.1.1)

By Section 2.2.2 (e.g. [39]), the spectral measures are supported by the generalized eigen-

values. Thus, Theorem 3.3.1 implies every generalized eigenfunction is in fact an `2(Z)

eigenfunction which decays exponentially and the result follows.

Theorem 3.3.2. For a.e. ω, for every generalized eigenvalue E of Hω, there is C(E) > 0

and N(ω,E) such that for n > N , 2n and 2n+ 1 are (C(E), n, E, ω)-regular.

We now show that Theorem 3.3.2 implies Theorem 3.3.1, but due to the presence of off-

diagonal terms in the definition of regularity, we will need a preliminary lemma to control

the growth of these terms.

Lemma 3.3.1. If r > 1 and

An =

{
ω :

tω(n)

tω(2n+ 1)
≥ n

r
α or

tω(n)

tω(2(n+ 1))
≥ n

r
α

}
,

then P[An infinitely often ] = 0.

Proof. Put

Jn =

{
ω :

tω(n)

tω(2n+ 1)
≥ n

r
α

}
and

Kn =

{
ω :

tω(n)

tω(2(n+ 1))
≥ n

r
α

}
.

Then we have:

nrP[Jn] ≤ E[(tω(n))α]E
[

1

(tω(2n+ 1))α

]
= c1c2.
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The inequality follows by Chebyshev, together with independence. Applying the same argu-

ment to Kn, we have nrP[Kn] ≤ c1c2. Since An is the union of Kn and Jn, P[An] ≤ (2c1c2)/n
r

and the result follows by Borel-Cantelli.

Proof. (Theorem 3.3.2 implies Theorem 3.3.1)

To show each generalized eigenfunction decays exponentially, it suffices to show exponential

decay of the corresponding Green’s function (e.g. regularity) by virtue of eq. (2.12) and that

fact that generalized eigenfunctions are polynomially bounded.

We are now ready to give the proof of Theorem 3.3.2. We note that it essentially goes along

the lines of the proof in [44] with minor adjustments.

Proof. (Theorem 1.1.1 via Theorem 3.3.2)

We will show 2n + 1 is (γ(Ẽ) − 8ε0, n, Ẽ, ω)-regular for all sufficiently large n. The proof

that 2n is (γ(Ẽ)− 8ε0, n, Ẽ, ω)-regular (for sufficiently large n) is similar. Fix 0 < ε0 < ν/8

and obtain a corresponding η0 > 0 through Corollary 2.2.3. Choose 0 < δ0 < η0, 0 < ε <

min{(η0−δ0)/3, ε0}, p > 6/ηε, and r > 2. Using Lemma 3.3.1 and Lemmas 3.2.2 to 3.2.7 with

the above ε0, ε, δ0, and p and using Corollary 2.2.2, we obtain Ω̃ with P(Ω̃) = 1 such that the

conclusion of Corollary 2.2.2 along with the conclusions of Lemma 3.3.1 and Lemmas 3.2.2

to 3.2.7 hold for all ω ∈ Ω̃.

Now let ω ∈ Ω̃ and let Ẽ ∈ Ĩ be a generalized eigenvalue for Hω with generalized eigen-

function ψ. We assume without loss of generality that ψ(0) 6= 0. Finally, we may choose

N so that for n > N the conclusions of Lemmas 3.2.2 to 3.2.7 along with the conclusion of

Corollary 2.2.2 (with the above ε and Ẽ) hold for this ω and 0 is (γ(Ẽ)−8ε0, n, Ẽ, ω)-singular.
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Suppose that for infinitely many n (n > N), 2n + 1 is (γ(Ẽ) − 8ε0, n, Ẽ, ω)-singular. By

Lemma 3.2.1 and Corollary 2.2.2, Ẽ ∈ B−[n+1,3n+1],ε0,ω
. We claim that there is Ej, an eigen-

value of Hω,[n+1,3n+1], so that Ej ∈ I and |Ẽ − Ej| ≤ e−(η0−δ0)(2n+1). If no eigenvalue of

Hω,[n+1,3n+1] is in I, then there are essentially two cases: i) some eigenvalues are on the left

and some eigenvalues are on the right of I, or ii) all eigenvalues lie to the left (or to the

right) of I. We provide the details in the first case as the other case can be handled similarly.

Suppose there are some eigenvalues on the left and some on the right. Let Ej1 denote the

smallest eigenvalue to the right of I and Ej2 the largest eigenvalue to the left of I. Note that

all 2n+1 eigenvalues of Hω,[n+1,3n+1] are real and are the zeros of P[n+1,3n+1],E,ω, a polynomial

in E of degree 2n+ 1. It follows that P[n+1,3n+1],E,ω is monotone on (Ẽ, Ej1) or (Ej2 , Ẽ). As

Ẽ ∈ B−[n+1,3n+1],ε0,ω
and P[n+1,3n+1],E,ω vanishes at Ej1 and Ej2 , this implies

1 ≤ min{Ej1 − Ẽ, Ẽ − Ej2} ≤ m(B−[n+1,3n+1],ε0,ω
) ≤ e−(η0−δ0)(2n+1) < 1.

The first inequality is from the fact that Ẽ ∈ Ĩ, Ej1 , Ej2 /∈ I, and I is obtained by adding and

subtracting 1 from the right and left points of Ĩ (respectively). The second to last inequality

is from Lemma 3.2.2. The contradiction shows we have the existence of Ej, an eigenvalue of

Hω,[n+1,3n+1] so that Ej ∈ I. A similar argument shows that at least one eigenvalue Ej ∈ I

satisfies |Ej − Ẽ| ≤ e−(η0−δ0)(2n+1) (for otherwise we contradict the measure condition from

Lemma 3.2.2).

Applying the above argument with 0 in place of 2n + 1 yields Ei, an eigenvalue of Hω,[−n,n]

which lies in B−[−n,n],ε0,ω such that |Ẽ − Ei| ≤ e−(η0−δ0)(2n+1). Thus,

|Ei − Ej| ≤ 2e−(η0−δ0)(2n+1).

By the previous line and the fact that Ej /∈ B[−n,n],ε,ω (by Lemma 3.2.3),

||G[−n,n],Ej ,ω|| ≥
1

2
e(η0−δ0)(2n+1) and hence there exist y1, y2 ∈ [−n, n], (WLOG y1 ≤ y2), so

that

|G[−n,n],Ej ,ω(y1, y2)| ≥
1

2
√

2n+ 1
e(η0−δ0)(2n+1).
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Again, using Ej /∈ B[−n,n],ε,ω, we obtain:

|P[−n,n],Ej ,ω|
tω(−n) · · · tω(n)

≥ e(γ(Ej)−ε)(2n+1).

By recalling |G[−n,n],Ej ,ω(y1, y2)| =
|P[−n,y−1],Ej ,ωtω(y1) · · · tω(y2 − 1)P[y2+1,n],Ej ,ω|

|P[−n,n],Ej ,ω|
,

we have:

|P[−n,y1−1],Ej ,ω|tω(y1) · · · tω(y2 − 1)|P[y2+1,n],Ej ,ω|∏n
k=−n tω(k)

≥ e(η0−δ0)(2n+1)e(γ(Ej)−ε)(2n+1)

2
√

2n+ 1
.

We rewrite the left hand side of our inequality as:

|P[−n,y1−1],Ej ,ω|
tω(−n) · · · tω(y1 − 1)

1

tω(y2)

|P[y2+1,n],Ej ,ω|
tω(y2 + 1) · · · tω(n)

. (3.8)

Recall we have y1 ≤ y2, so there are effectively three cases to consider: the first is |−n−y1| ≥

ln(np) and |n− y2| ≥ ln(np), the second is | − n− y1| ≥ ln(np) while |n− y2| ≤ ln(np), and

the third is | − n− y1| ≤ ln(np) and |n− y2| ≤ ln(np).

For the first case, we apply Lemma 3.2.5 to the middle term in eq. (3.8) and Lemma 3.2.3

to the remaining two terms to obtain:

nr/αe(γ(Ej)+ε)(2n+1) ≥ 1

2
√

2n+ 1
e(η0−δ0)(2n+1)e(γ(Ej)−ε)(2n+1). (3.9)

For the second case, we again apply Lemma 3.2.5 to the middle term in eq. (3.8). We then
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apply Corollary 3.2.1 to the numerator of right-most term, Lemma 3.2.7 to the denominator,

and Lemma 3.2.3 to the left-hand term to obtain:

n
2r
α
+( 2r

α
(ln(np)+1))e(γ(Ej)+ε)(2n+1) ≥ 1

2
√

2n+ 1
e(η0−δ0)(2n+1)e(γ(Ej)−ε)(2n+1). (3.10)

And finally, for the third case, we again apply Lemma 3.2.5 to the middle term. Then, we

apply Corollary 3.2.1 to the numerators of the terms on the left and the right, Lemma 3.2.6

and Lemma 3.2.7 to the denominators to obtain:

n
3r
α
+ 4r
α
(ln(np+1)) ≥ 1

2
√

2n+ 1
e(η0−δ0)(2n+1)e(γ(Ej)−ε)(2n+1). (3.11)

The first case leads to a contradiction by letting n → ∞, since (γ(Ej) − ε) + (η0 − δ0) >

γ(Ej) + ε.

For the second and third cases, the ratio of the RHS to the LHS in the above inequalities

tends to ∞ as n → ∞, providing the desired contradiction. We conclude that for n > N ,

2n+ 1 is (γ(Ẽ)− 8ε0, n, Ẽ, ω)-regular.

Finally, since the interval Ĩ was arbitrary, the proof is complete.
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Chapter 4

Random Word Models

4.1 Preliminaries

4.1.1 Model Set-up

We begin by providing details on the construction of Ω and Vω(n) by following [13].

Fix m ∈ N (the maximum word length) and M > 0. Set W =
⋃m
j=1Wj where Wj =

[−M,M ]j and νj are finite Borel measures on Wj so that
∑m

j=1 νj(Wj) = 1. Let ν denote

the direct sum of the measures νj, a probability measure on W .

Additionally, we assume that (W , ν) has two words which do not commute. That is,


For i = 0, 1 there exist wi ∈ Wji ∈ supp(ν) such that

(w0(1), w0(2), ..., w0(j0), w1(1), w1(2), ..., w1(j1))

and (w1(1), w1(2), ..., w1(j1), w0(1), w0(2), ..., w0(j0)) are distinct.

(4.1)

Here, supp(ν) refers to the support of the measure ν.
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Set Ω0 =WZ and P0 = ⊗Zν on the σ-algebra generated by the cylinder sets in Ω0.

The average length of a word is defined by 〈L〉 =
∑m

j=1 jν(Wj) and if w ∈ W ∩Wj, we say

w has length j and write |w| = j.

We define Ω =
⋃m
j=1 Ωj ⊂ Ω0 × {1, ...,m} where Ωj = {ω ∈ Ω0 : |ω0| = j} × {1, ..., j}.

We define the probability measure P on the σ-algebra generated by the sets A× {k} where

A ⊂ Ω0 such that for all ω ∈ A, |ω0| = j and 1 ≤ k ≤ j.

For such sets we set

P[A× {k}] =
P0(A)

〈L〉
. (4.2)

Remark 9. The above construction implies that every event A ⊂ Ω0 gives rise to an event

Ã ⊂ Ω with the same probability (up to multiplication by 〈L〉).

The shifts T0 and T on Ω0 and Ω (respectively) are given by:

(T0ω)n = ωn+1 and

T (ω, k) =

 (ω, k + 1) if k < |ω0|

(T0(ω), 1) if k = |ω0|.
(4.3)

With this set-up, the shift T is ergodic and the potential Vω,k is obtained through ..., ω−1, ω0, ω1, ...

so that Vω,k(0) = ω0(k).

That is,

(H(ω,k)u)(n) = u(n+ 1) + u(n− 1) + V(ω,k)(n)u(n) (4.4)

for all u ∈ `2(Z).
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Thus, the ergodicity of the shift T implies the results from [53] can be used to show the

spectrum of H(ω,k) is almost surely a non-random set.

Remark 10. For notational convenience, we will often drop the k from the subscript on

H(ω,k).

4.1.2 Basic Definitions and Notations

Definition 4.1.1. We call ψω,E a generalized eigenfunction with generalized eigenvalue E if

Hωψω,E = Eψω,E and |ψω,E(n)| ≤ (1 + |n|).

We denote the restriction of Hω to the interval [a, b] ∩ Z where a, b ∈ Z by Hω,[a,b] and for

E /∈ σ(Hω,[a,b]) the corresponding Green’s function by

G[a,b],E,ω = (Hω,[a,b] − E)−1.

Additionally, we let

P[a,b],E,ω = det(Hω,[a,b] − E)

and

P̃[a,b],E,ω, = det(E −Hω,[a,b]).

We also let Ej,[a,b],ω denote the jth eigenvalue of the operator Hω,[a,b] and note that there are

b− a+ 1 many of them (counting multiplicity).

Definition 4.1.2. x ∈ Z is called (c, n1, n2, E, ω)-regular if there is a c > 0 so that:

1. |G[x−n1,x+n2],E,ω(x, x− n1)| ≤ e−cn1 and

2. |G[x−n1,x+n2],E,ω(x, x+ n2)| ≤ e−cn2 .
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By the results in Section 2.1.4 and Section 2.1.5, we have for any generalized eigenfunction

ψω,E and any x ∈ [a, b],

ψω,E(x) = −G[a,b],E,ω(x, a)ψω,E(a− 1)−G[a,b],E,ω(x, b)ψω,E(b+ 1), (4.5)

and

|G[a,b],E,ω(x, y)| =
|P[a,x−1],E,ωP[y+1,b],E,ω|

|P[a,b],E,ω|
. (4.6)

4.1.3 Transfer Matrices and the Lyapunov Exponent

For w ∈ W , with w = (w1, ..., wj), we define word transfer matrices by Tw,E = Twj ,E · · ·Tw1,E

where Tv,E =

E − v −1

1 0

.

The transfer matrices over several words are given by

Tω,E(k, l) =


Tωk,E · · ·Tωl,E if k > l,

I if k = l,

Tω,E
−1(l, k) if k < l.

(4.7)

and T[a,b],E,ω denotes the product of the transfer matrices so that for any generalized eigen-
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function ψ with generalized eigenvalue E:

T[a,b],E,ω

 ψ(a)

ψ(a− 1)

 =

ψ(b+ 1)

ψ(b)

 . (4.8)

Again by Section 2.1.3, we have:

T[a,b],E,ω =

 P̃[a,b],E,ω −P̃[a+1,b],E,ω

P̃[a,b−1],E,ω −P̃[a+1,b−1],E,ω

 . (4.9)

We now define two Lyapunov exponents, one via matrix products obtained from Ω0 and

the other from Ω. We will see that the two quantities are essentially the same (up to

multiplication by a positive constant) and hence provide the same information. It is worth

noting, however, that the former is obtained through products of i.i.d. matrices while the

latter is not. In fact, we will need to utilize independence to obtain various estimates on

the matrix products and it is therefore important to verify the relationship between the two

Lyapunov exponents.

Since both T0 and T are ergodic, Kingman’s subadditive ergodic theorem [46] allows us to

define the Lyapunov exponent. Recalling that 〈L〉 denotes the average length of a word, by

the arguments in [13], we have:

in Ω0,

γ0(E) := lim
k→∞

1

k
log ||Tω,E(k, 1)||, (4.10)
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and in Ω,

γ(E) := lim
k→∞

1

k〈L〉
log

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E − Vω(n) −1

1 0

 . . .

E − Vω(1) −1

1 0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ . (4.11)

In both cases, the limit exists for fixed E on a full measure set.

Remark 11. We note that the limit in Ω is defined via one-step transfer matrices while the

limit in Ω0 is defined via word transfer matrices.

In [13], the authors prove the relationship between the two Lyapunov exponents described

in the following theorem.

Theorem 4.1.1. γ0(E)
〈L〉 = γ(E).

Let µE denote the smallest closed subgroup of SL(2,R) generated by the ‘word’-step transfer

matrices. It is shown in [13] that µE is strongly irreducible and contracting for all E outside

of a finite set D ⊂ R and hence, Furstenberg’s theorem implies γ(E) > 0 for all such E.

Since the Lyapunov exponent is defined as a product of i.i.d. matrices, γ is continuous. So,

if I is a compact set such that D ∩ I = ∅ and

ν := inf{γ(E) : E ∈ I},

then ν > 0.

Motivated by eq. (4.9) above and large deviation theorems, we define:

B+
[a,b],ε =

{
(E,ω) : E ∈ I, |P[a,b],E,ω| ≥ e(γ(E)+ε)(b−a+1)

}
, (4.12)
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and

B−[a,b],ε =
{

(E,ω) : E ∈ I, |P[a,b],E,ω| ≤ e(γ(E)−ε)(b−a+1)
}
, (4.13)

and the corresponding sections:

B±[a,b],ε,ω =
{
E : (E,ω) ∈ B±[a,b],ε

}
, (4.14)

and

B±[a,b],ε,E =
{
ω : (E,ω) ∈ B±[a,b],ε

}
. (4.15)

4.2 Large Deviation Theorems

The goal of this section is to obtain a uniform large deviation estimate for P[a,b],E. In the

Anderson model, a direct application of Tsay’s theorem for matrix elements of products of

i.i.d. matrices results in both an upper and lower bound for the above determinants. In the

general random word case, there are two issues. Firstly, the one-step transfer matrices are

not independent. This issue is naturally resolved by considering ωk-step transfer matrices

and treating products over each word as a single step. However, in this case, both the

randomness in the length of the chain as well as products involving partial words need to

be accounted for. Since matrix elements are majorized by the norm of the matrix and all

matrices in question are uniformly bounded, we can obtain an upper bound identical to the

one obtained in the Anderson case. Lower bounds on the matrix elements are more delicate
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and require the introduction of random scales. For the reader’s convenience, we first recall

Tsay’s theorem and then give the precise statements and proofs of the results alluded to

above.

As remarked above, µE is strongly irreducible and contracting for E ∈ I. In addition, the

‘word’-step transfer matrices (defined in eq. (4.7)) are bounded, independent, and identically

distributed. These conditions are sufficient to apply Tsay’s theorem on large deviations of

matrix elements for products of i.i.d. matrices.

Theorem 4.2.1 ([59]). Suppose I is a compact interval and for each E ∈ I, ZE
1 , ..., Z

E
n , ... are

bounded i.i.d random matrices such that the smallest closed subgroup of SL(2,R) generated

by the matrices is strongly irreducible and contracting. Then for any ε > 0, there is an η > 0

and an N ∈ N such that for any E ∈ I, for any unit vectors u, v and n > N ,

P
[
e(γ(E)−ε)n ≤ |〈ZE

n . . . Z
E
1 u, v〉| ≤ e(γ(E)+ε)n

]
≥ 1− e−ηn.

Lemma 4.2.1. If I is compact and I ∩D = ∅, then for any ε > 0 there is an η > 0 and an

N such that if a,b ∈ Z such that b− a+ 1 > N and E ∈ I, then

P[B+
[a,b],ε,E] ≤ e−η(b−a+1)

.

Proof. Let Yi = |ωi|, so Yi is the length of the ith word and let Sn = Y1 + · · ·+ Yn.

Let u =

 1

0

 and let P(ω1,ωn),E = det(H(ω1,ωn) − E) where H(ω1,ωn) denotes Hω restricted

to the interval where V takes values determined by ω1 through ωn. By eq. (4.9) from the

previous section, |P(ω1,ωn),E| = |〈Tω,E(n, 1)u, u〉|.

Letting ε > 0 and applying Theorem 4.2.1 to the random products Tω,E(k, 1), we obtain an
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η1 > 0 and an N1 such that for n > N1, P0[{ω ∈ Ω0 : |P(ω1,ωn),E| ≤ e(γ(E)+ε)n〈L〉}] ≥ 1−e−η1n.

Now let ε1 > 0 so that ε1 sup{γ(E) : E ∈ I} < ε. We apply large deviation estimates (e.g.

[20]) to the real, bounded, i.i.d. random variables Yi to obtain an N2 and an η2 > 0 such

that for n > N2, P0[Sn − nε1 < n〈L〉 < Sn + nε1] ≥ 1− e−η2n.

Denoting the intersection of the above events by An, we have, on An,

|P(ω1,ωn),E| ≤ e(γ(E)+ε)n〈L〉

≤ e(γ(E)+ε)(Sn+nε1)

= e(γ(E)+ε)Sn+γ(E)ε1n+nεε1

≤ e(γ(E)+ε)Sn+γ(E)ε1Sn+Snεε1

≤ e(γ(E)+3ε)Sn .

Thus, we have an event in Ω0 where the Lyapunov behavior is a true reflection of the length

of the interval and we can obtain an estimate in between two words.

That is, for any 1 ≤ k ≤ Sn+1 − Sn, let P(ω1,ωn+k),E = det(H(ω1,ωn+k) − E) where H(ω1,ωn+k)

denotes Hω restricted to the interval where Vω takes values determined by ω1 through the

kth letter of ωn+1.

Since the one-step transfer matrices are uniformly bounded, eq. (4.9) and the last inequality

imply for any 1 ≤ k ≤ Sn+1 − Sn, |P[1,Sn+k],E,ω| ≤ Ce(γ(E)+3ε)Sn ≤ e(γ(E)+4ε)Sn on An.

Let η3 = min{η1, η2}, and choose 0 < η < η3
2m

.

Since every event in Ω0 gives rise to an event in Ω (e.g. eq. (4.2)), we obtain an estimate

where the Lyapunov behavior and the probability of the event reflect the true length of the
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interval, so we can apply the shift T to conclude that for any sufficiently large n,

P[{|P[1,n],E,ω| ≤ e(γ(E)+4ε)n}] ≥ 1− e−ηn.

The result now follows for any interval [a, b] (with b−a+1 sufficiently large) since T preserves

the probability of events.

We finish the section with a lemma that relies crucially on independence. As above, we will

work in Ω0 and ‘lift’ our results to Ω.

The lemma below holds for any fixed K > 1 and this K will be chosen in the next section.

Lemma 4.2.2. There are real-valued random variables Rn, R
′
n, Qn, Q

′
n, and Q̃n such that:

if I is compact with I ∩D = ∅ and ε > 0 with

F 3
l,n,ε =

⋂
j

{
ω : Ej,[l+Qn+k,l+Q′n],ω /∈ B

−
[l+Rn,l+R

′
n],ε,ω

∀k, 0 ≤ k ≤ 2m
}
, (4.16)

F 2+
l,n,ε =

⋂
j

{
ω : Ej,[l+Qn+k,l+Q′n],ω /∈ B

+

[y,l+R′n],ε,ω
∀y ∈

[
l +Rn, l +R

′

n −
n

K

]
, 0 ≤ k ≤ 2m

}
,

(4.17)
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F 2−
l,n,ε =

⋂
j

{
ω : Ej,[l+Qn+k,l+Q′n],ω /∈ B

+
[l+Rn,y],ε,ω

∀y ∈
[
l +Rn +

n

K
, l +R

′

n

]
, 0 ≤ k ≤ 2m

}
,

(4.18)

and

F 2
l,n,ε = F 2+

l,n,ε ∩ F
2−
l,n,ε, (4.19)

then there is N and an η′ > 0 such that if n > N , l ∈ Z, and E ∈ I:

P[B−
[l+Rn,l+R

′
n],ε,E

] ≤ e−η
′(2n+1), (4.20)

P[B−
[l+Qn,l+Q

′
n],ε,E

] ≤ e−η
′(2n+1), (4.21)

P[F 3
l,n,ε] ≥ 1− 2m2(2n+ 3)2e−η

′(2n+1), (4.22)

and

P[F 2
l,n,ε] ≥ 1− 2m4(2n+ 3)3e−η

′( n
K
). (4.23)
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Proof. For ω ∈ Ω0, and a, b ∈ Z, let H(ωa,ωb) denote the restriction of H to the interval where

the potential is given by the words ωa through ωb. Take u =

 1

0

, and let P(ωa,ωb),E =

det(H(ωa,ωb) − E) where H(ωa,ωb) denotes Hω restricted to the interval in which V takes

values determined by ωa through ωb. By eq. (4.9) from the previous section, |P(ω−n,ωn),E| =

|〈Tω,E(n,−n)u, u〉|. Finally, let S(a,b) = |ωa| + · · · + |ωb|. Letting ε > 0 and applying

Theorem 4.2.1 to the random products Tω,E(k, 1), we obtain an η1 > 0 and an N1 such that

for n > N1 and any E ∈ I,

P0[{ω ∈ Ω0 : |P(ω−n,ωn),E| ≥ e(γ(E)−ε)(2n+1)〈L〉}] ≥ 1− e−η1(2n+1). (4.24)

and

P0[{ω ∈ Ω0 : |P(ωn+1,ω3n+1),E| ≥ e(γ(E)−ε)(2n+1)〈L〉}] ≥ 1− e−η1(2n+1). (4.25)

If Ej denotes an eigenvalue corresponding to H(ωn+1,ω3n+1), then by independence

P0[{ω ∈ Ω0 : |P(ω−n,ωn),Ej | ≥ e(γ(Ej)+ε)(2n+1)〈L〉}] ≥ 1− e−η1(2n+1)

whenever n > N . We can also apply large deviation theorems (e.g. [20]) to the (real) random

products S(a,b) where 0 < ε1 < min{1, ε, ε sup{γ(E) : E ∈ I}} to obtain an N and an η2 > 0

such that whenever b− a+ 1 > N ,

(b− a+ 1)(〈L〉 − ε1) ≤ S(a,b) ≤ (b− a+ 1)(〈L〉+ ε1) (4.26)

with probability greater than 1− e−η2(b−a+1).

Thus, we have an event A where:
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|P(ω−n,ωn),Ej | ≥ e(γ(E)−ε)(2n+1)〈L〉

≥ e(γ(E)−ε)(S(−n,n)−(2n+1)ε1)

= e(γ(E)−ε)S(−n,n)−(γ(E)ε1)(2n+1)+(2n+1)εε1

≥ e(γ(E)−ε)S(−n,n)−(γ(E)ε1)S(−n,n)+(2n+1)εε1

≥ e(γ(E)−2ε)Sn .

(4.27)

By using a similar argument to deal with the upper-bound, we have:

|P(ω−n,ωn),Ej | ≤ e(γ(E)+3ε)S(−n,n) .

In particular, whenever n
K
> N , and y ∈ [−n+ n

K
, n], we have:

|PEj ,(ωy ,ωn)| ≤ e
(γ(E)+3ε)S(−n+ n

K
,n) (4.28)

with probability greater than 1−eη1 nK with a similar estimate holding whenever y ∈ [−n, n−
n
K

.

Since the single-step transfer matrices are uniformly bounded and there are at most m

single-step transfer matrices in a word transfer matrix, we have a C > 0 such that:

P0[{ω ∈ Ω0 : |P(ωy+k,ωn),Ej | ≤ Ce(γ(Ej)+ε)(n−y)}] ≤ e−η1(n−y−1), (4.29)

where P(ωy+k,ωn) denotes the determinant obtained by restricting H from the kth letter of

ωy to ωn.

Note that the products S(a,b) are also well-defined on Ω and we now are able to define the
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random variables from the statement of the lemma.

For (ω, k) ∈ Ω we put,

1. R
′
n = S(0,n) − k,

2. Rn = −S(−n,−1) − k + 1,

3. Qn = R
′
n + 1,

4. Q
′
n = R

′
n + S(n+1,3n+1), and

5. Q̃n = R
′
n + S(n+1,2n+1).

Choosing 0 < η̃2 < η2 and applying eq. (4.26), we obtain an event with probability greater

than 1− e−η̃2n where we have estimates on all of the random variables defined above.

We choose η′ > 0 to be smaller than η1 and η̃2 so that by the remark after eq. (4.2), the

definitions of the random variables above, and section 4.2 and eq. (4.25), we have for any

E ∈ I:

P[B−
[l+Rn,l+R

′
n],E

] ≤ e−η
′(2n+1)

and

P[B−
[l+Qn,l+Q

′
n],E

] ≤ e−η
′(2n+1).

Moreover, by the same reasoning, after taking the union over all of the possible eigenvalues

Ej and the ordered pairs (y, n) (and (−n, y)), eq. (4.27) and eq. (4.28) provide the desired

estimates on
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F 3
0,n,ε =

⋂
j

{
ω : Ej,[Qn+k,Q′n],ω /∈ B

−
[Rn,R

′
n],ε,ω

for all k with 0 ≤ k ≤ 2m
}

and F 2
0,n,ε.

The result now follows by applying the (measure-preserving) shift T so that the intervals are

centered around l rather than 0.

Remark 12. Each of the lemmas above furnish a positive constant: η, η
′
. For a fixed ε, we

call the the minimum of these constants the ‘large deviation parameter’ associated with ε

and denote it by ηε.

4.3 Lemmas

We prove localization results on a compact interval I where D ∩ I = ∅. In order to do so,

we fix a larger interval Ĩ such that I is properly contained in Ĩ and D ∩ Ĩ = ∅, then apply

the large deviation theorems from the previous section to Ĩ.

The following lemmas involve parameters ε0, ε, η0, δ0, ηε,K, and the intervals I, Ĩ. The lem-

mas hold for any values satisfying the constraints below:

1. Let ν = inf{γ(E) : E ∈ Ĩ}, take 0 < ε0 < ν/8 and let η0 denote the large deviation

parameter corresponding to ε0. Choose any 0 < δ0 < η0 and let 0 < ε < min{(η0 −

δ0)/3m, ε0/4}. Choose M̃ > 0 so that |P[a,b],E,ω| ≤ M̃ b−a+1 for all intervals [a, b],

E ∈ Ĩ, and ω ∈ Ω. Lastly, choose K so that M̃1/K < eν/2 and let ηε, η ε
4

denote the

large deviation parameters corresponding to ε and ε
4

respectively.
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2. Any N ’s and constants furnished by the lemmas below depend only on the parameters

above (i.e. they are independent of l ∈ Z and ω).

Thus, for the remainder of the work, ε0, ε, η0, δ0, ηε, and K will be treated as fixed parameters

chosen in the manner outlined above.

Remark 13. Note that the sets B±[a,b],ε are hereafter defined in terms of Ĩ rather than I.

Following [44] and [29], we define subsets of Ω below on which we have regularity of the

Green’s functions. This is the key to the proof of all the localization results. As mentioned in

the introduction, the proofs of spectral and dynamical localization given in [44] show that an

event formed by the complement of the sets below has exponentially small probability. These

estimates were exploited in [29] to provide a proof of exponential dynamical localization for

the one-dimensional Anderson model. We follow the example set in these two papers with

appropriate modifications needed to handle the presence of critical energies and the varying

length of words.

Let mL denote Lebesgue measure on R.

Lemma 4.3.1. If n ≥ 2 and x is (γ(E)− 8ε0, n1, n2, E, ω)-singular, then

(E,ω) ∈ B−[x−n1,x+n2],ε0 ∪B+
[x−n1,x−1],ε0 ∪B+

[x+1,x+n2],ε0 .

Proof. The result follows by eq. (4.6) and the definition of singularity.

Let Rn, R
′
n, Qn, Q

′
n, and Q̃n be the random variables from Lemma 4.2.2 and for l ∈ Z set

F 1
l,n,ε0

= {ω : max{mL(B−
[l+Rn,l+R

′
n],ε0,ω

),mL(B−
[l+Qn,l+Q

′
n],ε0,ω

)} ≤ e−(η0−δ0)(2n+1)}.
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Lemma 4.3.2. There is an N such that for n > N and any l ∈ Z,

P[F 1
l,n,ε0

] ≥ 1− 2mL(Ĩ)e−δ0(2n+1).

Proof. With 0 < ε0 < 8ν as above, choose N such that the conclusion of Lemma 4.2.2 holds.

Then for n > N ,

mL × P(B−
[l+Rn,l+R

′
n],ε0

) = E(mL(B−
[l+Rn,l+R

′
n],ε0,ω

))

=

∫
R
P(B−

[l+Rn,l+R
′
n],ε0,E

) dmL(E)

≤ mL(Ĩ)e−η0(2n+1).

Applying the same reasoning toB−
[l+Qn,l+Q

′
n],ε0

, by the estimate above and Chebyshev’s in-

equality,

e−(η0−δ0)(2n+1)P[(F 1
l,n,ε0

)c] ≤ 2mL(Ĩ)e−η0(2n+1).

The result follows by multiplying both sides of the last inequality by e(η0−δ0)(2n+1).

Remark 14. Lemma 4.3.3 is proved in [44] and used there to give a uniform (and quanti-

tative) Craig-Simon estimate similar to the one in [29].

Lemma 4.3.3. Let Q(x) be a polynomial of degree n − 1. Let xi = cos 2π(i+θ)
n

, for 0 <

θ < 1
2
, i = 1, 2, . . . , n. If Q(xi) ≤ an, for all i, then Q(x) ≤ Cnan, for all x ∈ [−1, 1], where

C = C(θ) is a constant.
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Set

F[a,b],ε = {ω : |P[a,b],E,ω| ≤ e(γ(E)+4ε)(b−a+1) for all E ∈ Ĩ}. (4.30)

Lemma 4.3.4. There are C > 0 and N such that for b− a+ 1 > N ,

P[F[a,b],ε] ≥ 1− C(b− a+ 2)e
−η ε

4
(b−a+1)

.

Proof. Since Ĩ is compact and Ĩ ∩ D = ∅, Ĩ is contained in the union of finitely many

compact intervals which all intersect D trivially. Hence, it suffices to prove the result for all

E in one of these intervals. So fix one of these intervals, call it I1. By continuity of γ and

compactness of I1, if ε > 0, there is δ > 0 such that if E,E
′ ∈ I1 with |E − E ′ | < δ, then

|γ(E)−γ(E
′
)| < 1

4
ε. Divide I1 into sub-intervals of size δ, denoted by Jk = [En

k , E
n
k+1] where

k = 1, 2, ...C. Additionally, let En
k,i = En

k + (xi + 1) δ
2
.

By Lemma 4.2.1, there is an N such that for b− a+ 1 > N ,

P[{ω : |P[a,b],Enk,i,ω
| ≥ e(γ(E

n
k,i)+

1
4
ε)(b−a+1)}] ≤ e

−η ε
4
(b−a+1)

.

Put F[a,b],k,ε =
n⋃
i=1

{ω : |P[a,b],Enk,i,ω
| ≥ e(γ(E

n
k,i)+

1
4
ε)(b−a+1)} and γk = infE∈Jk γ(E). For ω /∈

F[a,b],k,ε, |P[a,b],Enk,i,ω
| ≤ e(γk+

1
2
ε)(b−a+1). Thus, an application of Lemma 4.3.3 yields, for any

such ω, |P[a,b],E,ω| ≤ e(γ(E)+ 3
4
ε)(b−a+1).

We have

P

[
C⋃
k=1

F[a,b],k,ε

]
≥ 1− C(b− a+ 2)e

η ε
4
(b−a+2)

.

Thus, since
C⋃
k=1

F[a,b],k,ε ⊂ F[a,b],ε,
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the result follows.

Let nr,ω denote the center of localization (if it exists) for ψω,E (i.e. |ψω,E(n)| ≤ |ψω,E(nr,ω)|).

Note that by the results in [36], nr,ω can be chosen as a measurable function of ω.

Put F 4
l,n,ε =

(
(F[l+Rn,l−1],ε ∩ F[l+1,l+R′n],ε

)
∩
(⋃

0≤k≤2m(F[l+Q̃n+k+1,l+Q′n],ε
∩ F[l+Qn,l+Q̃n+k−1],ε

)
and

Jl,n,ε = F 1
l,n,ε0
∩ F 2

l,n,ε ∩ F 3
l,n,ε ∩ F 4

l,n,ε. (4.31)

Lemma 4.3.5. There is N such that if n > N , ω ∈ Jl,n,ε, with a generalized eigenfunction

ψω,E satisfying either

1. nr,ω = l, or

2. |ψω(l)| ≥ 1
2
,

then if l+ Q̃n+k is (γ(E)−8ε0, Q̃n+k−Qn, Q
′
n− Q̃n−k,E, ω)-singular (with 0 ≤ k ≤ 2m),

there exist

l +Rn ≤ y1 ≤ y2 ≤ l +R
′

n

and Ej = Ej,[l+Qn+k,l+Q′n],ω such that

|P[l+Rn,y1],Ej ,ω̃P[y2,l+R
′
n],Ej ,ω

| ≥ 1

2mL(Ĩ)
√
m(2n+ 1)

e(γ(Ej)−ε)(R
′
n−Rn+1)+(η0−δ0)(2n+1). (4.32)

Remark 15. Note that y1 and y2 depend on ω and l but we do not include this subscript

for notational convenience. In particular, this is done when the other terms in expressions
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involving y1 or y2 have the correct subscript and indicate the appropriate dependence.

Proof. Firstly, if |ψω(l)| ≥ 1
2
, we may choose N1 such that l is (γ(E) − 8ε0,−Rn, R

′
n, E, ω)-

singular for n > N1. In the case that nr,ω = l, then there is an N2 such that l is naturally,

(ν − 8ε0,−Rn, R
′
n, E, ω)-singular for all n > N2. Choose N3 so that e

−ν
2
n < dist(I, Ĩ) for

n > N3 and finally choose N to be larger than N1, N2, N3 and the N ’s from Lemma 4.3.2,

Lemma 4.2.2, and Lemma 4.3.4.

Suppose that for some n > N , l + Q̃n + k is (γ(E)− 8ε0, Q̃n + k −Qn, Q
′
n − Q̃n − k,E, ω)-

singular. By Lemma 4.3.1 and Lemma 4.3.4, E ∈ B−
[l+Qn,l+Q

′
n],ε0,ω

. Note that all eigenvalues

of H[l+Qn,l+Q
′
n],ω

belong to B−
[l+Qn,l+Q

′
n],ε0,ω

. Since P[l+Qn,l+Q
′
n],Ẽ,ω

is a polynomial in Ẽ, it

follows that B−
[l+Qn,l+Q

′
n],ω,ε0

is contained in the union of sufficiently small intervals centered

at the eigenvalues of Hω,[l+Qn,l+Q
′
n]

. Moreover, Lemma 4.3.2 gives

m(B−
[l+Qn,l+Q

′
n],ω,ε0

) ≤ 2mL(Ĩ)e−(η0−δ0)(2n+1),

so we have the existence of Ej = Ej,[l+Qn,l+Q′n],ω so that |E − Ej| ≤ 2mL(Ĩ)e−(η0−δ0)(2n+1).

Applying the above argument with l in place of l + Q̃n + k yields an eigenvalue Ei =

Ei,ω,[l+Rn,l+R′n] such that Ei ∈ B−[l+Rn,l+R′n],ε0,ω and |E − Ei| ≤ 2mL(Ĩ)e−(η0−δ0)(2n+1). Hence,

|Ei−Ej| ≤ 4mL(Ĩ)e−(η0−δ0)(2n+1). By the previous line and the fact that Ej /∈ B−[l+Rn,l+R′n],ε,ω,

we see that ||G[l+Rn,l+R
′
n],Ej ,ω

|| ≥ 1
4mL(Ĩ)

e(η0−δ0)(2n+1) so that for some y1, y2 with l + Rn ≤

y1 ≤ y2 ≤ l +R
′
n,

|G[l+Rn,l+R
′
n],Ej ,ω

(y1, y2)| ≥
1

4mL(Ĩ)
√
m(2n+ 1)

e(η0−δ0)(2n+1).

Additionally, another application of Lemma 4.2.2 yields, |P[l+Rn,l+R
′
n],Ej ,ω

| ≥ e(γ(Ej)−ε)(R
′
n−Rn+1).
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Thus, by eq. (4.6) we obtain

|P[l+Rn,y1],Ej ,ωP[y2,l+R
′
n],Ej ,ω

| ≥ 1

4mL(Ĩ)
√
m(2n+ 1)

e(γ(Ej)−ε)(R
′
n−Rn+1)+(η0−δ0)(2n+1).

Lemma 4.3.6. There is a η̃ > 0 and N such that n > N implies P(Jl,n,ε) ≥ 1− e−η̃n.

Proof. Let A1 = [2n+ 1−m, (2n+ 3)m], A2 = [3n+ 1−m, (3n+ 3)m], and A3 = [n+ 1−

m, (n+ 3)m].

Thus,  ⋃
j1∈A1,j2∈A2,j2−j1≥n/2

F[j1,j2],ε

 ∪
 ⋃
j3∈A3,j4∈A1,j4−j3≥n/2

F[j3,j4],ε


is contained in ( ⋃

0≤k≤2m

(F[l+Q̃n+k+1,l+Q′n],ε
∩ F[l+Qn,l+Q̃n+k−1],ε)

)
.

We also have

P

 ⋃
j1∈A1,j2∈A2,j2−j1≥n/2

F[j1,j2],ε

 ∪
 ⋃
j3∈A3,j4∈A1,j4−j3≥n/2

F[j3,j4],ε

 ≥ 1− 2n2e−η
n
2

for sufficiently large n.

Note that the same reasoning provides a similar estimate on P[F[l+Rn,l−1],ε ∩ F[l+1,l+R′n],ε
].

Choose N as in Lemma 4.3.5, and note that by Lemma 4.3.2, Lemma 4.2.2, Lemma 4.3.4

and the argument above, for n > N ,
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P[Jl,n,ε] ≥ 1−2mL(Ĩ)e−δ0(2n+1)−2m4(2n+3)3e−ηε(
n
K
)−2m2(2n+3)2e−ηε(2n+1)−4n2e

−η ε
4

n
2 .

We may choose η̃ sufficiently close to 0 and increase N such that for n > N , we have

2mL(Ĩ)e−δ0(2n+1) + 2m4(2n+ 3)3e−ηε(
n
K
) + 2m2(2n+ 3)2e−ηε(2n+1) + 4n2e

−η ε
4

n
2 ≤ e−η̃n,

and the result follows.

Lemma 4.3.7. There is N such that for n > N , any ω ∈ Jl,n,ε, any y1, y2 with l + Rn ≤

y1 ≤ y2 ≤ l +R
′
n and any Ej = Ej,[l+k+Qn,l+Q′n],ω (with 0 ≤ k ≤ 2m),

|P[l+Rn,y1],Ej ,ωP[y2,l+R
′
n],Ej ,ω

| ≤ e(γ(Ej)+ε)(R
′
n−Rn+1).

Proof. By choosing N so that Lemma 4.2.2 holds for n > N , we are led to consider three

cases:

1. l +Rn + n
K
≤ y1 ≤ y2 ≤ l +R

′
n − n

K
,

2. l +Rn + n
K
≤ y1 ≤ l +Rn, while l +R

′
n − n

K
≤ y2 ≤ l +R

′
n, and finally,

3. l +Rn ≤ y1 ≤ l +Rn + n
K

and l +Rn + n
K
≤ y2 ≤ l +R

′
n.

In the first case, Lemma 4.2.2 immediately yields:

|P[l+Rn,y1],Ej ,ωP[y2,l+R
′
n],Ej ,ω

| ≤ e(γ(Ej)+ε)(R
′
n−Rn+1).
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In the second case, we have |P[y2,l+R
′
n],Ej ,ω

| ≤ M̃
n
K , while Lemma 4.2.2 gives

|P[l+Rn,y1],Ej ,ω| ≤ e(γ(Ej)+ε)(
n
K
).

By our choice of K, M̃
1
K ≤ e

ν
2 ≤ e(γ(Ej)+ε), so we again obtain the desired result.

Finally, in the third case, |P[l+Rn,y1],Ej ,ωP[y2,l+R
′
n],Ej ,ω

| ≤ M̃
2n
K ≤ e(γ(Ej)+ε)(R

′
n−Rn+1) (again by

our choice of K).

4.4 Spectral Localization

Theorem 4.4.1. There is N such that if n > N , 0 ≤ k ≤ 2m, and ω ∈ Jl,n,ε, with a

generalized eigenfunction ψω,E satisfying either

1. nr,ω = l, or

2. |ψω(l)| ≥ 1
2
,

then l + Q̃n + k is (γ(E)− 8ε0, Q̃n + k −Qn, Q
′
n − Q̃n − k,E, ω)-regular.

Proof. Choose N so that Lemma 4.3.5 and Lemma 4.3.7 hold and

1

4mL(Ĩ)
√
m(2n+ 1)

e(γ(Ej)−ε)(R
′
n−Rn+1)+(η0−δ0)(2n+1) > e(γ(Ej)+ε)(R

′
n−Rn+1)

for n > N . This can be done since ε < η0−δ0
3m

.

For n > N , we obtain the conclusion of the theorem. For if l + Qn + k was not (γ(E) −
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8ε0, Q̃n + k −Qn, Q
′
n − Q̃n − k,E, ω)-regular, then by Lemma 4.3.5

|P[l+Rn,y1],Ej ,ωP[y2,l+R
′
n],Ej ,ω

| ≥ 1

4mL(Ĩ)
√
m(2n+ 1)

e(γ(Ej)−ε)(R
′
n−Rn+1)+(η0−δ0)(2n+1).

On the other hand, by Lemma 4.3.7, we have

|P[l+Rn,y1],Ej ,ωP[y2,l+R
′
n],Ej ,ω

| ≤ e(γ(Ej)+ε)(R
′
n−Rn+1).

Our choice of N in the first line of the proof yields a contradiction and completes the

argument.

We are now ready to give the proof of Theorem 1.2.1. Again, Rn, R
′
n, Qn, Q

′
n, and Q̃n are

the scales from Lemma 4.2.2.

Proof. By Lemma 4.3.6, P[J0,n,ε eventually ] = 1. Thus, we obtain Ω̃ with P[Ω̃] = 1 and for

ω ∈ Ω̃, there is N(ω) such that for n > N(ω), ω ∈ J0,n,ε.

Since the spectral measures are supported by the set of generalized eigenvalues (e.g. [39]),

it suffices to show for all ω ∈ Ω̃, every generalized eigenfunction with generalized eigenvalue

E ∈ I is in fact an `2(Z) eigenfunction which decays exponentially.

Fix an ω in Ω̃ and let ψ = ψω,E be a generalized eigenfunction for Hω with generalized

eigenvalue E. Employing the same reasoning as in the proof of Theorem 1.1.1, and the

bounds established on Rn, R
′
n, Qn, Q

′
n, and Q̃n from Lemma 4.2.2, it suffices to show that

there is N(ω) such that for n > N(ω), if 0 ≤ k < 2m, then Q̃n + k is (γ(E)− 8ε0, Q̃n + k −

Qn, Q
′
n − Q̃n − k,E, ω)-regular. We may assume ψ(0) 6= 0, and moreover, by rescaling ψ,

|ψ(0)| ≥ 1
2
. ChooseN so that for n > N , the conclusions of Theorem 4.4.1 hold. Additionally,

we may choose N(ω) such that for n > N(ω), ω ∈ J0,n,ε. For n > max{N,N(ω)}, the
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hypotheses of Theorem 4.4.1 are met, and hence Q̃n + k is (γ(E)− 8ε0, Q̃n + k −Qn, Q
′
n −

Q̃n − k,E, ω)-regular.

4.5 Exponential Dynamical Localization

The strategy used in this section follows [29] with appropriate modifications needed to deal

with the fact that single-step transfer matrices were not used in the large deviation estimates.

In particular, the randomness in the conclusion of Theorem 4.4.1 will need to be accounted

for.

The following lemma was shown in [40] and we state a version below suitable for obtaining

EDL on the interval I.

Let uk,ω denote an orthonormal basis of eigenvectors for Ran(PI(Hω)), the range of the

spectral projection of Hω onto the interval I.

Lemma 4.5.1. [40] Suppose there is C̃ > 0 and γ̃ > 0 such that for any s, l ∈ Z,

E

 ∑
nr,ω=l

|uk,ω(s)|2
 ≤ C̃e−γ̃|s−l|.

Then there are C > 0 and γ > 0 such that for any p, q ∈ Z,

E[sup
t∈R
|〈δp, PI(Hω)eitHωδq〉|] ≤ C(|p− q|+ 1)e−γ|p−q|.

By Lemma 4.5.1, Theorem 1.2.2 follows from Theorem 4.5.1.
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Theorem 4.5.1. There is C̃ > 0 and γ̃ > 0 such that for any s,l ∈ Z,

E

 ∑
nr,ω=l

|uk,ω(s)|2
 ≤ C̃e−γ̃|s−l|.

Proof. We choose N so that Theorem 4.4.1 and Lemma 4.3.6 hold and for 0 ≤ k ≤ 2m, set

ζj,k = min{Q̃j + k − Qj, Q
′
j − Q̃j − k}. We then choose 0 < c < (ν − 8ε0) and increase N

such that if j > N and 0 ≤ k ≤ 2m, c(Q̃j + k) < (ν − 8ε0)2ζj,k. This can be done using the

bounds on Qn, Q
′
n, and Q̃n established in Lemma 4.2.2. Finally, we choose 0 < η̃1 <

η̃
(〈L〉+ε)3

and increase N such that if j > N , ( η̃
(〈L〉+ε)3 − η̃1)j > ln(j).

Now consider s and l in Z.

There are two cases to consider:

1. s− l > 2m(N + 1),

2. s− l ≤ 2m(N + 1).

Now suppose nr,ω = l and l + Q̃j ≤ s < l + Q̃j+1, and ω ∈ Jl,j,ε, since j > N , using

Theorem 4.4.1 and eq. (4.5),

|ur,ω(s)| ≤ 2|ur,ω(l)|e−(γ(Er,ω)−8ε0)ζ

≤ 2|ur,ω(l)|e−(ν−8ε0)ζ .
(4.33)
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By orthonormality and Hölder’s inequality,

∑
nr,ω=l

|ur,ω(s)|2 ≤ 4
∑
nr,ω=l

|ur,ω(l)|2e−(ν−8ε0)2ζj,k

≤ 4
∑
nr,ω=l

e−(ν−8ε0)2ζj,k .

(4.34)

We need to replace the randomness in the exponent above with an estimate that depends

only on the point s.

Since s = l + Q̃j + k with 0 ≤ k ≤ 2m, by our choice of c and N ,

∑
nr,ω=l

e−(ν−8ε0)2ζj,k ≤
∑
nr,ω=l

e−c|s−l|.

Now let A denote the set of j ∈ Z so that l + Q̃j ≤ s < l + Q̃j+1.

Finally, letting J =
⋃
j∈A Jl,j,ε, using the estimate provided by Lemma 4.3.6 on P[Jl,j,ε] and

our choice of η̃1,

E

 ∑
nr,ω=l

|uk,ω|2
 = E

 ∑
nr,ω=l

|ur,ω|2χJ +
∑
nr,ω=l

|ur,ω|2χJc


≤ Ce−c|s−l| + Ce−η̃1|s−l|.

(4.35)

In the second case, again by orthonormality, E

 ∑
nr,ω=l

|ur,ω(s)|2
 ≤ 1.
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By letting γ̃ = min{c, η̃1} and choosing a sufficiently large C̃ > 0, we obtain:

E

 ∑
nr,ω=l

|ur,ω(s)|2
 ≤ C̃e−γ̃|s−l|.
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