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Nonlinear features extracted from Lamb wave signals (e.g., second harmonic generation)
are demonstrably sensitive to microscopic damage, such as fatigue and material thermal
degradation. While a majority of the existing studies in this context is focused on de-
tecting undersized damage in metallic materials, the present study is aimed at expanding
such a detection philosophy to the domain of composites, by linking the relative acoustic
nonlinearity parameter (RANP) – a prominent nonlinear signal feature of Lamb waves – to
barely visible impact damage (BVID) in composites. Nevertheless, considering immense
uncertainties inevitably embedded in acquired signals (due to instrumentation, environ-
ment, operation, computation/estimation, etc.) which can adversely obfuscate nonlinear
features, it is necessary to quantify the uncertainty of the RANP (i.e., its statistics) in order
to enhance decision-making associated with its use as a detection feature. A probabilistic
model is established to numerically evaluate the statistical distribution of the RANP. Using
piezoelectric wafers, Lamb waves are acquired and processed to produce histograms of
RANP estimates in both the healthy and damaged conditions of a CF/EP laminate, to which
the model is compared, with good agreement observed between the model-predicted and
experimentally-obtained statistic distributions of the RANP. With the model, BVID in the
laminate is predicted. The model is further made use of to quantify the level of confidence
in damage prediction results based on the concept of a receiver operating characteristic,
enabling the practitioners to better understand the obtained results in the presence of
uncertainties.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The use of composites has become ubiquitous in modern engineering applications, ranging from large-scale fuselage
panels and wings of commercial airplanes to high-performing bicycle frames and car bogies. Although endowed with
numerous merits like high strength-to-weight ratio, corrosion resistance, and design flexibility, composite materials may,
under inappropriate use or in harsh environment, suffer various forms of damage that are invisible and difficult to identify,
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primarily due to the susceptibility of composite structures to foreign object impacts [1]. For instance, a low-velocity impact,
such as tool dropping during manufacturing and servicing, may result in what is commonly referred to as barely visible
impact damage (BVID). Typical BVID ranges from indentation and matrix micro-cracks to ply delamination and fiber
breakage. On top of this, cyclic loads, both mechanically and thermally, throughout the service life of a composite structure,
may also lead to matrix cracking and inter-laminar damage (e.g., delamination). All these have entailed early awareness of
BVID in composites and timely remediation, to prevent further material deterioration and weaken the risk of consequent
system failure. Effectual damage identification can be conducive to the reliability, integrity, and durability of composite
structures.

Over the past few decades, a diversity of well-defined nondestructive evaluation (NDE) methods and later cutting-edge
structural health monitoring (SHM) techniques have been developed, some of which are now on the verge of maturity and
have been demonstrated to be capable of identifying damage in composites, including BVID, in a cost-effective manner. Of
special interest are those methods taking advantage of guided ultrasonic waves (GUWs), with Lamb waves in particular [2–
9]. Lamb waves feature the superior ability to interrogate a substantial area promptly with only a few transducers and low
energy consumption, the capacity to omni-directionally access hidden components (via multi-path reflections), the prospect
of being implemented in an in-situ manner to accommodate the purposes of SHM, and most importantly, the high sensi-
tivity to various types of damage which features a characteristic dimension comparable to the wavelength of a probing GUW
(i.e., “gross” damage, such as a notch or a through-hole). A majority of the existing efforts has been focused on exploring
what are referred to as linear wave features, which derive from linear wave propagation, dispersion, and scattering through a
linear elastic medium modified by gross damage [10,11]. As commented elsewhere [1,11], these classical linear feature-
based GUW techniques may become deficient once used to evaluate small-scale damage in inhomogeneous materials whose
characteristic dimension may be much smaller than the wavelength of a probing GUW, as typified by BVID in composites;
this is often the case for composite materials.

In parallel to the mainstream of using linear GUWs for developing various damage detection and health monitoring
approaches, there exists a batch of studies exploring nonlinear features concealed in GUWs (e.g., sub-harmonics or second
harmonics), based on the recognition that nonlinear features of GUWs, compared with their linear counterparts, can pos-
sibly be more sensitive to undersized defects or certain defect types. Representatively, Aymerich and Staszewski [12] and
Meo et al. [13], respectively, evaluated BVID in composites using a cross-modulation vibro-acoustic technique (VAT) and
nonlinear elastic wave spectroscopy (NEWS)—a group of methods exploiting nonlinear features of GUWs in conjunction
with vibration modulation. Ciampa et al. [1] employed the mechanism of second harmonic generation in GUWs to calibrate
material and damage-induced nonlinearities in a composite laminate via finite element simulation and experiment vali-
dation. Pieczonka et al. [14] also used the second harmonic generation to examine the imaging quality of BVID and further
compared the results against those from a local defect resonance (LDR) method. In another instance, Li et al. [15] explored
second harmonics of Lamb waves for detecting fatigue damage in a composite panel introduced by a cyclic thermal load. In
these studies, the feasibility and effectiveness of using nonlinear features of GUWs (second harmonics in particular) for
damage evaluation in composites has been illustrated and validated.

Nonetheless, inherent to the use of any signal feature, whether it is linear or nonlinear, are uncertainties associated with
acquired signals. The uncertainties may contaminate or even bias obtained results. Thus it becomes imperative to identify
and quantify intrinsic uncertainties in measurement, experimental operation, ambient conditions, and/or computation, any
of which may otherwise impair the user's ability in using the signal features properly within the context of interpretive
decision-making [16]. In particular, the nonlinear contributions to the overall signal-to-noise ratio tend to be substantially
lower (by orders of magnitude) than linear contributions, further complicating the extraction and identification process.
Plus, in composites, the nonlinearities can be largely multifold: even in the material's healthy state, features like voids and
imperfect bonding between plies may augment the uncertainty of the said nonlinear effects. Thus, to avoid excessive Type I
(false alarms) or Type II (missed calls) errors in a detection process, an uncertainty quantification model, rooted in statistical
hypothesis testing, is desired. Based on this quantification, appropriate statistical inference can be reached to evaluate the
health condition of the structure under inspection.

Given this backdrop, the present study establishes a probabilistic model to quantify the uncertainties of estimates of
nonlinearity extracted from Lamb wave signals and to verify the model in the context of predicting BVID in a composite
laminate. A brief review of the second harmonics—one of the most representative nonlinear features of Lamb waves to be
adopted in the present study—is provided in Section 2, based on which a relative acoustic nonlinearity parameter (RANP) is
formulated. Section 3 derives and explores a probabilistic model for RANP estimates. Subsequently, in Section 4, experi-
mental investigation is performed on a carbon fiber/epoxy (CF/EP) laminate plate. Miniaturized piezoelectric lead zirconate
titanate (PZT) wafers are employed for actuation and acquisition of Lamb waves, which well suit the purpose of in-situ SHM.
Continuous sine waves are generated by the PZT wafers as the input probing GUWs, and steady-state signals are acquired
and processed for estimating RANP values before and after the introduction of BVID to the laminate by a drop-weight impact
test. With the developed probabilistic model, histograms and predicted distributions of RANP before and after the impact
test are compared. Taking a step further, a receiver operating characteristic (ROC) curve is computed using the modeled
RANP distributions, as detailed in Section 5, which provides a quantified level of confidence in using RANP for predicting
damage in the presence of uncertainty.
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2. Second harmonics of Lamb waves

2.1. Relative acoustic nonlinearity parameter

Lamb waves refer to elastic wave propagation guided by a thin plate- or shell-like waveguide with its planar dimensions
being far greater than its thickness and the wavelength of its guided wave. This kind of waveguides provide upper and lower
boundaries to guide continuous propagation of Lamb waves [2]. Propagating in either symmetric or anti-symmetric modes,
Lamb waves are multimodal and dispersive in nature, usually with several modes propagating at the same time with re-
spective velocities. Prevailing signal features of interest for the purpose of damage identification can be the delay in time-of-
flight (ToF) [17–19], wave reflection/transmission [20,21], mode conversion [3], or energy dissipation [4]. These signal
features, as briefly mentioned earlier, are usually based on the assumption of linear wave propagation and linear material
property changes (due to structural damage), and are therefore referred to as linear features in this study. The majority of
existing detection techniques are based on calibrating changes in the linear features at or near the excitation frequency of
the probing GUW, upon its interaction with damage.

On the contrary, nonlinear features of Lamb waves for damage detection generally pertain to the scenarios in which
partial signal energy emerges in the frequency bands other than at the fundamental (excitation) frequency, as a con-
sequence of energy shift under the modulation of the nonlinear effects of damage. Specifically, second harmonic generation
refers to the wave energy formation at twice the excitation frequency, due to nonlinear variations of material properties
(typically quadratic in nature). Theoretically, generation of second harmonics can be deemed a first-order perturbation to
the linear elastic responses [22]. As a result, the solution to the nonlinear wave governing equation features two parts: the
fundamental mode at the excitation frequency (denoted by fE), plus the perturbed second harmonic mode at twice the
excitation frequency (2fE). The amplitudes of these two modes are related by the so-called acoustic nonlinearity parameter, β,
which is defined as

β
Ω

γ=
( )

A

A x
8

,
1

2

1
2 2

where A1 and A2 are the wave amplitudes at fE and 2 fE, respectively. Ω is the wavenumber, x the propagation distance, and γ
a function depending on wave parameters and medium properties [23], which does not vary with respect to the condition of
the medium (healthy or damaged). Based on Eq. (1), the degree of the second harmonic generation (reflecting the degree of
quadratic nonlinearity in the signal due to material nonlinearity and possible damage) may be determined. Normalizing β at
a fixed Ω and x (while γ remains unchanged), Eq. (1) can be simplified into

=
( )

RANP
A

A
,
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which, called relative acoustic nonlinearity parameter (RANP), represents a generalized parameter associated with nonlinear
properties of Lamb waves. RANP is to be employed in this study for identification of BVID in composites.

It has been revealed in a number of studies [23–28] that the presence of small-scale damage in materials, such as fatigue
cracks, thermal degradation and corrosion, generally increases local nonlinearities inherent in the damaged area of the
materials. When Lamb waves traverse this area, the nonlinear distortion reflected in the acquired signals becomes more
pronounced as compared to that in the pristine (healthy) condition, and this results in an increased value of the RANP.
Hence, by detecting any singular increase in the RANP of Lamb wave signals, it is possible to identify small-scale damage in
the waveguide.

2.2. Cumulative second harmonic generation

As pointed out earlier, the nonlinearity in a particular wave mode usually features a relatively poor signal-to-noise ratio,
and therefore the acquisition of the weak second harmonic generation can be a daunting task under the interference of the
multimodal and dispersive natures of Lamb waves. However, there exist certain conditions under which the probing GUW
(i.e., the fundamental wave mode) is accompanied by cumulative second harmonic generation as waves propagate: the so-
called “synchronism conditions” or “internal resonance conditions” [24,29]. A rich body of research [24,29–31] has gone into
this issue and provided the criteria of mode selection to satisfy these conditions. At a rudimentary level, by using the mode
expansion method, the second harmonic wave field can be regarded as the superposition of a series of double-frequency
wave modes [24]. Generally, the contribution from each double-frequency mode to the second harmonic wave field depends
on its phase velocity in relation to that of the fundamental mode. If the fundamental mode and a particular double-fre-
quency mode share the same phase velocity, internal resonance occurs, and the wave energy can be transferred from the
fundamental mode to that double-frequency mode continuously as waves propagate. Other double-frequency modes would
decay rapidly due to wave attenuation. Thus, by properly selecting a specific excitation frequency that enables internal
resonance, cumulative second harmonics can be generated, which facilitates enhancement of the signal-to-noise ratio for
damage detection purposes. Note that usually the occurrence of internal resonance also guarantees group velocity matching
[30], although some debate still exists on that observation.
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Fig. 1. Dispersion curves of Lamb waves in [0]8 CF/EP laminate with 1.588 mm in thickness: (a) phase velocities versus frequency; and (b) group velocities
versus frequency (mode pair (S1, S2) marked as the candidate for cumulative second harmonic generation).
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As far as CF/EP laminates are concerned in this study, the dispersion curves for an 8-ply CF/EP laminate with a uni-
directional layup (denoted as [0]8) and a thickness of 1.588 mm are shown in Fig. 1. According to the internal resonance
conditions described above, the (S1, S2) mode pair is identified as an eligible candidate to serve cumulative second harmonic
generation. As highlighted in the figure, the S1 mode, excited at 1.460 MHz, features a phase velocity of 9294 m/s and a
group velocity of 9265 m/s, both of which match the corresponding values of the S2 mode at the double frequency
2.920 MHz.
3. A probabilistic model for RANP estimate

According to Eq. (2), the nonlinearity of a GUW signal upon interaction with damage can be calibrated by estimating the
value of ascertained RANP, once the amplitudes of the fundamental and the corresponding second harmonic modes are
acquired. In practice, these two amplitudes are usually found from the signal spectrum after fast Fourier transform (FFT).
Therefore, after the FFT, Eq. (2) can be rewritten as



M. Hong et al. / Mechanical Systems and Signal Processing 82 (2017) 448–460452
= =
+

+ ( )
RANP

A

A

Y Y

Y Y
,

3
r i

r i

2

1
2

2
2

2
2

1
2

1
2

where Y1r, Y1i, Y2r, and Y2i are the real and imaginary parts of the fundamental and corresponding second harmonic modes
(posterior to FFT) at fE and 2fE, respectively.

In this model, for a given component in the spectrum, the uncertainties in the real and imaginary parts are assumed to be
random variables that follow statistically independent normal distributions. Meanwhile, these two normal distributions

have the same standard deviation (σ) but different means (μr and μi): i.e., μ σ~ ( )NY ,r r
2 , μ σ~ ( )NY ,i i

2 , and ⊥Y Yr i, as the Fourier

transform maps the same original time-series signal into two orthogonal domains without discriminating the transfor-
mation gain. Here, the assumption that Yr and Yi share the same standard deviation will be corroborated in the subsequent

experiment. With this, for the numerator, A2, in Eq. (3), one has μ σ~ ( )NY ,r r2 2 2
2 and μ σ~ ( )NY ,i i2 2 2

2 , where σ2 is the common

standard deviation of the second harmonic mode at 2fE. Hence, we define a random variable X2 to be the square root of the
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where I0(.) is the zero-order modified Bessel function of the first kind; ( )∈ + ∞⎡⎣x 0,2 is one realization of X2 in practice; and
the parameter νn is found by
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Similarly, for the denominator, A1
2, in Eq. (3), it can be hypothesized that μ σ~ ( )NY ,r r1 1 1
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2 , where σ1 is the

common standard deviation of the fundamental wave mode at fE. In order to obtain its statistical distribution, the de-
nominator is processed as
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where ( )∈ + ∞⎡⎣x 0,1 is one realization of X1 in practice. Since the degrees of freedom k ¼ 2 in this case (one real part and
one imaginary part), Eq. (6a) retreats to

( )λ
λ( ) = −

+
( )

⎜ ⎟⎛
⎝

⎞
⎠f x

x
I x

1
2

exp
2

,
6bX

n
n1

1
0 11

where λn is the non-centrality parameter normalized by the standard deviation, as
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At this point, the corresponding PDFs for both random variables have been obtained. Note that due to the uncertainty and
measurement noise, it is highly likely that the magnitudes of the frequency components in a spectrum, respectively cor-
responding to fundamental and second harmonic wave modes, do not reach their maximum values at fE and 2fE, respec-
tively. Bearing this in mind, A1 has been defined as the magnitude retrieved at exactly fE in the spectrum in the model,
instead of the largest magnitude found across the entire spectrum; likewise, A2 is the magnitude retrieved exactly at 2fE,
instead of the largest magnitude in the neighborhood of 2fE.

Now, assuming the two random variables, X1 and X2, do not depend on each other from the perspective of signal pro-
cessing, the joint PDF of σ=X A /1 1

2
1
2 and =X A2 2 may be written as
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Fig. 2. PDF and CDF of R, with λn¼0.6, s2¼1, and νn¼0.5.
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where ( )∈ + ∞⎡⎣r 0, is one realization of R in practice. Finally, substituting Eq. (7) into Eq. (8) yields
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Eq. (9) does not have a known closed-form analytical solution. Instead, once the values of parameters λn, σ2, and νn are
retrieved (for example, from experimental data), this integral can be numerically evaluated.

Note that the R distribution = =
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of the variances of the real and imaginary parts. Therefore, in order to get the PDF of =RANP A
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2 , a

simple re-scaling process is applied, in which the R distribution is compressed by dividing R by σ1
2, and at the same time its

PDF value is multiplied by σ1
2.

By way of illustration, Fig. 2 shows the plots of PDF and the cumulative distribution function (CDF) of the ratio R, using
arbitrarily selected parametric values (λn¼0.6, s2¼1, and νn¼0.5). The distribution of RANP can then be obtained by scaling
the horizontal and vertical axes for this PDF by an adjusted (average) variance σ1

2 (to be shown in subsequent figures).
4. Experimental investigation: model calibration and prediction of BVID in composite laminates

Note that the probabilistic model for RANP estimates, derived in Eq. (9) and shown in Fig. 2, is a generic one that is not
limited to a specific material, and it is thus applicable to composites. In this study, the model is validated using a uni-
directional CF/EP laminate (made by ACP Composites, Livermore, CA, United States). In summary, under the pristine
(“healthy”) condition of the laminate, Lamb wave signals are acquired repeatedly (in order to ascertain the required sta-
tistical distributions), and a RANP estimate is calculated from each signal according to Eq. (2). A histogram of RANP esti-
mates is to be plotted and compared to the predicted distribution derived from Eq. (9) (after appropriate scaling of the axes
by σ1

2 as detailed in Section 3). Then, BVID is introduced to the laminate, and the measurement process is repeated. Detailed
experimental procedures are provided in the following subsections.



Fig. 3. Schematic diagram of the CF/EP laminate in experimental investigation (impact to be introduced later targeted at the middle point of the sensing
path; dimensions displayed in mm).
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4.1. Healthy condition

As schematically shown in Fig. 3, the composite laminate measures 304.8�152.4�1.588 mm3 with a layup of [0]8
(tensile modulus along fiber direction: 120.66 GPa; density: 1410 kg/m3). Two circular PZT wafers, 10 mm in diameter each
and 150 mm apart from one another, are surface-mounted on the laminate to configure a sensing path along the fiber
direction, to generate and acquire GUW signals. With the reversible piezoelectric effect, each wafer can serve as an actuator
or a sensor (while the other plays the opposite role). The material's dispersion curves are given in Fig. 1, and the (S1, S2)
mode pair is selected to achieve cumulative second harmonic generation in this composite laminate, in line with the in-
ternal resonance conditions described in Section 2.2. According to the dispersion curves in Fig. 1 and the thickness of the
considered laminate, the center frequency of excitation is determined to be 1.460 MHz, in order to actuate the S1 mode in
the laminate, although S1 is only one of the multiple modes excited simultaneously at this frequency.

In order to have a stationary output signal to be acquired, a continuous sinusoidal input signal, rather than the windowed
tone bursts that are commonly adopted in other linear or nonlinear GUW methods, is applied on the actuator with a
function generator (Tektronixs CFG280). The preference in using a stationary output signal towards this case study resides
on the consideration that it has been assumed in Section 3 that both the real and imaginary parts of an acquired signal at
any frequency follow their respective normal distributions with a common standard deviation, which could be best ap-
proximated when the acquired signals are stationary, i.e., noise being time-independent. It is anticipated that this stationary
input signal would lead to a steady-state sinusoidal response at the sensor, as a result of superposition of all available Lamb
wave modes in the structure, including the second harmonic S2 mode. The stationarity of the output signals from the sensor
would directly determine the quality of the prediction results from the probabilistic model.

The experiment setup is photographed in Fig. 4, in which the input signal is amplified with a power amplifier (Krohn-
Hites Model 7602M) before being applied on either PZT wafer when it serves as the actuator. Output signals are acquired at
the other PZT wafer with a digitizer on a PXI platform (PXI-6133) at a sampling rate of 25 MHz. In practice, wave excitation
and acquisition are performed separately by the function generator and the PXI, respectively; and the input signal is
channeled to another oscilloscope for reading. Through this arrangement, persistent crosstalk in the output signal can be
eliminated during signal acquisition. Once the setup is complete, 500 acquisitions—each with a length of 16,384 points—are
performed at random intervals, where the primary sources of uncertainties in the acquired signals are deemed from
measurement and computation (such as variations in input signal generation). Then, FFT analysis is carried out to obtain 500
Fig. 4. Experimental setup.



Table 1.
Spectral statistics of the 500 signals acquired under the healthy condition of the laminate in the experiment.

FFT frequency (fE) Real mean μ1r Imag. mean μ1i Real std. dev. s1r Imag. std. dev. s1i Avg. std. dev. s1 λn

1.461 MHz 0.0080 �9.953 �10�4 0.3894 0.3903 0.3898 4.297 �10�4

FFT frequency (2fE) Real mean μ2r Imag. mean μ2i Real std. dev. s2r Imag. std. dev. s2i Avg. std. dev. s2 νn

2.922 MHz 4.598 �10�5 �1.052 �10�4 9.048 �10�4 9.323 �10�4 9.185 �10�4 1.148 �10�4
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estimates of RANP for the healthy condition. The detailed spectral statistics of interest are tabulated in Table 1.
It can be seen from Table 1 that at both frequencies (fE and 2 fE), the standard deviations of the real and imaginary parts

are close to one another within four significant figures, which has validated the assumption made earlier when developing
the probabilistic model in Section 3 that the real and imaginary parts of acquired signals at each frequency have a common
standard deviation. Consequently, this enables a more accurate scaling of X1 (the normalized squared amplitude at fE) to A1

2

using Eq. (5), with an average standard deviation listed in Table 1.
Fig. 5 shows the normalized histogram of RANP estimates from the 500 signals acquired under the healthy condition of

the laminate, superimposed with the model-predicted distribution defined by Eq. (9) using the experimentally-determined
parameters as listed in Table 1 (after scaling). In the histogram, each bin is sized at 0.005. As can be seen here, the histogram
matches reasonably well with the predicted uncertainty. It is noteworthy that the predicted PDF has an infinitely long tail
extending to positive infinity; in contrast, the maximum RANP estimate obtained from the experiment is 0.059.

In quest of the degree of matching between the results from the experiment and from the developed model, an outlier
analysis is further performed. First, the locations of percentiles of the predicted distribution are determined using Eq. (9).
For example, the 95th percentile in the prediction is located at RANP¼0.0737, corresponding to a 5% level of significance as
well as a 5% of outliers with respect to the overall distribution. Once the locations (i.e., RANP values) of all the percentiles of
the predicted distribution are determined, the actual outlier percentages at these RANP values are calculated for the his-
togram (experimental results). Fig. 6 shows the plots of percentage of outliers versus level of significance from the pre-
diction and experimental results. As can be seen in the figure, the outlier percentage of RANP estimates from the experiment
(blue cross marks) is generally proportional to the significance level determined by the prediction (red dashed line).
However, deviations can also be noticed, especially at lower significance levels. For instance, at the 5% level (RANP¼0.0737),
no experimental RANP values are considered outliers because the maximum value observed is merely 0.059 as mentioned
earlier. At the 15% level, the outlier percentage in the experiment barely exceeds 5%, falling nearly 10% short of the theo-
retical prediction. Such a finding can be attributable to the long tail effect of the predicted distribution. Nevertheless, for
damage detection purposes in this particular application, one is mostly interested in the central tendencies of the dis-
tribution than extreme values or tail behaviors. The model, in this sense, represents the main body of the histogram rather
well, which also can be visually confirmed in Fig. 5.
Fig. 5. Histogram of RANP estimates from experiment under the healthy condition versus model-predicted distribution obtained from Eq. (9).



Fig. 6. Percentage of outliers against level of significance, from the model-predicted distribution and experiment. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Damaged condition

A drop-weight impact test is performed to the above healthy laminate with a 0.3-kg impactor, which introduces BVID to
the laminate. The drop height of the impactor is prudentially determined (leading to an impact energy of approximately
1.46 J). This level of energy induces BVID including matrix cracking and minor delamination in the current laminate [12],
which are indeed not seen on the exterior of the laminate; whereas this amount of energy would not significantly affect the
bonding conditions between the PZT wafers and the laminate which may otherwise alter the signal statistics to a great
extent and reduce the repeatability of experiment. After the drop testing, the laminate is re-instrumented as described in
Section 4.1, leaving all measurement settings untouched.

To verify the occurrence of the damage, a standard C-scan is performed over a 100 -mm by 100 -mm area in the middle
of the laminate, and the scan result is shown in Fig. 7. As can be seen, slightly to the lower right of the center point, a round
area of about 10.2 mm in diameter can be spotted with those pixels highlighted in gold, compared to the rest filled with
green-yellow. The redder a pixel, the shorter it takes for the probing bulk wave (emitted by the C-scan device) to complete a
round trip through the thickness direction at that pixel, which verifies the existence of discontinuities, or damage, in the
laminate.

Once the BVID is confirmed, another set of 500 signals is acquired from the damaged laminate, and processed with
Fig. 7. C-scan image of the laminate sample (showing the central part only) revealing the location of the BVID, which is highlighted in orange with smaller
ToF values for the probing bulk wave to finish a round trip from the top surface to the damaged layer (as opposed to the rest where the wave travels
between the top and bottom surfaces of the laminate).



Fig. 8. Histograms of RANP estimates and model-predicted distributions before and after introduction of the BVID. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

M. Hong et al. / Mechanical Systems and Signal Processing 82 (2017) 448–460 457
exactly the same algorithm as described earlier. Fig. 8 shows both the histograms and model-predicted distributions before
and after the introduction of BVID into the laminate. To facilitate explicit comparison, the two histograms are plotted with
the same bin size on the horizontal axis. It can be seen from the figure that the histogram in the damaged case has a “fatter”
tail, extending much further to the right than the healthy one. This represents a greater probability for the current condition
of the laminate to have a larger RANP estimate relative to its healthy condition, which is consistent with the theory that the
increased nonlinearities (due to the BVID) will give rise to an increased RANP estimate in general. Similarly, the two pre-
dicted distributions (blue dash-dotted line for the healthy case and red dashed line for the damaged case) also capture the
above distinction.

Tables 2 and 3 list the first two moments of RANP from experimental results and from the model-predicted distributions,
respectively. It can be seen in Table 2 that the introduction of BVID significantly changes the mean and sample variance of
RANP estimates in experiment. More specifically, after introduction of the BVID, the mean of RANP increases by 4.3 times,
and the variance augments by a factor of 67. Again, these findings confirm that damage-induced nonlinearities would result
in a larger RANP reading on average. In Table 3, the statistics from the model-predicted distributions are truncated at the
95th percentile so that the effect of the infinite right tail can be partially mitigated. Although the means and variances from
the predictions do not numerically match with their counterparts from the experiment (presumably due to insufficient
truncation), the presence of damage in the composite laminate is observed to lift the mean significantly with a much larger
variance. In fact, if the predicted distribution is truncated at a lower percentile, the tail effect can further be reduced and the
order statistics would further approach the experiment results.
5. Receiver operating characteristics: model application in uncertainty quantification of prediction results

Having reached this point, the uncertainty of RANP is quantified with the developed probabilistic model, which has also
been fit to the data from the experiment in the healthy and damaged cases of the laminate. Taking a step further, the
developed model is subsequently made use of to quantify the level of confidence in obtained prediction results. To this end,
a method based on the concept of a receiver operating characteristic (ROC) is developed using the modeled RANP dis-
tributions. In statistics, a ROC represents a curve quantifying the confidence in a decision-making process, given a false
positive rate or a tolerance level.

As illustrated in Fig. 9, suppose that the left distribution is obtained for a certain signal feature related to damage (e.g.,
the RANP in this study) under the healthy condition of a structure under inspection, and the distribution on the right, which
partially overlaps the left one, represents the distribution under a damaged condition. The vertical line in the middle is the
Table 2.
Sample means and variances of RANP estimates from the experiment.

Sample condition Mean Variance

Healthy 0.00755 6.794�10�5

Damaged 0.03269 4.551�10�3



Table 3.
Sample means and variances of RANP estimates from the distribution model.

Sample condition Mean Variance

Healthy 0.0158 1.503�10�3

Damaged 0.0449 2.153�10�2

Fig. 9. Illustration of TP, FP, TN, and FN with respect to a moving decision boundary between the feature distributions: TP ¼ ❶ þ ❸, FP ¼ ❷ þ ❸, TN ¼ ❹

þ ❺, and FN ¼ ❺.
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decision boundary: to the left of the line, a decision of negative call (i.e., no damage) is made; to the right, a decision of
positive call (i.e., damage exists) is concluded. Hence, one can define the following four damage prediction scenarios:

(1) True Positive (TP – the part of the damaged-condition distribution to the right of the decision boundary, i.e., ❶þ❸ in
Fig. 9). This means that the damage is identified truthfully (a correct decision);

(2) False Positive (FP – the part of the healthy-condition distribution to the right of the decision boundary, i.e., ❷ þ ❸). This
means that damage, which does not exist actually, is falsely identified (a wrong decision);

(3) True Negative (TN – the part of the healthy-condition distribution to the left of the decision boundary, i.e., ❹ þ ❺). This
means that no damage exists indeed and is hence not identified (a correct decision); and

(4) False Negative (FN – the part of the damaged-condition distribution to the left of the decision boundary, i.e., ❺). This
means that the damage, which indeed exists, is however not identified (a wrong decision).

Having classified the possible damage prediction scenarios as above, a relationship between TP and FP can be obtained by
Fig. 10. Receiver operating characteristic (ROC) curve showing TP Rate versus FP Rate at every RANP value, predicted by the modeled distributions (the red
dashed curve for the damaged and the blue dash-dotted curve for the healthy in Fig. 8).
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sliding the decision boundary across the entire range of the signal feature's value (the horizontal axis), and the resulting
curve is referred to as a ROC.

Fig. 10 exhibits the ROC plot obtained from the model-predicted RANP distributions (the healthy versus the damaged), as
represented by the two PDF curves in Fig. 8. As the decision boundary moves from positive infinity of RANP to negative
infinity (or vice versa), a combination of TP and FP rates (cumulative probabilities of RANP to the right of the decision
boundary) can be obtained at every RANP reading. For example, when the decision boundary is at a large RANP value to the
right of both distributions, both TP rate and FP rate are very close to 0. As the boundary moves into the damaged-state
distribution but not quite into the healthy one, the TP rate starts to increase much faster than the FP rate does. Continuing
this movement, the ROC curve shown in Fig. 10 in essence plots the TP rate versus the FP rate at every decision boundary
(boundary values not shown here).

In practice, this ROC curve can be interpreted as follows. If one selects beforehand an acceptable FP rate, a particular
RANP value associated with that FP rate then becomes the decision boundary. Any forthcoming RANP measurement that is
greater than or equal to the boundary value will be called a positive detection, and otherwise negative. Following this
practice with repeated RANP measurements, one is then able to expect a probability of making TP decisions that is equal to
the TP rate at the selected FP rate according to the ROC curve. For instance, if one's tolerance for FP is 0.4 (a 40% FP rate),
using the RANP model developed here, a TP rate of roughly 70% is anticipated with the next RANP estimate. Note that the
dash-dotted line across the diagonal represents a neutral reference, meaning an equal likelihood of making a TP or an FP
decision at all parameter values, which is nothing different than tossing a fair coin.

Referring back to the BVID detection in this study, it can be seen from Fig. 8 that the separation or difference between the
two modeled distributions or between the two histograms are not substantially large. Especially for RANP values less than
0.02, there are considerable overlaps between the two distributions/histograms. This can be attributable to the fact that the
BVID created in the laminate is minor (hence leading to minor nonlinearities). In addition, whether the laminate is healthy
or damaged, the predicted distribution also may deviate from the corresponding histogram, simply because not all as-
sumptions made in developing the model are completely valid in reality. Hence, the ROC curve plotted in Fig. 10 serves as a
conservative prediction of the TP rate at a given FP rate. In other words, given the data and the RANP model developed here,
one may not be able to make a perfectly accurate damage identification decision every single time, but one is enabled to
attach a quantified confidence level to decision making now, based on a selected decision boundary.

In summary, this study indeed fully demonstrates the importance of uncertainty quantification of signal features for SHM
purposes. By establishing a probabilistic model for the signal feature and using tools like ROC curves, SHM practitioners can
better understand what a feature estimate means with a quantified level of confidence in the prediction results, in the
presence of uncertainties.
6. Conclusions

In this study, a nonlinear signal feature extracted from Lamb wave signals, the RANP, is employed to evaluate BVID in a
CF/EP laminate. While the damage hidden inside the composites is apparently identifiable by the feature, the uncertainty
inherent in RANP is modeled and scrutinized. To perform the experiment, PZT wafers are affixed to an undamaged com-
posites sample, serving as the transducers for wave excitation and acquisition. A continuous sinusoidal signal at a selective
frequency is applied, enabling cumulative second harmonic generation in the sample. A steady-state response is achieved
and processed in the frequency domain to extract necessary signal features. The modeled RANP distribution is numerically
evaluated using the signal statistics, and is compared to the histogram of RANP estimates from the experiment. It has been
shown that the data histograms match well with the model-predicted distributions, especially with regards to central
tendencies. With BVID introduced to the composites, the new RANP distribution exhibits a fatter tail to the right, showing a
greater probability of having a larger RANP estimate relative to the intact condition. This finding demonstrates the effec-
tiveness of using RANP for detecting damage-induced nonlinearities in composite materials. Though validated using a
composite panel with a unidirectional layup, it is relevant to emphasize that the probabilistic model of RANP established is
independent of the material or its isotropy; the model can be extended to composites with arbitrary fiber orientation as long
as the dispersive properties of the Lamb waves in the concerned composites are available.

Using the proposed RANP distribution model, a ROC curve is plotted to indicate the level of confidence in making TP
detections at an accepted FP rate. While the ROC curve obtained from the modeled distribution indicates only moderate
levels of confidence in using RANP for BVID detection in this specific example, the existence of an uncertainty model
nevertheless provides a quantified reliability measure of RANP for other scenarios of damage detection and SHM, where
second harmonic Lamb waves are of interest.
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