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Similarity Metric Learning for 2D to 3D Registration of Brain 
Vasculature

Alice Tang and Fabien Scalzo
Neurovascular Imaging Research Core Department of Neurology and Computer Science 
University of California, Los Angeles (UCLA)

Abstract

2D to 3D image registration techniques are useful in the treatment of neurological diseases such as 

stroke. Image registration can aid physicians and neurosurgeons in the visualization of the brain 

for treatment planning, provide 3D information during treatment, and enable serial comparisons. 

In the context of stroke, image registration is challenged by the occluded vessels and deformed 

anatomy due to the ischemic process. In this paper, we present an algorithm to register 2D digital 

subtraction angiography (DSA) with 3D magnetic resonance angiography (MRA) based upon 

local point cloud descriptors. The similarity between these local descriptors is learned using a 

machine learning algorithm, allowing flexibility in the matching process. In our experiments, the 

error rate of 2D/3D registration using our machine learning similarity metric (52.29) shows 

significant improvement when compared to a Euclidean metric (152.54). The proposed similarity 

metric is versatile and could be applied to a wide range of 2D/3D registration.

1. Introduction

During endovascular treatment for acute ischemic stroke, various images of the brain are 

taken at different time points before, during, and after intervention. While these images 

provide useful visual cues about the brain, the information obtained is often limited by the 

imaging technique used, thereby limiting the information available for treatment decisions. 

2D-3D registration can partially address this problem by combining the advantage of 2D 

images with 3D ones; allowing 3D visualization of bodily structures during intervention by 

aligning pre-interventional 3D images (through CT, MRI, etc.) with realtime 

intrainterventional 2D images (e.g. fluoroscopy, DSA). Furthermore, registration also aids 

with comparisons of various images taken throughout the time frame, allowing further 

analysis of changes over time.

2D-3D coregistration has been widely used in the medical field for applications such as 

image-guided interventions and surgery [1] for treatments involving implants [2], spinal 

surgery [3], cancer therapy [4], and brain diseases. For treatment of neurovascular diseases, 

since 2D DSA is generally more efficiently used to visualize the vasculature during a 

procedure, corresponding 3D information to those 2D images can provide surgeons insights 

about the positioning of surgical tools in relation to the target site during treatment [5]. In 

the context of stroke, 2D-3D registration is an especially challenging procedure as parts of 

the vasculature are missing or deformed, due to occlusions in the blood vessels. In this 

HHS Public Access
Author manuscript
Adv Vis Comput. Author manuscript; available in PMC 2019 January 15.

Published in final edited form as:
Adv Vis Comput. 2016 December ; 10072: 3–12. doi:10.1007/978-3-319-50835-1_1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



paper, we address these issues by presenting a 2D-3D registration algorithm that uses 

machine learning on local features.

Image registration can be defined as the process of finding the geometric transformation 

between two sets of images, which brings them to the same coordinate frame with the best 

possible spatial correspondence. Since manual registration can be time consuming and 

tedious, much work has been done on automatic ways to register medical images [6–8]. 

Previous works with feature-based methods use feature extraction to obtain matching 

geometries and correspondences [9], while intensity-based methods compare values in 

pixels [10]. Hybrid methods have also been employed that combine feature segmentation 

with pixel- wise comparisons [11]. Recent methods also performed registration in different 

spaces, such as the Fourier space [12].

For algorithms that rely upon image match comparison, registration is performed by 

optimizing a similarity measure indicating the amount of correspondence between two 

images. Common similarity measures that have been employed include mutual information, 

cross correlation, entropy, and pattern intensity, among others. Recently, machine learning 

has gained much interest in the medical field, with its diverse use and predictive power [13]. 

By learning patterns of known matches, a machine learning model can be used to predict the 

correspondence between two images based for example on local features, often allowing 

greater flexibility.

With a similarity measure established, an iterative optimization procedure can be used to 

find the optimal parameters which maximize or minimize a cost function based upon the 

similarity measure. Numerous optimization procedures have been developed and are 

available in the literature such as Levenberg Marquardt, Powell’s method, downhill simplex, 

and gradient descent. Heuristic methods have also been used such as Monte Carlo random 

sampling, pattern search algorithm, and others.

This paper presents a registration algorithm that applies machine learning to learn the 

similarity of 2D and 3D local image features in a task dependent way, which can then be 

extended to predict the overall similarity of two images. By focusing on local image 

properties, the algorithm allows greater variations between the registered images. 

Optimization is performed with a heuristic search using the Nedler-Simplex method. We 

first outline the registration algorithm in section 2, and then describe the optimization 

process and the accuracy of this algorithm in Section 3 and 4. Then, some discussion about 

the algorithm and comparisons with other algorithms are presented in Section 5.

2. Methods

Image Dataset

The dataset used in this study to evaluate our framework was collected from patients 

admitted at a comprehensive stroke center and diagnosed with symptoms of acute ischemic 

stroke. The use of this dataset was approved by the local Institutional Review Board (IRB). 

Inclusion criteria for this study included: (1) Final diagnosis of acute ischemic stroke, (2) 

last known well time within six hours at admission, (3) pre-interventional Magnetic 
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Resonance Angiography (MRA) performed during the routine acute evaluation, (4) Digital 

Subtraction Angiography (DSA) of the brain performed at the end of a thrombectomy 

procedure. A total of 18 patients satisfied the above criteria and were included in this study. 

The patients had various success in revascularization. DSA images had a resolution of 1024 

× 1024 pixels, while the resolution of MRA image varied across patients.

Vessel Extraction and Groundtruth

Blood vessels were detected on DSA with a Frangi filter [14]. This algorithm uses 

eigenvalues to compute the probability that a pixel contains a vessel by computing the 

similarity of a structure to an ideal tube. A simple threshold established with Otsu’s method 

was used to create a binary mask and a cloud of 2000 points was extracted from each image. 

3D MRA data was segmented semi-automatically using Osirix software to extract the major 

arteries of the brain. Similarly to the 2D DSA sampling, we extracted 2000 points from the 

segmented 3D image. The groundtruth was manually established between DSA and MRA 

images by a researcher in Neurology. An in-house software allowed the expert to rotate, 

scale, and shift the 3D MRA image volume to match the 2D DSA image. The result was a 

sequence of transformations that led to an ideal mapping between MRA and DSA that will 

later be used as groundtruth in our experiments.

Registration Model

The goal of 2D/3D registration is to find the transformation between the image coordinate 

system of the 3D image to a 2D image projection. The images are represented as point 

clouds and the transformation is assumed to be an affine transformation with constant 

scaling factor followed by a projection onto the xy plane. Thus, we can represent our 

transformation T :ℝ3 ℝ2 as

T = A r S sx, sy PRz(θz)Ry(θy)Rx(θx) 1

where Rx(𝜃x), Ry(𝜃y) and Rz(𝜃z) rotates a point respectively about x, y and z axis by 𝜃x, 𝜃y 

and 𝜃z, P projects a point from ℝ3 to ℝ2 by taking the first two coordinates, S(sx, sy) shifts a 

point by (sx, sy), and A(r) scales a point by a constant factor r. This decomposition simplifies 

the registration process as a search for a 6-parameter vector p = [𝜃x 𝜃y 𝜃z sx sy r] that 

optimally aligns the images. To find these transformation parameters, the 2D-3D registration 

algorithm utilizes a machine learning model to learn a similarity measure between points 

based upon their local neighborhood.

Image Representation

The 2D/3D images are represented as point clouds in their respective spaces. An erosion 

filter is applied to remove outliers. In this paper, we refer to the 2D point cloud as the Target 

image, and the 3D point cloud as the Source image. After a transformation is applied to the 

3D point cloud, we refer to the transformed 3D image as the Transformed image. Note that 

the Transformed image is two dimensional (as it is projected to a 2D space).
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With these representative sample of the Target and Transformed image, a local 2D histogram 

Hi acts as a point descriptor to describe each point by its local neighborhood. The histogram 

can be created given parameters of histogram size, hs, and number of bins, hb, and is 

normalized by the total number of points in the histogram. Each histogram can be condensed 

and represented as a 1D array of size 1 × hb
2. A collection of histograms for each point in an 

image can thus act as the image descriptor.

Machine Learning Model

We use Spectral Regression for Discriminant Analysis (SR-DA) [15] to find the parameters 

of a function that will output the likelihood of a match (i.e. similarity) between two points 

givien the point distribution in their neighborhood. During image registration, the point 

correspondences are two presumed point matches computed by taking the closest neighbor 

point in the Target image for every sampled point in the Transformed image. The average of 

the similarities for a representative sample of point correspondences acts as the total 

similarity measure for the Target and Transformed image. For each iteration of the 

registration process, a transformation T  obtained from the parameter vector p will be applied 

to the 3D Source image to obtain a 2D Transformed image. N randomly sampled points in 

the Transformed image with point correspondences in the Target image will be used to 

construct the input feature matrix to be given to the machine learning model.

The input to the machine learning model can be represented as a matrix X = (K1 K2 d). K1 is 

the N × hb
2 matrix of point descriptors for the N points, {p1,p2,...,pN}, that are sampled from 

the Transformed image. For each point in the Transformed image, pi, the nearest neighbor 

point in the Target image, qi, will be chosen by minimizing the distance between pi and qi. qi 

will be taken as a point correspondence, that is, the point descriptor for pi is expected to be 

similar to the point descriptor for qi. K2 is then the N × hb
2 matrix where each row i consists 

of the point descriptor of the nearest corresponding point to pi in the Target image. Lastly, d 
is a N × 1 vector consisting of the Euclidean distance between the two point 

correspondences for each row, that is, di = xpi − xqi
2 + ypi − yqi

2 .Therefore, X is of size 

N × (2 · hb
2 + 1), where each row represent information of each corresponding point pairs. 

The similarity function is applied to each row of X, and the output can be represented as a 

vector Ŷ in ℝN ×1, where Ŷi represents the probability of a match between pi and qi. The 

average of all values of Ŷ gives the similarity metric between the Target and Transformed 

image.

To train the model, we require representative pairs of matching and nonmatching points to 

construct the input feature matrix X and a label vector Y with entries 1 for the matching 

point pairs and 0 for the nonmatching point pairs. We use data augmentation to obtain the 

sample of matching point pairs by generating various transformations on the Source image 

by adding random variations to the groundtruth parameter vector, pgt. This allows the 

machine learning model to be robust. The matching point pairs are also thresholded by 

distance in order to improve the accuracy of training by removing points present as noise or 

extraneous vasculature. Nonmatching point pairs were generated by applying larger 

variations to the parameters of pgt. These samples are represented in a training matrix, X, 

with corresponding label vector Y.
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X is normalized column-wise and a Spectral Regression model is trained with X and Y and 

can then be used as a similarity function F between two candidate matches. The constructed 

similarity function F can be applied between point pairs in the Transformed and Target 

images, and the total similarity will be obtained: 𝒮ℐℳ = Y = F(X) .

Registering a new set of images

The goal of 2D-3D registration is to findT , an estimated transformation, based upon finding 

the 6 parameter vector p that optimizes the similarity value. Although a higher similarity 

value generally indicates a greater chance of matching, the negative of the similarity will be 

taken as our cost function in order to frame the optimization as a minimization problem:

COST = − SIM = − F(X). An initial parameter must be given to start the optimization, 

which will then proceed by the Nedler-Mead Simplex algorithm [16] as an heuristic search 

method to iteratively test various points in the 6-parameter space to find the optimal 

transformation. Optimization is stopped when the similarity or parameters are within a 

tolerance interval, or when 50 iterations of the algorithm have been reached.

3. Experiments

Parameter Optimization

In order to find the optimal parameters for training and applying the machine learning 

model, cross-validation tests were performed to compute the accuracy of the model under 

different parameters, using the area under the curve (AUC) as the accuracy measure. These 

parameters include the number of training samples, the histogram size hs, the number of bins 

per histogram hb, the regularization parameter (alpha), and the similarity smoothing 

parameter (t) used in the machine learning model. For every set of parameters, k pairs of 

training images, P1,P2, …,Pk, coupled with the corresponding groundtruth transformation 

vector, pgt,1, pgt,2,..., Pgt,k, were used for training and testing. For each set of training 

parameters, one image, Pm, was set aside while the rest were used to train the machine 

learning model and compute the similarity function. The similarity function was then 

applied to sampled point pairs in the excluded training image, Pm, to obtain prediction ŶPm. 

This process was repeated so that all k images are excluded once. The point pair predictions 

ŶPm are then compared against known corresponding training labels YPm and the AUC 

value is computed as a measure of the accuracy of the set of training parameters. This 

process is repeated again for each set of training parameters and corresponding AUC value 

computed.

Accuracy of Registration

To determine the effectiveness of the learned similarity metric, the accuracy of the 

registration model was tested against another simple metric which corresponds to 

minimizing the Euclidean norm of the error between histograms of point correspondences. 

For both the learned similarity (ML similarity) and the Euclidean norm similarity (Eunorm 

similarity), the registration process was performed to obtain an estimated parameter vector, 

pML and pEunorm, representing the predicted transformation.
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Error in this algorithm was found by transforming the 3D Source image with the ground 

truth parameter pgt, then finding the distance between the same points transformed with the 

predicted parameters. The root mean square error was found for both the ML similarity and 

the Eunorm similarity as a measure of accuracy.

4. Results

Cross-validation was performed to evaluate and optimize the model such that the number of 

training point pairs, the number histogram bins, and the regularization parameter of the 

regression model were optimized at each iteration of the crossvalidation. The optimal 

parameters found for our data set: training sample size = 2000, alpha = .001, smoothing 

parameter t = 6, hb = 6, hs = 400.

18 samples of patient pre-interventional MRA scans and post-treatment DSA scans were 

used for the registration processes. For each Source image, the registration process was 

performed with both the machine learning model similarity and the Euclidean distance 

similarity. Initial parameters were same for both similarity measures and varied from 

groundtruth parameters within 60° about the x and y axis, 150° about the z-axis, 10% shift, 

and 15% scaling. Root mean square error was computed between the same points in the 

Source image transformed using the estimated parameters, and the groundtruth parameters. 

Manual visualizations show that the registration process using the machine learning model 

similarity failed to register 2 samples of images, while using the Euclidian norm similarity 

failed to register 12 samples of images. The root mean square error for the Euclidean 

similarity metric was 152.54 ± 87.39, while the proposed ML similarity metric led to an 

error of 52.29 ± 64.69.

5. Discussions

The use of machine learning for image registration has many advantages and allows greater 

adaptation for various applications. Although we focused on registration of MRA and DSA 

simages in this paper, machine learning may be extended to compute the similarity function 

between images obtained from other modalities and acquisition parameters, provided 

enough training samples are available.

The disadvantage of this algorithm involves the need for training samples to exist in order to 

pre-train the machine learning model before the similarity function can be used for 

registration. The process to obtain optimal parameters for training and registration may also 

be challenging and time-consuming. Furthermore, the timing of registration using this 

algorithm varies from 1–10 minutes, which may be slow or adequate depending on the 

application.

Future experiments may involve testing machine learning applications for different image 

descriptor choices. Hybrid algorithms can be constructed by considering image features such 

as global histograms, gradient information, vessel shape, or transformations of the image in 

parameter or frequency space. It would also be advantageous to adapt the algorithm for a 

larger training sets in the future. Furthermore, since manual groundtruth parameters were 
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also prone to error, it may be beneficial to obtain multiple manual registrations from various 

neurology researchers.

Despite these limitations, the proposed framework could be used to register perfusion 

angiography [17] maps to MRA, and compare/map Computational Fluid Dynamics (CFD) 

parameters extracted from DSA [18] with the ones computed from 3D MRA/CTA [19,20].

6. Conclusion

Given the outcome of our local similarity machine learning method, it is shown that using 

machine learning for future applications of 2D-3D registration can provide adaptability 

beyond what has been previously obtained. Machine learning models can be trained with 

different datasets, such as images obtained from other modalities and methods. Eventually, a 

database of trained models can be collected. These models then can be easily chosen, 

implemented, and rapidly used for registration purposes in future clinical or research 

settings. Overall, using machine learning in 3D-2D registration has the potential reach for 

far applications into the medical field.
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Fig. 1: 
Extraction of local input features from 2D DSA and 3D MRA to train the model. Local 

descriptors are local point cloud histograms. Pairs of point descriptors are sampled randomly 

from labeled matching and nonmatching transformations.
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Fig. 2: 
Diagram representing the registration process. The accuracy of our algorithm is determined 

by comparing the computed and the manual transformations.
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Fig. 3: 
Image panel illustrating the target 2D DSA, source 3D MRA, the groundtruth, and the result 

of the registration using ML and Euclidean norm metrics.
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