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Fair Data Representation for Machine Learning at the Pareto 
Frontier

Shizhou Xu,
Department of Mathematics, University of California Davis, Davis, CA 95616-5270, USA

Thomas Strohmer
Department of Mathematics, Center of Data Science and Artificial Intelligence Research, 
University of California Davis, Davis, CA 95616-5270, USA

Abstract

As machine learning powered decision-making becomes increasingly important in our daily 

lives, it is imperative to strive for fairness in the underlying data processing. We propose a 

pre-processing algorithm for fair data representation via which L2(ℙ)-objective supervised learning 

results in estimations of the Pareto frontier between prediction error and statistical disparity. 

Particularly, the present work applies the optimal affine transport to approach the post-processing 

Wasserstein barycenter characterization of the optimal fair L2-objective supervised learning 

via a pre-processing data deformation. Furthermore, we show that the Wasserstein geodesics 

from learning outcome marginals to their barycenter characterizes the Pareto frontier between 

L2-loss and total Wasserstein distance among the marginals. Numerical simulations underscore 

the advantages: (1) the pre-processing step is compositive with arbitrary conditional expectation 

estimation supervised learning methods and unseen data; (2) the fair representation protects the 

sensitive information by limiting the inference capability of the remaining data with respect to the 

sensitive data; (3) the optimal affine maps are computationally efficient even for high-dimensional 

data.

Keywords

statistical parity; equalized odds; Wasserstein barycenter; Wasserstein geodesics; conditional 
expectation estimation

1. Introduction

Our society is increasingly influenced by artificial intelligence as (direct or indirect) 

decision-making processes become more reliant on statistical inference and machine 

learning. The potentially significant long-term impact from sequences of automated 

(facilitate of) decision-making has brought large concerns about bias and discrimination 
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in machine learning [3, 39]. Machine learning based on unbiased algorithms can naturally 

inherit the historical biases that exist in data and hence reinforce the bias via automated 

decision-making process [11].

One straightforward partial remedy is to exclude the sensitive variables from the data set 

used in the learning and decision process. But such exclusion merely eliminates disparate 

treatment, which refers to direct discrimination, and leaves disparate impact, which refers 

to unintended or indirect discrimination, remaining in both data and learning outcome 

[20]. Examples of the legal doctrine of disparate impact include Griggs v. Duke Powers 

Co. [32] and Ricci v. DeStefano [33], where the decision is based on factors that are 

strongly correlated to race, such as intelligence qualification in the former and the racially 

disproportionate test result in the latter, are ruled illegal by the US supreme court. As 

a result, along with the trending development of automated decision-making, the need 

for more sophisticated but practical techniques has made fairness in machine learning an 

important research area [35].

Two important but potentially conflicting goals of fair machine learning are group 
fairness, which aims for similarity in predictions conditioned on sensitive information, 

and individual fairness, which aims for similar treatment of similar individuals regardless 

of the sensitive information. The present work targets an important definition in groups 

fairness: statistical parity, because it is closely related to disparate impact and hence long-

term structural influence [46], while individual fairness focuses more on the short-term 

individual consequence. In the remainder of this paper fairness and statistical parity are used 

interchangeably1

Before further discussion on statistical parity, we note that fairness in machine learning 

should not be defined by a single statistical property or Lipschitz condition without 

considering the application context. The goal of the present work is to provide theoretically 

reliable and explainable tools to help practitioners obtain the optimal (w.r.t. utility) solutions 

at any chosen statistical disparity level, provided one chooses to adopt statistical parity (or 

limited statistical dependence between the learning outcome and the sensitive information) 

as a meaningful fairness definition in one’s particular application context.

Remark 1.1 below provides a more detailed discussion on statistical parity, namely how 

the utility optimization solves some major insufficiency of the original statistical parity 

definition and improves statistical parity to proportional equality, a fairness concept similar 

to equity in modern ethics which can be traced back to Aristotle and Plato [4, 5].

Remark 1.1 (Statistical Parity Enhanced by Utility Optimization)

Statistical parity is one of the most important definitions of group fairness. It has advantages 

such as (1) legal support on mitigating adverse impact and (2) the long-term effect resulting 

from the enforced involvement of minority groups or diversity in learning outcome via 

affirmative action [25]. On the other hand, there are three major criticisms about statistical 

1.There are many other notions of fairness, such as equalized odds or equal opportunity, which all have their benefits and 
shortcomings [9]. A discussion of the advantages or disadvantages of the different concepts of fairness is beyond the scope of 
this paper.
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parity often mentioned in papers such as [18, 24]: (1) reduced utility, (2) self-fulfilling 

prophecy, (3) subset targeting. But we notice that the first two are insufficiency with respect 

to utility. Therefore, the proposed method fixes these two insufficiencies and improves the 

statistical parity.

1. (Utility) The development of the Pareto frontier allows us to achieve a desirable 

statistical disparity level with theoretically provable minimum (hence necessary) 

utility sacrifice. Equivalently, practitioners can choose a tolerable utility sacrifice 

level so that the Pareto frontier will provide a learning outcome with the 

minimum statistical disparity while not violating the utility sacrifice tolerance.

2. (Self-fulfilling Prophecy) As mentioned in [18, 24], self-fulfilling prophecy 

results from random, careless, or malicious selection in minority groups. But 

the barycenter characterization method guarantees the optimal fair model to 

make good selections in all sensitive groups to maximize utility. Section 1.2 

contribution point 4 and Section 2.1 provides, respectively, the intuitive and 

technical explanation of how the utility maximization enforces the model to 

give similar learning outcomes to data points sharing relatively (within their 

sensitive groups) similar qualifications. For example, if race is the sensitive 

information and an admission test score is the only qualification variable, a 

barycenter-characterized optimal fair admission model would give admission to 

the same percentage of top-score students in each of their racial groups.

Interestingly, the interpretation is consistent with the philosophical definition of fairness 

involving proportional equality: a model is fair (with respect to the sensitive information) 

if it distributes proportional chance or prediction to proportionally qualified independent 

variables within each of the sensitive groups.

Beginning with [18], there is now a sizable body of research studying fair machine 

learning solutions. The resulting approaches can be categorized into the following: (1) 

pre-processing: deform data before training to mitigate sensitive information in learning 

outcome [12, 28]; (2) in-processing: implement the fairness definition into the training 

process by penalizing unfair outcome [6, 44]; (3) post-processing: enforce the definition of 

fairness directly on learning outcome [24, 26].

In recent years, the post-processing approach has received significant attention due to the 

following remarkable results: the optimal fair distribution of supervised learning, such 

as classification [26] and regression [15, 21], can be characterized as the Fréchet mean 

of the learning outcome marginals on the Wasserstein space, which is also known as 

the Wasserstein barycenter in optimal transport literature.2 (See Remark 2.2 for more 

details on learning outcome marginals.) The following remark provides an intuition of the 

Wasserstein-2 (W2) barycenter characterization, on which we develop our theoretical results 

and algorithms.

2.The present work later uses simply (pseudo-)barycenter to denote Wasserstein-2 (pseudo-) barycenter.
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Remark 1.2 (Intuition of Wasserstein-2 Barycenter Characterization)

The Fréchet mean is the closest point to a set of points in a Metric space and therefore 

a generalization of the mean in Euclidean space to general metric spaces such as 

the Wasserstein-2 space. Intuitively, one can consider the barycenter (Fréchet mean on 

Wasserstein-2 space) characterization of optimal fair learning outcome as an analog of 

representing a set of points by their average, which thereby optimally (with respect to total 

moving distance) removes the disparity among those points, except each point is now on 

Wasserstein-2 space and hence a distribution. See more details in Section 1.2 contribution 

point 4 below.

Despite the theoretical elegance of the post-processing barycenter characterization, 

challenges remain in theory and practice (See Section 1.2 for a detailed explanation of 

the challenges), especially when compared to pre-processing or data representation methods.

Fair machine learning using a pre-processing approach has been considered in [12, 

20, 23, 27, 28, 30, 37]. While the Wasserstein-2 barycenter provides a mathematically 

rigorous characterization of the post-processing optimal learning outcome, optimal fair 

data representation for general supervised learning models still lacks a theoretical 

characterization. See, for example, [9, Section 3.4, 3.5] for more details on the current 

challenges in fair data representation design for general machine learning models beyond 

classification, not to mention data representations that provide the optimal trade-off between 

accuracy and fairness.

The goal of the present work is to develop an optimal fair data representation 

characterization so that any supervised learning model, which aims to estimate the 

conditional expectation, trained via the fair data representation results in a fair estimation 

of the post-processing Wasserstein-2 barycenter characterized optimal fair learning outcome. 

The ultimate goal is to develop a method that enjoys both the mathematically rigorous 

characterization of post-processing and the flexibility of pre-processing.

1.1 Optimization Problems with Sensitive Variable Independence Constraint

The statistical parity constraint for supervised learning or data representation in a nutshell 

is a constraint on the dependence between the learning outcome and a chosen sensitive 

variable. Equivalently, the constraint limits the ability of machines or practitioners to access 

or reverse engineer the sensitive variable from the learning outcome or data representation. 

Therefore, although the theory and methods in the present work aim to solve current 

challenges in machine learning fairness, they can also be useful in other areas where 

sensitive or undesirable information within the existing learning outcome or data needs 

to be eliminated. One example of such an area other than fair machine learning is machine 

(feature) unlearning. It starts from [13] and now has a sizable body of research works.

Here, we summarize the constrained optimization problems solved in the present work. 

We prove existence (and uniqueness if possible) results via a constructive characterization 

approach so that explicit formula of the solutions become available. Practitioners and 

researchers interested in limiting the statistical dependence between the learning outcome 

or data representation and certain feature variables can directly refer to the corresponding 
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section for results. We leave the underlying motivations resulting from machine learning 

fairness to the followings two subsections.

In Section 3, we target the following problem:

Problem 1 (Optimal Fair L2-objective Learning Outcome)

inf
f ∈ L2(X × Z, Y)

Y − f(X, Z) 2
2:f(X, Z) ⊥ Z

(1.1)

Here, Y  is the dependent variable, and f(X, Z) is an estimator that uses the independent 

variable X and sensitive variable Z to estimate Y . The loss function aims to maximize 

utility by minimizing the L2-norm between Y  and f(X, Z). The constraint f(X, Z) ⊥ Z
guarantees that the final result is independent of the sensitive information Z and hence 

satisfies statistical parity.

In Section 4, we relax the above strict independence constraint by applying a quantification 

of statistical disparity: the average pairwise Wasserstein-2 distance among marginal (w.r.t Z) 

distributions of f(X, Z), denoted by D(f(X, Z)). It has the following desirable properties: (1) 

D(f(X, Z)) = 0 if and only if f(X, Z) ⊥ Z; (2) The higher is D the more disparities are there 

among the marginals (w.r.t. Z) of f(X, Z); (3) D has a meaningful interpretation in physics 

as the expected minimum amount of work required to remove the discrepancy between two 

randomly chosen sensitive marginals of the learning outcome. Therefore, fix a dependence 

level d ∈ [0, ∞),

Problem 2 (Optimal L2-objective Learning Pareto Frontier)

inf
f ∈ L2(X × Z, Y)

Y − f(X, Z) 2
2:D(f(X, Z)) < d

(1.2)

gives us the corresponding Pareto optimal solution.

In Section 5, we provide a theoretical characterization of the solution to

Problem 3 (Optimal Fair Data Representation for Conditional Expectation Estimation)

inf
(X, Y ) ∈ D

Y − E(Y ∣ X) 2
2:X, E(Y ∣ X, Z) ⊥ Z ,

(1.3)

where D is the admissible data representation set we define later. Here, the objective 

function aims to maximize the potential utility remaining within the deformed data (X, 
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Y ) by minimizing the L2 distance between the perfect estimator E(Y ∣ X) on (X, Y ) 

and the original Y , so that better estimation of E(Y ∣ X) leads to better prediction of Y . 

The constraint X, E(Y ∣ X, Z) ⊥ Z guarantees: (1) f(X) ⊥ Z for ∀f :X Y, such that any 

estimator of E(Y ∣ X) is independent of Z. (2) The perfect adversarial estimator E(Y ∣ X, Z)
is independent of Z, so that and better estimation of E(Y ∣ X, Z) leads to more independence 

of Z (alignment between training objective and independence constraint). In addition, one 

may choose the following alternative constraints according to the application context: (1) 

X ⊥ Z, which guarantees f(X) ⊥ Z for all measurable f as mentioned above; (2) X, Y ⊥ Z, 

which guarantees any (adversarial) supervised or unsupervised learning on (X, Y ) to be 

independent of Z. The first alternative is useful if only measurable functions of X are 

allowed, whereas the second should be applied when one does not know which features 

are dependent or independent. See more detailed derivation and explanation of the data 

representation objective function and constraints in Section 1.3.

1.2 Challenges and Contributions in Machine Learning Fairness

Now, we go back to the motivation behind the above-listed optimization problems: 

fair machine learning. We first summarize the limitations of the current post-processing 

characterization and the current methods based on it to estimate the optimal fair learning 

outcome.

1. The current post-processing barycenter characterization lacks both theoretical 

and computational generalization to high-dimensional data spaces, such as text 

or image spaces. In theory, the current works [15, 21, 27] focus on classification 

and 1-dimensional regression. From the computational perspective, the current 

works apply coupling of cumulative distribution functions (cdf) of the learning 

outcome sensitive marginals to find the barycenter and the inverse of the cdf 

to compute the optimal transport map. Both the coupling and the inverse 

of cdf are computationally expensive. Furthermore, since the inverse of cdf 

cannot be generalized to high-dimensional space, the current methods lack the 

generalization to supervised learning with high-dimensional dependent variables.

Due to the recent development of generative AI models, it is now important to 

have fair machine learning methods for arbitrarily high-dimensional data. We 

hope the present work on L2 space can be a starting point for fair machine 

learning or data representation on more general spaces for high-dimensional 

data.

2. The current post-processing barycenter characterization lacks both theoretical 

and computational generalization to (an estimation of) the optimal trade-off, 

also known as the Pareto frontier, between prediction accuracy and fairness. In 

theory, there is a lack of characterization of the Pareto frontier (optimal trade-off) 

between utility and fairness. Current works on the Pareto frontier, such as [27], 

apply tight inequalities based on convexity of distance metrics to suggest the 

optimal trade-off coincide with the Wasserstein-2 geodesic path. While such 

inequalities are tight for a broad type of metrics on the space of probability 

measures, they are not for the Wassserstein-2 metric. Hence, the inequalities 
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are not able to extend the mathematically rigorous Wasserstein-2 barycenter 

characterization of the optimal fair learning outcome to a Pareto frontier. From 

the computational perspective, the current methods, such as [15, 27], apply 

interpolation among the inverse of cumulative distribution functions as transport 

maps to estimate the geodesics. In addition to the drawbacks mentioned in the 

point one above, the inverse of cdf also does not come with an explicit form, 

which makes the computation of interpolation between two cdf inverses even 

more cumbersome.

3. The post-processing nature of the characterization requires implicit or explicit 

sensitive information in the training and decision-making process. More 

specifically, in order to apply the barycenter characterization to find the optimal 

fair learning outcome or to make predictions to newly incoming data, one 

needs the following steps: (1) Estimate the conditional expectation and obtain 

its marginal distributions with respect to the sensitive information. (2) Find 

the Wasserstein-2 barycenter of the sensitive marginals of the conditional 

expectation estimation or learning outcome. (3) Compute the optimal transport 

maps from each sensitive marginal to the barycenter. (4) Apply each transport 

map to the marginal with matched sensitive information. Here, not only the 

trained model still inherits the unfairness, but it is also clear that sensitive 

information needs to be attached to both the dependent variable or incoming data 

and its learning outcome or prediction, until the very last post-processing step 

of finding the barycenter comes to rescue. Hence, we say the characterization 

has a post-processing nature. As a result, training machine or model user needs 

access to the senstive information of each individual incoming data in every step 

during the learning process. Such strong access to sensitive information makes 

the supervised learning process vulnerable to attack and sensitive information 

leakage.

The post-processing nature of the characterization also suffers from the 

lack of flexibility in model selection, modification, and composition. For 

model selection and modification, a practitioner would have to do the post-

processing step for every model and every modification in order to compare the 

corresponding optimal fair learning outcomes. See Table 6 for more details on 

the additive computational cost of post-processing approach comparing to the 

1-time cost of the proposed pre-processing approach. For model composition, 

we consider the simple example task2 ∘ task1 where taski, i ∈ 1, 2  are trained 

supervised learning models. In practice, there is a good chance that task1 and 

task2 belong to different practitioners or organizations, denoted by practitioner 

1 and 2 respectively. Therefore, in order to protect sensitive information from 

practitioner 2, practitioner 1 will perform the post-processing step to obtain 

a fair learning outcome and provide it as an input variable for the training 

task of practitioner 2. But unless the task2 needs no more input variable other 

than the dependent variables of task1 (in that case, task1 would be fair data 

representation design), still practitioner 2 needs full access to the sensitive 

variable attached to its input data, which includes the desensitized task1 output 
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and other input variables. Such attachment makes the post-processing step 

performed by practitioner 1 meaningless. Considering the recent development 

of decentralized learning in practice, such drawback in model composition 

makes a model-independent fair data representation more applicable than a post-

processing solution.

4. Many of the current fair machine learning methods are proposed without utility 

guarantee or explainability. Such a lack of utility guarantee or explainability 

prevents the study of fair machine learning from practical use. For instance, 

Wells Fargo [46] concluded recently that the current fair machine learning 

methods are black-box methods and hence they hesitate to adopt fair machine 

learning techniques.

We provide a road map of the tools that we developed in response to each of the challenges 

listed and how the present work combines all the tools to provide (exact solution and 

estimation of) the fair data representation at the Pareto frontier.

1. In response to the theoretical part of the first challenge, Lemma 3.1 in Section 

3 provides a characterization (with explicit construction) of the exact solution to 

Problem 1 (the optimal fair L2-objective learning), which now allows the data 

spaces X, Y, Z to be [k]d, ℕd, [0, l]d, or ℝd for arbitrary dimension d < ∞.

To solve the computational challenge in high-dimensional data spaces, we 

propose a method that applies affine transport maps to find the optimal 

affine estimation of the post-processing optimal fair L2-objective supervised 

learning outcome with an arbitrarily finite-dimensional dependent variable, 

which responds to the first challenge listed above. In particular, by restricting 

admissible transport maps to be affine and making a corresponding relaxation 

to the fairness constraint, we derive a relaxed version of the post-processing 

characterization: (1.4). Applying the optimal affine transport maps [1], Definition 

3.1 defines the post-processing pseudo-barycenter, Lemma 3.2 shows the 

proposed pseudo-barycenter coincides with the true barycenter when sensitive 

marginals are Gaussian, and finally, Theorem 3.1 proves the pseudo-barycenter 

is the optimal affine estimation of the true barycenter in the general marginal 

case and provides the estimation error. Optimal affine transport and pseudo-

barycenter have the advantage of computational efficiency, compared to the 

current methods, due to the explicit matrix form of the transport map and the 

nearly closed form solution to the pseudo-barycenter.

The importance of optimal affine maps is much more than a solution to the first 

challenge. The optimal affine maps together with McCann interpolation [31] help 

us obtain an explicit form of the geodesic path characterization of the Pareto 

frontier in Section 4. More importantly, Section 5 shows optimal affine maps and 

the pseudo-barycenter are necessary tools to overcome the post-processing nature 

of the Wasserstein-2 barycenter characterization by exploiting the linearity of 

conditional expectation and thereby generating optimal fair data representations.
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2. In Section 4, we prove an exact characterization of the solution to Problem 2 (the 

optimal utility-parity trade-off or Pareto frontier) in response to the theoretical 

part of the second challenge. In particular, Theorem 4.1 shows that, when utility 

loss and disparity are quantified respectively by the L2 distance (between true 

data and estimation) and the average pairwise W2 distance among the sensitive 

marginals of conditional expectation, the optimal trade-off happens if and only 

if the marginal distributions travel along the Wasserstein-2 geodesic path from 

the original learning outcome marginals to their barycenter. Therefore, we say 

the Pareto frontier is on the Wasserstein-2 space. Corollary 4.1 then derives an 

explicit form of the Pareto optimal solution to Problem 2. The result is a natural 

extension to the post-processing Wasserstein-2 barycenter characterization of the 

optimal fair learning outcome: the barycenter characterization coincides with the 

point at zero disparity on the Pareto frontier. Interestingly, our result shows that 

the Pareto frontier is linear.

To solve the computational challenge of the geodesic path, Remark 4.1 applies 

McCann interpolation together with the optimal affine maps and the pseudo-

barycenter to derive a computationally efficient (nearly) closed-form formula to 

estimate the Pareto frontier, which results in Algorithm 1.

3. In response to the third challenge, the present work proposes in Section 

1.3 Problem 3 (optimal fair data representation problem), which makes the 

objective function and fairness (statistical parity) constraint model-independent 

and therefore suitable for fair data representation design. More specifically, 

by applying orthogonal decomposition in L2 space, the present work uses an 

objective function to maximize the potential utility remaining in the data. On 

the other hand, a fair data representation should provide fairness guarantee to 

arbitrary L2-objective supervised learning models. Therefore, the present work 

proposes a pre-processing fairness constraint to guarantee fairness in the learning 

outcome of arbitrary L2-objective models trained via the fair data representation.

In Section 5, Lemma 5.3 first provides a characterization of the exact solution 

to the optimal fair data representation problem (under a mild assumption). 

Next, Definition 5.2 and Definition 5.1 define dependent and independent 

pseudo-barycenter, respectively. Then, similar to solving a relaxation of the 

post-processing characterization to obtain the optimal affine estimation, Theorem 

5.1 proves that the dependent and independent pseudo-barycenter pair coincides 

with the true solution to the optimal fair data representation when the marginal 

data are Gaussian, and Theorem 5.2 proves that the pseudo-barycenter pair forms 

the optimal affine estimation of the optimal fair data representation.

To derive (an estimation of) fair data representation at the Pareto frontier, 

Corollary 5.1 in Section 5.4 first provides a characterization of the Pareto frontier 

for conditional expectation on a fixed sigma-algebra. Finally, combining optimal 

affine map, pseudo-barycenter, together with a diagonal argument in Remark 5.4, 
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we derive an estimation of the fair representation at the Pareto frontier, which 

results in Algorithm 1 and 2.

Furthermore, in Section 7 experiments show that the proposed fair data 

representations preserve as large an amount of information (w.r.t. the L2

objective) as the fairness constraint allows. Therefore it provides a better and 

more flexible solution to fair learning when compared to encoding-based data 

representations [12, 45], which encode the information of the original data to 

some binary feature variable space that is designed to guarantee statistical parity 

for classification. Surprisingly, experiments also show that applying the pseudo-

barycenter results in nearly zero utility loss, compared to the post-processing 

barycenter characterization solution.

4. In addition to the provable utility guarantee resulting from the Pareto frontier, 

the proposed method also has a meaningful interpretation from a datapoint-wise 
perspective in how it achieves the statistical parity requirement: A data point 

of the optimal fair learning outcome is the Euclidean average of the optimally 

matched data points from each of the sensitive groups. Here, matching means 

partitioning the original data set into subsets consisting of one point from 

each sensitive marginal. Each subset is called a match. The points within 

a match are called matched points. Optimality in matching is equivalent to 

the minimization of the expected variance within a randomly chosen match. 

Such expected (hence total) variance minimization enforces points with similar 

relative positions in their sensitive marginal to form a match. For example, 

assume there are two sensitive marginals A = 1 (low in A), 4 (high in A)  and 

B = 2 (low in B), 3 (high in B) , then the optimal matching is

1 (low in A), 2 (low in B) , 3 (high in B), 4 (high in A)

to minimize the expected or total variance within the matches. The optimal 

matching in high-dimensional L2 spaces shares the same geometric intuition 

with the simple example. That is, from a point-wise perspective, the optimal 

fair learning achieves statistical parity by first matching the points with similar 

relative positions in their sensitive marginals and then representing the matched 

ones with their Euclidean average.

1.3 Fair Data Representations: From Theory to Practice

In this subsection, we derive a fairness objective function that is both theoretically tractable 

and practically appealing. This task is more involved than one initially might expect, 

and it sheds light on some subtleties of both the post-processing and the pre-processing 

approaches.

Before we proceed, we need some preparation. Let X, Y , and Z represent respectively 

the independent, dependent, and sensitive random variable, with the same underlying 

probability space (Ω, Σ, ℙ). The present work uses the term random variables to 
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denote random vectors with an arbitrary but finite dimension. That is, S :Ω S where 

S ∈ kS
dS, ℕdS, 0, lS

dS, ℝdS  with kS ∈ ℕ, lS ∈ ℝ and dS < ∞ for S ∈ X, Y , Z .

It follows from [15, 21] that the optimal fair regression outcome can be characterized by 

the Wasserstein-2 barycenter. In Lemma 3.1 we will generalize their result from regression 

to all functions in L2(X × Z, Y), which shows that the optimal fair L2-objective supervised 

learning outcome can be characterized by solutions to Problem 1:

inf
f ∈ L2(X × Z, Y)

Y − f(X, Z) 2
2:f(X, Z) ⊥ Z

(1.4)

The constraint f(X, Z) ⊥ Z guarantees that the final result satisfies statistical parity and 

hence fair.

Since it follows from L2 orthogonal decomposition that

Y − f(X, Z) 2
2 = Y − E(Y ∣ X, Z) 2

2 + E(Y ∣ X, Z) − f(X, Z) 2
2

(1.5)

and only the second term on the right hand side depends on the choice of f ∈ L2(X × Z, Y), 
we conclude that (1.4) is equivalent to

inf
f ∈ L2(X × Z, Y)

E(Y ∣ X, Z) − f(X, Z) 2
2:f(X, Z) ⊥ Z .

(1.6)

It turns out—see Lemma 3.1—that the solution to (1.6) is exactly the Wasserstein-2 

barycenter. Therefore, we say the optimal fair L2-objective supervised learning outcome is 

characterized by the Wasserstein-2 barycenter. But notice that the Wasserstein-2 barycenter 

characterization (1.6) assumes knowledge of the learning outcome E(Y ∣ X, Z). That is, 

if practitioners apply the characterization to estimate the optimal learning outcome, it 

is necessary to obtain an estimator of E(Y ∣ X, Z) via supervised learning before solving 

the post-processing rescue step (1.6). Therefore, we say the characterization has a post-

processing nature and hence call it a post-processing characterization.

Now, notice that the estimator of E(Y ∣ X, Z) is obtained via the training process

inf
f ∈ ℱ

Y − f(X, Z) 2
2 ,

(1.7)

where the admissible function set ℱ depends on the choice of supervised learning models. 

Denote the estimator by f′(X, Z). Then in practice (1.6) becomes
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inf
f ∈ L2(X × Z, Y)

f′(X, Z) − f(X, Z) 2
2:f(X, Z) ⊥ Z .

(1.8)

That is, the application of the post-processing characterization is model-dependent. The 

fundamental reason of the model-dependence is that (1.4) is optimizing over functions 

on L2 while in practice it is necessary to reduce the admissible set from L2 to some 

ℱ which depends on the choice of the model. As a result, the optimizer is necessarily 

dependent on the choice of the model. Therefore, the constrained optimization (1.4) and 

its characterization are not suitable for our ultimate goal of deriving a model-independent 

pre-processing approach to the optimal fair learning outcome. The present work proposes 

a different constrained optimization problem that characterizes the optimal fair data 

representation for all L2-objective supervised learning models.

To make a constraint optimization problem suitable for fair data representation design, we 

require both the objective function and the fairness constraint to be model-independent. 

Furthermore, the data representation design objective and the training objective given the 

data representation have to be consistent in the following sense: the better training and 

testing result on the fair data representation leads to less L2-fitting error with respect to the 

true data.

We now derive an objective function that is suitable for fair data representation design 

purpose. To start, notice that our goal is to generate a synthetic data representation (X, Y ), a 

deformation of (X, Y ), via which any L2-objective model that is trained via3

inf
f ∈ ℱ

Y − f(X) 2
2

(1.9)

would result in (an estimation of) the optimal fair learning outcome. In the rest of the current 

work, we denote the solution to (1.9) by fY .

Also, because conditional expectation is an orthogonal projection operator on L2-space, we 

obtain the following orthogonal decomposition of the objective in (1.9):

Y − f(X) 2
2 = Y − E(Y ∣ X) 2

2 + E(Y ∣ X) − f(X) 2
2 .

(1.10)

Only the second term on the right hand side depends on the choice of f ∈ ℱ, the training 

step objective (1.9) is equivalent to the following:

3.Here, ⋅ 2: = ⋅ L2(ℙ).

Xu and Strohmer Page 12

J Mach Learn Res. Author manuscript; available in PMC 2024 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inf
f ∈ ℱ

E(Y ∣ X) − f(X) 2
2 .

(1.11)

The solution to (1.11) is also fY , which depends on the choice of ℱ.

The key observation is that, given a data representation (X, Y ), (1.11) is the objective 

that practitioners try to achieve via model selection, modification, and parameter turning. 

Furthermore, it follows from the triangle inequality that

Y − fY (X) 2 ≤ Y − E(Y ∣ X) 2 + E(Y ∣ X) − fY (X) 2 .

(1.12)

The second term on the right-hand side is the target of a supervised learning task which 

should be left to practitioners. Thus, the natural choice of the model-independent objective 

of the optimal fair synthetic data design is to minimize the first term:

inf
(X, Y ) ∈ D

Y − E(Y ∣ X) 2,

(1.13)

where D is some admissible set of deformed versions of the original data (X, Y ) that we 

define later. Intuitively, the loss function can be interpreted as the potential utility sacrifice 

resulting from deforming (X, Y ) to (X, Y ) for L2-objective supervised learning, while 

leaving the task of minimizing the second term on the right-hand side to practitioners via 

model selection, modification, or parameter tuning.

Next, we derive a fairness constraint for synthetic data design purposes. That is, the goal 

is to design (X, Y ) such that fY(X) ⊥ Z for any admissible function set ℱ ⊂ L2(X, Y). 
The flexibility of model choice becomes important due to the increasing complexity of 

models in practice nowadays, such as neural networks. The key observation here is that, 

due to the potential dependence of fY  on Z, one needs to look at both models that use 

merely deterministic functions and more complicated models consisting of Z-dependent 

deterministic functions:

1. For deterministic functions, if we require X ⊥ Z, then it follows that for any 

f ∈ L2(X, Y), it is guaranteed that f(X) ⊥ Z. Hence, we require X ⊥ Z to 

prevent models from exploiting sensitive information from the independent 

variables.

2. For advanced or adversarial models that use Z-dependent functions, the trained 

model fY  now belongs to L2(X × Z, Y) and could still depend on Z because 

Y  and Z are not independent. For example, consider the extreme case where 

Y = kZ, k ∈ ℝ and a perfect model results in E(kZ ∣ X, Z) = kZ which depends 
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fully on Z even if we require X ⊥ Z. Therefore, we also require fY(X, Z) ⊥ Z to 

prevent such model exploit sensitive information from the dependent variables.

But notice that the second requirement leads us back to the post-processing nature of 

fairness constraints as in (1.8). For fair data representation design purposes, it is necessary 

to keep the constraint model-independent. Therefore, instead of enforcing fY(X, Z) ⊥ Z, 

the present work requires E(Y ∣ X, Z) ⊥ Z for the following two reasons: (1) Under the 

modified constraint E(Y ∣ X, Z) ⊥ Z, the better fY(X, Z) estimates E(Y ∣ X, Z), the more 

independent of Z becomes fY(X, Z). Such alignment between training objective and 

fairness makes the modification a natural choice under the assumption that the goal 

of L2-objective (adversarial) supervised learning task (not any model) is to minimize 

E(Y ∣ X, Z) − fY(X, Z) 2
2
, which is equivalent to minimizing Y − fY(X, Z) 2

2
. (2) Since 

a supervised learning model with poor prediction accuracy already results in severe 

unfairness, the dependence on sensitive information is of less concern when designing a 

fair data representation.

Based on the fairness requirement for both deterministic and adversarial models, a natural 

choice of (pre-processing) statistical parity constraint for data representation has the 

following form:

X, E(Y ∣ X, Z) ⊥ Z .

(1.14)

It guarantees: (1) statistical parity for any model that uses only a deterministic function and 

any model that results in a perfect estimation of E(Y ∣ X); (2) the better fY(X, Z) estimates 

E(Y ∣ X, Z), the more independent of Z becomes fY(X, Z).

While the fairness constraint (1.14) is not the only choice, it does balance utility and 

fairness. The following remark discusses two alternative fairness constraint choices, which 

are more polarized in optimizing utility or fairness.

Remark 1.3—There are two alternative choices of fairness constraint that are valuable in 

practice:

1. X ⊥ Z: the weaker constraint guarantees any model using merely a deterministic 
function, even if sub-optimal, to result in statistical parity. But it does not protect 
Z from advanced models, which exploit the dependence of Y  on Z and apply 
Z-dependent functions. Therefore, X ⊥ Z provides more utility but less sensitive 
information protection, compared to our choice.

2. X, Y ⊥ Z: the stronger constraint guarantees statistical parity in the learning 
outcome of any supervised learning model, even for the ones that adopt 
Z-dependent functions and are sub-optimal. But it sacrifices more utility. This 
stronger constraint is particularly useful in practice when one does not know 
which variables are dependent and which ones are independent.
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Our choice is a compromise of the two alternatives in terms of balancing utility sacrifice 
and sensitive information protection. Furthermore, simple modifications of our analysis and 
algorithm would solve the two alternatives because they are essentially simplified versions 
of our choice. Hence, the present work targets (1.14).

Finally, combining the objective and constraint for synthetic data design, the present work 

aims to solve Problem 3:

inf
(X, Y ) ∈ D

Y − E(Y ∣ X) 2
2:X, E(Y ∣ X, Z) ⊥ Z .

(1.15)

The solution provides a fair data representation via which the trained L2-objective 

supervised learning models becomes an estimation of the optimal fair conditional 

expectation.

Compared to the original constrained optimization problem (1.4) which results in the 

post-processing nature of its barycenter characterization (1.6), the proposed constrained 

optimization problem (1.15) has the following advantages by design:

1. It provides a fairness guarantee for arbitrary L2-objective models.

2. The model-independence together with the alignment between training objective 

and fairness enables practitioners to enjoy flexibility in model selection, 

modification, and parameter tuning on the fair data representation.

3. The fair data representation approach has more applicable models than the post-

processing approach. See Remark 1.4 below for a detailed explanation of two 

different interpretations of L2-objective models.

In the following remark, we explain the different interpretations of L2-objective models in 

the post-processing and pre-processing approaches.

Remark 1.4 (Interpretation of L2-objective Models)—For the post-processing 

approach, it follows from (1.6) and (1.8) that the barycenter characterization works only 

if the supervised learning model comes with an objective function in explicit L2-form. For 

the proposed pre-processing approach, the applicable L2-objective models include all the 
models that aim to estimate the conditional expectation. In particular, it follows from (1.12) 

and (1.13) that the proposed fair data representation works for any supervised learning 
model that aims to estimate conditional expectation or conditional probability, even though 

some of them do not come with an explicit objective function in L2-form. For example, 
all classification models share the goal of estimating the conditional probability of Y = 1
given an observation of X = x , which is E 1Y = 1 ∣ X = x . Therefore, the resulting synthetic 

data can be used for any classification model, even models such as logistic regression and 

random forest that do not have L2-based objective functions.
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1.4 Setting and Notation

In the rest of the work, ℒ(X) = ℙ ∘ X−1:ℬX [0, 1] denotes the distribution or law of X, 

which is a function that assigns each event in the Borel sigma algebra, ℬX, a probability. Let 

λ: = ℒ(Z) denote the law of the sensitive random variable to simplify notation. To remove 

the sensitive information Z, the method we propose finds a set of maps Tx: = Tx( ⋅ , z) z

such that Tx( ⋅ , z):X X pushes ℒ Xz  forward to a common probability measure ℒ(X) for 

λ-a.e. z ∈ Z. Also, when restricting T  to be a linear map or a matrix, we use T ≻ 0 to denote 

T  is positive definite, and T F to denote its Frobenius norm.

Given a measurable map T :X X and a probability measure μ ∈ P(X), T ♯μ denotes the 

push forward probability measure that is defined as the following: for any event, A, in the 

Borel sigma algebra, ℬX, T ♯μ(A): = μ T −1(A) . In the rest of the paper, we often say T

pushes μ forward to T ♯μ.

The marginal distributions Xz are defined uniquely λ-a.e. by the disintegration theorem [38, 

Box 2.2]. Hence z ℒ Xz  is Borel measurable and, for all Borel measurable set E ∈ ℬX, 

ℙ(E) = ∫
X

ℙ Xz
−1(E) dλ(z). The application of the disintegration theorem aims to allow Z to 

be uncountably infinite, such as the real line or real vector space. In the practical case of 

a finite data set, when the data set (X, Z) is xi, zi i ∈ [N], we have for each z ∈ Z that the 

empirical marginal distributions on X × Z are defined as follows:

Xz: = xi: xi, zi ∈ (X, Z), zi = z .

Therefore, on the product data space X × Z with a joint distribution, the law of the random 

vector Xz is the marginal distribution given Z = z.

The present work often assumes the marginals ℒ Xz z ∈ Z ⊂ P2, ac(X). Here, P2, ac(X)
denotes the set of probability measures on X that have finite second moments and are 

absolutely continuous with respect to the Lebesgue measure. The finite second moment 

assumption guarantees Wasserstein-2 distance to be well-defined without being infinite. The 

absolute continuity assumption guarantees the existence of their Wasserstein-2 barycenter 

(See Definition 2.3) and the respective (almost surely invertible) optimal transport maps that 

map them to the barycenter. The present work denotes the barycenter by ℒ Xz  or ℒ(X)
interchangeably, and denotes the optimal transport map that pushes ℒ Xz  to ℒ(X) by Tz or 

T ( ⋅ , z).

To simplify notation and proof, the present work defines X to be the random variable that 

satisfies the following: for λ-a.e. z ∈ Z,

Xz = Tz Xz .

(1.16)

In other words, the couple (Xz, Xz) is a coupling of (ℒ Xz , ℒ(X)) and satisfies:
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Xz − Xz 2
2 = W2

2 ℒ Xz , ℒ(X)

(1.17)

for λ-a.e. z ∈ Z. We refer interested readers to [41, 42] for more details on the assumption 

of P2, ac(X) and coupling of measures. In the rest of the paper, we call X the Wasserstein-2 

barycenter of Xz z.

In solving the post-processing characterization, with the assumption of E(Y ∣ X, Z), one 

first finds the Wasserstein-2 barycenter of ℒ E Y ∣ Xz z, denoted by ℒ E Y ∣ Xz . Here, 

E Y ∣ Xz  denotes the marginal of (E(Y ∣ X, Z), Z) at λ-a.e. z ∈ Z. Then one applies the 

optimal transport map T ( ⋅ , z):Y Y which pushes E Y ∣ Xz  forward to E Y ∣ Xz  for λ-a.e. 

z ∈ Z.

In solving the pre-processing characterization, one has two different optimal transport 

maps to deform X and Y . For the dependent variable, we define Ty = Ty( ⋅ , z) z, ℒ Y z , 

and ℒ(Y ) analogously, but require merely the agreement of ℒ E Y ∣ Xz  for λ-a.e. z ∈ Z. 

The λ-a.e. agreement of ℒ E Y ∣ Xz  means the law of the random vectors {E Y ∣ Xz ) z

are equal, except for some z on a λ-null set on Z. In other words, on the Borel 

measurable space (Y, ℬy), for any set B in the Borel sigma-algebra ℬy, we have 

ℙ ∘ E Y ∣ Xz1
−1(B) = ℙ ∘ E Y ∣ Xz2

−1(B) for all z1, z2 ∈ Z, except on a set N ⊂ Z such 

that λ(N) = 0.

Therefore, by generating and applying (Tx, Ty) to the data, we achieve E(Y ∣ X, Z) ⊥ Z, 

i.e. statistical parity, due to the enforced λ-a.e. agreement of ℒ E Y ∣ Xz . Combining 

the application of deformation maps and (1.15), we obtain the fair data representation 

optimization problem

inf
(X, Y ) ∈ D

Y − E(Y ∣ X) 2
2:X, E(Y ∣ X, Z) ⊥ Z

(1.18)

with the admissible set D is defined as

D: = (X, Y ):X = Tx(X, Z), Y = Ty(Y , Z) ,

(1.19)

Here, Tx( ⋅ , z):X X and Ty( ⋅ , z):Y Y are Borel measurable maps. We denote the set 

of admissible X and Y  by D X and D Y, respectively. The reason underlying the definition 

of D is that the fair data should still has its foundation from the real data, albeit suitably 

“deformed”.
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1.5 Paper Organization

The rest of the paper is organized as follows: Section 2 reviews the tools in optimal 

transport that are needed to derive results in the present work: Wasserstein-2 space, 

Wasserstein-2 barycenter, and optimal affine transport within a location-scale family. 

Section 3 first generalize the current barycenter characterization of optimal regression to 

optimal L2-objective supervised learning, then define pseudo-barycenter, and prove pseudo-

barycenter is the optimal affine estimation of the true barycenter. Section 4 is concerned 

with both the theoretical characterization and an explicit formula of the Pareto frontier on 

Wasserstein space. Section 5 studies the exact solution to the optimal data representation 

and the optimal affine estimation of the exact solution. Section 6 proposes an algorithm 

based on the theoretical results in the previous sections. Section 7 provides an extensive 

numerical study regarding the application of the pseudo-barycenter and the optimal affine 

maps to (1) optimal fair learning outcome estimation in comparison with the known fair 

machine learning techniques on different learning models; and (2) Pareto frontier estimation 

for different disparity definitions.

2. Preliminaries on Optimal Transport

In this section, we review the theoretical results on optimal transport and the Wasserstein 

barycenter that are important to the development of the main theoretical results on efficient 

algorithm design, Wasserstein-2 geodesic characterization of the Pareto frontier, and the 

pre-processing approach resulting in the optimal fair data representation. For our purposes, 

we focus on ℝd. We refer readers who are interested in more generalized versions, e.g. on 

compact Riemannian manifolds, to for example [29].

2.1 General Distribution Case

Given μ, ν ∈ P ℝd , which is the set of all probability measures on ℝd, Monge asked for an 

optimal transportation map Tμν:ℝd ℝd that solves

inf
T ♯μ = ν ∫

ℝd
x − T (x) 2dμ

(2.1)

Here, ⋅  denotes the Euclidean norm on ℝd. The problem remained open until Brenier 

showed that Monge’s problem coincides with Kantorovich’s relaxed version:

inf
γ ∈ ∏(μ, ν)

∫
ℝd × ℝd

x1 − x2
2dγ x1, x2

(2.2)
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and admits a unique solution provided μ ∈ P2, ac ℝd . Here, P2, ac ℝd  denotes the space of 

probability measures on ℝd that have finite first two moments and are absolutely continuous 

w.r.t. (with respect to) the Lebesgue measure. That is, the optimal solution to (2.2) has 

the form: γ = Id, Tμν ♯μ, where Tμν solves (2.1). Here, ∏(μ, ν) denotes all the probability 

measures on ℝ2d, ℬ ℝd ⊗ ℬ ℝd  such that the marginals being μ and ν. The relaxed 

problem is easy to solve due to the weak compactness of ∏(μ, ν). We refer interested readers 

to [41, 42] for more detailed existence and uniqueness results.

Remark 2.1—The uniqueness is in the weak sense for γ and μ-a.e. for Tμν.

Kantorovich’s problem provides a certain kind of “distance” on P ℝd  except for the 

possibility of being infinite.

Definition 2.1 (Wasserstein-2 distance)—Given μ, ν ∈ P ℝd ,

W2(μ, ν): = inf
γ ∈ ∏(μ, ν)

∫
ℝd × ℝd

x1 − x2
2dγ x1, x2

1
2

(2.3)

It is not hard to verify that the Wasserstein-2 distance defined above satisfies the axioms of 

a metric except for finiteness of W2(μ, ν) for arbitrary μ, ν ∈ P ℝd . In order to guarantee 

finiteness, one needs to put more restrictions on the set of all probability measures:

Definition 2.2 (Wasserstein-2 Space)—Define W2 as above and

P2 ℝd : = μ ∈ ℝd : ∫
ℝd

x 2dμ < ∞

(2.4)

The couple (P2 ℝd , W2) is called Wasserstein-2 space.

The Wasserstein-2 space has gained increasing popularity in image processing, economics 

[19, 14], and machine learning in recent years due to its good properties such as polishness 

(of the space) and robustness (w.r.t. perturbation on the marginal probability measures and 

hence on sampling).

Since the Wasserstein-2 space is a metric space, the Fréchet mean on the space is well-

defined and it is called the Wasserstein-2 barycenter in the optimal transport literature.
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Definition 2.3 (Wassserstein-2 Barycenter)—Given μz z ∈ Z ⊂ P2 ℝd , W2  for some 

index set Z, the barycenter of μz z is the Fréceht mean of the set on P2 ℝd , W2 . That is, μ

is the solution to

inf
μ ∈ P2 ℝd ∫

Z
W2

2 μz, μ dλ(z) ,

(2.5)

where μ denotes the Fréchet mean or barycenter.

Here, for our purpose, we focus on the case where the index set Z ∈ [k], ℕ, [0, 1], ℝn .

Next, we look at optimal transport and the barycenter problem from the perspective of 

optimal coupling. The goal is to show that the multi-marginal coupling problem is equivalent 

to the Wasserstein-2 barycenter problem. The equivalence is an essential tool in proving our 

result in optimal affine transport, the optimality of the pseudo-barycenter, and the geodesic 

characterization of the Pareto frontier.

First, notice that Kantorovich’s problem is in fact a 2-marginal coupling problem: let X1, 

X2 be the random variable satisfy ℒ X1 = μ, ℒ X2 = ν, the problem looks for a γ with 

marginals being μ, ν that minimizes Eγ X1 − X2
2. It follows naturally by the existence and 

uniqueness result of the optimal transport map (also known as Brenier’s map) [8], that the 

Wasserstein-2 distance admits the form in the classic probability language:

W2(μ, ν) = Eμ X1 − T X1
2

1
2,

(2.6)

where T  is the optimal transport map that pushes μ = ℒ X1  forward to ν = ℒ X2 .

More recent work in mathematics [29, 34] and economics [14, 19] has generalized the 

Kantorovich problem to the multi-marginal coupling problem:

inf
γ ∈ ∏ μz z ∈ Z

Eγ ∫
Z2

Xz1 − Xz2
2dλ z1 dλ z2 ,

(2.7)

where ∏ μz z ∈ Z  denotes all the Borel probability measures on ℝd |Z|
 with marginals 

being μz = ℒ Xz ∈ ℝd  λ-a.e.. Hence one can consider λ ∈ P P ℝd . It can be shown that 

the above is equivalent to the following:
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sup
γ ∈ ∏ μz z ∈ Z

Eγ ∫
Z

Xzdλ(z)
2

(2.8)

Remark 2.2 (Justification for the Name of Marginals)—Since Xz z are the 

marginals for the admissible couplings in (2.7), with the equivalence between the multi-
marginal coupling and Wasserstein barycenter (see Remark 2.3 below) in mind, we call 
Xz z marginals even though they are also conditional random variables constructed using 

the disintegration theorem.

Intuitively, (2.8) tends to find a family of random variables parametrized by z with fixed 

marginals μz such that the variance of the matched (by γ) group average is maximized. For 

readers who are more familiar with stochastic processes, consider z = t as a time variable, 

then Xt is a stochastic process with fixed time marginals and (2.8) tends to find a way (γ) to 

group the fixed marginals into trajectories so that the variance of the trajectory-wise (sample 

path) average is maximized. (Hence, the expected variance within a randomly chosen sample 

path is minimized.)

As shown in [1, 34], the above multi-marginal problem is equivalent to the barycenter 

problem:

Remark 2.3 (Equivalence between Multi-marginal Coupling and Barycenter)—
Assume μz z are absolutely continuous w.r.t. the Lebesgue measure and let γ∗ and μ be the 

solution to (2.8) and (2.5), respectively. It follows that μ = γ∗ ∘ T −1 where T : = ∫
Z

xzdλ(z).

The importance of this equivalence is twofold:

1. It is the key to proving the non-degenerate Gaussianity of the Wasserstein 

barycenter of non-degenerate Gaussian marginal distributions;

2. It provides technical support for the interpretation (Section 1.3 point 4) of how 

the Wasserstein barycenter solves data-related fairness issues on a point-wise 

scale.

Therefore, we generalize the equivalence to the case where Z is a Polish space, which is 

a metric space that is separable and complete. In particular, [k]d, [0, l]d, ℕd, ℝd mentioned 

earlier are all examples of Polish spaces. This generalization is important for our purpose as 

it provides a theoretical foundation for removing Z in the form of random vectors.

Now, the following result provides the existence and uniqueness result of the barycenter 

problem that is suitable for our purpose.
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Theorem 2.1 (Existence and Uniqueness of Barycenter [22, Theorem 2 and 

Proposition 6])—Assume that Z is a Polish space and that λ: = ℙ ∘ Z−1 satisfies 
∫

Z
W2

2 μz, ν dλ(z) < ∞ for some ν ∈ P2(X) (hence for all ν ∈ P2(X)). It follows:

1. There exists a barycenter of μz z ∈ Z w.r.t. λ.

2. If furthermore, λ z:μz ∈ Pac(X) > 0, then the barycenter is unique.

In other words, (2.5) admits a unique solution provided the support of the marginals is 

uniformly bounded.

Remark 2.4 (Applicability of Assumptions in Theorem 2.1)—The assumption that 
∫

Z
W2

2 μz, ν dλ(z) < ∞ in the above result is satisfied in our application to optimal fair 

learning outcome or data representation: When generating the optimal transport maps Tz z, 

the training set has finite number of data and hence finite different values of z in the discrete 
case or after discretization in the continuous case. Therefore, since μz z ⊂ P2(X), pick a 

value z0 that is in the training set, we have W2
2 μz, μz0  are essentially (w.r.t. λ) uniformly 

bounded. That implies ∫
Z

W2
2 μz, μz0 dλ(z) < ∞.

Now, we have the theoretical results that are needed to prove the main results, except 

for the McCann interpolation which will be introduced in Section 4. The next step is to 

develop a computationally efficient method to compute (an estimation of) the Wasserstein-2 

barycenter, and (the McCann interpolation of) optimal transport maps, and thereby the 

optimal fair model and Pareto frontier. More specifically, the present work focuses on 

positive definite affine optimal transport maps.

2.2 Rigid Translation

Before deriving our main result on optimal positive definite affine maps, we first study the 

case where admissible maps are restricted to the set of rigid translations. The following 

property of rigid translations makes our results on the optimal affine maps simpler: we can 

assume without loss of generality that the first moments of the marginal measures are zero: 

mXz: = E Xz = 0 and mYz: = E Y z = 0.

Lemma 2.1—Let μ, ν ∈ P2, mμ: = ∫ xdμ(x), and mν: = ∫ xdν(x). Also, let μ′, ν′ be the 

centered versions of μ, ν, respectively. It follows that

W2
2(μ, ν) = W2

2 μ′, ν′ + mμ − mν
2 .

(2.9)

Proof See Appendix A. ■

Notice that the above result allows us to assume measures to have vanishing first moments 

when deriving the optimal transport maps. Indeed, if Tμ′ν′ is the Brenier’s map between 

Xu and Strohmer Page 22

J Mach Learn Res. Author manuscript; available in PMC 2024 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



μ′ and ν′, then Tμν: = T+mν ∘ Tμ′ν′ ∘ T−mμ is the optimal transport map between μ and ν. Here, 

T+mν(x) = x + mν and T−mμ is defined analogously.

In the rest of Section 2, we assume without loss of generality that the first moments of the 

measures are all equal to zero.

2.3 Location-Scale Case and Optimal Affine Transport

A sufficient condition for Brenier’s maps to be positive definite affine is to require a certain 

“similarity” between the marginal data distributions. One natural choice is to assume Y z z

and Xz z to be non-degenerate Gaussian vector λ-a.e.. As shown in [2], the assumptions of 

Gaussian vector can be easily generalized to a location-scale family. In the definition below, 

S+ +
d  denotes the set of all d × d positive definite matrices.

The generalization from Gaussian to location-scale families is important for the main result 

in the next section, where we consider computationally efficient solutions to a relaxation of 

the Wasserstein-2 barycenter problem in the case of general marginal distributions.

Definition 2.4 (Location-Scale Family)—For any ℒ X0 ∈ P ℝd , define

ℱ ℒ X0 : = ℒ AX0 + m :A ∈ S+ +
d , m ∈ ℝd .

(2.10)

The set ℱ ℒ X0  is called a location-scale family characterized by ℒ X0 .

In other words, under the assumption of vanishing first moments, the random variables that 

share laws in the same location-scale family can be transformed into each other by a positive 

definite linear transformation.

Next, [2] shows that Brenier’s map between two probability measures, each having a 

vanishing first moment, within the same location-scale family is linear and has a closed 

form.

Lemma 2.2 (Optimal Affine Map)—If μ, ν ∈ ℱ ℒ X0  for some X0 such that 

mμ = mν = 0, then the Brenier’s map that pushes μ forward to ν is given by:

Tμν = Σμ
− 1

2 Σμ

1
2ΣνΣμ

1
2

1
2Σμ

− 1
2

(2.11)

Proof See, for example, Theorem 2.3 in [2]. ■

Remark 2.5—The optimal affine map is also the midpoint of the geodesic path from Σμ to 

Σv on the manifold of positive definite matrices. We refer interested readers to, for example, 

Chapter 6.1 in [7] for more details.
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Now, back to the barycenter problem. It follows from Lemma 2.2 that, if one assumes that 

all the marginals belong to the same location-scale family, then the barycenter also belongs 

to the family and a nearly closed-form solution to the barycenter is available.

Lemma 2.3 (Barycenter in the Location-Scale Case)—Assume μz z belong to 

the same location-scale family ℱ P0  and satisfy mμz = 0, Σz ≻ 0, λ – a.e., then there exists 

a unique solution, denoted by μ, to (2.5). Moreover, μ also belongs to ℱ P0  and is 

characterized by mμ = 0 and Σμ = Σ where Σ is the unique solution to the following equation:

∫
Z

Σ
1
2ΣzΣ

1
2

1
2dλ(z) = Σ

(2.12)

where Σz is the second moment of μz, ∀z ∈ Z.

Proof See Appendix A. ■

In the case where mμz ≠ 0, it follows from Lemma 2.1 that

∫
Z

W2
2 μz, μ dλ(z) = ∫

Z
W2

2 μz
′ , μ′ dλ(z) + ∫

Z
mμz − mμ

2dλ(z)

where μ′ denotes the centered version of μ. By Lemma 2.3, we know the first term on 

the right is minimized at μ′ ∼ N 0, Σμ . Also, the second term on the right is minimized 

at Fréchet mean with Euclidean metric, which is equal to the expectation. That is, 

mμ = ∫
Z

mμzdλ(z). As a result, the optimal transport map is

Tμzμ = T+mμ ∘ Tμz′ μ′ ∘ T−mμz

(2.13)

Remark 2.6 (Solution to (2.12))—The non-linear matrix equation (2.12) has a unique 
solution that can be approached via the following iterative process:

∫
Z

Σi

1
2ΣzΣi

1
2

1
2dλ(z) Σi + 1 .

(2.14)

We refer interested readers to [2] for more details on the fixed point approach to the 
Wasserstein barycenter. The present work only applies this fact in the algorithm design in 
Section 6.
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3. Wasserstein-2 Barycenter Characterization of the Optimal Fair Learning 

Outcome

Optimal transport has been considered an adversarial or constrained optimization problem 

in its application to machine learning. In particular, some of the most popular unsupervised 

learning methods, such as K-means and PCA, are specific examples of the Wasserstein 

barycenter problems when putting restrictions on the admissible transport maps and 

relaxation on the weak equivalence requirement of the push-forwards w.r.t. test functions. 

See, for example, [40] for more details. But we apply optimal transport in an opposite 

direction so that the independence or imperceptibility of the sensitive variable Z becomes 

theoretically provable.

In this section, the primary goal is to develop the optimal affine map and pseudo-barycenter 

as tools to solve the challenge of the high computational cost of Wasserstein barycenter and 

optimal transport maps in high-dimensional data space. More specifically, the present work 

restricts the admissible transport maps to be merely affine maps while relaxing the fairness 

constraint to a sufficient and necessary level. The importance of efficiency in computing the 

barycenter and optimal transport maps will soon be clear in Section 4 when we compute the 

Pareto frontier along the Wasserstein geodesic path. Furthermore, the importance of affinity 

of transport maps will also be soon clear in Section 5 when solving the optimal fair data 

representation problem (1.15).

The organization of the current section is the following: we first review the Wasserstein 

barycenter characterization of the optimal fair learning outcome of supervised learning such 

as classification and regression, then generalize the result to all L2-objective supervised 

learning models, and finally apply the optimal affine maps to estimate high-dimension 

optimal learning outcome. Now, we show that the (unique) solution to Problem 1 can be 

characterized as the Wasserstein barycenter of the marginal conditional expectations. The 

barycenter characterization of optimal fair regression is first proved in [15, 21].

3.1 Wasserstein-2 Barycenter Characterization

We start with a characterization of the optimal learning outcome of the L2-objective 

supervised learning task. To simplify notation, let E Y ∣ Xz : = E(Y ∣ X, Z)z be the marginal 

of (E(Y ∣ X, Z), Z) for λ-a.e. z ∈ Z, ℒ E Y ∣ Xz : = μz, and μ denote the Wasserstein-2 

barycenter of μz z ∈ Z. Also, let T ( ⋅ , z) denote the optimal transport map from μz to μ.

Lemma 3.1 (Optimal Fair L2-Objective Supervised Learning Characterization)

—Assume the conditional expectation marginals μz z ∈ Z ⊂ P2, ac(Y), then

E Y ∣ Xz = T (E(Y ∣ X, Z), Z): = T E Y ∣ Xz , z z ∈ Z

(3.1)

is the unique solution to Problem 1. Furthermore, we have
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Y − T (E(Y ∣ X, Z), Z) 2
2 = inf

f ∈ L2(X × Z, Y)
Y − f(X, Z) 2

2:f(X, Z) ⊥ Z

= Y − E(Y ∣ X, Z) 2
2 + ∫

Z
W2

2 μz, μ dλ

Proof [Proof of Lemma 3.1] First, notice that the fairness constraint f(X, Z) ⊥ Z is 

equivalent to ℒ f Xz, Z = z = μ λ-a.e. for some μ. Now, we prove the lower bound:

inf
f ∈ L2(X × Z, Y)

Y − f(X, Z) 2
2:f(X, Z) ⊥ Z

= Y − E(Y ∣ X, Z) 2
2 + E(Y ∣ X, Z) − f(X, Z) 2

2

= Y − E(Y ∣ X, Z) 2
2 + ∫

Z
E Y ∣ Xz − f Xz, Z = z 2

2dλ

≥ Y − E(Y ∣ X, Z) 2
2 + ∫

Z
W2

2 μz, ℒ f Xz, Z = z dλ

≥ Y − E(Y ∣ X, Z) 2
2 + ∫

Z
W2

2 μz, μ dλ

Here, the first line follows from the L2 projection characterization of conditional 

expectation, the second follows from disintegration, the third from the fairness restriction 

f(X, Z) ⊥ Z, and the fourth from the definition of Wasserstein-2 barycenter.

Since T (E(Y ∣ X, Z), Z) is measurable with respect to σ((X, Z)) by construction and 

ℒ(T (E(Y ∣ X, Z), Z)) = μ ∈ P2(Y), we have T (E(Y ∣ X, Z), Z) ∈ L2(X × Z, Y). Next, we 

show the lower bound is obtained at T (E(Y ∣ X, Z), Z). Indeed, by the construction, we have

E(Y ∣ X, Z) − T (E(Y ∣ X, Z), Z) 2
2 = ∫

Z
E Y ∣ Xz − Tz E Y ∣ Xz 2

2dλ

= ∫
Z

W2
2 μz, Tz ♯μz dλ

= ∫
Z

W2
2 μz, μ dλ .

It follows from the derivation of the lower bound above that

Y − T (E(Y ∣ X, Z), Z) 2
2 = inf

f ∈ L2(X × Z, Y)
Y − f(X, Z) 2

2:f(X, Z) ⊥ Z

(3.2)

Uniqueness follows directly from the uniqueness of the Wasserstein-2 barycenter and 

Brenier’s maps. That completes the proof. ■

The above result shows that, given a learning outcome, the optimal (with respect to 

L2-objective) fair (for statistical parity) result is the Wasserstein-2 barycenter of the sensitive 
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marginals of the outcome. Therefore, if one obtains the exact Wasserstein-2 barycenter, then 

the result provably guarantees statistical parity while preserving the most L2 utility that is 

theoretically possible.

Unfortunately, in practice, the characterization suffers from a lack of efficient methods 

to compute the Wasserstein-2 barycenter and obtain an explicit formula of the optimal 

transport. Current methods restrict the sensitive variable Z to be binary mainly because 

the computation of multi-marginal barycenter is expensive. Furthermore, notice the current 

methods restrict dependent variable Y  to be one-dimensional. It is because an explicit form 

of optimal transport map is necessary to apply the characterization in practice, but to our 

knowledge, the only well-known exact and explicit solution to transport maps is the inverse 

of cumulative function that merely works for one-dimensional variables.

Therefore, to provide methods using the characterization in high-dimensional dependent 

variable cases, we introduce the optimal affine map and define pseudo-barycenter.

3.2 Optimal Affine Estimation: Pseudo-barycenter

To solve the challenge of deriving an explicit formula for Wasserstein barycenter and 

optimal transport maps, we restrict the admissible transport maps to be affine and show the 

estimation of Wasserstein barycenter via the optimal affine maps coincides with the true 

Wasserstein barycenter in the Gaussian case and the estimation error is bounded in the case 

of general distributions. In other words, we consider the choice of positive definite affine 

maps under two circumstances:

1. We assume the marginals are non-degenerate Gaussian. That is, E Y ∣ Xz  are 

assumed to be non-degenerate Gaussian vectors λ-a.e..

2. Instead of making assumptions on data distribution, we relax the independence 

constraint to the independence between Z and merely the first two moments of 

f(X, Z).

From the theoretical application perspective, affine maps allow us to derive (nearly) closed-

form solutions under the assumption of similarity among (Xz, Y z), for example are all 

non-degenerate Gaussian vectors, or under a relaxation of the strict independence constraint. 

Also, affine maps allow us to develop a pre-processing approach by directly applying the 

obtained maps to the original data before training, even though such maps are constructed to 

push the post-training marginals toward their barycenter.

From the practical application perspective, the advantage is obvious: the computation 

of affine maps only uses (sample estimation of) the first two moments of the marginal 

distributions and hence is highly efficient compared to the computation of general Brenier’s 

maps, especially in the case of high-dimension data.

Before developing the pseudo-barycenter, the following remarks further discuss the 

comparison between applying the exact barycenter and the affine estimation.
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Remark 3.1 (Applying Pseudo-barycenter vs the Exact Barycenter)—The 
comparison between the pseudo-barycenter method and the exact barycenter is an analog of 
the comparison between the linear regression model and the exact conditional expectation: 
When there is no worry about over-fitting, a practitioner who cares more about the strict 

goal of minimizing L2 error (analog: the strict statistical parity guarantee) should always 
try to find the exact conditional expectation function (analog: the exact barycenter and the 
corresponding exact transport maps) by using more complicated models. But the simplicity, 
robustness, and interpretability of linear regression (analog: pseudo-barycenter and optimal 
affine maps) are often useful in practice.

To start, we define pseudo-barycenter using merely matrix calculation as the following:

Definition 3.1—We define the post-processing pseudo-barycenter: Y † via

Y †: = Taffine(Y , Z)

(3.3)

where

Taffine( ⋅ , z): = ΣY z

− 1
2 ΣY z

1
2 ΣΣY z

1
2

1
2ΣY z

− 1
2

(3.4)

and Σ is the unique solution to

∫
Z

Σ
1
2ΣY zΣ

1
2

1
2dλ(z) = Σ

(3.5)

To obtain (an estimation of) the unique solution, we apply the iterative method (2.14) in 

Remark 2.6 when designing our algorithm in Section 6.

Now, Lemma 2.2 shows that under the assumption of Gaussianity of the learning outcome 

marginals, the optimal transport map is affine and the pseudo-barycenter is indeed the 

Wasserstein-2 barycenter. Moreover, Lemma 2.3 shows that the barycenter of Gaussian 

marginals is still Gaussian. Therefore, the optimal maps from the marginals to the barycenter 

are determined entirely by the first two moments.

Lemma 3.2 (Post-processing Pseudo-barycenter Characterization in Gaussian 

Case)—Assume Y z ∼ N 0, Σz  for λ-a.e. z ∈ Z, then Y † is the Wasserstein-2 barycenter of 

Y z z
.
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It follows from Theorem 3.2 that, if Y = E(Y ∣ X, Z), then Y † is the solution to the 

Wasserstein-2 barycenter characterization of the optimal fair learning outcome.

Finally, we show that the pseudo-barycenter is the optimal affine estimation of the 

Wasserstein-2 barycenter in the case of general marginal distributions. To do so, we need 

to first put restrictions on the admissible transport maps. However, such a restriction on 

the admissible maps leads to a necessary relaxation of the fairness constraint. To see the 

necessity, Lemma 2.2 shows positive definite affine maps map distributions within the same 

location-scale family. Therefore, given marginals Y 1 and Y 2 from different location-scale 

families, affine maps are not able to map them to each other. That implies the non-existence 

of the barycenter under the original independence restriction. Indeed, if a barycenter of 

Y z z ∈ 1, 2  exists under the restriction of positive definite affine maps, then Y 1 and Y 2 belong 

to the same location-scale family as their barycenter, which contradicts the assumption of 

general distributions. That is, the Wasserstein-2 barycenter characterization does not have a 

solution when we admit merely affine transport maps in the general marginal distribution 

case.

On the other hand, notice that the best affine maps can achieve is to map Y 1 to a Y 2
′, which 

shares the same first two moments with Y 2 within the Y 1 location-scale family. We call such 

Y 2
′ a Y 1 location-scale family analog of Y 2. Therefore, we propose the following relaxation 

of the fairness constraint that suffices to guarantee the existence of a solution to the relaxed 

version of (1.4) with merely positive definite affine transport maps:

mf(X, Z), Σf(X, Z) ⊥ Z

(3.6)

where mf(X, Z), and Σf(X, Z), denotes respectively the first and second moment of f(X, Z).

Remark 3.2 (Fairness Guarantee of the Relaxation)—The adversarial task of testing 
and exploiting probabilistic independence between f(X, Z) and Z is equivalently difficult 
to enforcing the independence. One common strategy is to explore its equivalence to the 
independence between all moments of f(X, Z) and Z, provided the boundedness of the 
two random variables. But the verification or enforcement of independence among higher 
moments is extremely vulnerable to data noise in practice. Therefore, instead of enforcing 
f(X, Z) ⊥ Z, one could relax the constraint to the independence between Z and some of the 
moments of f(X, Z). In this section, we focus on the first two moments. That is, mf(X, Z), Σf(X, Z)

where mf(X, Z): = E(f(X, Z)) and Σf(X, Z): = E (f(X, Z) − E(f(X, Z)))(f(X, Z) − E(f(X, Z)))T . It 

is not hard to notice that the relaxation is already strong enough to result in imperceptibility 
to any unsupervised learning algorithm that uses merely the mean and covariance of data to 
extract information, such as K-means and PCA.

Therefore, the optimal affine estimation of the Wasserstein-2 barycenter characterization is 

given by:
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inf
f ∈ L2(X × Z, Y)

Y − f(X, Z) 2
2:mf(X, Z), Σf(X, Z) ⊥ Z

(3.7)

Now, we show that the pseudo-barycenter defined above is indeed the solution to (3.7) and 

hence the optimal affine estimate of the optimal fair learning outcome. To prove the main 

result, we need the following result: given any fixed covariance matrix, the optimal positive 

definite affine maps result in the lowest Wasserstein-2 distance such that the push-forwards 

all share the same fixed covariance matrix.

Lemma 3.3 (Projection Lemma)—Assume E Y ∣ Xz ⊂ P2, ac(Y). If mY ∣ Xz = 0, ΣY ∣ Xz ≻ 0
λ-a.e., for any Σ ≻ 0,

inf
Y :ΣY z = Σ

∫
Z

W2
2 ℒ E Y ∣ Xz , ℒ Y z dλ(z)

(3.8)

admits a unique solution, denoted by Y Σ, that satisfies

Y Σ, z: = TΣ Y z, z

(3.9)

where TΣ( ⋅ , z): = ΣY ∣ Xz

− 1
2 ΣY ∣ Xz

1
2 ΣΣY ∣ Xz

1
2

1
2ΣY ∣ Xz

− 1
2 .

Proof

∫
Z

W2
2 ℒ E Y ∣ Xz , ℒ Y z dλ(z) = ∫

Z
E Y ∣ Xz − TΣ Y z, z

2
2dλ(z)

= ∫
Z

inf
ν:Σν = Σ

W2
2 ℒ E Y ∣ Xz , ν dλ(z)

= inf
ν:Σνz = Σ ∫

Z
W2

2 ℒ E Y ∣ Xz , νz dλ(z)

where the second equality follows from the characterization of Gelbrich’s bound, see for 

example Proposition 2.4 in [16]. Now, let Y ′ ≠ Y Σ but also satisfy ΣY ′ = Σ λ-a.e., then we have

∫
Z

E Y ∣ Xz − Y Σ,z 2
2dλ(z) < ∫

Z
W2

2 ℒ E Y ∣ Xz , ℒ Y z
′ dλ(z)

≤ ∫
Z

E Y ∣ Xz − Y z
′

2
2
dλ(z)
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where the first inequality is strict due to the uniqueness of Brenier’s maps TΣ( ⋅ , z) and hence 

of TΣ Y z, z  λ-a.e.. We are done. ■

Remark 3.3 (Intuition of the Projection Lemma)—Intuitively, for an arbitrary positive 
definite matrix Σ, one can consider TΣ( ⋅ , z) as the projection map (w.r.t. W2 distance) onto

ν ∈ P2(Y):Σν = Σ

(3.10)

which is the set of centered probability measures with fixed covariance matrix Σ in 
P2(Y), W2 . In other words, given a probability measure, the maps TΣ( ⋅ , z) z finds the 

closest (w.r.t. the Wasserstein-2 distance) point in the set for each of the marginals.

Finally, we are ready to prove the justification of pseudo-barycenter in the case of general 

distributions.

Theorem 3.1 (Optimal Affine Estimation of W2 Barycenter: Pseudo-

barycenter)—E(Y ∣ X, Z)†: = Taffine E Y ∣ Xz , z z is the unique solution to (3.7):

inf
f ∈ L2(X × Z, Y)

Y − f(X, Z) 2
2:mf(X, Z), Σf(X, Z) ⊥ Z ,

(3.11)

provided E Y ∣ Xz z ⊂ P2, ac(Y).

Proof First, we fix Σ ≻ 0 arbitrary and denote Y Σ, z: = TΣ E Y ∣ Xz , z  for λ-a.e. z ∈ Z, we 

have

Y − TΣ(E(Y ∣ X, Z), Z) 2
2 − Y − E(Y ∣ X, Z) 2

2 = ∫
Z

E Y ∣ Xz − Y Σ, z 2
2dλ(z)

(3.12)

and it follows from Lemma 3.3 that

∫
Z

E Y ∣ Xz − Y Σ, z 2
2dλ(z) = ∫

Z
W2

2 ℒ E Y ∣ Xz , ℒ TΣ E Y ∣ Xz , z dλ(z)

= min
ν:Σνz = Σ ∫

Z
W2

2 ℒ E Y ∣ Xz , νz dλ(z)

Therefore, (3.7) boils down to the following:

inf
Σ ≻ 0 ∫

Z
E Y ∣ Xz − TΣ E Y ∣ Xz , z 2

2dλ(z)
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(3.13)

Finally, notice that

∫
Z

E Y ∣ Xz − TΣ E Y ∣ Xz , z 2
2dλ(z)

= ∫
Z

E Y ∣ Xz 2
2 + TΣ E Y ∣ Xz , z 2

2 − 2 E Y ∣ Xz , TΣ E Y ∣ Xz , z 2dλ(z)

= ∫
Z

Trace ΣY ∣ Xz + Trace(Σ) − 2E E Y ∣ Xz
TTΣ E Y ∣ Xz , z dλ(z)

= ∫
Z

Trace ΣY ∣ Xz + Trace(Σ) − 2 TΣ, ΣY ∣ Xz Fdλ(z)

= ∫
Z

E Y ∣ Xz ′ − TΣ E Y ∣ Xz ′, z 2
2dλ(z)

where ⋅ , ⋅ F denotes the Frobenius inner product and X′ ∼ N mX, ΣX

denotes the Gaussian analog of X. It follows from definition of 

T affine E Y ∣ Xz , z  with T affine( ⋅ , z): = ΣE Y ∣ Xz

− 1
2 ΣE Y ∣ Xz

1
2 ΣΣE Y ∣ Xz

1
2

1
2ΣE Y ∣ Xz

− 1
2  and Lemma 2.3 that 

∫
Z

E Y ∣ Xz − E(Y ∣ X, Z)† 2

2
dλ(z) is the unique lower bound of the objective function in 

(3.13). It then follows from the uniqueness of Brenier’s map that Y † is the unique solution to 

(3.7). We are done. ■

In this section, we focus on applying the optimal affine transport map and the pseudo-

barycenter to find a computationally efficient estimation of the optimal fair learning outcome 

in high-dimensional space. As we mentioned above, it will soon be clear in the next two 

sections and numerical experiments that a combination of McCann interpolation and optimal 

affine maps in matrix form results in not only a mathematically neat solution to estimate 

the Pareto frontier, which significantly reduces computational expense in practice, but also 

a necessary tool to help us circumvent the post-processing nature and solve the optimal fair 

data representation problem (1.15).

Now, we are ready to address the lack of a theoretically precise characterization of the 

Pareto frontier between utility and fairness, which turns out to be a natural generalization of 

the Wasserstein barycenter characterization of the optimal learning outcome. In particular, 

the importance of an efficient computation or estimation of the optimal transport map 

becomes clear when one wants to apply the results in the next section to compute or estimate 

the Pareto frontier using McCann interpolation.

4. Wasserstein-2 Geodesics Characterization of Pareto Frontier

In reality, rather than looking for the optimal fair learning outcome, practitioners may have 

to choose a middle ground: sacrifice some prediction accuracy while tolerating a certain 

level of disparity. Therefore, it is tempting to generalize the barycenter characterization 

of the optimal fair learning outcome to the entire Pareto frontier between prediction error 
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and statistical disparity. In this section, we show that the constant-speed geodesics from 

the learning outcome marginals to the barycenter characterize the Pareto frontier on the 

Wasserstein-2 space, in which utility loss and statistical disparity are quantified respectively 

by L2-norm and the average of pair-wise Wasserstein-2 distance among sensitive marginals. 

As a result, given the optimal transport maps, one can derive a closed-form solution to the 

geodesics and thereby the Pareto frontier using McCann interpolation.

Here, we first provide a post-processing characterization of the Pareto frontier, Theorem 

4.1, which is of theoretical interest and great generality. It forms a direct generalization 

of the barycenter characterization, which is Lemma 3.1, and practitioners can apply the 

result together with the pseudo-barycenter and McCann interpolation to obtain the optimal 

affine estimation to the post-processing Pareto frontier. Later in Section 5, the present work 

applies the result further to provide a characterization of the exact solution and optimal 

affine estimation of the solution to the optimal fair data representation problem (1.15).

To derive the characterization, we denote ℒ(E(Y ∣ X, Z)) = :μ, ℒ E Y ∣ Xz = :μz in this 

section. In addition, we quantify the increased prediction error L that results from the data 

deformations T ′: = Tz
′

z by L2-norm:

L T ′ : = ∫
Z

E Y ∣ Xz − Tz
′ E Y ∣ Xz 2

2dλ(z)

1
2

.

(4.1)

Also, define the discrimination or statistical disparity that remains in the already deformed 

(by applying T ′) data set by the integration of pairwise distance between the marginals on 

the Wasserstein-2 space:

D T ′ : = ∫
Z2

W2
2 Tz

′
♯μz1, Tz

′
♯μz2 dλ z1 dλ z2

1
2

.

(4.2)

Similarly, for any learning outcome, we define

D(f(X, Z)): = ∫
Z2

W2
2 ℒ f Xz1 , ℒ f Xz2 dλ z1 dλ z2

1
2

.

(4.3)

By the definition of Wasserstein-2 distance, D can be understand as the expected minimum 

amount of work that is required to move one randomly chosen marginal to another random 

chosen one. Therefore, it satisfies
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D(f(X, Z)) ⊥ Z f(X, Z) ⊥ Z .

Also, higher is D, the more expected work is required to move between the marginals which 

quantifies more statistical disparity among them.

Now, let T = Tz z be the optimal transport maps from the μz z to their barycenter μ, define

V : = L(T ) = ∫
Z

E Y ∣ Xz − Tz E Y ∣ Xz 2
2dλ(z)

1
2

(4.4)

= ∫
Z

E Y ∣ Xz − E Y ∣ Xz 2
2dλ(z)

1
2

(4.5)

As shown in Lemma 3.1, V  is the minimum increase of prediction error to obtain a fair 

learning outcome on data X, Y , Z . Before showing the main result, we need to define 

the geodesic on metric space to show the explicit form of constant speed geodesic on the 

Wasserstein space, which plays a key role in the proof.

Definition 4.1 (Constant-Speed Geodesic between Two Points on Metric Space)

Given a metric space (X, d) and x, x′ ∈ X, the constant-speed geodesic between x
and x′ is a continuously parametrized path xt t ∈ 0, 1  such that x0 = x, x1 = x′ and 

d(xs, xt) = | t − s |d(x, x′), ∀s, t ∈ [0, 1].

The following lemma, which is well known as the McCann (displacement) interpolation [42, 

Chapter 7] in the optimal transport literature, shows that a linear interpolation using the 

optimal transport plan results in the constant-speed geodesic on the Wasserstein space.

Lemma 4.1 (Constant-Speed Geodesic on Wasserstein Space, [31, 42])

Given μ0, μ1 ∈ P2 ℝd , W2  and γ the optimal transport plan in between, let 

πt(x, y): = (1 − t)x + ty, then

μt: = πt ♯γ, t ∈ [0, 1]

(4.6)

is the constant-speed geodesic between μ0 and μ1.

Proof See Appendix B ■
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Remark 4.1 (Linear Interpolation Formula for W2 Geodesics)

Notice that if there exists an optimal transport map T  such that T ♯ μ0 = μ1, then McCann 

interpolation has the simple form

μt = ((1 − t)Id + tT )♯μ0, t ∈ [0, 1] .

(4.7)

The present work applies this simple formula to obtain a closed-form estimation of the 
Pareto frontier in algorithm design, see Section 6.

Now, let Tz: = T · , z . We are ready to establish the main result, which shows that V  is 

a lower bound of L T ′ + 1
2D T ′  for any Borel-measurable T ′ and is achieved along the 

geodesics from the learning outcome marginals to the barycenter on the Wasserstein-2 space.

Theorem 4.1 (W2 Geodesics Characterization of a Linear Pareto Frontier)

Define L, D, V  as above, where μz ∈ P2, ac(Y), λ − a . e, it follows that

V ≤ L T ′ + 1
2D T ′

(4.8)

Furthermore, let Tz(t): = (1 − t)Id + t(Tz), t ∈ [0, 1] be the linear interpolation between the 

identity map and the optimal transport map, then equality holds in (4.8) as

L T t = tL T 0 = tV

(4.9)

1
2D(T (t)) = 1

2(1 − t)D(T (0)) = (1 − t)V .

(4.10)

Proof First, we derive the inequality from the triangle inequality and the optimality of Tz z: 

let T ′: = T ′z z be an arbitrary set of Borel measurable maps that map the marginals μz z to 

Tz
′

♯μz. It follows that
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V ≤ ∫
Z

E Y ∣ Xz − Tz
′ E Y ∣ Xz 2

2
dλ(z)

1
2

≤ L T ′ + ∫
Z

Tz
′ E Y ∣ Xz − Tz

′ E Y ∣ Xz 2
2
dλ(z)

1
2

≤ L T ′ + ∫
Z

W2
2 T ♯

′μz, T♯
′μz dλ(z)

1
2

= L T ′ + 1
2∫Z2

W2
2 T ♯

′μz1, T ♯
′μz2 dλ z1 dλ z2

1
2

= L T ′ + 1
2D T ′ .

Here, the penultimate equation results from the fact that

∫
Z2

W2
2 μz1, μz2 dλ z1 dλ z2 = 2∫

Z
W2

2 μz, μ dλ(z)

(4.11)

where μ is the Wasserstein barycenter of μz z. Now, let t ∈ 0, 1  and T ′ = T t , it follows 

from Lemma 4.1 and Remark 4.1 that:

V = ∫
Z

W2
2 μz, μ dλ(z)

1
2

≤ ∫
Z

W2
2 μz, Tz(t)♯μz dλ(z)

1
2 + ∫

Z
W2

2 Tz(t)♯μz, μ dλ(z)
1
2

= t2∫
Z

W2
2 μz, μ dλ(z)

1
2 + (1 − t)2∫

Z
W2

2 μz, μ dλ(z)
1
2

= tV + 1 − t V = V .

Therefore, the second inequality is an equality where the first term is L T t  :

L(T (t)) = ∫
Z

E Y ∣ Xz − Tz(t) E Y ∣ Xz 2
2dλ(z)

1
2

= ∫
Z

W2
2 μz, Tz(t)♯μz dλ(z)

1
2

= t ∫
Z

W2
2 μz, μ dλ(z)

1
2 = tV .

For the second term, we claim that it equals 1
2D(T (t)). To see this, we need to 

first show Tz(t)♯μz = μ. Indeed, if not, then ∫zW2
2 Tz(t)♯μz, Tz(t)♯μz dλ(z) is strictly less than 

∫ZW2
2 Tz(t)♯μz, μ dλ(z) by the definition and uniqueness of Tz(t)♯μz. It follows that
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∫
Z

W2
2 μz, Tz(t)♯μz dλ(z)

1
2

≤ ∫
Z

W2
2 μz, Tz(t)♯μz dλ(z)

1
2 + ∫

Z
W2

2 Tz(t)♯μz, Tz(t)♯μz dλ(z)
1
2

< L(T (t)) + ∫
Z

W2
2 Tz(t)♯μz, μ dλ(z)

1
2

= ∫
Z

W2
2 μz, μ dλ(z)

1
2 ,

which contradicts the definition and uniqueness of μ. Therefore,

D(T (t)) = ∫
Z2

W2
2 Tz(t)♯μz, Tz′(t)♯μz′ dλ(z)dλ z′

1
2

= 2∫
Z

W2
2 Tz(t)♯μz, Tz(t)♯μz dλ(z)

1
2

= 2 ∫
Z

W2
2 Tz(t)♯μz, μ dλ(z)

1
2

= 2 (1 − t)2∫
Z

W2
2 μz, μ dλ(z)

1
2

= 2(1 − t)V .

That completes the proof. ■

Since V  is fixed for the data X, Y , Z , the above theorem implies that the Pareto 

frontier between the increased prediction error L T  and the remaining disparity 

D T  is a line that results from the constant speed geodesics from the marginal 

conditional expectations to their barycenter on the Wasserstein space. In particular, let 

T (t)(E(Y ∣ X, Z), Z): = T (t) E Y ∣ Xz , z z, λ − a.e., t ∈ 0, 1 , we obtained the solution to 

Problem 2:

Corollary 4.1 (Pareto Optimal Fair L2-objective Learning)

Given (X, Y , Z) satisfying μz ∈ Pac, λ − a.e., then

fd(X, Z): =
T 1 − d

2V (E(Y ∣ X, Z), Z), if d ∈ [0, 2V )

E(Y ∣ X, Z), if d ∈ ( 2V , ∞)

(4.12)

are the unique solutions to Problem 2 for d ∈ [0, ∞).

Proof If d ∈ ( 2V , ∞), it follows from Theorem 4.1 that D(E(Y ∣ X, Z)) = D(T (0)) = 2V < d. 

Hence, Problem 2 reduces to Problem 1 and the optimal solution is E(Y ∣ X, Z). Now, for a 

fixed d ∈ [0, V ], assume for contradiction that ∃f ∈ L2(X × Z, Y) such that
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Y − f(X, Z) 2
2 < Y − T (t)(E(Y ∣ X, Z), Z) 2

2

for t = 1 − d
2V . Then, let f(X, Z) denote the Wasserstein-2 barycenter of ℒ f Xz, Z = z z, 

we have

Y − f(X, Z) 2
2 ≤ Y − f(X, Z) 2

2 + f(X, Z) − f(X, Z) 2
2

< Y − T (t)(E(Y ∣ X, Z), Z) 2
2 + f(X, Z) − f(X, Z) 2

2

= Y − E(Y ∣ X, Z)
2

2
+ L(T (t)) + 1

2D(f(X, Z))

= Y − E(Y ∣ X, Z)
2

2
+ V − 1

2d + 1
2d

= Y − E(Y ∣ X, Z) 2
2 + V

where the second line follows from the assumption, the third from L2 orthogonal 

decomposition and Theorem 4.1, and the forth from the assumption and Theorem 4.1. The 

strict inequality above contradicts the optimality of E(Y ∣ X, Z) shown in Lemma 3.1. That 

proves the optimality of T 1 − d
2V (E(Y ∣ X, Z), Z) for the fixed d. Uniqueness result follows 

from the uniqueness of E(Y ∣ X, Z) shown in Lemma 3.1. Since the choice of d ∈ [0, V ] is 

arbitrary, we are done. ■

Notice that Corollary 4.1 together with Lemma 4.1 and Remark 4.1 provide a post-

processing approach to (estimate) the Pareto frontier: applying McCann interpolation to 

the Brenier’s maps between the learning outcome marginals E Y ∣ Xz z and their (pseudo) 

barycenter. One can apply Algorithm 1 directly with the learning outcome marginals as 

inputs.

From a theoretical perspective, various metrics of disparity that differ from D can be used 

and the theoretical results derived in this section provide a lower bound estimation for the 

Pareto frontier that uses other metrics of disparity. The quality of the lower bound can be 

studied using the relationship between Wasserstein distance and the defined disparity metric. 

Also, the present work provides a numerical study on the lower bound estimation in Section 

6 to which we refer the interested readers for more details.

In practice, various metrics of disparity are adopted, such as the prediction success ratio 

(difference from 1) in classification [12] and the Kolmogorov-Smirnov distance for 1-

dimensional regression [15]. The proposed estimation of the Pareto frontier leaves the choice 

of α to practitioners who would face specific fairness requirements and disparity metrics.

5. Optimal Fair Data Representation for Supervised Learning

In this section, we study the optimal fair data representation problem, Problem 3, that is 

motivated by the current challenges in the pre-processing or synthetic data design approach 

to fair machine learning. To solve the problem, we first characterize the exact solution 

using a dependent and independent Wasserstein-2 barycenter pair, see Lemma 5.3. Then, 
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we define a dependent and independent pseudo-barycenter pair via optimal affine maps, and 

prove that the pair is the exact optimal fair data representation with Gaussian marginals, cf. 

Lemma 5.5 and the optimal affine estimate of the representation with general marginals in 

Theorem 5.2.

5.1 Wasserstein-2 Barycenter Pair Characterization

Now, we prove a characterization of the solutions to Problem 3. To start, notice 

that since (X, Z) = T (X, Z) for some measurable map T :X × Z X × Z, we have 

σ((X, Z)) ⊂ σ((X, Z)). Also, from X ⊥ Z, we have σ((X, Z)) = σ(X) ⊗ σ(Z) ⊃ σ(X). Therefore, 

σ(X) ⊂ σ((X, Z)) and it follows from L2 orthogonal decomposition that

Y − E(Y ∣ X) 2
2 = Y − E(Y ∣ X, Z) 2

2 + E(Y ∣ X, Z) − E(Y ∣ X) 2
2

(5.1)

The first term on the right hand side can be interpreted as the minimum loss of information 

by using X, Z  to predict Y . Furthermore, one can decompose the second term on the right 

hand side of (5.1):

E(Y ∣ X, Z) − E(Y ∣ X) 2
2

= E(Y ∣ X, Z) − E(Y ∣ X, Z) 2
2 + E(Y ∣ X, Z) − E(Y ∣ X) 2

2

= E(Y ∣ X, Z) − E(Y ∣ X, Z)
2

2
+ ∫

Z
E Y z ∣ X − E(Y ∣ X) 2

2dλ(z)

where we denote E Y z ∣ X : = E(Y ∣ X, Z)z. The first equality follows from L2 orthogonal 

decomposition whereas the second follows from disintegration and the fairness constraint 

(X, E(Y ∣ X)) ⊥ Z.

Now, the key observation is that, given a fixed X ⊥ Z, the choice of Y  only depends on the 

second term on the right, which forms a Wasserstein-2 barycenter problem with marginals 

being E Y z ∣ X z. Hence, the optimal choice of Y  are those satisfy E(Y ∣ X) = E(Y ∣ X), 

where ℒ(E(Y ∣ X)) is the Wasserstein-2 barycenter of ℒ E Y z ∣ X z. Therefore, we denote 

the optimal choice of Y  to be Y  which satisfies E(Y ∣ X) = E(Y ∣ X).

It remains to find the optimal choice of X. The following result shows that the optimal 

choice is those admissible X that generates the finest sigma-algebra.

Lemma 5.1 (Finer Sigma-algebra, More Accurate Optimal Fair Learning)—If 
σ(X′) ⊂ σ(X), then

E(Y ∣ X, Z) − E(Y ∣ X) 2
2 ≤ E(Y ∣ X, Z) − E Y ′ ∣ X′

2
2

(5.2)

where Y  satisfies E(Y ∣ X) = E(Y ∣ X).
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Proof See Appendix C. ■

Therefore, it is clear that our optimal choice of X is the one that generates the finest sigma-

algebra while satisfying X ⊥ Z. The following technical lemma shows that the barycenter of 

Xz z ∈ Z is one of the optimal choices.

Lemma 5.2 (X Generates the Finest Sigma-algebra among Admissible)—

If ℒ Xz z ⊂ P2, ac(X) λ-a.e. and λ ∈ P2, ac(Z), then σ((X, Z)) = σ((X, Z)). In addition, 

σ(X) ⊂ σ(X) for all X ∈ X ∈ D X:X ⊥ Z .

Proof See Appendix C. ■

Therefore, Lemma 5.1, Lemma 5.2, and the choice of Y  above together provide a 

characterization of the solution to Problem 3.

Lemma 5.3 (Characterization of Optimal Fair Data Representation)—If 

ℒ Xz z ⊂ P2, ac(X) and ℒ Y z z ⊂ P2, ac(Y), let ℒ(X) and ℒ(E(Y ∣ X)) be the respective 

Wasserstein barycenter of ℒ Xz z and ℒ E Y z ∣ X z, the followings are equivalent:

• (X, Y ) ∈ arg min(X, Y ) ∈ D Y − E(Y ∣ X) 2
2:X, E(Y ∣ X, Z) ⊥ Z

• (X, Y ) ∈ (X, Y ) ∈ D:σ(X) = σ(X), E(Y ∣ X) = E(Y ∣ X)

In Lemma 5.3, the choice of X is not unique. In fact, any random variable X that satisfies 

σ(X) = σ(X) can be our choice according to Lemma 5.1 and Lemma 5.2. This is because 

any X that satisfies the above conditions gives E(Y ∣ X) = E(Y ∣ X). For both theoretical and 

computational convenience, we fix our choice to be X from now on.

Remark 5.1 (Application of the Optimal Fair Representation Characterization 
to Algorithm Design)—In theory, we should always take X in theory because we prove 
that X generates the finest sigma-algebra among all the admissible X that is independent 
of Z. Especially when working with data sets with clear high-dimensional structure such as 
image data, one should apply more complicated models to estimate the optimal transport 
map instead of using affine maps. But when working with data with less high-dimensional 
structure such as tabular data, we hope to take advantage of the simplicity, robustness, and 
interpretability of linear maps in practice and hence restrict the admissible transport maps 
to be affine, as mentioned in Remark 3.1. Therefore, we showed that the pseudo-barycenter 

X†, which is equal to X in the Gaussian case and solves a relaxed version of the barycenter 
problem in the general distribution case, can be achieved using optimal affine maps. As a 

result, the present work applies X† in the algorithm design and experiments. Still, if there 
is no worry about over-fitting or computational cost, it is recommended for strict statistical 
parity guarantee purposes to compute X to improve the result.

Now, it remains to find Y  to obtain the optimal fair data representation that is characterized 

by Lemma 5.3. In general, it is difficult to find E(Y ∣ X), not to mention finding a Y
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satisfying E(Y ∣ X) = E(Y ∣ X). The key observation here is that if the Brenier’s maps Ty ∣ X z

that push E Y z ∣ X z forward to E(Y ∣ X) are affine, then a straight-forward choice in Y  is 

Ty ∣ X Y z, z z ∈ Z = Ty ∣ X(Y , Z). This step is the key to circumvent the post-processing nature. 

Therefore, following the same derivation of (3.7) from (1.4) in Section 3 to guarantee 

feasibility of affine maps, we relax the fairness constraint to the first two moments in 

Problem 3, and show a pseudo-barycenter pair provides us an exact solution to Problem 3, in 

the Gaussian marginal case and the optimal affine estimation in the general marginal case.

5.2 Fairness with Gaussian Marginals

Assume Xz, Y z z to be non-degenerate Gaussian vectors λ-a.e. and define the following:

Definition 5.1 (Independent Pseudo-barycenter: X†)

X†: = Tx(X, Z)

(5.3)

where

Tx( ⋅ , z): = ΣXz

− 1
2 ΣXz

1
2 ΣΣXz

1
2

1
2ΣXz

− 1
2

(5.4)

and Σ is the unique solution to

∫
Z

Σ
1
2ΣXzΣ

1
2

1
2dλ(z) = Σ

(5.5)

Definition 5.2 (Dependent Pseudo-barycenter: Y †)

Y †: = Ty ∣ X†(Y , Z)

(5.6)

where

Ty ∣ X†( ⋅ , z): = Σ
Yz ∣ X†
− 1

2 Σ
Yz ∣ X†

1
2 ΣΣ

Yz ∣ X†

1
2

1
2Σ

Yz ∣ X†
− 1

2

(5.7)

with ΣYz ∣ X†: = ΣYzX†ΣX†
−1ΣYzX†

T , and Σ is the unique solution to
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∫
Z

Σ
1
2ΣYz ∣ X†Σ

1
2

1
2dλ(z) = Σ

(5.8)

Here, to obtain (an estimations of) the solution to equations (5.8) and (5.5), we apply the 

iterative method (2.14) in Remark 2.6 when design our algorithm in Section 6.

Since it is a direct result from Lemma 2.3 that X† = X, the goal is now to show that

E Y † ∣ X = E(Y ∣ X)

(5.9)

and therefore by Lemma 5.3 to conclude E Y † ∣ X† = E Y † ∣ X  indeed minimizes the 

estimation error while staying independent of Z.

In order to prove the above equation and justify the definition of the pseudo-barycenter, 

we need the following results: (1) existence and uniqueness of both X and E(Y ∣ X); (2) 

affinity of the corresponding Brenier’s maps Tx · , z  and Ty |X† · , z . By the assumption, we 

have ℒ Xz z ⊂ P2, ac(X), and ℒ E Y z ∣ X z ⊂ P2, ac(Y). The existence and uniqueness then 

follow directly from Lemma 2.1. It remains to show the corresponding Brenier’s maps are 

affine. But by Lemma 2.3, if Xz z and E Y z ∣ X z both are from some location-scale family, 

then the barycenters are also from the corresponding location-scale family and the Brenier’s 

maps are affine.

The following result shows that if Y z z come from the same location-scale family, then 

E Y z ∣ X z also belongs to the same location-scale family.

Lemma 5.4 (Conditional Expectation Preserves Location-scale Family)—
Assume Y z z ⊂ ℱ P0  for some P0, then E Y z ∣ X z ⊂ ℱ ℒ E Y z ∣ X  for any z.

Proof This follows immediately from the existence of positive definite affine 

transformations among Y z z, Lemma 2.2, and the linearity of conditional expectation. ■

Hence, given Xz, Y z z being Gaussian vectors, we have X, Y z  are Gaussian vectors, 

which further implies E Y z ∣ X z are Gaussian vectors by Lemma 5.4. (We note that it is not 

necessary to apply Lemma 5.4 to show E Y z ∣ X z are Gaussian because it is a well-known 

result in probability theory, but the lemma becomes necessary later in the case of general 

marginal distributions.)

Lemma 5.5 (Solution to the Optimal Fair Data Representation in Gaussian 
Case)—Let (Xz, Y z) z be Gaussian vectors satisfying Σz ≻ 0 λ-a.e., then there exists a 
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unique barycenter pair (X, E(Y ∣ X)) which are Gaussian vectors characterized by the 
covariance matrix being the unique solution to

∫
Z

Σ
1
2SΣ

1
2

1
2dλ(z) = Σ

(5.10)

for S ∈ ΣXz, ΣYz ∣ X†  respectively, where ΣYz ∣ X† = ΣYzX†ΣX†
−1ΣYzX†

T . Moreover, Tx( · , z) z and 

Ty ∣ X†( ⋅ , z) z which push Xz and E Y z ∣ X  respectively to X and E(Y ∣ X) are affine with 

closed-form (5.4) and (5.7). As a result, for λ − a.e. z ∈ Z, we have

E(Y ∣ X) = Ty ∣ X† E Y z ∣ Tx Xz, z , z = E Ty ∣ X† Y z, z ∣ Tx Xz, z

(5.11)

Proof The existence, uniqueness, and Gaussianity of barycenter follow from Lemma 2.3, 

whereas the affinity of corresponding Brenier’s maps results from Lemmas 5.4 and 2.2.

The above result provides us a theoretical foundation to apply the affine maps Tx · , z z and 

Ty ∣ X†( ⋅ , z) z to Xz z and Y z z respectively as a pre-processing step before the training step.

Furthermore, notice that although Ty ∣ X† E Y z ∣ X , z = E Y z ∣ X λ‐a.e. by construction, 

Ty ∣ X† Y z, z z does not agree in general : for z1 ≠ z2,

Ty ∣ X† Y z1, z1 ≠ Ty ∣ X† Y z2, z2

(5.12)

The pseudo-barycenter solves the disagreement by merging them directly. Despite of the 

differences among Ty ∣ X† Y z, z z, the L2 projections of them on σ(X) agree. Therefore, a 

direct merging of Ty ∣ X† Y z, z z is simply: Ty ∣ X†(Y , Z) = Y †. It follows:

E Y † ∣ X† = E Y † ∣ X = E Ty ∣ X†(Y , Z) ∣ X

= ∫
Z

E Ty ∣ X† Y z, z ∣ X dλ(z)

= ∫
Z

Ty ∣ X† E Y z ∣ X , z dλ(z)

= ∫
Z

E(Y ∣ X)dλ(z) = E(Y ∣ X)

where the second equality follows from disintegration and the third from linearity of Ty ∣ X. 

Therefore, we have proved a result that justifies the definition of the pseudo-barycenter:

Theorem 5.1 (Justification of Y † in Gaussian Case)—(X†, Y †) is a solution to 

Problem 3
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inf
(X, Y ) ∈ D

Y − E(Y ∣ X) 2
2:X, E(Y ∣ X, Z) ⊥ Z

(5.13)

if (Xz, Y z) z are non-degenerate Gaussian vectors.

5.3 The Case of General Distribution

In practice, one should not always expect marginal data distributions to be Gaussian 

and the results we derived under the assumption of Gaussianity may not apply to the 

general marginal distribution case. Instead, we solve the following relaxed optimal fair data 

representation problem:

inf
(X, Y ) ∈ D

Y − E(Y ∣ X) 2
2:mX, mY ∣ X, ΣX, ΣY ∣ X ⊥ Z ,

(5.14)

where mY ∣ X: = E(E(Y ∣ X, Z)) and similarly for ΣY ∣ X, to find the optimal affine estimation of 

the true solution to the original Problem 3. The fairness guarantee of the affine estimation is 

the same as mentioned in Remark 3.2.

Now, we justify the pseudo-barycenter pair X†, Y †  in the case of general distributions 

by proving it is a solution to the relaxed optimal fair L2-objective supervised learning 

problem (5.14). To start, notice that X†, Y † ∈ D and satisfies mX†, mY † ∣ X†, ΣX†, ΣY † ∣ X† ⊥ Z by 

construction and therefore is admissible.

Remark 5.2 (Finest Sigma Algebra vs. Most Variance)—Notice that, due to 
the relaxation, the admissible X ∈ D X are no longer required to be independent of Z. 

Also, without the assumption of Gaussianity, X† is no longer equal to X. As a result, 
although by following the same argument in the proof of Lemma 5.2, one can still 

prove that σ((X, Z)) = σ((X†, Z)) as in the Gaussian case. But this fact now cannot imply 

σ(X) ⊂ σ X†  due to the lack of independence condition. Instead, the present work shows 

that Var(X) ≤ Var X†  for all admissible X ∈ D X, which in general implies σ(X) ⊂ σ X† . For 

example, whenever set inclusion forms an order between σ(X) and σ(X†), then it is true that 

Var(X) ≤ Var X†  implies σ(X) ⊂ σ X† . As a result, we still fix X† as our optimal choice 

among all the admissible X ∈ D X.

In addition, for any Σ ≻ 0, define

TΣ, x: = ΣXz

− 1
2 ΣXz

1
2 ΣΣXz

1
2

1
2ΣXz

− 1
2

(5.15)
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TΣ: = Σ
Yz ∣ Xz†
− 1

2 Σ
Yz ∣ Xz†

1
2 ΣΣ

Yz ∣ Xz†

1
2

1
2Σ

Yz ∣ Xz†
− 1

2

(5.16)

where ΣYz ∣ Xz†: = E E Y z ∣ Xz
† − mYz E Y z ∣ Xz

† − mYz
T  and E Y z ∣ Xz

† : = E Y ∣ X†, Z
z
. Now, 

the goal is to show X†, Y †  is indeed a solution to the relaxed problem (5.14), under the 

following two assumptions:

1. Set inclusion forms an order between X† and all X ∈ X ∈ D X:mX, ΣX ⊥ Z .

2. ΣYz ∣ Xz† = ΣYzXz†ΣXz†
−1ΣYzXz†

T .

Remark 5.3 (Applicability of the Assumptions)—For the first assumption, Lemma 

5.6 below guarantees that X† generates the finest sigma-algebra among all the admissible. In 

other words, for any admissible X, either it generates a coarser sigma-algebra than σ(X†) or 
the two sigma-algebras do not contain each other. In other words, there is no admissible X
such that σ X† ⊂ σ(X).

The second assumption allows us to compute the covariance matrix of E Y z ∣ Xz
†  from ΣYzXz†

and ΣXz† directly. The second assumption is necessary to keep our approach pre-processing. 

In general, E Y z ∣ Xz
†  is not a linear function of Xz

† as in the Gaussian case. When the second 

assumption is not true, our pre-processing approach uses ΣYzXz†ΣXz†
−1ΣYzXz†

T  as our best affine 

estimate of ΣYz ∣ Xz†
† .

To that end, we need the following result on the relationship among the variance of the 

original distribution, the variance of the barycenter, and the Wasserstein-2 distance.

Lemma 5.6 (Variance Reduction of W2 Barycenter [40])—Given X satisfies 

ℒ Xz z ⊂ P2, ac(X) and X satisfies ℒ(X) being the Wasserstein barycenter of ℒ Xz , it 

follows that

X − E(X)
2

2
− X − E(X)

2

2
= ∫

Z
W2

2 ℒ Xz , ℒ(X) dλ(z)

(5.17)

As a result, we obtain the following

Lemma 5.7 (X† Contains the Largest Variance among Admissible)—X† is the 

unique solution to

sup
X ∈ D X

Var(X):mX, ΣX ⊥ Z
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(5.18)

Proof To simplify notations, by the invariance of variance under translation and Lemma 2.1, 

we can assume without loss of generality that mXz = 0 λ − a . e. in the rest of the proof which 

only deal with variance and Wasserstein-2 distance. Now, for λ − a.e . z ∈ Z, we have

Xz − TΣ, x Xz, z 2
2 = Xz 2

2 + TΣ, x Xz, z 2
2 − 2 Xz, TΣ, x Xz, z 2

= Trace ΣXz + Trace(Σ) − 2E Xz
TTΣ, x Xz, z

= Trace ΣXz + Trace(Σ) − 2 TΣ, x, ΣXz F
= Trace ΣXz′ + Trace(Σ) − 2 TΣ, x, ΣXz′ F

= Xz
′ − TΣ, x Xz

′ , z 2
2

= W2
2 ℒ Xz

′ , ℒ TΣ, x Xz
′

where X′ N mX, ΣX  is the Gaussian analog of X and ⋅ , ⋅ F is the Frobenius inner product.

Similarly, by the disintegration theorem, we also have for S ∈ X, X†

Var(S) = S
2

2
= ∫

Z
Sz 2

2dλ = ∫
Z

Trace ΣSz dλ

(5.19)

Therefore, it follows from Lemma 5.6 that

Var(X) − Var X† = Var X′ − Var X′ †

= Var X′ − Var X′
= ∫

Z
W2

2 ℒ Xz
′ , ℒ X′ dλ(z)

Finally, assume there exists a X ∈ D X such that Var X† ≤ Var(X). It follows 

Var X′ − Var X′ ≤ Var X′ − Var X′ † = Var X′ − Var X′ . But since mX′, ΣX′ ⊥ Z, we have 

X′ ⊥ Z as X′ is Gaussian by construction. In other words, there exists a X′ ⊥ Z such that

∫
Z

W2
2 ℒ Xz

′ , ℒ X′ dλ(z) ≤ ∫
Z

W2
2 ℒ Xz

′ , ℒ X′ dλ(z)

(5.20)

which contradicts the uniqueness of X′. ■

The above Lemma shows that Var(X) ≤ Var X†  for all admissible X ∈ D X 0.satisfies 

mX, ΣX ⊥ Z, which together with the first assumption imply σ(X) ⊂ σ(X) in practice. 

Therefore, from now on, we fix the choice of X to be the X† and prove the general 

characterization result based on the two assumptions listed above.

It remains to justify the choice of Y †. To do so, we need the following lemma which 

provides a multi-marginal characterization of the optimal affine map.
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Lemma 5.8 (Projection Lemma for Conditional Expectations)—Given 
mYz ∣ Xz† = 0, ΣYz ∣ Xz† ≻ 0 λ−a.e., for any Σ ≻ 0,

inf
E Y ∣ X† :ΣY z ∣ Xz†

∫
Z

W2
2 ℒ E Y z ∣ Xz

† , ℒ E Y z ∣ Xz
† dλ(z)

(5.21)

admits a unique solution, denoted by Y Σ
†, that has the form

Y Σ
† : = TΣ Y , Z

(5.22)

where TΣ( ⋅ , z): = Σ
Y z ∣ Xz†
− 1

2 Σ
Y z ∣ Xz†

1
2 ΣΣ

Y z ∣ Xz†

1
2

1
2Σ

Y z ∣ Xz†
− 1

2 .

Proof This is a direct corollary from Lemma 3.3. ■

Finally, we are ready to prove the justification of pseudo-barycenter in the case of general 

distributions.

Theorem 5.2 (Justification of (X†, Y †) in General Distribution Case)—E Y † ∣ X†

is a solution to

inf
(X, Y ) ∈ D

Y − E(Y ∣ X) 2
2:mX, mY ∣ X, ΣX, ΣY ∣ X ⊥ Z

(5.23)

under the assumptions: (1) set inclusion forms an order between X† and all 
X ∈ X ∈ D X:mX, ΣX ⊥ Z ; and (2) ΣYz ∣ Xz† = ΣYzXz†ΣXz†

−1ΣYzXz†
T .

Proof The choice of X† follows from the first assumption and Lemma 5.7. It remains to 

show that Y † is a solution to

inf
Y ∈ D Y

Y − E Y ∣ X†
2

2
:mY ∣ X†, ΣY ∣ X† ⊥ Z

(5.24)

Fix Σ ≻ 0 arbitrary, we have

Y − E Y Σ
† ∣ X†

2

2
− Y − E Y ∣ X†

2

2
= ∫

Z
E Y z − Y Σ, z

† ∣ Xz
†

2
2dλ(z)

(5.25)
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and it follows from Lemma 5.8 that

∫
Z

E Y z − Y Σ, z
† ∣ Xz

†
2
2dλ(z) = ∫

Z
W2

2 ℒ E Y z ∣ Xz
† , ℒ TΣ E Y z ∣ Xz

† , z dλ(z)

= minν:Σνz = Σ∫
Z

W2
2 ℒ E Y z ∣ Xz

† , νz dλ(z)

Therefore, (5.14) boils down to the following:

inf
Σ ≻ 0 ∫

Z
E Y z − Y Σ, z

† ∣ Xz
†

2
2dλ(z)

(5.26)

Finally, notice that

∫
Z

E Y z − Y Σ, z
† ∣ Xz

†
2
2dλ(z)

= ∫
Z

E Y z ∣ Xz
† − TΣ E Y z ∣ Xz

† , z 2
2dλ(z)

= ∫
Z

E Y z ∣ Xz
†

2
2 + TΣ E Y z ∣ Xz

† , z 2
2 − 2 E Y z ∣ Xz

† , TΣ E Y z ∣ Xz
† , z 2dλ(z)

= ∫
Z

Trace ΣYz ∣ Xz† + Trace(Σ) − 2E E Y z ∣ Xz
† TTΣ E Y z ∣ Xz

† , z dλ(z)

= ∫
Z

Trace ΣYz ∣ Xz† + Trace(Σ) − 2 TΣ, ΣYz ∣ Xz† Fdλ(z)

= ∫
Z

E Y z ∣ Xz
† ′ − TΣ E Y z ∣ Xz

† ′, z 2
2dλ(z)

where ⋅ , ⋅ F denotes the Frobenius inner product and X′ N mX, ΣX  denotes the 

Gaussian analog of X. It follows from the definition of Y † and Lemma 2.3 that 

∫Z E Y z − Y z
† ∣ X†

2

2
dλ(z) is the lower bound of (5.26). We are done. ■

To conclude, given an arbitrary L2-objective supervised learning model that aims to estimate 

conditional expectation, the training via X†, Y †  results in an estimate of E(Y ∣ X). In other 

words, any supervised learning model trained via X†, Y †  is guaranteed to be (to have 

the first two moments) independent of Z in the Gaussian marginal case (in the general 

distribution case) [I am confused by the parenthesis here. Do the first two moments refer to 

the general distribution case or the Gaussian case? And the whole sentence is a bit long and 

not so easy to read with the many parentheses.] while resulting in the minimum prediction 

error (among all the admissible functions of some specific model due to the training step), 

provided the test sample distribution is the same as the training sample distribution (which is 

a ubiquitous assumption for machine learning).

5.4 Optimal Fair Data Representation at the Pareto Frontier

Finally, we extend the pseudo-barycenter pair, which is the solution to the optimal fair 

data representation, to the fair data representation at the Pareto frontier using McCann 

interpolation via a similar approach as we derive the post-processing Pareto frontier in 
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Section 4. But notice a direct application of Theorem 4.1 does not work here because there 

is no direct interpolation between E Y |X  and E(Y ∣ X) due to the change of underlying 

sigma-algebra. Therefore, we apply a diagonal argument, Remark 5.4, to estimate the 

interpolation between E Y |X  and E(Y ∣ X) and thereby the fair data representation at the 

Pareto frontier.

To start, we derive the following post-processing optimal trade-off result directly from 

Theorem 4.1 for a fixed choice of (X, Z). Define Ly ∣ X, Dy ∣ X, and V y ∣ X as follows:

Ly ∣ X T ′ : = ∫
Z

E Y z ∣ X − Tz
′ E Y z ∣ X 2

2dλ(z)
1
2

(5.27)

Dy ∣ X T ′ : = ∫
Z2

W2
2 Tz

′
♯ℒ E Y z1 ∣ X , Tz

′
♯ℒ E Y z1 ∣ X dλ z1 dλ z2

1
2 .

(5.28)

Also, let T  denote the optimal transport maps from ℒ E Y z ∣ X z to their barycenter, and 

define

V y ∣ X: = Ly ∣ X(T ) = ∫
Z

E Y z ∣ X − Tz E Y z ∣ X 2
2dλ(z)

1
2

(5.29)

= ∫
Z

E Y z ∣ X − E(Y ∣ X) 2
2dλ(z)

1
2

(5.30)

Then the result below follows directly similar to the proof of Theorem.

Corollary 5.1 (Pareto Frontier for Conditional Expectation on Fixed Sigma 
Algebra)—Given Ly ∣ X, Dy ∣ X and V y ∣ X defined above, we have

V y ∣ X ≤ Ly ∣ X T ′ + 1
2Dy ∣ X T ′

(5.31)

where equality holds as

Ly ∣ X(T (t)) = tLy ∣ X(T (0)) = tV y ∣ X

(5.32)
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1
2Dy ∣ X(T (t)) = 1

2(1 − t)Dy ∣ X(T (0)) = (1 − t)V y ∣ X

(5.33)

The above result shows that by fixing X, the McCann interpolation between Id and Ty ∣ X

yields the Pareto frontier from E(Y ∣ X) to E(Y ∣ X), which is a weak version of the true 

frontier from E(Y ∣ X) to E(Y ∣ X). The only difficulty remaining is to coarsen the underlying 

sigma-algebra from σ X, Z  to σ(X). But by Remark 5.2, we know one can coarsen sigma-

algebra by reducing the variance. Therefore, the present work applies a diagonal argument to 

estimate the McCann interpolation between X, Y  and X, Y .

Remark 5.4 (Diagonal Estimate of the Post-processing Pareto Frontier)—The 
key observation is that the optimal affine transport map that pushes X, Y  forward 

to X†, Y †  is the pair Tx, Ty ∣ X . Therefore, McCann interpolation between Id and Tx

can optimally reduce variance and thereby coarsen σ((X, Z)) to σ(X†), whereas the 
interpolation betwen Id and Ty ∣ X forms an estimation of the geodesic path between 

Y  to Y †. Therefore, the present work matches the two interpolations diagonally 
Tx(t), Ty ∣ X(t) : = (1 − t)Id + tTx, (1 − t)Id + tTy ∣ X  to estimate the true optimal fair data 

representation at the Pareto frontier.

Finally, since X† and E Y † ∣ X†  are the estimate of X and E(Y ∣ X), respectively, as shown in 

the last section, it follows from Corollary 5.1 and Remark 5.4 that

E Ty ∣ X(t)(Y ) ∣ Tx(t)(X) , t ∈ [0, 1]

(5.34)

provides a pre-processing estimate of the Pareto frontier from E Y ∣ X  to E(Y ∣ X) that is 

characterized by Theorem 4.1.

6. Algorithm Design

In this section, we propose two algorithms based on the theoretical results above. Algorithm 

2 is designed for the fair learning outcome in the post-processing approach and dependent 

variable in fair data representation, whereas Algorithm 1 is designed for the independent 

variable in fair data representation.

1. For practitioners who want to generate fair learning outcomes along the Pareto 

frontier, Algorithm 2 takes the learning outcomes marginals f Xz z as input 

and outputs the learning outcomes at (the optimal affine estimation of) the 

post-processing estimation of the Pareto frontier: f X, Z t t ∈ 0, 1 , which is the 

Wasserstein-2 geodesic paths from the original learning outcome, f X, Z 0 , to 

the estimate of the optimal fair learning outcome, f X, Z 1 . Here, f X, Z 1
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is the best estimate of the optima fair learning outcome based on the provided 

learning outcome f Xz z.

2. For practitioners who want to generate a fair data representation, Algorithm 1 

and Algorithm 2 take in respectively the marginal independent and dependent 

data: Xz z and Y z z, then outputs respectively the independent and dependent 

data representations along the Wasserstein-2 geodesics from the marginals to 

their pseudo-barycenter: X† t , Y † t t ∈ 0, 1 . So that any conditional expectation 

estimation supervised learning model trained via X† t , Y † t t ∈ 0, 1  results in 

(an diagonal affine estimation of) the learning outcome at the Pareto frontier.

Algorithm 1:

Pseudo-Barycenter Geodesics for Independent Variable

The choice of the Frobenius norm in Step 1 is due to computational efficiency. Any matrix 

norm would work.
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Remark 6.1 (Solution to Alternative Fair Data Representation Constraint)

In Section 1.3, the present work shows two alternative fair data representation constraint: 
(X, Y ) ⊥ Z and X ⊥ Z, which offer different trade-offs between fairness protection and 
utility. If a practitioner applies the alternative constraint, the proposed algorithms can be 
applied to generate (the optimal affine estimation of) corresponding fair data representation 
as the following:

1. For (X, Y ) ⊥ Z, one applies Algorithm 1 to both Xz z and Y z z . This alternative 

is especially useful when practitioners or data publishers do not know which 
features would be chosen as independent or dependent.

2. For X ⊥ Z, one applies Algorithm 1 to Xz z and leaves Y z  untouched.

Algorithm 2:

Dependent (or Post-processing) Pseudo-Barycenter Geodesics
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7. Empirical Study: Fair Supervised Learning

In this section, we present numerical experiments with the proposed Algorithms 1 and 2 

from Section 6. The proposed fair data representation method is bench-marked against two 

baselines:

1. the prediction model trained via the original data (denoted by “supervised 

learning name” in the experiment result figure below): supervised learning 

models trained via data including the sensitive variable provide an estimation 

of statistical disparity resulting from both disparate treatment and impact.

2. the prediction model trained via data excluding the sensitive variable (denoted by 

“supervised learning name + Excluding Z”): supervised learning models trained 

via data excluding the sensitive variable provide an estimation of statistical 

disparity resulting from only disparate impact.

7.1 Benchmark Data and Comparison Methods

For comparison, we implement the following known methods for different types of 

supervised learning tests:

1. For classification test, the present work compares the current state-of-the-art pre-

processing methods [12, 45] (“supervised learning name + Calmon or Zemel”, 

the later is also known as “Learning Fair Representation”) with the proposed 

fair data representation methods (“supervised learning name + pre-proc. Pareto 

frontier Est. or Pseudo-barycenter”).

2. For uni-variate regression test, we compare the post-processing Wasserstein 

barycenter based fair regression [15] (“supervised learning name + Chzhen”) 

with the proposed post-processing pseudo-barycenter methods (“supervised 

learning name + post-proc. Pareto frontier Est. or Pseudo-barycenter”) and the 

fair data representation methods.

3. For multi-variate supervised learning test, we compare the post-processing 

pseudo-barycenter methods with the fair data representation methods.

The reasons for this choice are as follows: (1) the known attempts via the pre-processing 

approach are only available for fair classification; (2) the post-processing Wasserstein 

barycenter based methods on fair classification are analogous to the one on fair regression, 

which is shown to outperform other in-processing or post-processing methods in reducing 

discrimination while preserving accuracy; (3) there exists no practical attempt along the 

Wasserstein characterization approach to multi-dimensional supervised learning due to the 

computational complexity of finding the barycenter and the optimal transport maps.

We adopt the following metrics of accuracy and discrimination that are frequently used 

in fair machine learning experiments on various data sets: (1) For fair classification, the 

prediction accuracy, and statistical disparity are quantified respectively by AUC (area under 

the Receiver Operator Characteristic curve) and
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Definition 7.1 (Classification Discrimination)

Discrimination = max
z, z′ ∈ Z

ℙ Y z = 1
ℙ Y z′ = 1

− 1

as defined in [12]. (2) For univariate supervised learning, the prediction error and statistical 

disparity are quantified respectively by MSE (mean squared error, equivalent to the squared 

L2 norm on sample probability space) and KS (Kolmogorov-Smirnov) distance as in [15] for 

indirect comparison purpose. So that readers can compare the proposed methods indirectly 

with other methods that are tested in [12, 15, 45] and their references. (3) For univariate and 

multivariate supervised learning, the prediction error and statistical disparity are quantified 

respectively by L2 and W2 (Wasserstein-2) distances, which are the quantification the 

current work adopts to prove the Pareto frontier in the above sections.

In addition, we perform tests on four benchmark data sets: CRIME, LSAC, Adult, 

COMPAS, which are also frequently used in fair learning experiments. A brief summary is 

listed below. For all the test results, we apply 5-fold cross-validation with 50% training and 

50% testing split, except for 90% training and 10% testing split in the linear regression test 

on LSAC due to the high computational cost of the post-processing Wasserstein barycenter 

method [15]. Therefore, interested readers can also compare the pseudo-barycenter test 

results indirectly to other methods tested in [12, 15].

Data set Tests Data size dim(X) dim(Y )
UCI Adult logit regression, random forest 162805 16 1

COMPAS logit regression, random forest 26390 7 1

LSAC linear regression, ANN 20454 9 1

CRIME linear regression, ANN 1994 97 1

CRIME linear regression, ANN 1994 87 11

• Communities and Crime Data Set (CRIME) contains the social, economic, law 

executive, and judicial data of communities in the United States with 1994 

examples [36]. The task of the uni-variate learning is to predict the number 

of crimes per 105 population using the rest of the information on the data set. 

Here, race is the sensitive information and, for (indirect) comparison purposes, 

we made race a binary categorical variable of whether the percentage of African 

American population (racepctblack) is greater than 30%.

In the multi-variate supervised learning on CRIME, we keep the same sensitive 

variable. But the learning task is to predict the following vector that represents 

the local housing and rental market information: (low quartile occupied home 

value, median home value, high quartile home value, low quartile rent, median 

rent, high quartile rent, median gross rent, number of immigrants, median 

number of bedrooms, number of vacant households, number of crimes).
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• LSAC National Longitudinal Bar Passage Study data set (LSAC) contains social, 

economic, and personal data of law school students with 20454 examples [43]. 

The goal of univariate models is to predict the students’ GPA using other 

information on the data set. Here, race is the sensitive variable and, for (indirect) 

comparison purposes, we make it a binary variable on whether the student is 

non-white.

• UCI Adult Data Set (Adult) contains the 1994 Census data with 162805 

examples [17]. The goal is to predict the binary categorization (whether gross 

annual income is greater than 50k) using age, education years, and gender, where 

gender is the sensitive information.

• Correctional Offender Management Profiling for Alternative Sanctions 

(COMPAS) is a benchmark set of data from Broward County, Florida for 

algorithmic bias studies [3]. Following [12], the goal here is to predict whether 

an individual would commit any violent crime while race is the sensitive binary 

variable (African-American and Caucasian).

7.2 Numerical Result

In this subsection, we summarize the experimental results4.

The classification test result is summarized in Figure 2 below. Here, the vertical and 

horizontal axes are AUC and Discrimination defined in Definition 7.1. That is, the 

more upper-left, the better the result. The first row of Figure 2 shows the results of 

logistic regression (left) and random forest (right) on Adult whereas the second shows the 

corresponding results on COMPAS.

Notice that there exists a large disparate impact in the learning outcome on COMPAS 

due to the relatively small difference between the “Discrimination” of learning 

outcome on the original data (LR and RF) and the outcome on the data excluding 

Z LR and RF+Excluding Z . Therefore, a further reduction of statistical disparity is needed. 

In contrast, the relatively large difference in the Adult data set implies a small disparate 

impact. That is, a simple exclusion of the sensitive variable Z results in a significant 

improvement in fairness.

For further reduction of statistical disparity, it is clear from the experiment results on both 

COMPAS and Adult that the estimation via the Wasserstein geodesics to Pseudo-barycenter 

(LR and RF + Pseudo-barycenter) consistently outperforms LR and RF + Calmon by 

obtaining lower Discrimination with higher AUC.

In addition, although “LR and RF + Zemel” achieves a point near the Pareto frontier 

estimated by the proposed Pseudo-barycenter methods, the point estimation is rather 

random. Hence, “+ Zemel” is not consistent in estimating the optimal fair learning outcome 

(the end point of the Pareto curve). Practitioners cannot know which point on the Pareto 

frontier is estimated by “+ Zemel”. In comparison, the Pseudo-barycenter methods are 

4.The code for the results of our experiments is available online at: github.com/xushizhou/fair_data_representation
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consistent in estimating the optimal fair learning outcome. In addition, offer the entire Pareto 

frontier, and hence offer practitioners the flexibility to choose desired trade-off. In addition, 

the proposed method works for any model aims to estimate conditional expectation, 

including classification and regression, while “+ Zemel” only works for classification.

The uni-variate regression test result on the LSAC and the one on CRIME are shown 

respectively in Figure 3 and 4 below. Here, the vertical and horizontal axes in the first rows 

are MSE and KS distance. The corresponding axes in the second row are the L2-quantified 

test error and the W2 distance that quantifies the remaining statistical disparity among 

sensitive groups. Therefore, the more lower-left, the better is the result on both rows. The 

two supervised learning methods we use are linear regression and artificial neural networks 

(ANN with 4 linearly stacked layers where each of the first three layers has 32 units all with 

ReLu activation while the last has 1 unit with linear activation).

In the regression tests, post-processing Pareto frontier estimations via ANN is smooth 

while the pre-processing estimation is not. Here, the smoothness is due to the McCann 

interpolation between the identity matrix and the optimal transport map in the post-

processing approach. Non-smoothness is due to the randomness in training the neural 

network. In testing the fair data representations via ANN, one has to train the neural network 

for the data representation at every time t ∈ [50]. Hence, the randomness in ANN training 

results in the non-smoothness in the Pareto frontier estimation via fair data representations.

On the LSAC data set, the proposed methods (+ pre-proc. Pseudo-barycenter and + 

post-proc. Pseudo-barycenter) obtains a similar performance as the post-processing exact 

Wasserstein barycenter method (+ Chzhen): the proposed methods outperformed the exact 

method in linear regression test and were outperformed by the exact method in the non-

linear artificial neural network tests, which is consistent with our theoretical results. But 

the performance of the proposed methods are achieved at 0.81 seconds on average, whereas 

the average time cost of “+ Chzhen” is 6365.98 seconds (see Figure 6 below). In addition, 

we gained the flexibility in choosing the desired trade-off, computational efficiency, model 

selection, parameter tuning, and composition.

For CRIME data, the small difference between the KS of learning outcome on the original 

data (LR and ANN) and the one on the data excluding the sensitive variable (LR and 

ANN + Excluding Z) implies a significant disparate impact. This observation and the multi-

dimensional test below agree with the following statement in [10]: “Simply removing the 

‘protected attribute’ is insufficient. As long as the model takes in features that are correlated 

with, say, gender or race, avoiding explicitly mentioning it will do little good.”

In Figure 4, it is clear that the fair data representation methods (+ pre-proc. Pareto frontier 

Est. or Pseudo-barycenter) achieved the same, if not better, performance as the comparison 

method (+ Chzhen): the proposed method was outperformed by “+ Chzhen” with linear 

regression and outperformed “+ Chzhen” with artificial neural network, both by a narrow 

margin. But the performance of the fair data representation method is achieved at 4.735% 

of the time costs “+ Chzhen.” In addition, the fair data representation method provides (an 

estimation of) the entire Pareto frontier and works for multi-variate supervised learning (see 
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Figure 5 below), whereas “+ Chzhen” only estimates the end point of the Pareto frontier and 

only works in the uni-variate learning.

Remark 7.1—One possible explanation for the proposed method to outperform the post-

processing Wasserstein barycenter method is the following: although [15] is designed 

specifically for univariate learning and the KS distance by matching the marginal cumulative 

distribution function, such matching on training data can lead to over-fitting. Therefore, the 

resulting optimal transport map fits the training data too well to be optimal for the test data.

Next, we show the multi-variate supervised learning on CRIME data to provide a high-

dimensional baseline, to which later proposed machine learning fairness methods on high-

dimensional data can compare. The vertical and horizontal axes are the L2 test error and the 

W2 distance among sensitive groups. Hence, the more lower-left, the better the result.

Due to the relative high-dimensionality of both X (87-dimensional) and Y  (11-dimensional), 

the probabilistic dependence and correlation between the learning outcome and the sensitive 

variable Z becomes more difficult to remove. It is clear that (LR or ANN + Excluding Z) 

now removes almost none of the statistical disparity, comparing to the learning outcome on 

original data.

To show the difference in practical computational cost among the comparison methods, 

we include the following processing time table, where the unit of time is second, and the 

simulations were run on a 2019 Macbook pro with Intel i9 processor.

Now, we show the major advantages of the proposed method compared to the post-

processing ones, such as [15, 26, 21]:

1. Flexibility in Trade-off: the pre-processing method provides an estimation for 

the entire Pareto frontier and thereby allows practitioners to balance between 

prediction error and disparity. In contrast, the known post-processing method 

merely estimates the starting (left) point of the frontier.

2. Sensitive data privacy protection: the geodesics to the pseudo-barycenter allow 

practitioners to suppress the sensitive information remaining in the data to the 

desired level. That is, given the resulting suppressed data, anyone who has leaked 

data from the training or decision stage can merely extract the level of sensitive 

information up to the pre-determined remaining level. For example, if one 

chooses to suppress as much sensitive information as possible by setting t = 1, 

then it follows from the construction of dependent and independent pseudo-

barycenter, it is guaranteed that any unsupervised learning method uses merely 

the first two moments of the sample data distribution, such as the K-means and 

PCA, would be unable to extract any information about Z from X† or fY † X† .

3. Computational efficiency in high-dimensional learning: as summarized in Figure 

6, the computation of pseudo-barycenter estimation of the optimal fair learning 

outcome is significantly faster than the computation via the post-processing 

method, especially on the LSAC data which has a larger sample size.
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4. Flexibility in model selection, modification, and composition: in practice, 

one needs to repeat the training process multiple times to compare 

different supervised learning algorithms or parameters. The proposed fair data 

representation method has a fixed pre-processing time while the processing time 

of post-processing methods is additive. For example, if a practitioner needs to 

compare linear regression and ANN on LSAC as shown in Figure 6 and repeat 

the training process N times for parameter tuning or validation purpose, the 

total processing time for pseudo-barycenter method is 0.81 + N(0.0025 + 104.2) 

while the processing time for the post-processing method is N(0.003 + 6380.61 + 

105.738 + 6351.36).
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A.: Appendix: Proof of Results in Section 2

A.1 Proof of Lemma 2.1

Proof

W2
2(μ, ν) = ∫ x − y 2dγ*(x, y)

= ∫ x − mμ − y − mν + mμ − mν
2dγ*(x, y)

= ∫ x − mμ − y − mν
2dγ*(x, y) + mμ − mν

2

≥ W2
2 μ′, ν′ + mμ − mν

2

= ∫ x − y 2d γ′ *(x, y) + mμ − mν
2

= ∫ x + mμ − y + mν
2d γ′ *(x, y)

≥ W2
2(μ, ν)

where γ∗ and γ′ * denote the optimal transport plan for μ , ν  and μ′, ν′  respectively. 

The first inequality results from the fact that γ′(x, y): = γ * x − mμ, y − mν ∈ ∏ μ′, ν′ , the 

second inequality from γ(x, y): = γ′ * x + mμ, y + mν ∈ ∏(μ, ν), and the equalities from direct 

expansion. ■

A.2 Proof of Lemma 2.3

Proof Existence and uniqueness follow directly from Theorem 2.1. For the equivalent 

multi-marginal coupling problem, there exists an optimal solution γ* = ℒ Xz z . It follows 

from Remark 2.3 that X = T Xz z  where ℒ(X) is the Wasserstein barycenter. Therefore, 

the Gaussianity of barycenter results from linearity of T  in the finite |Z| case, and the 

fact that the set of Gaussian distribution is closed in P2, ac, W2  when |Z| is infinite. The 

characterization equation is proved in the case of finite |Z| in [1]. For infinite |Z|, the 

equation still holds due to the continuity of the covariance function on P2, ac, W2 . The 
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sufficiency and necessity of the equation follows from the following characterization of the 

barycenter via Brenier’s maps TXXz z derived in [1]:

∫
Z

TXXzdλ(z) = Id

(A.1)

It follows from the explicit form of TXXz z in Lemma 2.2 that

∫
Z

TXXzdλ(z) = ∫
Z

ΣX
− 1

2 ΣX

1
2 ΣXzΣX

1
2

1
2ΣX

− 1
2dλ(z) = Id

ΣX

1
2 ΣX

− 1
2∫

Z
ΣX

1
2 ΣXzΣX

1
2

1
2dλ(z)ΣX

− 1
2ΣX

1
2 = ΣX

1
2 IdΣX

1
2

∫
Z

ΣX

1
2 ΣXzΣX

1
2

1
2dλ(z) = ΣX

■

B.: Appendix: Proof of Results in Section 4

B.1 Proof of Lemma 4.1

Proof First, it follows from the triangle inequality that

W2 μ0, μ1 ≤ W2 μ0, μs + W2 μs, μt + W2 μt, μ1

for any s, t ∈ 0, 1 . On the other hand, it follows from the definition of μt that for s, t ∈ 0, 1

W2
2 μs, μt ≤ ∫ℝd 2 x − y 2d πs ♯γ(x) ⊗ d πt ♯γ(y)

= ∫ℝd 2 πs(x, y) − πt(x, y) 2dγ(x, y)

= ∫ℝd 2 (1 − s)x + sy − (1 − t)x − ty
2
dγ(x, y)

= ∫ℝd 2 (t − s)x − (t − s)y
2
dγ(x, y)

= t − s
2∫ℝd 2 x − y

2
dγ(x, y) = t − s

2
W2

2 μ0, μ1 ,

where the first equation results from definition of W2. Given the above two 

facts, we complete the proof by contradiction. Assume ∃s, t ∈ [0, 1] such that 

W2 μs, μt < ∣ t − s ∣ W2 μ0, μ1 , then

W2 μ0, μ1 ≤ W2 μ0, μs + W2 μs, μt + W2 μt, μ1
< s W2 μ0, μ1 + t − s W2 μ0, μ1 + 1 − t W2 μt, μ1
= W2 μ0, μ1
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C.: Appendix: Proof of Results in Section 5

C.1 Proof of Lemma 5.1

Proof Let X′ such that X′ ⊥ Z but σ X′ ⊂ σ(X). Also, let Y ′ denote the optimal choice given 

X′ that satisfies E Y ′ ∣ X′ = E Y ∣ X′ . It follows that

E(Y ∣ X, Z) − E Y ′ ∣ X′
2
2

= E(Y ∣ X, Z) − E Y ∣ X′
2
2 + E Y ∣ X′ − E Y ′ ∣ X′

2
2

= E(Y ∣ X, Z) − E(Y ∣ X) 2
2 + E(Y ∣ X) − E Y ∣ X′

2
2 + E Y ∣ X′ − E Y ′ ∣ X′

2
2

Also, we have

E(Y ∣ X, Z) − E(Y ∣ X) 2
2

= E(Y ∣ X, Z) − E(Y ∣ X) 2
2 + E(Y ∣ X) − E(Y ∣ X) 2

2

= E(Y ∣ X, Z) − E(Y ∣ X) 2
2 + E(Y − Y ∣ X) 2

2

Putting the above equations together, we have

E(Y ∣ X, Z) − E(Y ∣ X) 2
2 − E(Y ∣ X, Z) − E Y ′ ∣ X′

2
2

= E(Y − Y ∣ X) 2
2 − E Y ∣ X′ − E Y ′ ∣ X′

2
2 − E(Y ∣ X) − E Y ∣ X′

2
2

= ∫
Z

W2
2 μz, μ dλ − ∫

Z
W2

2 μz
′ , μ′ dλ − E(Y ∣ X) − E Y ∣ X′

2
2

Here, notice that

∫
Z

W2
2 μz, μ dλ − ∫

Z
W2

2 μz
′ , μ′ dλ

= 1
2∫Z2

W2
2 μz1, μz2 − W2

2 μz1
′ , μz2

′ d(λ ⊗ λ)

= 1
2∫Z2

W2
2 ℒ E(Y ∣ X)z1 − E Y ∣ X′ z1 , ℒ E(Y ∣ X)z2 − E Y ∣ X′ z2 d(λ ⊗ λ)

= ∫
Z

W2
2 ℒ E(Y ∣ X)z − E Y ∣ X′

z , ℒ E(Y ∣ X)z − E Y ∣ X′
z dλ

= E(Y ∣ X) − E Y ∣ X′
2
2 − E(Y ∣ X)z − E Y ∣ X′

z 2

2

Putting the above together, we obtain

E(Y ∣ X, Z) − E(Y ∣ X) 2
2 − E(Y ∣ X, Z) − E Y ′ ∣ X′

2
2

= − E(Y ∣ X)z − E Y ∣ X′
z 2

2

≤ 0

That is, E(Y ∣ X, Z) − E(Y ∣ X) 2

2 ≤ E(Y ∣ X, Z) − E Y ′ ∣ X′
2
2
. We are done. ■
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C.2 Proof of Lemma 5.2

Proof We first prove σ((X, Z)) = σ((X, Z)). To start, notice that ℒ Xz z ⊂ P2, ac(X) implies 

ℒ(X) ∈ P2, ac(X), which further implies that ℒ((X, Z)) = ℒ(X) ⊗ λ ∈ P2, ac(X × Z) as X ⊥ Z
by assumption. Also, it follows from the construction of Xz via the disintegration theorem 

that z Xz is measurable. Since X is a Polish space, Z is a measurable space, and 

· 2 ≥ 0, it follows from Corollary 5.22 in [42] that there exists a measurable choice 

z γz such that γz is the optimal transport plan between ℒ(X) and ℒ Xz  for each 

z ∈ Z. Now, BXZ × BXZ
′ ∫Z∫X × X1BXZ × BXZ′ γz x, x′ dλ(z) defines a probability measure on 

(X × Z) × (X × Z) and it is straight-forward to verify that the measure is a transport plan 

between ℒ((X, Z)) and ℒ((X, Z)). We claim that it is the optimal transport plan. Indeed, if 

not, then there exists an optimal transport plan γ′ that, again by the disintegration theorem, 

satisfies

∫
Z
∫

X × X
x − x′ 2γz

′ x, x′ dλ(z) = W2
2(ℒ((X, Z)), ℒ((X, Z)))

< ∫
Z
∫

X × X
x − x′ 2γz x, x′ dλ(z) .

This contradicts the optimality and uniqueness of γ. Finally, by the assumption 

ℒ((X, Z)) ∈ P2, ac(X × Z), ∃T :X × Z X × Z measurable such that T ((X, Z)) = (X, Z). 
Therefore, for all BXZ ∈ ℬX ⊗ ℬZ, define BXZ

′ : = T −1 BXZ . T  is measurable implies 

BXZ
′ ∈ ℬX ⊗ ℬZ. It follows

(X, Z)−1 BXZ
′ = (X, Z)−1 T−1 BXZ = (T (X, Z))−1 BXZ = (X, Z)−1 BXZ

Since our choice of BXZ ∈ ℬX ⊗ ℬZ is arbitrary, σ((X, Z)) ⊂ σ((X, Z)). To prove the 

other direction, first notice that ℒ Xz z ⊂ P2, ac(X) λ-a.e. and λ ∈ P2, ac(Z) implies 

ℒ((X, Z)) ∈ P2, ac(X × Z). Therefore, it follows from the same argument but switches X
and X that σ((X, Z)) ⊂ σ((X, Z)). That completes the proof of σ((X, Z)) = σ((X, Z)). Now, we 

show σ(X) ⊂ σ(X). From the construction of X, we have σ((X, Z)) ⊂ σ((X, Z)) = σ((X, Z)). 
But X ⊥ Z implies that for any BX ∈ ℬX, we can construct BX × Z ∈ ℬX ⊗ ℬZ. 

In addition, due to σ((X, Z)) ⊂ σ((X, Z)), there exists BXZ
′ ∈ ℬX ⊗ ℬZ such that 

(X, Z)−1 BXZ
′ = (X, Z)−1 BX × Z . Lastly, X ⊥ Z also implies that there exists BX

′ ∈ ℬX

satisfying BXZ
′ = BX

′ × Z. It follows that

X−1 BX = (X, Z)−1 BX × Z = (X, Z)−1 BX
′ × Z = X−1 BX

′

(C.1)

Since our choice of BX ∈ ℬX is arbitrary, it follows that σ(X) ⊂ σ(X). Finally, since our 

choice of X ∈ X ∈ D X:X ⊥ Z  is arbitrary, we are done. ■
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Figure 1: 
The left panel depicts three distributions, sampled from an isotropic Gaussian distribution 

with different first two moments. The right panel shows the pseudo-barycenter of the three 

sample distributions.
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Figure 2: 
As shown in the classification test above, the proposed fair data representation method (+ 

Pre-proc. Pareto frontier Est. or Pseudo-barycenter) outperforms the other methods (+ Zemel 

or + Calmon) in estimating the optimal fair learning outcome. It reduces the Discrimination 

metric to nearly zero while keeping the relatively high level of AUC with both logistic 

regression (LR) and random forest (RF) on both Adult and COMPAS. Furthermore, fair 

data representation method offers flexibility in choosing the desired trade-off while other 

methods only estimate a random point near the Pareto frontier.
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Figure 3: 
As shown in the univariate regression test on LSAC above, the proposed fair data 

representation method (+ pre-proc. Pareto frontier Est. or Pseudo-barycenter) and the post-

processing pseudo-barycenter geodesics method (+ post-proc. Pareto frontier Est. or Pseudo-

barycenter) achieved similar performance as the exact barycenter method (+ Chzhen). The 

proposed methods outperformed “+ Chzhen” with linear regression and were exceeded with 

the artificial neural network, both by a narrow margin. But the performance of the proposed 

methods is achieved at 0.0128% of the time costs “+ Chzhen” (see Figure 6 below). In 

addition, the proposed methods offer the flexibility of choosing the desired (optimal) trade-

off between utility loss (MSE or L2-loss) and statistical disparity (KS or W2 distance), 

whereas “+ Chzhen” only estimate the end point of Pareto curve.
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Figure 4: 
As shown above, the fair data representation method (+ pre-proc. Pareto frontier Est. or 

Pseudo-barycenter) achieved the same, if not better, performance as the exact barycenter 

method (+ Chzhen) in estimating the optimal learning outcome. In addition, the fair data 

representations method offers flexibility in choosing a desired (optimal) trade-off between 

utility and fairness.
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Figure 5: 
As shown above, the fair data representation method (+ pre-proc. Pareto frontier Est. or 

Pseudo-barycenter) achieves similar performance to the post-processing pseudo-barycenter 

method (+ post-proc. Pareto frontier Est. or Pseudo-barycenter).
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Figure 6: 
As shown in the table above, the computational cost of the pseudo-barycenter method is 

significantly lower than the cost of the known post-processing methods: on average 7836 

times faster on LSAC and 21 times faster on CRIME in a single train-test cycle for a 

single supervised learning model. Furthermore, in model selection or composition, the 

pre-processing time is a fixed one-time cost while the post-processing time is additive. (See 

point 4 below for a more detailed explanation)
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