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ABSTRACT OF THE DISSERTATION

Robust Online Learning Enabled by Information Theory

by

Sajjad Bahrami

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2021

Professor Ertem Tuncel, Chairperson

In this thesis, we incorporate information theory into statistical signal processing and machine

learning in order to achieve robust learning in presence of outliers (or generally in environments

with non-Gaussian structure). In other words, by incorporating information theory especially

when structure of environment is non-Gaussian, the efficiency of information extraction from

data and consequently precision of the learning are increased. Note that, although the well-

known central limit theorem creates the expectations that we should see the Gaussian distribution

everywhere in the real world, this is not necessarily true. Indeed central limit theorem is concluded

under some assumptions that do not hold in many real scenarios. For instance, in many real

scenarios heavy-tailed distributions arise which result in outliers. The problem of learning a

system affected by these types of distributions is of great importance inasmuch as conventional

learning approaches that are mostly based on Gaussian assumption are not effective anymore. In

this thesis, we address this problem by means of information theory.

Our work finds broad applications from communication channel estimation, adaptive

equalization, adaptive echo noise cancellation, system identification, underwater and satellite

communications, blind source separation to physics, biology, computer science, the social

sciences, and beyond where real-world environments may change in time and are conducive to
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non-Gaussian probability density functions. In such environments higher order statistics of data

is needed, therefore conventional methodologies are not efficient anymore.

Specifically, the problem of online linear regression (or interchangeably linear adaptive

filtering) in environments corrupted by non-Gaussian noise is addressed in this thesis. In such

environments, the error between system outputs and labels (or desired responses) does not follow

a Gaussian distribution and there might exist abnormally large error samples (or outliers). The

main challenge we face here is how to keep our supervised learning problem least affected

by these unwanted and misleading outliers. Information theory helps us with correntropy and

entropy as two robust information-theoretic criteria. Error correntropy is a similarity measure

between system output and label and consequently should be maximized while error entropy

denotes the uncertainty about a system and should be minimized. Although each of these two

criteria has an advantage over the other one, both of them show superior performance compared

to conventional mean square error in aforementioned non-Gaussian environments.

In this thesis, we discuss the shortcomings of these algorithms and compare them.

Moreover, we improve the algorithms based on error correntropy and error entropy by excluding

major outliers from the learning process after detecting them in each iteration. Note that major

outliers may occur frequently due to the nature of non-Gaussian environments and the system

parameters should not be updated based on them. We use a filter to detect major outliers whose

width is updated in each learning iteration based on running quartiles of the error samples. More

precisely, quartiles of a data set are robust quantities of data against outliers and we use them to

define boundaries by which we determine if an error sample is an outlier or not. These quartiles

are functions of time and should be updated once a new error sample is available. This means

that we need to deal with a running quartile problem. We propose an efficient technique for

running quantile estimation based on the non-uniform quantization of error samples. This method

does not need to store and sort all error samples in each iteration. Using this method alongside
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algorithms based on correntropy and entropy, we reject major outliers and achieve improved

convergence speed and/or steady-state misalignment in the learning curves of both algorithms.
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Chapter 1

Introduction

Nowadays, we have access to a large amount of data thanks to computers and the Web.

The main challenge in processing of data is how to extract as much information as possible from

it. In order to deal with this huge amount of data effectively, we need to continuously adapt the

existing techniques of data processing to the real-world problems where non-Gaussian probability

density functions (PDFs) are very likely to be observed [1].

Although introductory probability and statistics gives the impression that Gaussian

distribution should be observed everywhere as a result of central limit theorem (CLT), observing

non-Gaussian PDFs in real-world signal processing is not only unsurprising but expected. The

reason for that is the existence of a generalized and more comprehensive version of CLT.

Moreover, when random variables are combined in other ways beyond summation, non-Gaussian

PDFs are more expected to emerge [2]. These PDFs might create major outliers and might

even be time-variant [1]. As an example of existence of non-Gaussian PDFs in practice we can

name Pareto distribution which is a heavy-tailed distribution and has been observed in many

applications from computer science to physics, biology and beyond [2]. Another example is

existence of non-Gaussian PDFs in mobile massive multiple input multiple output (MIMO)
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visible light communication (VLC) [3]. VLC is a new low-cost tool for 5th generation and

beyond communication systems in which throughput can be increased by using a huge amount

of transmit light emitting diodes (LEDs) and photo-detectors [4]. Despite the potential of

massive MIMO VLC for high speed communication, PDF of the additive interference is non-

Gaussian for mobile massive MIMO VLC which means that we need more efficient methods

than conventional minimum mean squared error (MMSE) for channel estimation. Underwater

acoustic communication is another real scenario where a non-Gaussian noise called impulsive

noise is present due to the human activities (such as oil and gas exploration, shipping, and sonar-

related applications) and natural sources (such as water agitation, earthquakes, and bio-acoustic

sounds) [5–9]. We can also point to presence of non-Gaussian noise in power line communications

(PLC). PLC can be used in many smart grid applications because of the availability of the power

line infrastructure which results in decrease in the costs. A very important challenge in PLC

is how to overcome additive noise which is impulsive? This noise can be generated externally

due to conduction and radiation and/or originates from electrical devices which are linked to

the power lines [10, 11]. We can also name presence of the impulsive noise in image or audio

signals [12] and many other real-world examples in which the noise is not Gaussian.

Above examples show how broadly non-Gaussian PDFs appear in various applications

and arise the question ”can we use conventional learning cost functions for these scenarios?” In

order to train a system in a supervised learning problem usually second-order moment of the error

between labels and system outputs is utilized as the cost function 1. However, its shortcoming is

the fact that learning precision may degrade substantially if the environment is being corrupted

by non-Gaussian noise like the above real-world examples [1, 13]. Although some other cost

functions have been proposed to overcome this issue such as least mean fourth (LMF) [14] and

sign algorithm [15] where the fourth-order moment of the error and absolute value of the error

1Note that label is sometimes called desired response and we use them interchangeably throughout this thesis.
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are used, respectively, they have some weaknesses and do not capture the whole statistics of

the error. Information-theoretic learning proposes entropy and correntropy as alternatives to

conventional cost functions which are simple and also more comprehensive descriptors of the

error [16, 17]. In fact, they contain higher-order statistics of the error.

Error correntropy is a similarity measure between labels and system outputs and

therefore should be maximized during the learning process. This similarity measure is defined

based on a kernel function (usually including but not limited to Gaussian kernel [18, 19]). Some

applications of correntropy in image processing and wireless communication can be found in

recent works such as [20], [21] and [22].

On the other hand, error entropy denotes the uncertainty about a system that should be

minimized. In other words, ideally we want error PDF to be a delta function at e = 0 which is

achieved by error entropy minimization. Renyi’s entropy of order r is a family of entropies for

which Shannon entropy is the limiting case of r→ 1 [23] and its quadratic version, i.e., r = 2 is

used in the context of information-theoretic learning because of its estimation simplicity from

error samples [1]. Some applications of error entropy minimization can be found in recent works

such as [3, 24] and [25] in the context of wireless communication and power systems.

The overall performance of the algorithms based on maximum corrrentropy criterion

(MCC) and minimum error entropy (MEE) can even be improved by doing some manipulations

as shown in literature such as [26–29], and [30].

1.1 Contributions of the Dissertation

This dissertation addresses the supervised learning problem of online linear regression

(or interchangeably linear adaptive filtering) in environments corrupted by non-Gaussian noise.

This problem is illustrated in Figure 1.1. First, note that throughout the thesis random variables,
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Figure 1.1: Online linear regression based on information-theoretic cost functions.

their realization and vectors are denoted by uppercase letters, lowercase letters and boldface

letters, respectively. Moreover, ‖ . ‖ denotes 2 norm and we use the terms adaptive filtering

and online regression interchangeably. Now lets get back to Figure 1.1. The goal is to find

the parameters of a linear system yn = xT
n wn−1 in which xn =

[
x(1)n ,x(2)n , · · · ,x(L)n

]T is the input

vector at time instant n, wn−1 =
[
w(1)

n−1,w
(2)
n−1, · · · ,w

(L)
n−1

]T is a vector denoting system parameters

estimated at time instant n− 1, L indicates the length of the parameter vector and yn denotes

system output estimated at time instant n. Error samples at time n are obtained as ei = di−xT
i wn−1

where di denotes label at time instant i. We want to concentrate error samples around e = 0

with time. More precisely, the error between system outputs and labels in such environments

does not follow a Gaussian distribution and there might exist abnormally large error samples

(or outliers). The main challenge we face here is how to keep this supervised learning problem

least affected by these unwanted and misleading outliers. Information-theoretic learning helps us

with correntropy and entropy as two robust criteria. In this thesis, we discuss the shortcomings

of algorithms based on correntropy and entropy, and compare them. Moreover, we improve
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these algorithms mainly by excluding major error samples (or outliers) from the learning process

after detecting them in each iteration. Note that major outliers may occur frequently due to the

nature of non-Gaussian environments and the system parameters should not be updated based on

them. We use a filter to detect major outliers whose width is updated in each learning iteration

based on running quartiles of the error samples. More precisely, quartiles of a data set are robust

quantities of data against outliers and we use them to define boundaries by which we determine

if an error sample is an outlier or not. These quartiles are functions of time n and should be

updated once a new error sample is available. This means that we need to deal with a running

quartile problem. We propose an efficient technique for running quartile estimation based on the

non-uniform quantization of error samples. This method does not need to store and sort all error

samples in each iteration. Using this method alongside algorithms based on correntropy and

entropy, we reject major outliers and achieve improved convergence speed and/or steady-state

misalignment in the learning curves of both algorithms. We state our contributions in more detail

in the following.

1.1.1 A Hybrid Approach to Online Regression Based on Maximum Correntropy

Criterion

The problem of online regression in the presence of non-Gaussian noise is addressed. A

new hybrid algorithm based on recursive maximum correntropy criterion (RMCC) and gradient-

based MCC is proposed, and demonstrated to outperform previous works in terms of both

convergence speed and steady-state misalignment. At the same time, the proposed algorithm

benefits from lower computational complexity compared to some of these algorithms.
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1.1.2 Mitigating Outlier Effect in Online Regression: An Efficient Usage of Error

Correntropy Criterion

A modified version of MCC is proposed with application in online linear regression (or

linear adaptive filtering) again. Indeed, we consider the existing adaptive maximum correntropy

criterion algorithm (known as AMCC) in which a free parameter called kernel bandwidth is also

adapted as an extra step to learn a linear system more efficiently . We improve AMCC by simply

eliminating major outliers during learning process. This elimination leads to better steady-state

performance compared to previous algorithms.

1.1.3 An Efficient Running Quartile Estimation Technique alongside Correntropy

for Outlier Rejection in Online Regression

We propose an efficient technique to detect and then exclude abnormally large error

samples from the learning process in an online linear regression (or linear adaptive filtering)

in the presence of non-Gaussian noise. This technique is indeed a running quartile estimation

based on quantization of error samples alongside which correntropy leads to lower steady-state

misalignment compared to previous algorithms.

1.1.4 Challenging the Deployment of Fiducial Points in Minimum Error Entropy

The well-known algorithm for robust adaptive learning or online linear regression called

minimum error entropy with fiducial points (MEEF) is challenged. In MEE error entropy is

minimized to extract as much information as possible about the data generating system. However,

this minimum entropy can also occur for other error PDFs not located at the origin inasmuch

as entropy is shift-invariant. In these cases, an undesired estimate of the system parameters is

obtained. Therefore, an extra step needs to be taken to concentrate error samples around the
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origin. The most celebrated approach towards that end is MEEF, in which some external and

artificial zero error samples, called fiducial points (not generated by the underlying system), are

added to the cost function as the reference points to force actual error samples to get concentrated

around them. Using these fiducial points translates MEEF into a weighted combination of MEE

and MCC. We show that incorporating these fiducial points into MEE can even degrade the

steady-state misalignment and/or convergence speed.

1.1.5 Trimmed Minimum Error Entropy for Robust Online Regression

Again, online linear regression (or linear adaptive filtering) in environments corrupted

by non-Gaussian noise (especially those with heavier tail than that of Gaussian) is addressed. As

stated earlier, in such environments the error between the system output and the label also does not

follow a Gaussian distribution and there might exist abnormally large error samples (or outliers)

which mislead the learning process. The main challenge is how to keep the supervised learning

problem least affected by these unwanted and misleading outliers. MEE as an information-

theoretic algorithm based on Renyi’s entropy has been employed to take on this issue. However,

this minimization might not result in a desired estimator inasmuch as entropy is shift-invariant,

i.e., by minimizing the error entropy, error samples may not be necessarily concentrated around

zero. We use our proposed quantization technique by which not only aforementioned need of

setting errors around the origin in MEE is addressed, but also major outliers are rejected from

MEE-based learning and MEE performance is improved from convergence rate, steady-state

misalignment, and testing error points of view.
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1.2 Outline

We present some preliminaries about information-theoretic cost functions and some

related works in Chapter 2. Chapter 3 is devoted to our hybrid algorithm based on MCC for

online linear regression. Chapter 4 presents our modification for AMCC algorithm. In Chapter 5

we propose our running quartile estimation technique for outlier detection in an online linear

regression. In Chapters 6 and 7 we challenge the deployments of fiducial points in MEE and

propose an alternative to MEEF, respectively. Finally, in Chapter 8 we conclude this thesis and

highlight the potential future work.
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Chapter 2

Preliminaries

2.1 Introduction

Online regression (or interchangeably adaptive filtering) is a strong tool for many signal

processing and machine learning applications. This is because of its satisfactory performance

despite the possible change of statistics with time in an unknown environment. In an online

regression (or adaptive filtering), we adjust some unknown parameters based on the estimation

error between desired response and output of the adaptive system. According to the way that we

obtain the desired response we can classify the applications of online regression and adaptive

filtering into four categories, i.e., prediction, interference cancellation, inverse modeling, and

identification [31]. We can name many different applications under these categories in many

various fields such as seismology, financial engineering, communications, control, biomedical

engineering, etc. For example, the spectrum analysis is an application under the prediction class

in which the power spectrum of a signal is estimated. We can also name beamforming and noise

cancellation as two applications under interference cancellation in which the goals are to mitigate

the harmful effect of the interfering signals on the signal of interest, and to increase the signal

to noise ratio (SNR) by eliminating the noise from a received signal, respectively. Regarding
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Figure 2.1: Online linear regression.

an example for application under inverse modeling we can mention channel equalization in

which our goal is to manipulate the channel output such that the combination of the channel and

equalizer becomes an approximately ideal communications link. And as for the identification

we can classify system identification under this category of applications in which the goal is to

approximate an unknown system with an adaptive system.

Throughout this thesis we consider an online linear regression or equivalently linear

adaptive filtering illustrated in Figure 2.1. Linear adaptive filtering also finds many applications

such as channel estimation, channel equalization, active noise cancellation and so on [1, 31,

32]. The goal of the linear adaptive filtering at each time instant n is to update its estimate

of system parameter vector and obtain wn by observing a new sample pair (xn,dn). xn =[
xn,xn−1, · · · ,xn−L+1

]T and dn are the input vector and label, respectively at time instant n, and L

denotes the number of elements in system parameter vector w. Moreover, at this time instant,

output of the system and error sample are calculated as yn = xT
n wn−1 and en = dn−yn, respectively.

In other words, the adaptive learning aims to accumulate error samples around e = 0 with time.

As seen in Figure 2.1 and discussed in Chapter 1 we optimize an information-theoretic cost
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function not the conventional mean squared error (MSE). It is worth reminding that in many real-

world signal processing and machine learning applications, especially nonlinear topologies, we

encounter non-Gaussian probability density functions (PDFs), e.g., underwater communications

in which the Gaussian assumption cannot be made anymore due to the existence of impulsive

noise. In such realistic scenarios, the noise might have a heavy-tailed distribution, there might

exist severe outlier noise, and the error PDF might even change in time and consequently we need

higher order statistics of error not just its variance which is the case for the MSE cost function.

Therefore, information-theoretic cost functions are used as powerful alternatives to the MSE.

In the following two important information-theoretic cost functions for online learning

and adaptive filtering, i.e., correntropy and quadratic Renyi’s entropy are described in more

details.

2.2 Correntropy and Quadratic Renyi’s Entropy

In any adaptive learning structure like Figure 2.1 we need to optimize a cost function.

Although even up to now, the most commonly used cost functions are based on the moments

of the data [33], e.g., variance, skewness, and kurtosis, which are the 2nd, 3rd, and 4th central

moments, respectively, when the error is non-Gaussian, these cost functions are not reliable

and we need to take into account higher order statistics of data as well [1]. For instance, a very

well-known cost function is MSE which is defined as follows:

JMSE(E) = E{E2},

and E denotes the error between the desired response and system output. MSE is minimized

in order to learn an adaptive system. As seen, this cost function is nothing but variance of

the error. Obviously, if error distribution follows a Gaussian behaviour then minimizing the
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variance of the error in the vicinity of e = 0 with time will result in a satisfactory estimate,

however error distribution in many real-world scenarios is not Gaussian. Indeed, variance is not a

comprehensive descriptor of the error statistics in these cases and we need higher order moments

of the error as well. Therefore, we need to look for other general and robust descriptors of the

data statistics in order to improve the performance of the learning algorithm.

In recent years, two effective cost functions, namely correntropy and quadratic Renyi’s

entropy, have been employed by information-theoretic learning in non-Gaussian environments as

superior alternatives to the famous and most commonly used cost function, i.e., mean square error

(MSE) [16, 17]. The relation between algorithms based on correntropy and quadratic Renyi’s

entropy has been investigated in [34]. In the literature, entropy and correntropy are sometimes

interpreted as counterparts of variance and correlation, respectively [1]. Both correntropy and

quadratic Renyi’s entropy involve higher-order data statistics and therefore they are expected to

outperform MSE, which only contains second-order moment.

2.2.1 Correntropy

Error correntropy criterion (ECC) is a local similarity measure between any two random

variables D and Y , or specifically in our case a similarity measure between system output and

desired response that should be maximized. It is defined as the expectation of a kernel function

of error over error distribution (or joint distribution of D and Y ), i.e.,

v(D,Y ) = ED,Y {Gσ (D−Y )}= EE {Gσ (E)}= v(E), (2.1)

in which E denotes the error D−Y , and Gσ (.) is a smooth kernel function with σ as its kernel

bandwidth (which affects the shape of the kernel function). Although many kernel functions can

be used [18, 19], Gaussian kernel is the most popular choice used because of its nice properties.
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Gaussian kernel is defined as follows:

Gσ (D−Y ) =
1√

2πσ2
exp(−‖ D−Y ‖2

2σ2 ). (2.2)

Note that ECC is called a local cost function inasmuch as it mostly focuses on the error ob-

servations that are within the kernel bandwidth σ . This can weaken the performance of ECC

if most of the error observations are outside of this range because the learning process is not

sensitive to them anymore. As we discussed earlier, although when environment is badly affected

with Gaussian noise MSE gives the optimum solution [35] we need higher-order statistics in

non-Gaussian environments [1] and this is the key superiority of correntropy over MSE. Indeed,

if we calculate Taylor expansion of Gaussian kernel in (2.1) we observe that correntropy contains

even-order moments of the error (not only second-order moment as in MSE [36]), so we can

rewrite (2.1) as follows:

v(D,Y ) =
1√

2πσ

∞

∑
n=0

(−1)n

2nσ2nn!
ED,Y

{
(D−Y )2n

}
.

2.2.2 Quadratic Renyi’s Entropy

We cannot simply provide a particular definition for information inasmuch as informa-

tion is a deep concept. However, error entropy criterion (EEC) denotes the uncertainty about a

system that can be minimized to extract as much information as possible about the data generating

system. The logic behind entropy minimization is to bring error samples closer to each other in

with time, more precisely, we strive to ideally set the distribution of the error as an impulse at the

origin. In this thesis, we consider Alfred Renyi’s definition of entropy which is a generalization

of Shannon entropy [1, 23, 37]. Indeed Renyi’s entropy of order r is a parametric family of

entropies with parameter r where Shannon entropy is the limiting case of r→ 1. Renyi’s entropy
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of order r for a random variable X is defined as follows:

Hr(X) =
1

1− r
log
∫

f r(x)dx,

where f (x) is the PDF of random variable X . Throughout the thesis we consider r = 2 which

results in the following quadratic Renyi’s entropy:

H2(X) =− log
∫

f 2(x)dx =− logE{ f (X)}, (2.3)

where E{ f (X)} , I2(X) is sometimes called information potential. It is worth noting that in

the definition of information potential every sample from distribution f (X) is given a weight by

PDF itself. Moreover, estimator of the information potential is fairly straightforward [1]. These

facts make the quadratic Renyi’s entropy a very powerful cost function especially in presence of

non-Gaussian noise. As for the higher-order statistics, EEC contains all higher-order moments of

the PDF (if they exist) hence we can consider it as a global descriptor of the PDF. This is shown

by using Taylor expansion of the PDF f (x) as follows:

f (x) = f (0)+ f (1)(0)x+
f (2)(0)

2!
x2 +

f (3)(0)
3!

x3 + · · ·

⇒ I2(X) = E{ f (X)}= f (0)+ f (1)(0)E{X}+ f (2)(0)
2!

E{X2}+ f (3)(0)
3!

E{X3}+ · · ·

where f (i)(0) is the ith derivative of PDF at x = 0. Note that PDFs in practice are usually smooth

and consequently they are continuously differentiable.

We need PDF of error between desired response and system output to calculate error

correntropy and quadratic Renyi’s error entropy as seen in (2.1) and (2.3). Nevertheless, statistics

of the error is unknown in general. Moreover, PDF of error evolves with time during the online

(or adaptive) learning process. In other words, we only have error samples (lets say a window of
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N error samples) not error statistics, therefore we need to estimate the error PDF by using some

non-parametric PDF estimation method.

2.2.3 Parzen Non-parametric PDF estimation

If we have a set of samples from an unknown PDF and aim to estimate this PDF, there

are two different methods for this purpose, i.e., parametric and non-parametric PDF estimation.

In parametric PDF estimation, we assume that the unknown PDF belongs to a known parametric

family of distributions while in non-parametric method we make no assumption on the family of

the PDF. In the online and adaptive learning problem that we focus on in this thesis, we need

error PDF where this PDF in unknown and therefore, we need to estimate it from error samples

based on a non-parametric method. Parzen PDF estimation, as a non-parametric method [38, 39],

helps with quadratic Renyi’s entropy estimation in MEE and also makes maximizing correntropy

as a similarity measure meaningful in MCC. Indeed, having past N error samples, we use Parzen

non-parametric PDF estimation throughout the thesis to estimate error PDF p(e) at time instant n

as follows:

pE(e)≈
1
N

N−1

∑
i=0

Gσ (e− en−i) = p̂(n)E (e), (2.4)

where Gσ (.) is the Gaussian kernel with kernel bandwidth σ . As seen in above relation, Parzen

non-parametric estimator uses a window to weight different available samples in order to de-

termine pE(e) at a specific e. In other words, it provides a smooth estimate of error PDF based

on Gaussian kernel which is indeed the sum of kernel functions centered at the error samples.

Note that we use Gaussian kernel because the related PDF estimator is simple, continuous and

differentiable, however, in general we could use other kernel functions that satisfy some specific

conditions [40]. It is worth mentioning that kernel bandwidth σ affects the PDF estimator and if
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we have a very large number of samples from the underlying PDF, then p̂(n)E (e) will converge

to the unknown PDF pE(e) as σ slowly approaches 0 with n. However, in practice there is a

compromise between bias and variance of this estimator [38]. Generally speaking, estimating

the kernel bandwidth σ is not an easy task to do, and although many previous researches have

striven to provide a kernel bandwidth with satisfactory performance, there is no single best

kernel bandwidth selection technique yet. In fact, all of these methods for estimating σ can be

considered optimal based on their related criteria and most of them are data-driven [39]. Some of

these methods can be found in [39–54].

2.2.4 Relation Between Parzen PDF Estimation and ECC or EEC

As discussed earlier, we only have error samples but not the error distribution, hence

we are not able to calculate error correntropy and quadratic Renyi’s error entropy exactly.

Nevertheless, we can estimate these cost functions at each time instant. Remember that our

problem is an online learning problem in which we need to update our estimate of the unknown

parameters with time, therefore we encounter online (or stochastic) cost functions. In other words,

we need to estimate cost function at each time instant and then use it to update our estimate

of the unknown parameters. In the following we see how estimate of the error correntropy is

related to error PDF by (2.4) while quadratic Renyi’s error entropy directly uses (2.4) for entropy

estimation.

Consider again error correntropy definition (2.1). In this definition Gσ (.) is the same

Gaussian kernel used in (2.4) for error PDF estimation. We use sample mean approximation of

correntropy (2.1) at time instant n from data samples {dn−i,yn−i}(or equivalently{en−i}), i =
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0, · · · ,N−1, as follows:

v̂(n) (D,Y ) =
1
N

N−1

∑
i=0

Gσ (dn−i− yn−i) =
1
N

N−1

∑
i=0

Gσ (en−i) , (2.5)

in which D and Y are two random variables denoting desired response and system output,

respectively, and random variable E = D−Y denotes the error. The above relation is indeed the

online cost function which is optimized in MCC using some technique, for instance stochastic

gradient ascent, and calculating this cost function has a computational complexity of O(N) in

each iteration.

Obviously, if we use the kernel function in Parzen error PDF estimation the same as

the one we use for correntropy estimation we see that correntropy estimation is nothing but

estimation of error PDF at zero. In other words, v̂(n) (D,Y ) = p̂(n)E (0) is concluded from (2.4)

and (2.5) which means that if we maximize the estimate of correntropy we indeed maximize the

estimate of error PDF at 0. This is the reason that maximum correntropy criterion is meaningful.

The related algorithm is called maximum correntropy criterion. In addition, if we take a closer

look at (2.5) we can see that correntropy is a similarity measure between two random variables

D and Y . In fact, abnormally large error samples (or outliers) are given small weights and are

filtered out by Gaussian kernel while ones with smaller values have larger contribution in the

learning process inasmuch as they are assigned larger weights. Note that we could use other

kernel functions for error correntropy [18, 19, 55] and incorporate more higher-order moments,

however, we consider Gaussian kernel because of its nice properties, nevertheless, even for

Gaussian kernel correntropy contains all even-order moments of the error PDF (if they exist)

based on the Taylor expansion which as stated earlier shows superiority of ECC over MSE for

learning in non-Gaussian environments.

As for calculating quadratic Renyi’s error entropy we need to estimate error PDF first.
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Remember that quadratic Renyi’s error entropy is defined as follows:

H2(E) =− log I2(E),

where I2(E) =E{pE(E)}=
∫

p2
E(e)de is called information potential and pE(e) denotes the error

PDF. Since log(.) is a monotonically increasing function, the following optimization problems

are the same:

min
w

H2(E) = max
w

I2(E),

and hence it suffices to maximize information potential I2(E). This means that we only need to

estimate the information potential at each time instant. However, similar to the case of MCC, we

are dealing with an extremely large data-set where we are receiving continuously new data (error)

samples with time, and so it is not efficient to use a batch estimator to incorporate all data samples

for information potential estimation. Therefore, we utilize an online (or stochastic) approach and

estimate information potential at time instant n from past N error samples as follows:

I2(E) = E{pE(E)} ≈
1
N

N−1

∑
i=0

pE(en−i) = Î(n)2 (E). (2.6)

Note that although online approaches cannot usually optimize our cost function precisely, they

are able to quickly process an extremely large data-set and get close enough to the optimum

solution [56]. As stated earlier, we do not know the error statistics, therefore we estimate pE(en−i)

in (2.6) from error samples by using the Parzen non-parametric PDF estimation (2.4) as follows:

pE(en−i)≈
1
N

N−1

∑
j=0

Gσ (en−i− en− j). (2.7)
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Substituting (2.7) into (2.6), we have the following estimate of information potential from past N

error samples at time instant n:

Î(n)2 (E) =
1

N2

N−1

∑
i=0

N−1

∑
j=0

Gσ (en−i− en− j). (2.8)

Relation (2.8) is indeed the online cost function of MEE that we optimize using some technique

such as stochastic gradient ascent. MEE has a computational complexity of O(N2) in each

iteration. It is worth highlighting that, EEC contains all higher-order moments of the error PDF

(if they exist) regardless of the type of the kernel function we use for Parzen non-parametric PDF

estimation as opposed to ECC.

In the next chapters of this thesis we explain our contribution towards improving

the performance of the algorithms based on ECC and EEC for online linear regression (or

interchangeably linear adaptive filtering) in environments corrupted by non-Gaussian noise.
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Chapter 3

A Hybrid Approach Based on

Correntropy

3.1 Introduction

As we discussed in previous chapters, it is well-known that the learning algorithm

based on MSE is not reliable in environments that are corrupted by non-Gaussian noise, or

when there are outliers. Note that non-Gaussian noise may exist in the real world, for instance

due to imperfect measurements or existence of limited number of noise sources. We said the

reason that MSE is not reliable in non-Gaussian environments is the fact that MSE employs

second order statistics of error process while we need a cost function that involves higher order

statistics. Correntropy is an alternative choice that can provide us with higher order statistics

of the underlying error PDF and the algorithm based on this cost function for online linear

regression is robust against non-Gaussian noise. Remember that we consider linear adaptive

filtering or online linear regression where the system parameters are learned continuously as new

data samples are received. This problem can have a wide range of applications from channel

20



equalization to network traffic prediction and many others. Consider a linear filter for which the

goal is to find the filter parameters so that the error between desired response and system output is

minimized. We maximize error correntrpy which results in MCC algorithm. As seen in previous

chapter we only have data samples (lets say a window of N data samples) not data statistics,

therefore we estimate the error PDF by using Parzen non-parametric PDF estimation. Although

both MEE and MCC are cost functions superior to MSE in the presence of non-Gaussian noise or

outliers, there are two significant advantages to MCC over MEE. First, as opposed to MCC, we

should regularize MEE after minimizing error entropy by putting the error at the origin while this

is not always an easy task to do (we will discuss about this fact in next chapters) [57]. Second,

computational complexity of MEE at each adaptation step is O(N2) which is higher than that of

MCC which is O(N).

Recursive least squares (RLS) algorithm is known to be desirably accurate and con-

verges faster than the least mean square (LMS) algorithm. However, its shortcoming is its high

computational complexity compared to LMS algorithms. Both RLS and LMS are based on sec-

ond order statistics of the error, and consequently are mostly useful in linear systems or when the

environment is under the effect of Gaussian noise. To tackle presence of non-Gaussian noise in

the environment and also benefit from advantages of recursive algorithms, an RLS-type algorithm

based on MCC (RMCC) was proposed in [58]. Later on, this algorithm was regularized in [59]

by adding a general convex function to MCC in order to deal with the problem of sparse system

identification (sparse systems have many near-zero coefficients). In addition, a kernel recursive

adaptive filtering based on MCC was proposed in [60] for tackling both system non-linearity and

presence of non-Gaussian noise in the environment.

Kernel bandwidth has a significant impact on robust learning based on MEE and MCC.

In fact, value of kernel bandwidth imposes a compromise between fast convergence and low

steady-state misalignment. Therefore, we can also optimize this free parameter as an extra step
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in order to converge faster and moreover achieve a lower steady-state misalignment. It is worth

noting that this free parameter is more flexibly adaptable in MCC compared to MEE because

of the smooth dependency of correntropy to it [17]. Many authors have tried to adapt kernel

bandwidth in information-theoretic criteria [61–67]. Most of kernel bandwidth adaptations have

been proposed in gradient-based methods. Note that adapting kernel bandwidth in an RMCC

algorithm is not as straightforward as gradient-based methods, for instance authors in [67]

proposed a method on kernel bandwidth adaptation in RMCC based on minimizing Kullback-

Leibler divergence between true and estimated version of error PDF, however computational

complexity of this approach is high. On the other hand, although adapting kernel bandwidth in

gradient-based methods is not computationally as expensive as that of RMCC, the convergence

speed in these cases is even slower than RMCC without variable kernel bandwidth.

In this chapter, we consider linear adaptive filtering as an online linear regression

problem and propose a joint recursive, gradient-based approach based on MCC. The proposed

algorithm starts with RMCC to benefit from its fast convergence speed and then switches to a

gradient-based algorithm in which we can adapt kernel bandwidth with a low computational

complexity and achieve lower steady-state misalignment. Therefore, our approach results in both

fast convergence speed and low steady-state misalignment. The content of this chapter has been

published in [68].

In the following, we explain RMCC and LMS-type MCC in more details.

3.2 RLS-type and LMS-type MCC

As mentioned earlier, we consider a linear adaptive filtering (or equivalently an online

linear regression). Here, dn denotes label (or desired response) at time instant n which has been

corrupted by measurement noise. Moreover, xn =
[
xn,xn−1, · · · ,xn−L+1

]T is the input vector at
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time instant n with length L (L denotes size of the adaptive filter as well). The output of this

linear filter is yn = xT
n wn−1 where wn−1 denotes filter parameters vector estimated at previous

time instant. Error sample at time n is obtained as en = dn−xT
n wn−1.

Remember from previous chapter that correntropy is a similarity measure between two

random variables D and Y and is defined as,

v(D,Y ) = ED,Y {Gσ (D−Y )}= EE {Gσ (E)} , (3.1)

in which E denotes error D−Y , Gσ (.) is a kernel function and σ is kernel bandwidth. Expectation

in correntropy is approximated by sample mean since we only have data samples {dn,yn} , n =

1, · · · ,N, (or equivalently {en},n = 1, · · · ,N) and not the joint PDF of D and Y (or equivalently

not PDF of error E) therefore, we have,

v̂(D,Y ) =
1
N

N

∑
n=1

Gσ (dn− yn) =
1
N

N

∑
n=1

Gσ (en) . (3.2)

Throughout this chapter we consider the following kernel,

Gσ (D−Y ) = exp(−‖ D−Y ‖2

2σ2 ).

It is worth reminding from previous chapter that the reason we can use correntropy as an objective

function to minimize error between labels and filter output is the fact that approximation of

correntropy in (3.2) is related to Parzen error PDF estimation. Actually, using Parzen windows

for error PDF estimation from N samples, we have:

p̂E (e) =
1
N

N

∑
n=1

Gσ (e− en) .
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It is clear that v̂(D,Y ) = p̂E (0), therefore, maximizing estimate of error PDF at 0 is equivalent to

maximizing estimate of correntropy. As mentioned earlier, correntropy maximization algorithm

is called MCC in literature.

Basically, there are two main types of algorithms based on MCC: RLS-type (or

recursive) and LMS-type (or stochastic gradient-based) algorithms. We review these algorithms

in the following subsections.

3.2.1 Recursive MCC

Consider the correntropy definition in (3.1). At each time instant n we can use all

previous error samples (not only past N samples) to estimate correntropy and then learn the

system. Therefore, we can write the following online cost function at time instant n for RMCC

algorithm:

JRMCC (wn) =
n

∑
k=1

λ
n−k exp

(
−
(
dk−xT

k wn
)2

2σ2

)
, (3.3)

where 0 << λ < 1 is the forgetting factor. By using a forgetting factor, we are actually approxi-

mating (3.1) with weighted sample mean which is suitable for non-stationary environments. Note

that (3.3) emphasizes on recent error samples in learning process. The JRMCC (wn) is maximized

by taking the derivative with respect to wn and setting it equal to zero. We obtain,

n

∑
k=1

λ
n−k exp

(
−
(
dk−xT

k wn
)2

2σ2

)(
dk−xT

k wn
)

xk = 0,

=⇒
n

∑
k=1

λ
n−kgkdkxk =

n

∑
k=1

λ
n−kgkxkxT

k wn, (3.4)
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in which gk = exp
(
−(dk−xT

k wn)
2

2σ2

)
. We can define matrix Rx(n) and vector Rdx(n) as follows:

Rx(n)
∆
=

n

∑
k=1

λ
n−kgkxkxT

k ,

Rdx(n)
∆
=

n

∑
k=1

λ
n−kgkdkxk.

Substituting above matrix and vector in (3.4) and solving it for wn, we obtain:

wn = Rx(n)−1Rdx(n). (3.5)

We write recursive versions of Rx(n) and Rdx(n) as follows to avoid increasing memory depth

when calculating at each time instant,

Rx(n) = λRx(n−1)+gnxnxT
n ,

Rdx(n) = λRdx(n−1)+gndnxn. (3.6)

Moreover, to avoid computational load of computing inverse of Rx(n) we can use matrix inversion

lemma as follows:

R−1
x (n) =

[
λRx(n−1)+gnxnxT

n

]−1
=

R−1
x (n−1)

λ
−

(
R−1

x (n−1)xn
λ

)(
xT

n R−1
x (n−1)

λ

)
(

g−1
n + xT

n R−1
x (n−1)xn

λ

) . (3.7)

Now, substituting (3.7) and (3.6) in (3.5) and doing some calculations, we can obtain following

recursive solution for weight vector wn,

wn = wn−1 +

(
R−1

x (n−1)xn

λg∗−1
n +xT

n R−1
x (n−1)xn

)
en,

25



in which gn is replaced with g∗n = exp
(
−(dn−xT

n wn−1)
2

2σ2

)
since gn is a function of wn which is not

known yet.

Remark 3.1: Advantages of RMCC can be sorted as follows:

• As opposed to gradient-based methods, there is no need to determine stepsize as an extra

parameter.

• As seen in (3.3), since we are taking into account previous error samples, RMCC converges

very fast to a desirable steady-state misalignment compared to gradient-based methods.

Remark 3.2: Disadvantages of RMCC can be sorted as follows:

• Computational complexity of RMCC is higher than gradient-based methods.

• In order to achieve a better convergence speed and lower steady-state misalignment we

can adapt kernel bandwidth. However, adapting kernel bandwidth in RMCC is not as

straightforward as it is in gradient-based methods.

3.2.2 LMS-type Method based on MCC

Consider (3.1) again. In LMS-type methods a gradient ascent search is used based on

stochastic approximation in which expectation operator of (3.1) is removed and only current

error sample is used. Therefore, we get the following cost function:

JMCC (wn−1) = exp
(
− e2

n

2σ2

)
=⇒ ∇JMCC (wn−1) =

1
σ2 exp

(
− e2

n

2σ2

)
enxn

=⇒ wn = wn−1 +
µ

σ2 exp
(
− e2

n

2σ2

)
enxn, (3.8)
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where µ denotes the stepsize.

Remark 3.3: The advantages of LMS-type methods based on MCC are simplicity and also ease

of elaborating kernel bandwidth in order to achieve a good performance in terms of convergence

speed and steady-state misalignment.

In the following section, we propose our new approach based on MCC.

3.3 The Proposed Hybrid MCC

In this section, we propose a method which is a combination of RMCC and an LMS-

type method to learn the underlying linear system. We start off with RMCC at initial iterations to

benefit from its fast convergence speed, and then when we are close enough to steady-state mis-

alignment of RMCC we switch to a new LMS-type method that not only is computationally less

expensive but also can update kernel bandwidth and achieve a lower steady-state misalignment

compared to RMCC. Therefore, the resultant overall algorithm is both fast and reliably accurate.

First, we present our new LMS-type method. As seen in (3.8), change in σ affects

terms µ

σ2 and exp
(
− e2

n
2σ2

)
in opposite directions, therefore we choose an alternative for the cost

function as follows:

JNEW (wn−1) = σ
2 f
(
σ

2)exp
(
− e2

n

2σ2

)
=⇒ wn = wn−1 +µ f

(
σ

2)exp
(
−e2

n

2σ2

)
enxn. (3.9)

Now, if σ is chosen to be variable, then f (.) is also variable and consequently we can control the

weight updating rule above. Assume that kernel bandwidth has a linear relation with instantaneous

error, as considered in [65], i.e.,
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σn = kσ |en|, (3.10)

where kσ is a positive constant. This is a reasonable choice for σn, because it means that when en

is small (large or equivalently an outlier) then σn is small (large) too and according to shape of

Gaussian kernel a larger (smaller) weight is assigned to the error sample.

Next step after having a variable kernel bandwidth would be to specify a proper function

f (.) which changes with the variable σ in a way that makes (3.9) more efficient. Generally

speaking, we expect the function f (.) to behave such that when |en| is not an outlier (i.e., it is

reasonably large), filter parameters should be updated normally based on (3.9). On the other

hand, if error sample |en| is an outlier or abnormally large, updating rule (3.9) should not rely

on this outlier error sample. Moreover, when |en| is very small we expect a slow update of filter

parameters. We consider following function f (.) in (3.9):

f
(
σ

2)= α
(
1− exp

(
−σ2

))√
1+
(

σ2

B

)2m
. (3.11)

This function has the above mentioned properties and is inspired by the Butterworth filter, where

m and B are filter order and bandwidth, respectively. Suppose that parameters α (positive gain)

and m are fixed (although they can be adapted). Bandwidth B is the other parameter which has a

significant effect in (3.11) and we try to adapt it in each iteration. Indeed, it determines whether

σn (or based on (3.10) error sample |en|) is an outlier or not. We select B at time instant n as

average of all past error samples. This choice of B helps us diminish the effect of outlier error

samples by making the value of f
(
σ2
)

very small. This means that weight vector is updated

very slowly in (3.9) when an outlier occurs.

Learning curves of these two algorithms are shown in Figure 3.1. As seen in the figure,
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Figure 3.1: Learning curves of RMCC with σ = 0.3 and mentioned LMS-type algorithm.

RMCC has a fast convergence speed while the presented LMS-type algorithm benefits from

lower steady-state misalignment. We next specify when we should switch from RMCC algorithm

to aforementioned LMS-type algorithm. Based on Figure 3.1, it seems that an ideal time to

switch would be when the RMCC algorithm gets close to its steady-state behavior. However, how

could we recognize the switching point? Figure 3.2 illustrates how steady-state in the learning

curve of RMCC is related to change in the error samples density. Indeed, when learning curve

approaches its steady-state in Figure 3.2a, the percentage of error samples around zero in Figure

3.2b increases. We can see how this switching point starts being approached around the same

iteration in both figures (around iteration 500). We therefore put a threshold for the percentage of

error samples around zero and switch to the other algorithm after the threshold is exceeded. The

algorithm of our proposed method is given in Algorithm 1.

Remark 3.4: Note that, after some iterations, the percentage of error samples around zero does

not change significantly, therefore, in practice, a multiple of iteration number related to the

mentioned threshold can be considered as the switching point to the other algorithm in order to

be sure that we have reached the steady-state.

29



(a) (b)

Figure 3.2: Switching point (around iteration 500) in plots of (a): learning curve of RMCC and
(b): error samples density around zero

In the next section, simulation results show efficiency of our method compared to other

methods.

3.4 Simulation Results

We model an impulsive noise environment as follows. Input samples xi are distributed

as xi ∼N (0,1). The unit vector wopt ∈RL is the optimum weight vector of the unknown filter,

generated randomly and L = 100 denotes the filter length. At each time instant n, the desired

signal is modeled as,

dn = xT
n wopt +νn +ηn,

in which νn ∼ N
(
0,σ2

ν ,n
)

and ηn are white Gaussian and impulsive measurement noises,

respectively.
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Algorithm 1 Online Linear Regression Based on the Proposed Hybrid MCC
Inputs: {xn,dn}
Output: wn

Initialisation :

w0 = 0, σ = σ0, B0 = 0,

Fixed parameters :

λ = 0.999, R−1
x (0) = γI, ε = ε0,

kσ = 20, α = 5, m = 15

1: for each iteration n do
2: en = dn−xT

n wn−1
3:

Bn =
((n−1)Bn−1 + en)

n

4: if (percentage of error samples around zero < ε0) then
5: g∗n = exp

(
− e2

n
2σ2

)
6:

Gn
∆
=

R−1
x (n−1)xn

λg∗−1
n +xT

n R−1
x (n−1)xn

7:

R−1
x (n) =

R−1
x (n−1)

λ
−Gn

xT R−1
x (n−1)

λ

8: wn = wn−1 +Gnen
9: else

10: σn = kσ |en|
11:

wn = wn−1 +µ

α
(
1− exp

(
−σ2

n
))√

1+
(

σ2
n

Bn−1

)2m

exp
(
−e2

n

2σ2
n

)
enxn

12: end if
13: end for
14: return wn =0

Assume that SNR between signal and white Gaussian measurement noise is 30dB, i.e.,

SNR = 10log10

E
{[

xT
n wopt

]2}
σ2

ν ,n

= 30.

We model impulsive measurement noise as ηn = βnωn where βn ∼ Bernoulli(p) and p denotes
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Figure 3.3: Learning curves: misalignment vs. iteration. Step size µ is set to 0.01 and probability
of impulses in noise is p = 0.2.

the probability of existence of impulses in noise and,

ωn ∼N
(

0,1000E
{[

xT
n wopt

]2})
.

We start with RMCC and continue this algorithm for 10 times of the iteration in which the

percentage of error samples around zero is ε0 = %80. After that, we switch to the LMS-type

method described before. Having weight vector wn at each time instant n, we can calculate

misalignment based on the normalized mean-square deviation (NMSD) as follows:

misalignmentn = 10log10

(
‖

wn−wopt

wopt
‖2
)
.

Fig. 3.3 depicts the learning curves of different algorithms for 100000 iterations obtained by

averaging over 10 independent trials. As seen, our proposed method outperforms other algorithms

either in terms of convergence rate, steady-state misalignment, or both. A significant advantage of

our method compared to RMCC is that its convergence speed is almost as good as RMCC while

it is computationally less expensive. In addition, it achieves the lowest steady-state misalignment
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compared to all these algorithms.

3.5 Conclusion

A hybrid technique based on MCC for online linear regression (or linear adaptive

filtering) is addressed in this chapter. We propose a new method based on correntropy to confront

presence of outliers and impulsive noise in the environment. Our method either converges

faster, achieves lower steady-state, or benefits from both compared to other algorithms. It is

worth mentioning that in addition to these advantages it is also computationally less expensive

compared to recursive MCC. However, there are some disadvantages to our proposed method.

More precisely, finding switching point is challenging, extra hyper-parameters are need to be

adjusted, and, most importantly, error sample mean is not a robust and reliable measure for outlier

detection.

In the next chapter, we strive to address the above shortcomings of our proposed hybrid

method based on MCC.
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Chapter 4

Outlier-Rejected Adaptive MCC

4.1 Introduction

As discussed previously, in learning theory, it is widely established that MSE is not

a reliable cost function when the error either is non-Gaussian or contains outliers. Although

non-Gaussian error seems to be abnormal based on the central limit theorem, it exists in the real

world due to for instance ambient component noises or imperfect measurements, and should not

be ignored. We saw that a very good and efficient alternative to MSE criterion in aforementioned

environments is ECC. In fact, correlation can be substituted with correntropy in information-

theoretic learning context. Again, assume we deal with an linear adaptive filter (which can be

considered as an online linear regression problem) in which we try to learn the parameters of a

system continuously as we are receiving new data samples such that error between system output

and labels (or desired responses) is minimized. Remember that ECC in this supervised learning

problem is a local similarity measure between system output and label which is maximized

because when error correntropy is defined based on the same kernel function used for Parzen

error PDF estimation, its estimation from error samples reduces to estimation of error PDF at

zero. It is worth reminding that ECC has lower computational complexity compared to the other
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information-theoretic cost function, i.e., EEC. Moreover, it does not need any extra regularizations

whereas EEC needs to put the error at the origin after minimizing the error entropy, e.g., by

biasing the system output.

Both ECC and EEC use kernel functions in which kernel bandwidth can be viewed

as a free parameter that can be also optimized to increase learning precision. Interestingly, this

free parameter is much more flexible to be optimized in MCC compared to MEE. Although

MEE and MCC have been compared to each other in some senses (for instance an interesting

information-theoretic comparison of MEE and MCC criteria can be found in [34]), this superiority

of MCC (i.e., more flexibly adaptable kernel bandwidth) has not been paid enough attention.

This flexibility in kernel bandwidth adaptation for MCC emerges from smooth dependency of

MCC to the value of the kernel bandwidth since error PDF estimation does not matter when we

consider MCC while in MEE, the kernel bandwidth can not be selected arbitrarily in the sense

that very large or very small values for kernel bandwidth are prohibited. The reason for this

prohibition is that MEE uses directly entropy estimation, and consequently Parzen error PDF

estimation is involved, therefore the value of kernel bandwidth should be selected in a way that it

compromises between bias and variance of Parzen error PDF estimation.

Adaptation of kernel bandwidth as an extra step in learning process has been already

considered in the literature [61–67]. For instance, in [61] and [67] Kullback-Leibler (KL)

divergence between the true and estimated error distribution is minimized as a second cost

function in the overall adaptation problem. However, this approach will not be very efficient

(for instance when the initial weight vector is far from the optimal weight vector, it can not

improve the convergence speed [69]). In another work [62], the author tried to adapt the kernel

bandwidth for MCC based on the shape of error distribution which is measured by its kurtosis.

However, a satisfying estimation of the shape of error distribution is not a straightforward task

to do. Authors in another paper [63] tried to propose a simple algorithm for kernel bandwidth
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adaptation that involves no extra free parameters. In this algorithm, the kernel bandwidth in

each iteration is updated based on instantaneous error and changed to a predetermined kernel

bandwidth in order to avoid divergence when the updated kernel bandwidth is smaller than this

predetermined value. Although this approach converges faster than previous algorithms, it almost

keeps their steady-state behavior. The same authors modified their method in [64] in which they

used another kernel bandwidth update rule. Although it is still based on instantaneous error and

predetermined kernel bandwidth, the new update rule helps the method not only to converge

faster but also to achieve a slightly lower steady-state excess mean square error (EMSE) than that

of MCC. Authors in [65] changed the Gaussian kernel used in the MCC definition and developed

a new algorithm to update kernel bandwidth which converges faster than previous algorithms,

and even can achieve a lower steady-state misalignment especially in the environment where

impulsive noise is considerably likely. Although the structure of their algorithm is very similar to

previous gradient based algorithms, it is computationally more expensive compared to them. We

also proposed a hybrid method, described in Chapter 3, which achieves both fast convergence

and low steady-state misalignment, however many parameters are left to be predetermined. In

addition, this approach is very sensitive to step size variation.

In this chapter, we consider again linear adaptive filtering (or online linear regression)

used in various signal processing and machine learning applications. We modify AMCC algo-

rithm in [64] by stopping the learning process in each step whenever we face a major outlier.

This method results in significant decrease in steady-state misalignment at the cost of some extra

computations in order to check whether an error sample is a major outlier or not in each iteration.

The content of this chapter has been published in [70].

In the following, we describe our outlier-rejected adaptive MCC algorithm in more

details.
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4.2 Our Proposed Outlier-Rejected AMCC

Remember from previous chapters the definition of error correntropy and its estimation

from error samples (2.1 and 2.5). We consider following kernel function for MCC in this chapter:

Gσ (D−Y ) = exp(−‖ D−Y ‖2

2σ2 ).

Note that based on this kernel function, error samples are given a weight where error samples

with smaller values have larger weights and consequently larger contribution in objective function

utilized in adaptation and on the other hand, large error samples, or outliers, are given small

weights and are filtered out by this kernel function. Again, in the online linear regression (or

linear adaptive filtering) that we consider through this chapter, D is a random variable denoting

desired response and Y denotes the output of learned linear filter.

In filtering out the outliers, kernel bandwidth σ has a significant role. In fact, kernel

bandwidth determines the magnitude of weight that should be assigned to a specific error sample.

Generally, it affects the convergence rate and steady-state misalignment, therefore a proper

method for adaptation of σ will increase adaptive filtering efficiency.

Throughout the chapter we strive to learn the parameters of the aforementioned adaptive

system. As mentioned earlier, dn denotes label (or desired signal) at time instant n. Note that

dn is corrupted with measurement noise. Furthermore, xn =
[
xn,xn−1, · · · ,xn−L+1

]T is the input

vector at time instant n with length L where L denotes the size of adaptive filter as well. We

choose linear model for adaptive filter, therefore the output of this filter is yn = xT
n wn−1 where

wn−1 is filter parameter estimated at time instant n− 1. Error sample at time n is obtained as

en = dn−xT
n wn−1.

Note that correntropy is a bounded function and we use gradient ascent technique

37



to maximize it. For simplicity, we consider stochastic gradient ascent in which we drop the

expectation operator in (2.1) and only use the current error sample to approximate the correntropy.

Therefore we have following online objective function:

JMCC (wn−1) = Gσ

(
dn−xT

n wn−1
)
= Gσ (en) . (4.1)

Then, gradient ascent algorithm is as follows:

wn = wn−1 +µ∇JMCC (wn−1)

= wn−1 +
µ

σ2 exp
(
−e2

n

2σ2

)
enxn, (4.2)

where µ is step size and ∇JMCC (wn−1) denotes the gradient of online objective function (5.2)

with respect to wn−1.

As mentioned earlier, we modify AMCC algorithm to achieve lower steady-state

misalignment. Therefore, we briefly review AMCC algorithm [64] first, then move forward to

explaining the modification.

4.2.1 Review of AMCC Algorithm

Consider linear adaptive filtering in an environment with impulsive noise. Kernel

bandwidth σn at each iteration is obtained such that (5.3) approaches to its optimum weight

value faster. To this end, kernel bandwidth σn should maximize following term of (5.3) in each

iteration:

h
(
σ

2)= 1
σ2 exp

(
− e2

n

2σ2

)
. (4.3)

Note that at each iteration n, error sample en has already been determined before updating kernel
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Figure 4.1: Plot of the function h
(
σ2
)

for different values of en.

bandwidth, therefore we only need to take derivative of (4.3) with respect to σ2. We have:

∂h
(
σ2
)

∂ (σ2)
=− 1

σ4 exp
(
− e2

n

2σ2

)
+

(
e2

n

2(σ2)3

)
exp
(
− e2

n

2σ2

)
= 0

=⇒ σ
2
n =

{en
2

2
,∞
}
.

Clearly, we have:

h
(
σ

2)∣∣∣
σ2=

e2n
2

=
2
e2

n
exp(−1)> lim

σ2→∞

h
(
σ

2)= 0,

therefore, σ2
n = e2

n
2 maximizes the function h

(
σ2
)

for a fixed en. Figure 4.1 shows how h
(
σ2
)

in

(4.3) varies with σ2 for different values of en. As seen in Figure 4.1, the maximum of function

h
(
σ2
)

which obtained at σ2
n = e2

n
2 tends to infinity as en tends to zero, therefore in order to

avoid divergence of the algorithm (5.3) when en is getting smaller, adaptive kernel bandwidth is

modified as follows:

σ
2
n =

e2
n

2
+σ

2
0 , (4.4)
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in which, as explained in [64], kernel bandwidth at iteration n switches to a predetermined kernel

bandwidth σ0 when error en is small.

Thus far we only talked about an adaptive kernel bandwidth for MCC that speeds up

the convergence rate. From now on we focus on decreasing steady-state misalignment.

4.2.2 Modification to AMCC Algorithm

In order to reach a lower steady-state misalignment we employ a filter with variable

bandwidth in each iteration to reject major outliers. In fact, we modify the algorithm (5.3) as

follows:

wn = wn−1 +
µ

σ2
n

f (en)exp
(
−e2

n

2σ2
n

)
enxn, (4.5)

in which f (en) is the filter and σ2
n is substituted from (4.4). However, what are the boundaries that

specify major outliers? In other words, how we can determine the variable bandwidth of the filter

f (en)? We use running quartiles of the error samples. Generally speaking, median (or generally

any quantile) of a data set is a robust quantity of data against outliers, therefore we can use the

concept of outer fences to determine filter boundaries for major outlier rejection [71, 72]. Figure

4.2 denotes these boundaries. In this figure, Q1, Q2 and Q3 are lower quartile (or 25th percentile),

median, and upper quartile (or 75th percentile), respectively. In addition, IQR = Q3−Q1 stands

for inter-quartile range, and outer fences are shown by:

lower extreme = Q1−3× IQR,

upper extreme = Q3 +3× IQR.
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Figure 4.2: Plot of the function f (en) at time instant n.

Algorithm 2 Outlier-rejected AMCC Algorithm for Online Linear Regression

Inputs: {xn,dn}
Output: wn

Initialisation : w0 = 0 and σ0
1: for each iteration n do
2: en = dn−xT

n wn−1

3: σ2
n = e2

n
2 +σ2

0
4: Sort error samples and find Q1 and Q3
5: IQR = Q3−Q1
6: Lower Extreme =Q1−3× IQR
7: Upper Extreme =Q3 +3× IQR
8: if (Lower Extreme≤ en ≤ Upper Extreme) then
9: f (en) = 1

10: else
11: f (en) = 0
12: end if
13:

wn = wn−1 +
µ

σ2
n

f (en)exp
(
−e2

n

2σ2
n

)
enxn

14: end for
15: return wn =0

Note that quartiles are functions of time n which means these filter extremes vary once

new error sample is available, therefore we have to deal with running quartiles. Running quartile

estimation from data samples has been widely studied in literature [73–76]. In this chapter, we

simply use order statistics in which we sort all observation samples at each time instant n. The

complexity of this operation is O(n) and we need to store all previous data samples, however we
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could choose a proper algorithm from aforementioned algorithms in order to decrease memory

or computational requirements. Our algorithm is shown in Algorithm 2.

4.3 Simulation Results

In this section, our simulation results show how our method outperforms other methods

in term of steady-state misalignment. We use the model in [65, 77, 78] for impulsive noise

environment. We assume that input samples xi are drawn as xi ∼N (0,1). Optimum weight

vector of unknown filter is generated randomly and is a unit vector wopt ∈ RL where L = 5

denotes the filter length. The desired signal at time instant n is modeled as,

dn = xT
n wopt +νn +ηn,

where νn ∼N
(
0,σ2

ν ,n
)

and ηn are white Gaussian and impulsive measurement noises, respec-

tively. We assume that there is 30dB signal to white Gaussian measurement noise ratio where

this signal to noise ratio is calculated as follows:

SNR = 10log10

E
{[

xT
n wopt

]2}
σ2

ν ,n

 .

Impulsive measurement noise is created as ηn = βnωn where βn ∼ Bernoulli(p) in which p is

probability of success (or equivalently the probability of existence of impulses in noise) and

ωn ∼N
(

0,1000E
{[

xT
n wopt

]2}). We assume p = 0.2 in our simulations. At each time instant

n, we obtain wn, and accordingly we obtain misalignment based on the following NMSD:

misalignmentn = 10log10

(
‖ wn−wopt ‖2

‖ wopt ‖2

)
.
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Figure 4.3: Learning curves of MCC (5.3) with fixed σ = 0.25 and with variable σn from (4.4)
with σ0 = 0.25 (µ = 0.01).

Figure 4.4: Learning curves of MCC (5.3) with variable σn from (4.4) with different values of σ0
(µ = 0.01).

First, consider (5.3) in which there is no filter f (en), and σ2
n = e2

n
2 +σ2

0 . Figure 4.3

shows how using (4.4) for σ2
n can increase convergence rate. Figure 4.4 shows how learning

curves of (5.3) with σn from (4.4) vary with different values of predetermined kernel bandwidth

σ0. As seen in this figure, by increasing predetermined kernel bandwidth σ0 convergence rate

always decreases while steady-state misalignment decreases first and then it increases.
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Figure 4.5: Learning curves of our algorithm (5.4) with different values of σ0 (µ = 0.01).

Now, what happens when we employ filter f (en) in (5.3), i.e., when we use (5.4).

As illustrated in Figure 4.5, when we employ the filter f (en), learning curve always converges

slower to a lower steady-state misalignment when we increase predetermined kernel bandwidth

σ0. Let us discuss the learning curve behaviour in Figures 4.4 and 4.5. As seen in these figures,

by increasing predetermined kernel bandwidth σ0 in (5.3) and (5.4) the gradient ascent whole step

size µ

σ2
n

decreases and both algorithms converge slower. However, the steady-state misalignment

behaviour of our algorithm is different with that of (5.3). The reason is that when there is no filter

f (en), although we are decreasing whole step size value µ

σ2
n

with increasing σ0 and we expect to

achieve lower steady-state misalignment with iterations, at the same time we are giving a big

weight to outliers (i.e., large error samples) based on the correntropy definition which can result

in higher steady-state misalignment. Therefore there is a trade-off between these two factors and

once σ0 is large enough the latter factor dominates the other one. We observe that this issue has

been resolved in our algorithm as shown in Figure 4.5 in which learning curve always achieves

lower steady-state misalignment with increase in σ0.

Figure 4.6 illustrates how learning curve of our algorithm changes with step size µ . As

expected, larger step size results in faster convergence to a higher steady-state misalignment.
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Figure 4.6: Learning curves of our algorithm (5.4) for σ0 = 0.8 and different values of step size
µ .

Figure 4.7: Learning curves of different algorithms (µ = 0.01).

Finally, Figure 4.7 shows how our proposed method outperforms other algorithms from

steady-state misalignment point of view. These learning curves for 20000 iterations are obtained

by averaging over 10 independent trials. Step size µ is set to 0.01. As seen, the LMS algorithm

diverges to a high steady-state misalignment when impulses occur in the noise (or equivalently

when we have outlier error samples). AMCC algorithm in [64] outperform LMS when there is

impulse in noise. VKW-MCC in [65] is both faster and achieves a lower misalignment compared

to previous algorithms. Finally, our algorithm converges to the lowest steady-state misalignment
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compared to other algorithms.

Note that we could combine our algorithm with a fast algorithm (e.g., recursive MCC)

and propose a hybrid method like what we did in previous chapter in which the overall hybrid

algorithm not only achieves a lower steady-state misalignment but also converges faster.

4.4 Conclusion

This chapter addresses again the problem of online linear regression (or linear adaptive

filtering) which has many applications such as channel estimation. We consider the presence of

outliers and impulsive noise in the environment. In this chapter, we use error samples running

quartiles to find out whether a new error sample is a major outlier or not. If it is, we stop learning

process (in which we use an existing algorithm called AMCC) based on that error sample and

wait for next error sample to continue the learning process. Simulation results show that our

algorithm achieves lower steady-state performance compared to previous results. Despite the

aforementioned advantage of our proposed algorithm, a predetermined kernel bandwidth is

needed which can be challenging and more importantly it is computationally expensive because

of sorting in each iteration.

In the next chapter, we propose an efficient technique for major outlier detection and

rejection.
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Chapter 5

Efficient Outlier Detection in MCC

5.1 Introduction

Remember that in environments in which error is non-Gaussian or contains outliers,

MSE is not a reliable cost function and as alternatives we could use ECC or EEC instead as

robust cost functions. Interestingly, the relation between information-theoretic criteria EEC and

ECC has been shown in [34] where authors found that difference between these cost functions is

an Euclidean distance that under its variation their performances become more similar or more

different. However, we use ECC in this chapter because of its simplicity. In this chapter, we

consider again an online linear regression problem in which the goal is learning a system in a

way that error between system output and desired responses is minimized. It is worth reminding

that we could use the term linear adaptive filtering instead, however for simplicity we refer to our

problem in this chapter only as online linear regression. Recall that the process is continuous,

i.e., as new data is received the parameters of the system are updated. In previous chapter, we

used qurtiles to detect and reject major outliers from learning process, however the method that

we used for this purpose, i.e., sorting, is not efficient inasmuch as we needed to store all previous

error samples and sort them to find quartiles while the complexity of this operation increases with
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time. In this chapter, major outlier detection and rejection is done based on quartiles once again,

however we use an efficient technique for estimating these quartiles. Our proposed technique in

this chapter alongside MCC benefits from lower steady-state misalignment compared to previous

algorithms.

Recall error correntropy definition (2.1) and its following estimate from data samples

{dn,yn} , n = 1 · · ·N, (or equivalently {en},n = 1 · · ·N), using sample mean:

v̂(D,Y ) =
1
N

N

∑
n=1

Gσ (dn− yn) =
1
N

N

∑
n=1

Gσ (en) , (5.1)

where random variable D denotes desired response and random variable Y denotes the output of

learned linear system. We saw that maximizing the estimate of correntropy v̂(D,Y ) is equivalent

to maximizing the estimate of error PDF (obtained from Parzen method) at 0. Moreover, we

saw the superiority of correntropy over MSE in presence of outliers (i.e., abnormally large error

samples resulted from impulsive noise. In fact, we use Gσ (D−Y ) = exp(−‖D−Y‖2

2σ2 ) as the kernel

function, hence from (5.1) we obviously see that this kernel function gives a weight to each error

sample such that large error samples have small weights and are filtered out, while error samples

with smaller values have larger weights and consequently have larger contribution in learning

process.

Kernel bandwidth σ plays a significant role in outlier rejection. In fact, kernel band-

width specifies how large the weight of a specific error sample should be. Although a good

algorithm to update σ will increase learning efficiency [61] we skip σ adaptation in this chapter

and only focus on elimination of major outliers (which have a destructive effect on steady-state

misalignment).

Throughout this chapter, we try again to learn the parameters of a linear system.

xn =
[
xn,xn−1, · · · ,xn−L+1

]T is the input vector at time instant n where L denotes the number
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of system parameters. Output of this linear system is yn = xT
n wn−1 where wn−1 is the system

parameter estimated at time instant n−1. Error sample at time n is obtained as en = dn−xT
n wn−1

where dn denotes desired response at time instant n corrupted with measurement noise.

We use stochastic gradient ascent to maximize correntropy in which we drop the

expectation operator in (2.1) and only use the current error sample. Thus online objective

function is as follows:

JMCC (wn−1) = Gσ

(
dn−xT

n wn−1
)
= Gσ (en) . (5.2)

Then, we have the following stochastic gradient ascent algorithm:

wn = wn−1 +µ∇JMCC (wn−1)

= wn−1 +
µ

σ2 exp
(
−e2

n

2σ2

)
enxn, (5.3)

in which µ and σ denote learning rate and kernel bandwidth, respectively and ∇JMCC (wn−1) is

the gradient of online objective function (5.2) with respect to wn−1.

Major outliers (i.e., very large error samples) have significant destructive effect on

steady-state misalignment. In the following, we describe our efficient running quartile estimation

technique and combine it with MCC such that the learning process in each adaptation step

is stopped by using our technique whenever we face a major outlier in error samples. This

combination results in a lower steady-state misalignment compared to previous algorithms. The

content of this chapter has been published in [79].
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Figure 5.1: Function f (en) at time instant n.

5.2 Our Running Quartile Estimation Technique

In this section, we propose our method for online regression in an environment with

impulsive noise. Before we begin describing our method, note that when impulsive noise occurs

and error sample |en| is abnormally large, the system parameters should not be updated based on

this major outlier error sample. Recall that, for this purpose, we employ a filter with variable

bandwidth in (5.3) to detect and reject major outliers in each iteration. This results in decreasing

steady-state misalignment. In fact we modify the algorithm (5.3) as follows:

wn = wn−1 +
µ

σ2 f (en)exp
(
−e2

n

2σ2

)
enxn, (5.4)

where f (en) is the filter. However, how can we determine the variable bandwidth of this filter

that specifies the boundaries helping us find major outliers? We use running quartiles of the

error samples to find these boundaries. Generally speaking, as any quantile of a data set is a

robust quantity of data against outliers we use the concept of outer fences to determine filter

boundaries for major outlier rejection [71, 72]. Figure 5.1 illustrates these boundaries in which

Q1, Q2 and Q3 are lower quartile (or 25th percentile), median, and upper quartile (or 75th

percentile), respectively. Moreover, IQR = Q3−Q1 stands for inter-quartile range, and outer
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fences are defined as:

upper extreme = Q3 +3× IQR,

lower extreme = Q1−3× IQR.

Obviously Q1 and Q3 are the only important quartiles to be obtained in each adaptation step.

These quartiles are functions of time n and consequently filter extremes based on them should be

updated once a new error sample is available. This means that we have to deal with a running

quartile problem. we could simply use order statistics to obtain aforementioned quartiles in

which we sort all observed samples at each time instant n (as we did in previous chapter). The

shortcoming of this simple method is the fact that we have to store all previous data samples. The

complexity of this operation is O(n). Although there are many algorithms for running quartile

estimation from data samples to decrease memory or computational requirements, we present our

own algorithm that is as efficient as previous algorithms and further concentrates on estimation

of only Q1 and Q3 and fits our problem.

We use non-uniform quantization [80] to quantize error samples, therefore, we deal

with a small number of quantization levels (or bins) instead of all data samples in order to obtain

quartiles. In our problem, we expect that most of error samples accumulate around e = 0 over

time, so we use the following compressor function by which smaller error samples around e = 0

are quantized with more precision while error samples farther away from e = 0 are quantized

less precisely:

C(e) =


1

1+exp(−α1e) , e < 0

1
1+exp(−α2e) , 0≤ e.

In the compressor function above, 0 <C(e)< 1 and the function 1
1+exp(−αie)

is called the logistic
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Figure 5.2: Compressor function used in our non-uniform quantizer.

function. The parameters α1 and α2 determine the precision of quantization for e < 0 and 0≤ e,

respectively. Figure 5.2 demonstrates the compressor function above. Indeed, we assume the

compressor function C(e) as a cumulative distribution function (CDF) therefore 0.25 and 0.75

on the y-axis in Figure 5.2 are related to Q1 and Q3, respectively. It is important to mention

that we are making following assumption: since we work with data stream and we expect error

samples to get so close to e = 0 and oscillate around it over time (ideally achieve e = 0 over

time), the median of error samples is assumed 0. The following describes how this non-uniform

quantizer works. y-axis in Figure 5.2 is uniformly divided to quantization bins and each new

error sample en is compressed as C(en), and is put in one of these bins. A counter is assigned to

each of the bins denoting the number of error samples contained in that bin and bins below. Once

a new error sample is available, these counters are updated and new Q1 and Q3 are obtained.

Consequently, instead of storing all error samples and sorting them in each adaptation step to

find Q1 and Q3, we only need to use bin counters. In the following we summarize our running

Q1 and Q3 estimation technique in more details:

• For the first M data samples (in our problem error samples), simply store and sort them to

find Q1 and Q3.
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• Afterwards, adjust α1 and α2 in aforementioned compressor function accordingly,

0.25 =
1

1+ exp(−α1Q1)
,

=⇒ α1 =
− ln(3)

Q1
, (5.5)

and similarly,

0.75 =
1

1+ exp(−α2Q3)
,

=⇒ α2 =
ln(3)
Q3

, (5.6)

where ln stands for natural logarithm.

• We know in our online regression problem that, first, error samples are expected to get

closer and closer to e = 0 over time. This emphasizes that quantization precision is

important around e = 0. Second, given the first M error samples we already have an

understanding about the range of error samples. According to these two points we can set

an ε that denotes the maximum acceptable quantization error around e = 0. Note that each

error sample e is quantized as follows:

eq = ∆.

⌊
C(e)

∆

⌋
,

where bxc and ∆ denote the largest integer less than or equal to x and quantization step size,

respectively. Now we obtain two quantization step sizes below based on the selected ε:
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Figure 5.3: ∆1 and ∆2 obtained in case 1 (C = 0.5 is one of the quantization levels) and case 2
(C = 0.5 is not a quantization level), respectively, based on the maximum acceptable quantization
error ε around e = 0.

1. If C = 0.5 is one of the quantization levels then,

∆1 =C(ε)−0.5

⇒ ∆1 =
1

1+ exp(−α2ε)
−0.5.

2. If C = 0.5 is not a quantization level then,

∆2 = 0.5−C(−ε)

= 0.5− 1
1+ exp(−α1(−ε))

⇒ ∆2 = 0.5− 1
1+ exp(α1ε)

.

An illustration of above cases 1 and 2 is shown in Figure 5.3. Finally, step size of the

quantizer is selected as,

∆ = min{ 1
M
,∆1,∆2},

and number of quantization levels (or bins) is equal to:

54



Figure 5.4: Counters of quantization bins are assigned a number from 1 to QL.

QL =

⌈
1
∆

⌉
,

where dxe is the least integer greater than or equal to x.

• Counters of quantization bins are given a number from 1 to QL as depicted in Figure 5.4.

In addition, number of error samples are set to QL.

• Once a new error sample enew is available, it is quantized and the counters related to the bin

number
⌊

C(enew)
∆

⌋
+1 and all bins above are incremented. Now, for each bin we compute

the percentage of error samples that are contained in this bin and bins below as:

Bini =
counteri

number of samples
,

where i ∈ {1,2, · · · ,QL−1,QL} is bin index. Having the number above for each bin, we

can update Q1 and Q3 after receiving every new error sample. Note that as error samples

are getting closer to e = 0 over time we expect that bins related to Q1 and Q3 also get

closer to the bin related to e = 0, i.e., the bin that contains C(0) = 0.5. To obtain updated

Q1, we calculate
⌈

Bini
0.25

⌉
and find the maximum index among all bins for which

⌈
Bini
0.25

⌉
= 1.
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Let this index be found as I1, then Q1,new is calculated as follows:

∆.(I1−1) =C(Q1,new) =
1

1+ exp(−α1.Q1,new)

=⇒ Q1,new =−
ln
(

1
∆.(I1−1) −1

)
α1

. (5.7)

Similarly, we can obtain Q3 as follows. Calculate
⌊

Bini
0.75

⌋
and find the minimum index

among all bins for which
⌊

Bini
0.75

⌋
= 1. Assume this index is I3, then after similar calculations

Q3,new is obtained as follows:

Q3,new =−
ln
(

1
∆.(I3−1) −1

)
α2

.

Remark 5.1: Note that error samples become smaller over time and are mostly around e = 0,

therefore quantization precision becomes more important for error samples close to e = 0.

Moreover, we know α1 and α2 play significant role in quantization precision. Consequently, we

can improve our technique in a way that when error samples approach to e = 0 we update α1 and

α2. To this end, whenever C(Q1) and C(Q3) are at a specific distance of C(0) = 0.5, parameters

α1 and α2 are updated. Indeed, when bin index related to Q1 is equal to,

I1,c =

⌊
0.5
∆

⌋
−bβ .QLc,

where we specifically consider β ∈ (0,0.2) to make sure that I1,c is a valid bin index, then we
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should update α1 as follows:

∆.(I1,c−1) =C(Q1,new)

(5.7)
=⇒Q1,new =−

ln
(

1
∆.(I1,c−1) −1

)
α1

,

(5.5)
=⇒α1,new =− ln(3)

Q1,new
.

Similarly, when bin index related to Q3 is equal to,

I3,c =

⌊
0.5
∆

⌋
+ bβ .QLc,

new α2 is obtained as follows:

Q3,new =−
ln
(

1
∆.(I3,c−1) −1

)
α2

,

(5.6)
=⇒α2,new =

ln(3)
Q3,new

.

Note that if bin index related to Q1 (Q3) is equal to I1,c (I3,c), we update both α1 and α2 and reset

number of error samples to QL and assign the counters of quantization bins a number from 1 to

QL as depicted in Figure 5.4.

The whole above process of finding first and third quartiles of error PDF can be viewed

as estimating the cumulative distribution function (CDF) of the error (under some assumptions)

first and then obtaining these quartiles from this CDF. Therefore, at each time instant we have

the estimates of first and third quartiles of the error PDF. The algorithm of the proposed error

samples running quartile estimation technique is shown in Algorithm 3. This algorithm is much

more efficient than order statistics because there is no need to store all previous data samples,

and also complexity of this operation is not O(n).
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Algorithm 3 Our Proposed Error Samples Running Quartile Estimation Technique
Input: {en}
Outputs: Q1,n and Q3,n (first and third quartiles at time instant n)

Initialisation : M and β

1: if (n < M) then
2: Sort {e1,e2, · · · ,en} and obtain Q1,n and Q3,n
3: else if (n = M) then
4: Sort {e1,e2, · · · ,eM} and obtain Q1,M and Q3,M
5: Calculate α1 and α2:

α1 =
− ln(3)
Q1,M

and α2 =
ln(3)
Q3,M

6: Select ε

7: Calculate ∆1 and ∆2:

∆1 =
1

1+ exp(−α2ε)
−0.5 and ∆2 = 0.5− 1

1+ exp(α1ε)

8: Select step size of the quantizer:

∆ = min{ 1
M

,∆1,∆2}

9: Set NES (number of error samples) = QL (number of quntization levels or bins) where QL=
⌈ 1

∆

⌉
10: Create a vector COUNTER1×QL containing counters to be updated with initialisation COUNTER(i) = i, i = 1,2, · · · ,QL
11: Calculate I1,c and I3,c:

I1,c =

⌊
0.5
∆

⌋
−bβ .QLc and I3,c =

⌊
0.5
∆

⌋
+ bβ .QLc

12: else
13: COUNTER( j) = COUNTER( j)+1 for j ≥

⌊
C(enew)

∆

⌋
+1

14: Compute the percentage of error samples contained in each bin i and bins below it:

Bini =
COUNTER(i)

NES

15: NES = NES+1
16: Find I1 = argmax

i

(⌈
Bini
0.25

⌉
== 1

)
and I3 = argmin

i

(⌊
Bini
0.75

⌋
== 1

)
17: Calculate Q1,n and Q3,n:

Q1,n =−
ln
(

1
∆.(I1−1) −1

)
α1

and Q3,n =−
ln
(

1
∆.(I3−1) −1

)
α2

18: if (I1 == I1,c or I3 == I3,c) then
19: Go back to line 5 and update α1 and α2 (replace Q1,M and Q3,M with Q1,n and Q3,n, respectively)
20: Go to lines 9 and 10
21: else
22: Continue
23: end if
24: end if
25: return Q1,n and Q3,n =0

Moreover, the combination of the MCC algorithm and the running quartile estimation

technique described in Algorithm 3 for online linear regression is shown in Algorithm 4 in which

our running quartile estimation technique is employed to detect and reject major outliers.
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Algorithm 4 Combination of Our Proposed Running Quartile Estimation Technique and MCC
for Online Linear Regression

Inputs: {xn,dn}
Output: wn

Initialisation : µ , σ and w0 = 0
1: for each iteration n do
2: en = dn−xT

n wn−1
3: Use our running Q1 and Q3 estimation technique
4: IQR = Q3−Q1
5: Upper Extreme =Q3 +3× IQR
6: Lower Extreme =Q1−3× IQR
7: if (Lower Extreme≤ en ≤ Upper Extreme) then
8: f (en) = 1
9: else

10: f (en) = 0
11: end if
12:

wn = wn−1 +
µ

σ2 f (en)exp
(
−e2

n

2σ2

)
enxn

13: end for
14: return wn =0

5.3 Simulation Results

In this section, we show how our method outperforms other methods in term of

steady-state misalignment. Impulsive noise environment is modeled again as in [65, 77, 78].

Input samples xi are drawn as xi ∼N (0,1) and optimum weight vector of unknown system is

generated randomly as a unit vector wopt ∈RL where L = 5. We consider νn ∼N
(
0,σ2

ν ,n
)

as

white Gaussian noise and ηn as impulsive measurement noise, and model desired signal (or label)

at time instant n as,

dn = xT
n wopt +νn +ηn.

Assume 30dB signal to white Gaussian measurement noise ratio calculated as follows:

SNR = 10log10

E
{[

xT
n wopt

]2}
σ2

ν ,n

 .
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Figure 5.5: Running Q1 and Q3 estimation using sorting and our technique.

Impulsive measurement noise is modeled as ηn = βnωn in which βn ∼ Bernoulli(p)

and p is probability of existence of impulses in noise (probability of success) and,

ωn ∼N
(

0,1000E
{[

xT
n wopt

]2})
.

Assume p = 0.2 in our simulations. wn is obtained at each time instant n, and misalignment is

calculated based on the NMSD as follows:

misalignmentn = 10log10

(
‖ wn−wopt ‖2

‖ wopt ‖2

)
.

First, skip filter f (en) and consider (5.3) with µ = 0.01 and σ = 0.8. We run (5.3)

and obtain error samples for 1000 iterations. Figure 5.5 shows how sorting and our technique

perform almost the same in obtaining Q1 and Q3 of error samples. We set M = 100 and ε = 0.01

in our technique.

In Figure 5.6 we show the performance of our algorithm (5.4) under different values of
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Figure 5.6: Learning curves of our algorithm (5.4) for different values of µ (σ = 1.5).

learning rate µ . As we expected larger learning rate results in a faster convergence to a higher

steady-state misalignment. These learning curves are obtained by averaging over 50 independent

trials.

Finally, Figure 5.7 shows that our algorithm outperforms (from misalignment point

of view) previous algorithms, even VKW-MCC for which kernel bandwidth σ is also updated

in each iteration. These learning curves are obtained by averaging over 10 independent trials.

Kernel bandwidth and learning rate are set to σ = 3 and µ = 0.01, respectively. Moreover, we

set M = 100 and ε = 0.01 in our algorithm. Note that again although stopping learning process

when major outlier occurs seems to cause slower convergence, we could use a hybrid method,

like our what we did before to combine our algorithm with fast algorithms such as RMCC. Figure

5.7 also shows that LMS algorithm (which is based on second order statistics of error) diverges

to a high steady-state misalignment when there are outlier error samples (or equivalently when

impulses occur in the noise).
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Figure 5.7: Learning curves of different algorithms with µ = 0.01.

5.4 Conclusion

In this chapter we address the online linear regression problem in the presence of

non-Gaussian noise. We propose an efficient method to obtain running quartiles of the error

samples. This method does not need to store and sort all error samples in each iteration. Using

this method alongside maximum correntropy criterion, we reject major outliers and achieve a

lower steady-state misalignment compared to previous algorithms.

In the next chapter, we start talking about the other information-theoretic cost function,

i.e., EEC in more details.
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Chapter 6

Challenging MEEF

6.1 Introduction

Thus far, we discussed only error correntropy as an alternative to MSE in non-Gaussian

environments where distributions may be for instance multi-modal, impulsive, or heavy-tailed.

Outlier effect is one of the main challenges that we must deal with in such environments. From

now on, we will focus on quadratic Renyi’s error entropy as the other robust information-theoretic

cost function. In general, since entropy measures uncertainty about a system, we minimize it to

learn the underlying unknown system.

Although an outlier may have either a negative or positive role [72], outliers in our

problem are not informative and arose from non-Gaussian measurement noise. Throughout the

chapter, we mitigate this outlier effect in a non-Gaussian environment. We consider an online

linear regression or linear adaptive filtering again in which we receive new data samples at each

time instant and use it to update the parameters of the underlying system. Our goal is to minimize

the error between linear system output and desired responses even when environment is severely

affected by outliers. To this end, we employ entropy. As entropy denotes the average dispersion

of data, we minimize it to concentrate the errors [23]. In other words, when we use error entropy
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as cost function and minimize it we indeed attempt to ideally set the distribution of error as an

impulse. However, as error entropy minimization is shift-invariant we must take some further

steps to concentrate errors specifically around e = 0.

Therefore, locating error samples around the origin is a must in learning based on

MEE inasmuch as entropy is shift-invariant and to this end, the first idea that comes into the

mind is to add a constraint to error entropy minimization to set mean of the error to zero. This is

usually done by adding the error sample mean to the output of the system, however estimate of

error mean from error samples is not always straightforward for non-Gaussian distributions [1].

Indeed, if we have n independent and identically distributed (i.i.d.) random variables Xi with

finite mean µ and finite variance σ2
x , classical CLT implies that:

X1 +X2 + · · ·+Xn

n
d
= µ +

Z√
n
+

o(
√

n)
n

,

where Z ∼N (0,σ2
x ) and Y1

d
= Y2 means random variables Y1 and Y2 have the same distribution.

This result gives a more precise expression for X1+X2+···+Xn
n compared to classical law of large

numbers (LLN) and is based on the assumptions that random variables are i.i.d. and they have

finite mean and variance. However, assume that mean and/or variance are not finite, then this

result does not hold and X1+X2+···+Xn
n cannot converge to a Gaussian distribution inasmuch as

Gaussian distribution is defined based on finite mean and finite variance. Therefore a generalized

version of central limit theorem exists and states that there are an entire class of distributions

as candidate limiting distributions where Gaussian is one of them [2], hence sample mean

approximation of actual mean is not accurate for all distributions and because of this drawback,

another approach called MEEF is employed in order to locate error samples around the origin in

which some artificial zero error samples (or fiducial points) are added to the learning process [57].

The logic behind this approach is that since entropy minimization tries to bring error samples
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closer to each other in each learning step, adding some artificial zero error samples will force all

error samples to get closer to the origin.

Although this approach is the most celebrated one for locating error PDF in vicinity of

the origin in MEE-based learning and has been used in recent works [24, 28], in this chapter we

challenge MEEF and show in an example that it can even result in poorer performance compared

to the approach of adding error sample mean to the system output.

First, lets review briefly MCC and MEE. Recall that error statistics is in general

unknown. Correntropy is defined as follows:

v(E) = E{Gσ (E)} , where E = D−Y

in which D and Y are random variables corresponding to desired response and system output,

respectively. Correntropy is estimated online by sample mean at time instant n from N error

samples as:

v̂(n) (E) =
1
N

N−1

∑
i=0

Gσ (en−i) .

Recall that correntropy is a similarity measure, therefore above online cost function is maximized.

Quadratic Renyi’s entropy is defined as:

H2(E) =− log
∫

p2(e)de,

where I2(E) , E{p(E)} is called information potential and since log(.) is a monotonically

increasing function, information potential maximization is equivalent to entropy minimization,
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i.e.,:

max
w

I2(E) = min
w

H2(E).

Using sample mean and Parzen PDF estimation, we obtain online estimate of information

potential at time instant n from past N error samples as follows:

Î(n)2 (E) =
1
N

N−1

∑
i=0

p̂(n)(en−i)

(2.4)
=

1
N2

N−1

∑
i=0

N−1

∑
j=0

Gσ (en−i− en− j). (6.1)

As seen in the (6.1), maximum of Î(n)2 (E) occurs when all error samples are equal which is

consistent with the purpose of entropy minimization.

We use stochastic gradient ascent to maximize the cost function. In stochastic algo-

rithms gradient of the online estimate of cost function J at time instant n and from past N error

samples is used (here J is either information potential or correntropy). We indeed use following

stochastic update rule:

wn = wn−1 +α∇Ĵ(n)(wn−1), (6.2)

where wn is unknown system parameter vector estimated at time instant n and α denotes learning

rate. It is worth reminding that although stochastic algorithms cannot generally optimize a cost

function precisely, they are very fast which is very important in the case of extremely large

data-set and also they can get close enough to the optimum [56]. Recall that error correntropy

maximization and error entropy minimization are called MCC and MEE, respectively.

In the following section, adding fiducial points to MEE in order to locating error
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samples around the origin is challenged. As discussed earlier, although this approach is the most

celebrated one for locating error PDF in vicinity of the origin in MEE-based learning, in the

rest of this chapter we challenge MEEF and show in an example that it can even result in poorer

performance compared to the approach of adding error sample mean to the system output.

6.2 What is wrong with MEEF?

As discussed above, relation (6.1) is maximized when all error samples are equal. In

other words, the MEE-based learning strives to concentrate error samples in each time instant n

using (6.2). It means adding some fiducial zero error samples will give more weight to the origin

and consequently other error samples are absorbed toward e = 0 in each update. Therefore, the

MEEF online cost function is as follows:

Ĵ(n)F (E) =
1

(N +M)2

N+M−1

∑
i=0

N+M−1

∑
j=0

Gσ (en−i− en− j)

=
1

(N +M)2

N−1

∑
i=0

N−1

∑
j=0

Gσ (en−i− en− j)

+
2M

(N +M)2

N−1

∑
i=0

Gσ (en−i)+
M2

(N +M)2 Gσ (0),

where en−N ,en−(N+1), · · · ,en−(N+M−1) denote M fiducial points and N is the number of actual

error samples. Hence, the MEEF cost function is equivalent to a weighted combination of those

of MCC and MEE as follows :

Ĵ(n)F (E) ∝
N2

(N +M)2 Î(n)2 (E)+
2MN

(N +M)2 v̂(n) (E) .

Maximizing the MEEF cost function has been interpreted as simultaneously considering entropy

minimization (which forces error samples to concentrate) and correntropy maximization (which
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forces this concentration to be around the origin) [28, 57].

Despite the claimed benefit of incorporating fiducial points into the MEE-based learn-

ing, it can be destructive if used in an environment with a noise for which MEE outperforms

MCC significantly. Note that although to the best of our knowledge there is no analytical result

that shows superiority of MEE over MCC, MEE is expected to outperform MCC in general in the

sense that it gets closer to the desired solution as shown in many experiments like [34] and [81].

The reason for this superiority is the fact that entropy gives weights to different error samples

based on their own error PDF (not based on a predetermined kernel as in correntropy definition)

and it incorporates all higher order statistics of error regardless of the kernel type that is going to

be used for Parzen PDF estimation. Nevertheless, noise statistics is unknown and we do not know

whether learning performances of MCC and MEE under this noise are significantly different

or not. As stated in [34] there is a distance between MCC and MEE cost functions obtained as

follows by expanding Euclidean distance between error PDF and Gaussian kernel:

DED (p(e),Gσ (e)) =
∫

[p(e)−Gσ (e)]
2 de

=

I2(E)︷ ︸︸ ︷∫
p2(e)de+

1
2σ
√

π︷ ︸︸ ︷∫
G2

σ (e)de−2

v(E)︷ ︸︸ ︷∫
p(e)Gσ (e)de

=⇒ I2(E)+
1

2σ
√

π
= 2v(E)+DED (p(e),Gσ (e)) . (6.3)

Clearly for a fixed kernel bandwidth σ and also zero Euclidean distance between error PDF and

Gaussian kernel we have v(E) ∝ I2(E) which means MCC and MEE result in the same solution.

However, in order to utilize information-theoretic cost functions more efficiently the kernel

bandwidth σ is also usually updated in each time instant, for instance by using Kullback-Leibler

divergence [61], which means that σ is also a function of the system parameter and is not

fixed. Although in this chapter we assume a fixed σ for sake of simplicity, even in this case the
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Euclidean distance is still another term in (7.1) which is a function of system parameter. The

reason for that is evolution of error PDF p(e) in each time instant which means that p(e) is also

a function of system parameter . This is shown in the following. First, note that in linear adaptive

filtering, label at time instant n is shown as dn = xT
n wopt +νn where νn denotes random noise at

time instant n which is independent of input vector xn. Moreover, wopt is parameter vector of the

system which is unknown and is going to be learned. Error at time instant n is calculated as:

en = dn−xT
n wn−1 = xT

n (wopt −wn−1)+νn

= ỹn +νn, (6.4)

where ỹn , xT
n (wopt −wn−1). Let elements of input vector xn be i.i.d. with PDF pX(x) and νn

has PDF pN(ν) where sample space of all random variables is the set of real numbers. PDF of ỹn

at time instant n is obtained as follows:

p(n)Ỹ (ỹ) =

(
L

∏
i=1

∣∣∣∣ 1
wopt −wn−1

∣∣∣∣
)

pX

(
ỹ

(wopt −wn−1)(1)

)

∗pX

(
ỹ

(wopt −wn−1)(2)

)
∗ · · · ∗ pX

(
ỹ

(wopt −wn−1)(L)

)
, (6.5)

where (wopt −wn−1)(i) is the ith element of vector wopt −wn−1 and ∗ denotes convolution

operation. This PDF is a function of time n because of its dependence to the estimated parameter

vector wn−1. Since ỹ and ν are independent, error PDF p(e) at time instant n can be obtained

from (6.4) as follows:

p(n)(e) = p(n)Ỹ (e)∗ pN(e), (6.6)

and from (6.5) and (6.6) it is concluded that error PDF is also evolving with time and is a
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function of the estimated parameter vector wn−1 (or equivalently a function of time n). Therefore,

the Euclidean distance between error PDF and Gaussian kernel in (7.1) is a function of vector

parameter as well. This emphasizes that even for a fixed kernel bandwidth σ , correntropy and

entropy may not be equivalent cost functions (i.e., their estimates of parameter vector may be

different). We can also say that if the Euclidean distance between noise PDF pN(ν) and Gaussian

kernel is not negligible, then we expect a considerable Euclidean distance between error PDF

p(e) and Gaussian kernel as well inasmuch as pN(ν) is the optimum evolution of error PDF

p(e) as shown in the following. Assume the algorithm gets close enough to the desired solution,

i.e., |wopt −wn−1|≤ εn such that εn → 0 for n ≥ η . Then, we have the following based on

Cauchy-Schwarz inequality:

|ỹn|= |xT
n (wopt −wn−1)|≤ |xn||wopt −wn−1|

⇒ ỹn→ 0 for n≥ η

⇒ p(n)Ỹ (ỹ)→ δ (ỹ) for n≥ η

(6.6)⇒ p(n)(e)→ pN(e) for n≥ η .

Note that a considerable Euclidean distance between error PDF and Gaussian kernel results in a

considerable difference between MCC and MEE cost functions as seen in (7.1) and therefore

it is more likely that MCC and MEE show different performances. Authors is [34] show in an

illustrative example that when DED (pN(e),Gσ (e)) increases the difference between performances

of MEE and MCC also increases.

Therefore learning a linear system based on MCC and MEE in any environment

corrupted by a noise for which DED (pN(e),Gσ (e)) is not negligible may result in different

estimates. However, which one is closer to the desired solution in such environments? Although

many previous experimental results have shown the superiority of MEE performance, to the best
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of our knowledge no analytical proof exists so far. Nevertheless, it is not surprising if one expects

MEE to outperform MCC in such environments for the following reasons:

• First, information potential (i.e., I2(E) = E{p(E)}) as the cost function of MEE gives

weight to error samples based on the PDF of error. It means that if an error sample is highly

probable, even if it is large, it is not considered as an outlier which is right. On the other

side, correntropy (i.e., v(E) = E{Gσ (E)}) as the cost function of MCC gives weight to

error samples based on a predetermined kernel function while noise statistics is unknown,

therefore there is a possibility that some highly occurring error samples take small weights

by correntropy and are NOT considered significant during the learning process.

• Second, information potential incorporates all higher order moments of the error [1] while

for correntropy this highly depends on type of the kernel function. For instance if Gaussian

kernel is selected (which is usually the case because of its properties), then by using

Taylor expansion of exponential function we can see only even-order moments of error are

incorporated in correntropy.

Based on the above facts, quadratic Renyi’s error entropy seems to be a more comprehensive

descriptor of the error compared to correntropy, and therefore we expect a better performance

for MEE in estimating the system parameter when environments are corrupted by a noise under

which the performances of MCC and MEE differ. As an example that strengthens our expectation

of superiority of MEE over MCC in such environments, consider following mixture of two

Gaussians as noise distribution:

pN(ν) = 0.4pG(ν ;−2,1)+0.6pG(ν ;2,1), (6.7)

where pG(ν ; µ,σ2) denotes a Gaussian PDF with mean µ and variance σ2. The Euclidean
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a. b.

Figure 6.1: Gaussian kernel with σ = 1 and mixture of two Gaussians (6.7) (figure a). Euclidean
distance (6.8) between mixture of two Gaussians (6.7) and Gaussian kernel with kernel bandwidth
σ as a function of σ2 (figure b).

distance between this multi-modal noise (Figure 6.1-a) and Gaussian kernel with kernel bandwidth

σ is non-zero for any choice of σ which implies that there is a difference between MCC and

MEE cost functions as discussed before. Interestingly it is well-known that MCC performance in

presence of a multi-modal noise like (6.7) is poor [1] while MEE shows satisfactory performance

[82]. This confirms our claim that it is likely to observe different performances from MCC and

MEE (where MEE is expected to be superior) when Euclidean distance between the noise and

Gaussian kernel is considerable. This Euclidean distance is calculated as follows:

DED (pN(e),Gσ (e)) =
∫

[pN(e)−Gσ (e)]
2 de

(a)
= 0.1492+

1
4πσ2 −

2√
2π(1+σ2)

exp
(
− 2

1+σ2

)
, (6.8)

where (a) is resulted from the fact that integral of product of two Gaussian PDFs with means µ1

and µ2 and variances σ2
1 and σ2

2 is equal to [83]:

∫
pG(x; µ1,σ

2
1 )pG(x; µ2,σ

2
2 )dx =

1√
2π
(
σ2

1 +σ2
2

) exp
(
− (µ1−µ2)

2

2(σ2
1 +σ2

2 )

)
. (6.9)
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Figure 6.1-b shows Euclidean distance (6.8) as a function of σ2. Therefore, based on aforemen-

tioned explanations, expecting a more promising performance from MEE compared to MCC

should not be surprising. Lets get back to our main goal in this chapter which is challenging

MEEF. As discussed earlier, MEEF is a combination of MEE and MCC, therefore for environ-

ments contaminated by noises under which MEE outperforms MCC, combining MCC with MEE

will result in weakening MEE performance. Next section shows this shortcoming of MEEF in an

example.

6.3 Simulation Results

We consider system model of Figure 2.1 for linear adaptive filtering. For sake of

computational simplicity, we drop expectation operator from both v(E) = E{Gσ (E)} and

I2(E) = E{p(E)} and obtain following stochastic cost functions:

vs(E) = Gσ (E) ⇒ v̂(n)s (E) = Gσ (en),

I2,s(E) = p(E) ⇒ Î(n)2,s (E) = p(en)
(a)
≈ 1

N

N−1

∑
i=0

Gσ (en− en−i) ,

where (a) is resulted from Parzen PDF estimation. Similarly, stochastic cost function of MEEF

with M fiducial points will be as follows:

Ĵ(n)F,s (E) =
1

N +M

N+M−1

∑
i=0

Gσ (en− en−i)

=
M

N +M
v̂(n)s (E)+

N
N +M

Î(n)2,s (E).

Let Ĵ(n)(E) be stochastic cost function of either MCC, MEE or MEEF. Stochastic update rule

of (6.2) is used in order to learn an adaptive linear system over time where kernel bandwidth σ

and learning rate α are considered fixed for each simulation. Recall that in MEE, error sample
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mean is added to system output in each iteration. It is worth restating system model in Figure

2.1. The system output at time instant n is yn = xT
n wn−1, xn =

[
xn,xn−1, · · · ,xn−L+1

]T is the input

vector to the system at time instant n where xi ∼N (0,1), and wn−1 =
[
w(1)

n−1,w
(2)
n−1, · · · ,w

(L)
n−1

]T
denotes the system parameters estimated at time instant n−1. In addition, label at time instant n

is denoted by dn = xT
n wopt +νn where wopt is the unknown system parameter vector to be learned

(wopt ∈RL is generated randomly in our simulation as a unit vector where L = 5) and νn is the

noise. Note that misalignment at time instant n is measured as follows:

misalignmentn = 20log10 (‖ wn−wopt ‖) .

In our simulations we consider exponential noise, i.e., pN,exp(ν) = λ exp(−λν) for ν ≥ 0 and

0 otherwise, for two reasons: first, it is a light-tailed distribution and consequently classical

CLT holds for that and sample mean approximation of its mean will not be problematic [2] (i.e.,

no need to use fiducial point in order to locate error samples around the origin). Second, the

Euclidean distance between this PDF and Gaussian kernel is non-zero for any kernel bandwidth

σ and large enough λ which indicates the possibility of different learning performances for

MCC and MEE as discussed before (indeed it has been shown in [34] that when λ increases the

difference between performances of MEE and MCC also increases). To show the latter we obtain

the following expression for Euclidean distance between exponential PDF and Gaussian kernel:

DED
(

pN,exp(e),Gσ (e)
) (a)
=

λ

2
+

1√
4πσ2

−2λ exp
(

λ 2σ2

2

)
Q(λσ) , (6.10)
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Figure 6.2: Euclidean distance between exponential PDF with parameter λ and Gaussian kernel
with kernel bandwidth σ as a function of σ2.

where Q(β ) = 1√
2π

∫
∞

β
exp
(
− x2

2

)
dx is called Q-function and (a) is resulted from (6.9) and the

following identity:

∫
∞

0
exp
(
−1

2
ax2 +bx

)
dx =

√
2π

a
exp
(

b2

2a

)
Q
(
− b√

a

)
.

Proof of the above identity is straightforward and is left to the reader. Figure 6.2 illustrates

Euclidean distance (6.10) as a function of σ2 for different values of λ . As seen in this Figure,

this Euclidean distance is always non-zero for different values of σ and large enough λ which

shows a difference between MCC and MEE cost functions under this noise. Interestingly, this

difference in cost functions is translated into different performances of MCC and MEE where

MEE is superior [34]. Therefore adding fiducial points to MEE will degrade the performance.

Following simulation result matches our expectation. In this simulation we consider convergence

speed and steady-state misalignment as two key factors to evaluate the performances of MCC,

MEE and MEEF under exponential noise. Given a specific learning rate-kernel bandwidth pair,

i.e., (α,σ), each algorithm is run and its convergence speed is obtained by iconv which is defined
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Figure 6.3: Convergence instant vs. steady-state misalignment for MCC, MEE, and MEEF with
1 fiducial point obtained from different pairs of learning rate α and kernel bandwidth σ such
that α ∈ [0.05 : 0.005 : 0.1] and σ ∈ [0.2 : 0.1 : 1.4] (in presence of exponential noise and 50dB
SNR).

as the first time instant for which we have the following:

misalignmenticonv
≤ steady− state misalignment + 2,

where steady-state misalignment is obtained as the sample mean of the misalignments within the

last 200 time instants. We assume 50dB SNR defined as follows:

SNR = 10log10

E
{[

xT
n wopt

]2}
E{ν2

n}

 ,

and plot convergence instant (iconv) versus steady-state misalignment achievable bounds for MCC,

MEE and MEEF with 1 fiducial point in Figure 6.3. These bounds are obtained from convex hull

of all points resulted from pairs (α,σ) such that α ∈ [0.05 : 0.005 : 0.1] and σ ∈ [0.2 : 0.1 : 1.4].

It is worth mentioning that convergence speed and steady-state misalignment for each pair (α,σ)

are obtained by averaging learning curves over 50 Monte Carlo simulations. As seen in this

figure, MEE outperforms both MCC and MEEF and therefore we conclude that combination of
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MEE with MCC as MEEF is even destructive under aforementioned exponential noise which

matches our expectation.

Remark 6.1: The main contribution of this chapter is to show that employing fiducial

points is not always a viable alternative to adding error sample mean to the system output when

learning a system based on MEE. In other words, MEEF can be just as inefficient in locating

error PDF at the origin as MEE with error sample mean added to the system output.

6.4 Conclusion

In this chapter we challenge the well-known MEEF algorithm for robust linear adaptive

filtering under non-Gaussian noise. This algorithm is indeed a combination of MCC and MEE.

We discuss the possibility of observing superiority of MEE over MCC when Euclidean distance

between error PDF and Gaussian kernel is not negligible. Therefore combining MEE with MCC

as MEEF will degrade MEE performance especially under noise statistics that MCC performs

significantly poorer than MEE. As an example to show this drawback of MEEF we illustrate its

weak performance in presence of exponential noise which is a noise under which performances

of MCC and MEE are different.

As we saw in this chapter MEEF can be just as inefficient in locating error PDF at the

origin as MEE with error sample mean added to the system output. It is worth mentioning that

we did not propose our alternative to these methods in this chapter, however, we do propose a

new algorithm called ”Trimmed MEE” in the next chapter which shows superior performance

compared to both aforementioned methods.
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Chapter 7

Trimmed MEE

7.1 Introduction

Recall that both MEE and MCC are deployed in information-theoretic learning context

as robust criteria to deal with non-Gaussianity of the environment which becomes problematic if

conventional MSE is used. In other words, superiority of information-theoretic cost functions

becomes more clear when the error distribution is non-Gaussian and this happens if the filter

topology is nonlinear (which was not of interest in this thesis) or the label (or noise in the label)

is non-Gaussian (which we do address in this thesis). In this chapter, online linear regression

in environments corrupted by non-Gaussian noise is addressed again. We discussed in previous

chapters that in such environments there might exist abnormally large error samples (or outliers)

which mislead the learning process. The main challenge is how to keep the supervised learning

problem least affected by these unwanted and misleading outliers. We also saw in Chapter 6 that

an information-theoretic algorithm based on quadratic Renyi’s entropy, called minimum error

entropy abbreviated to MEE, has been employed in recent years to take on this issue. However,

this minimization might not result in a desired estimator inasmuch as entropy is shift-invariant,

i.e., by minimizing the error entropy, error samples may not be necessarily concentrated around
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zero. In this chapter, we strive to address this problem.

As discussed, entropy as a robust information-theoretic cost function contains all

higher-order moments and although the algorithm based on error entropy is computationally

more expensive than error correntropy, entropy is a more general descriptor of the underlying

error statistics [30]. Indeed, MEE is expected to have a superior performance compared to

MCC in general at the cost of higher computational complexity as shown in many experimental

results [34,81,84]. The problem of MCC arises from being a local criterion that takes into account

mostly the errors within the Gaussian kernel bandwidth, while error modes might in fact be far

from the origin. On the other hand, MEE’s superior performance emerges from self-adjusting

the weights of different error samples based on the error distribution itself. Therefore, MCC

may not perform as efficiently as MEE in non-Gaussian noises with a light-tail or multi-modal

distribution [1]. Moreover, previous work have tackled computational bottleneck of entropy

approximation in large-scale data sets, e.g., [85] and [30], where fast Gauss transform and

quantization were employed, respectively, to reduce computational complexity. Some results

regarding consistency, robustness, uniqueness of the solution, sufficient and necessary conditions

for MEE algorithm can be found in [13] and [86]. Moreover, authors in [82] show that even

when large outliers exist in both input and output variables, MEE can result in a very close

solution to the optimum value. Some applications of entropy minimization in adaptive system

training, neural networks, blind deconvolution, parameter estimation, blind source separation,

digital communication channel equalization, and channel estimation for massive multiple input

multiple output (MIMO) communication can be found in [3, 16, 87–92]. Bayesian estimation

based on MEE is also addressed in [81] and [93].

As we discussed in previous chapter, outlier effect is one of the main challenges that

we must deal with when we work with non-Gaussian (multi-modal, impulsive, heavy-tailed, etc.)

environments. Although an outlier may have either a negative or positive role, outliers in our
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problem are not informative and arose from non-Gaussian measurement noise. Throughout the

chapter, we mitigate this outlier effect in a non-Gaussian environment. We consider an online

linear regression in which we receive new data samples at each time instant and use it to update

the parameters of the underlying system. Our goal is to minimize the error between linear system

output and desired responses even when environment is severely affected by outliers. To this

end, we minimize entropy as the average dispersion of data to concentrate error samples in the

vicinity of origin. Recall that it means we attempt to ideally set the distribution of error as an

impulse, however, since error entropy minimization is shift-invariant we must take some further

steps to concentrate error samples.

In this chapter, first, we review briefly existing solutions for concentrating error samples

around e = 0 in MEE. Then, we propose our alternative to these existing solutions and call it

Trimmed MEE in which we combine our error sample running quartile estimation technique,

proposed in Chapter 5 (Algorithm 3), with MEE and use this combination in online linear

regression. This helps us to detect major outliers in error samples and mitigate their destructive

effect in the learning by not considering them in both processes of MEE-based learning and

concentrating error samples around e = 0. The whole process improves MEE performance from

convergence rate and steady-state misalignment points of view especially when the environment

is affected by a non-Gaussian noise with heavier tail than that of Gaussian.

7.2 Combining Outlier Detection with MEE

Before diving into more details about how to combine outlier detection with MEE,

recall from previous chapter that the difference between cost functions of MCC and MEE can

be obtained by using Euclidean distance between error PDF pE(e) and Gaussian kernel as
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follows [34]:

DED (pE(e),Gσ (e)) =
∫

(pE(e)−Gσ (e))
2 de

=

I2(E)︷ ︸︸ ︷∫
(pE(e))

2 de+

1
2σ
√

π︷ ︸︸ ︷∫
(Gσ (e))

2 de−2

v(E)︷ ︸︸ ︷∫
pE(e)Gσ (e)de

=⇒ I2(E)+
1

2σ
√

π
= 2v(E)+DED (pE(e),Gσ (e)) . (7.1)

Obviously, there is a difference between MCC and MEE cost functions based on (7.1), and

consequently their optimum solution may be different as well. If Gaussian kernel bandwidth σ is

fixed (not adaptive) and also Euclidean distance between error PDF and Gaussian kernel is zero,

then MCC and MEE are equivalent and result in the same solution. Recall that Gaussian kernel

bandwidth σ is a free parameter in both MCC and MEE cost functions that can be optimized

during the learning process to increase algorithm efficiency. It indeed determines the magnitude

of the weights assigned to each error sample and it is a function of error. Optimizing this

bandwidth has been widely addressed in literature, for instance by minimizing Kullback–Leibler

divergence between the true and estimated error distribution, using shape of error distribution

measured by its kurtosis, using instantaneous error in each iteration, and so forth. In this chapter,

we assume a fixed kernel bandwidth for the sake of simplicity.

Now, lets focus on concentrating error samples around e = 0 in MEE. We have dis-

cussed our expectation of MEE superiority over MCC. However, alongside the higher compu-

tational complexity of MEE compared to MCC that has been addressed in previous work as

stated earlier, another difficulty associated with MEE is that the error PDF needs to be moved to

the origin, as entropy is shift-invariant. Towards that end, the following approaches have been

proposed in the literature:

1. Adding sample mean of the labels (sample mean up to time instant n) to the output of
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the linear system as a bias term [1]: Although this approach is very simple and works for

labels with symmetric PDFs, environments in many real world scenarios are corrupted by

asymmetric noises whose tails are heavier than that of the Gaussian distribution. These

distributions contain many large outliers and consequently sample mean may be very

misleading. In other words, sample mean may fail to converge in probability to the

expected value, and law of large numbers does not hold in such environments [94].

2. Minimization of Error Entropy with Fiducial points or MEEF [57]: This approach suggests

to consider a fiducial zero vector of arbitrary length M whose elements are indeed points of

reference and help to fix the peak of the error PDF at the origin. Consequently, error entropy

minimization forces the PDF to approach an impulse around e = 0. Now, information

potential at each time instant n using past N error samples plus M fiducial points is denoted

by Î(n)2,F(E) and is estimated as follows:

Î(n)2,F(E) =
1

(N +M)2

N+M−1

∑
i=0

N+M−1

∑
j=0

Gσ (en−i− en− j),

where [en−N ,en−(N+1), · · · ,en−(N+M−1)] = 01×M denotes fiducial zero vector. Then, above

relation can be rewritten as follows:

Î(n)2,F(E) =
1

(N +M)2

N−1

∑
i=0

N−1

∑
j=0

Gσ (en−i− en− j)

+
2M

(N +M)2

N−1

∑
i=0

Gσ (en−i)+
M2

(N +M)2 Gσ (0). (7.2)

Relation (7.2) can be interpreted as a weighted combination of the error entropy criterion

(first term on the right hand side) and the error correntropy criterion (second term on

the right hand side). The first term strives to make the error PDF as close as possible

to an impulse, while the second term pushes the peak of the error PDF towards e = 0.
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This approach can outperform the previous one [28, 57]. However, there is an obvious

trade-off: As we increase the number of fiducial points, i.e., M, the cost function (7.2)

gets closer to that of MCC. Although this will make the role of the correntropy-related

term more emphasized, thereby moving the peak of the error PDF towards the origin

more aggressively, the accuracy of the entropy estimation would suffer. In other words, as

seen in (7.1), this can be problematic and deteriorate the performance of MEE when the

difference between MCC and MEE cost functions is not negligible.

Due to the drawbacks of above methods for concentrating error samples around e = 0

in MEE, we propose a new approach called Trimmed MEE. The key idea behind this proposed

method is to stop incorporating abnormally large errors (or major outliers) into the learning

process. Recall that major outliers in error samples can be very misleading as they differ

significantly from other observations, therefore we strive to exclude them from other error

samples. We use our technique in Algorithm 3 in which we employ running quartiles of the error

samples in order to detect major outliers.

A major outlier in error samples denotes that either an abnormally large label (sig-

nificantly different from most of the labels) or an abnormally large noise in label has occurred.

In either way, it seems that the benefit of just ignoring this major outlier error sample and not

incorporating it in the learning process would be more than using it. This is obvious inasmuch as:

• If the label itself is significantly different from rest of the labels, learning based on that

will update the parameters in favor of this major outlier not most of the data, therefore the

resultant parameters will not be promising.

• If the label has been corrupted by an abnormally large noise, updating parameters based

on this heavily corrupted data sample will be very misleading.

Throughout this chapter, we stop incorporating major outliers into online linear regression
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by detecting and eliminating them from MEE using our proposed running quartile estimation

technique and finding lower and upper extremes as depicted in Figure 5.1 This can be interpreted

as ignoring heavy part of the tail in error PDF and only use lighter part for learning.

Recall that as discussed earlier, simply adding sample mean of labels as a bias to the

learned system output or using fiducial points in order to locate error PDF at the origin may be

problematic. In the following, we deploy our running quartile estimation technique to address

this problem by modifying first method in which we add a proper bias to the learned system

output. First, we discuss the possible problem of adding a bias in more details here. Recall that

outliers can be very misleading in sample mean approximation inasmuch as very large values

can significantly shift sample mean approximation away from actual mean in each time instant.

Outliers in error samples usually arise from heavy part of the tail of either label noise distribution

or label distribution itself. Note that sampling from a distribution with a rather heavy tail results

in mostly ”normal” values with a few ”abnormal” values (outliers). As examples, we can name

LogNormal, α-stable, and Weibull which belong to a very well-known class of non-Gaussian

distributions with severe heavy tails. Lets investigate this class of non-Gaussian distributions,

called heavy-tailed, as an example to show that why sample mean is not always a straightforward

method for approximation of actual mean. A heavy-tailed random variable is defined as follows:

Definition 7.1 [2]: Random variable E is said to be heavy-tailed if its CDF F(e) = P(E ≤ e) has

the following property for all µ > 0:

lim
e→∞

sup
1−F(e)

exp(−µe)
= ∞.

This means that a distribution is heavy-tailed if its tail is heavier than that of any exponential

distribution. For these kind of distributions, law of large numbers (LLN) and central limit theorem

(CLT) do not hold and sample mean approximation may not converge to the actual mean [2].
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Some moments of heavy-tailed distribution may not exist (even mean and variance), for instance,

Cauchy distribution is a heavy-tailed distribution for which neither mean nor variance exist and

obviously sample mean approximation does not make sense. Interestingly, even if all moments

exist for a heavy-tailed distribution and sample mean converges to actual mean, the convergence

will be very slower than that of a light-tailed distribution. This can be easily shown, however first

we need the following Lemma to state and prove Corollary 2.

Lemma 1 [2]: Following two statements are equivalent for random variable E:

• E is heavy-tailed

• ME(s), E{esE}= ∞ for all s > 0

where ME(s) denotes moment generating function of E.

Proof. Provided in [2].

Next, we use above lemma to prove following corollary.

Corollary 2 Consider n independent heavy-tailed random variables E1,E2, · · · ,En, then sum

random variable Sn = E1 +E2 + · · ·+En is also a heavy-tailed random variable.

Proof. Writing the moment generating function of the sum random variable, we have:

MSn(s)
(a)
= ME1×ME2×·· ·×MEn

(b)
= ∞ for all s > 0,

where (a) is due to the independence of random variables E1,E2, · · · ,En from each other and

(b) is because of the fact that these random variables are heavy-tailed and consequently based

on Lemma 1 their moment generating function is ∞. Therefore, sum random variable Sn is also

heavy-tailed based on Lemma 1.

Now, we show even if all moments exist for a heavy-tailed distribution and sample mean
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converges to actual mean, the convergence will be very slow. Consider n independent and

identically distributed (i.i.d.) heavy-tailed random variables Ei, i = 1,2, · · · ,n, with mean m and

variance σ2. Similar to the proof of the corollary 2 we can show that Zn =
Sn−nm√

n also has a

heavy-tailed distribution with mean 0 and variance σ2. Therefore, any realization zn of random

variable Zn at each time instant n can be written as follows:

zn =
sn−nm√

n
=⇒ sn

n
= m+

zn√
n
, (7.3)

where sn is a realization of heavy-tailed distribution Sn with mean nm and variance nσ2. sn
n is

sample mean approximation that can be heavily distorted around the true mean m inasmuch

as samples from a heavy-tailed distribution Zn contain very large values. Compare this with

what we have for a light-tailed distribution. Consider n i.i.d. light-tailed random variables

Ei, i = 1,2, · · · ,n, with mean m and variance σ2. Based on CLT for large n we have,

sn

n
≈ m+

z√
n
, (7.4)

where sn and z are realizations of sum random variable Sn with mean nm and variance nσ2 and a

Gaussian distribution with mean 0 and variance σ2, respectively. Comparing (7.3) and (7.4) we

can see although sample mean sn
n converges to actual mean m as n goes to ∞ for both of these

heavy-tailed and light-tailed scenarios, convergence in light-tailed scenario is much faster. This

is because of the fact that samples of a light-tailed distribution never differ significantly from

the mean while samples from a heavy-tailed distribution contain very large samples or outliers,

therefore z√
n approaches much faster to zero than zn√

n as n increases.

In above example we saw that for non-Gaussian distributions, approximation of actual

mean using sample mean may be problematic. Now, lets get back to our main problem in this
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section. It is clear now why adding sample mean of labels to system output as a bias term in

order to locate error PDF at the origin may be problematic: this sample mean approximation may

not be accurate if label or noise in label has a distribution with heavier tail than that of Gaussian.

As discussed above, an important characterization of light-tailed distributions is that the samples

are concentrated around the mean of the distribution not far away from that and are mostly of a

similar size. In contrast, sampling from a distribution with heavier tail yields a few very large

samples in addition to many small ones that can tremendously dominate the sum (or equivalently

sample mean approximation). Inasmuch as we clean MEE and do not incorporate major outliers

(or very large error samples) in learning process, we can assume them eliminated from error PDF

which means we lighten the possible error PDF with a heavier tail than that of Gaussian and

consequently sample mean approximation is not problematic anymore. Recall that we use again

our proposed running quartile estimation technique to detect and eliminate major outliers from

sample mean approximation.

Eventually, to sum up this section, our proposed algorithm for online linear regression,

called Trimmed MEE, is shown in Algorithm 5. At each time instant n the output of the system is

learned as follows:

yn = xT
n wn−1 +BIASn−1,

where BIASn−1 is the sample mean calculated at time instant n− 1 from samples of the tail-

lightened but non-centered error PDF. The tail-lightened and centered error is denoted by (note

that major outliers are not considered in following calculations):

en = dn− yn = dn− (xT
n wn−1 +BIASn−1). (7.5)
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Algorithm 5 Trimmed MEE

Inputs: {xn,dn}
Output: wn and BIASn

Initialisation : M, β , µ , σ , N, counterNO = 0 (number of non-outliers), d̄ = 0, x̄ = 0,
BIAS0 = 0 and w0 = 0

1: for each iteration n do
2: en = dn− (xT

n wn−1 +BIASn−1)
3: Use Algorithm 3 to obtain Q1,n and Q3,n
4: IQRn = Q3,n−Q1,n
5: UEn =Q3,n +3× IQRn (upper Extreme at time instant n)
6: LEn =Q1,n−3× IQRn (lower Extreme at time instant n)
7: if (LEn ≤ en ≤UEn) then
8: Calculate,

d̄ =
dn +(counterNO)d̄

counterNO +1
, x̄ =

xn +(counterNO)x̄
counterNO +1

,

counterNO = counterNO +1,

∇
(n)
2 (E)= 1

N2σ2 ∑
N−1
i=0 ∑

N−1
j=0

LEn≤for en−i and en− j≤UEn

[
Gσ (en−i−en− j)(en−i−en− j)(xn−i−xn− j)

]
,

9: wn = wn−1 +µ∇Î(n)2 (E), BIASn = d̄− x̄T wn

10: else
11: wn = wn−1, BIASn = BIASn−1
12: end if
13: end for
14: return wn and BIASn =0

In the next section, simulation results are shown and discussed.

7.3 Simulation Results

Throughout this section we consider the linear adaptive filtering problem illustrated

in Figure 7.1 which can be viewed as an online linear regression (for MEE and Trimmed MEE

the BIAS block is also considered). In this Figure we have d̃n = xT
n wopt and ỹn = xT

n wn−1 where

xn =
[
xn,xn−1, · · · ,xn−L+1

]T and wn−1 =
[
w(1)

n−1,w
(2)
n−1, · · · ,w

(L)
n−1

]T denote the input vector to the

system at time instant n and system parameters estimated at time instant n−1, respectively. We
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Figure 7.1: Linear adaptive filtering.

employ Algorithm 5 to adapt this linear system and obtain its parameter vector w and BIAS in

each time instant. Moreover, for the sake of computational simplicity, we assume a fixed kernel

bandwidth σ and also drop the expectation operator from both (2.1) and (2.6) to use the following

online cost functions for stochastic MCC and stochastic MEE, respectively:

vs(E) = Gσ (E) =⇒ v̂(n)s (E) = Gσ (en),

I2,s(E) = p(E) =⇒ Î(n)2,s (E) = p(en)
Parzen
=

1
N

N−1

∑
i=0

Gσ (en− en−i) ,

and consequently we have the following online cost function for stochastic MEEF with M fiducial

point:

Î(n)2,F,s(E) =
1

N +M

N+M−1

∑
i=0

Gσ (en− en−i)

=
N

N +M
Î(n)2,s (E)+

M
N +M

v̂(n)s (E).

In addition, in our simulations throughout this section we draw input data samples xi in Figure 7.1

from a standard normal distribution, i.e., xi ∼N (0,1). The unknown system parameter vector
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(or optimum weight vector to be learned) is generated randomly as a unit vector wopt ∈RL where

‖ wopt ‖= 1 and L = 5. We also measure misalignment at time instant n for an algorithm based

on NMSD as follows:

misalignmentn = 20log10

(
‖ wn−wopt ‖
‖ wopt ‖

)
= 20log10 (‖ wn−wopt ‖) .

7.3.1 Comparison of MCC and MEE

Recall that there is a difference between MCC and MEE cost functions as derived in

(7.1) which means more difference between these cost functions will cause more difference in

the results obtained based on them. We also expect MEE, as discussed earlier, to be a more

comprehensive cost function than MCC and have a superior performance compared with that,

therefore using fiducial points in MEEF, which alter MEE cost function to a weighted combination

of MEE and MCC cost functions, will badly affect MEE performance whenever the difference

between MEE and MCC is substantial. For instance, as shown in [34], for exponential noise

the difference between two cost functions can become considerable. We can conclude then

combination of MEE with MCC as MEEF is expected not to be helpful. This fact is shown in

Figure 7.2 for different values of learning rate µ and kernel bandwidth σ . More precisely, note

that two important factors to evaluate a learning algorithm are its convergence rate and steady-

state misalignment. Given a specific pair (µ,σ) we run each algorithm and obtain steady-state

misalignment for that as the sample mean of the misalignments within the last 200 time instants.

Moreover, given a specific pair (µ,σ) we denote convergence rate for each algorithm by iconv.
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Figure 7.2: Convergence iteration vs. steady-state misalignment for MEE and MCC algorithms
obtained from different pairs (µ,σ) such that µ ∈ [0.05 : 0.005 : 0.1] and σ ∈ [0.2 : 0.1 : 1.4] (in
presence of exponential noise and 30dB SNR).

and define it as the first time instant (or iteration) for which we have the following:

misalignmenticonv.
≤ steady− state misalignment + 2.

Now, recall that label (or desired signal) at time instant n is modeled as dn = xT
n wopt +νn. We

assume an exponential noise (which is light-tailed), i.e., ν ∼ Exp(λ ), with following PDF:

f (ν) = λ exp(−λν) , ν ≥ 0 and f (ν) = 0, otherwise

and 30dB signal to noise ratio (SNR) calculated as follows:

SNR = 10log10

E
{[

xT
n wopt

]2}
E{ν2

n}

 ,

which results in λ =
√

2000. Achievable bounds in Figure 7.2 are obtained from convex hull of all

points resulted from pairs (µ,σ) such that µ ∈ [0.05 : 0.005 : 0.1] and σ ∈ [0.2 : 0.1 : 1.4] where

for each pair (µ,σ) the convergence rate and steady-state misalignment results are obtained
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a. b.

Figure 7.3: Learning curves of different algorithms under exponential noise averaged over 200
Monte Carlo simulations with µ = 0.05 and σ = 1 (a. SNR=30dB and b. SNR=50dB).

by averaging learning curves over 50 Monte Carlo simulations. As seen in Figure 7.2, MEE

outperforms MCC significantly for exponential noise. This can be translated to the fact that

using MEEF for an environment corrupted by this exponential noise is not helpful inasmuch

as it degrades MEE performance by incorporating MCC into it (as seen in previous chapter as

well). This is shown in Figure 7.3-a in which learning curves (averaged over 200 Monte Carlo

simulations) of MEE, MCC and MEEF are compared. As seen in this Figure, as we increase

number of fiducial points, the performance of the MEE algorithm deteriorates.

It is worth mentioning that, as discussed in [34], when the parameter of the exponential

noise λ is increased the difference between MCC and MEE cost functions becomes larger as well

and therefore we expect more destructive effect of incorporating MCC into MEE as MEEF. This

is shown in Figure 7.3-b where we assume 50dB SNR which results in a larger λ (λ =
√

2×105)

and as depicted in this Figure even one fiducial point corrupts MEE performance significantly.

Recal from previous chapter that convergence iteration versus steady-state misalignment achiev-

able bounds for MEE, MEEF with 1 fiducial point and MCC were illustrated in Figure 6.3 for

50dB SNR. As seen in Figure 6.3, MEE outperforms both MCC and MEEF.
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Figure 7.4: Scatter plot of final error samples of MEE algorithm of Figure 7.3-a.

7.3.2 Performance Analysis of Algorithm 3 for Error Samples Generated from

MEE Algorithm

As discussed in Chapter 5, ground truth for evaluation of our proposed error samples

running quartile estimation technique are the results obtained for Q1,n and Q3,n at time instant

n from order statistics by simply sorting final error samples (centered error samples) in each

time instant. We consider final error samples (7.5) resulted from running MEE algorithm in

Figure 7.3-a. The scatter plot of these error samples are shown in Figure 7.4. As seen in this

Figure, centered error samples are accumulated around the origin with time (and consequently

Q1 and Q3 also get closer to the origin with time) which verifies our assumption in Algorithm

1 that median of error samples is assumed zero. It is worth mentioning that as expected we do

not see major outliers in centered error samples in Figure 7.4 inasmuch as exponential noise

is light-tailed. Now we plot Q1,n and Q3,n of these centered error samples in Figure 7.5-a and

Figure 7.5-b, respectively obtained from both order statistics and our proposed technique with

M = 100 and ε = 0.01 (Algorithm 3). As seen in this Figure, the difference between Q1,n (Q3,n)

obtained from sorting and that obtained from our technique is negligible.
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a. b.

Figure 7.5: Lower quartile Q1 and upper quartile Q3 of error samples of Figure 7.3-a estimated at
each time instant based on sorting and Algorithm 1 (our technique with M = 100 and ε = 0.01).

In the following, we show how our technique in Algorithm 3 will lighten an impulsive

noise which has a heavier tail than that of Gaussian and is modeled as a mixture of two Gaussian

distributions (with means equal to 0 and standard deviations equal to 10−4 and 10) as follows:

ν ∼ 0.9N (0,10−8)+0.1N (0,100). (7.6)

The second term of above impulsive noise generates abnormally large noise samples or outliers.

Scatter plot and histogram (with 100 bins with equal size) of 10000 samples drawn from this

distribution are shown in Figure 7.6-a and Figure 7.6-b, respectively. Next, we deploy our

running quartile technique in Algorithm 3 to obtain Q1,n and Q3,n and then calculate upper and

lower extremes based on them. Now, we use these extremes to detect and exclude these major

outliers from noise samples which results in scatter plot of non-outlier noise samples in Figure

7.6-c (974 noise samples out of total 10000 noise samples have been detected and excluded as

major outliers). As seen in this Figure, non-outlier noise samples are concentrated around ν = 0.

Finally, Figure 7.6-d shows histogram of these non-outlier noise samples that can be interpreted

as histogram of samples drawn from lightened version of impulsive noise (7.6) (again number of

equal-size bins is 100).

We can readily calculate the mean of random variable ν distributed according to
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a. b.

c. d.

Figure 7.6: Scatter plot and histogram of noise samples drawn from impulsive noise (7.6) (Figures
a. and b.) and those of noise samples drawn from lightened version of impulsive noise (7.6)
obtained by using Algorithm 3 (Figures c. and d.).

impulsive distribution (7.6) which is 0. Figure 7.7 depicts how sample mean approximation will

converge to actual mean, i.e., 0. As illustrated in this Figure, if we use all noise samples including

major outliers convergence occurs with many fluctuations around the actual mean while when we

exclude these major outliers, convergence to the mean of the lightened noise distribution happens

very fast and more consistently and smoothly.

7.3.3 Trimmed MEE

In this subsection, MEE and MEEF are compared with our proposed Trimmed MEE in

Algorithm 5 for online linear regression in which we deploy our proposed error samples running

quartile estimation technique (Algorithm 3) in order to detect and exclude major outliers (or

abnormally large error samples) from learning process. Recall that for MEE and Trimmed MEE
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Figure 7.7: Sample mean approximation using all noise (7.6) samples (including major outliers)
versus using only non-outlier noise samples (detected based on Algorithm 3 and concept of the
upper and lower extremes).

algorithms we add a bias (error sample mean) obtained from all error samples and non-outlier error

samples, respectively to the output of the system in order to locate the final error samples around

the origin. First, we consider exponential noises ν1 ∼ Exp(
√

2000) and ν2 ∼ Exp(
√

2×105)

then Gaussian noise ν3 ∼ N (0,10−3) which are light-tailed, hence we do not need to be

concerned about destructive effect of major outliers. In other words we expect to obtain similar

results regardless of using MEE or Trimmed MEE for environments affected by these noises

as shown in Figures 7.8-a, 7.8-b and 7.8-c, where for exponential noises Trimmed MEE even

shows a slightly better steady-state misalignment performance compared to MEE which is not

surprising. Learning curve of MEEF also shows similar behaviour to MEE and Trimmed MEE,

however for exponential noise MEEF performance deteriorates as SNR is increased inasmuch as

increase in SNR means increase in λ which results in larger gap between MEE and MCC cost

functions [34]. In order to show superiority of Trimmed MEE over MEE and MEEF in presence

of impulsive noises, we consider following symmetric and asymmetric mixture of Gaussians
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a. b.

c. d.

e. f.

Figure 7.8: Learning curves of MEE, MEEF and Trimmed MEE under different noises averaged
over 200 Monte Carlo simulations with µ = 0.05 and σ = 1.
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noises:

ν1 ∼ 0.9N (0,10−3)+0.1N (0,1000), (7.7)

ν2 ∼ 0.9N (0,10−3)+0.1N (10,1000). (7.8)

ν3 ∼ 0.9N (−5,10−3)+0.1N (10,1000). (7.9)

As seen in Figures 7.8-d, 7.8-e and 7.8-f, for all symmetric and asymmetric impulsive noises

(7.7), (7.8) and (7.9) Trimmed MEE outperforms MEE and MEEF from both convergence rate

and steady-state misalignment point of views. Learning curves of MEE and MEEF are similar,

however for asymmetric noises (7.8) and (7.9) MEE shows a slightly better performance. It

is worth mentioning that all learning curves of Figure 7.8 are obtained by averaging over 200

independent Monte Carlo simulations. The claimed strength of MEEF in literature is its ability to

locate the majority of errors between system outputs and labels around the origin which becomes

more clear when we do error analysis. However, this claim is valid as long as the gap between

MEE and MCC cost functions is not large. This fact is shown in Table 7.1 where testing error

analysis of these three algorithms (MEE, MEEF with 1 fiducial point and Trimmed MEE) is

done for noises discussed in Figure 7.8. The error analysis is done based on the following metric

called mean absolute error (MAE):

MAE =
1
T

T

∑
t=1
|dt − yt |=

1
T

T

∑
t=1
|et |,

where T is the number of testing samples. Again, we ran 200 independent Monte Carlo simula-

tions, each with 2000 iterations (µ = 0.05, σ = 1, M = 100 and ε = 0.01), learned the system

parameters in each simulation and then obtained testing errors based on 2000 testing samples

for each simulation, therefore each MAE shown in Table 7.1 is obtained by averaging over 200
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Table 7.1: Testing Mean Absolute Errors of Different Algorithms under Different Noises

MEE MEEF Trimmed MEE

Exponential noise with 30dB SNR 0.0171±0.0012 0.0232±0.0016 0.0169±0.0010

Exponential noise with 50dB SNR 0.0017±0.0001 0.0023±0.0002 0.0017±0.0001

Gaussian noise with 30dB SNR 0.0262±0.0016 0.0262±0.0016 0.0262±0.0016

Mixture of Gaussians noise (7.7) 2.6669±0.4625 2.5824±0.4206 2.5485±0.4043

Mixture of Gaussians noise (7.8) 3.4912±0.5754 2.6762±0.4812 2.6469±0.4272

Mixture of Gaussians noise (7.9) 4.0958±0.6527 7.1222±0.4281 2.8526±0.5376

MAEs. The smallest MAE amongst all three algorithms for each noise is highlighted in bold.

As seen in this Table, for all noises Trimmed MEE gives the best result. More precisely, for

exponential noise MEE and Trimmed MEE outperforms MEEF, as expected because for this

noise gap between MEE and MCC cost functions is large. For Gaussian noise the performance

of all algorithms is the same. For mixture of two Gaussians noises, which have heavier tails than

that of Gaussian, as long as the gap between MEE and MCC is not large MEEF outperforms

MEE, although Trimmed MEE still shows the best performance. However, once this noise makes

a large gap between MEE and MCC cost functions, as noise (7.9) does, MEEF shows a weaker

performance even than MEE while Trimmed MEE shows the best performance again.

Figure 7.9 shows the testing error histograms (obtained based on 2000 testing samples)

for these three algorithms under noises (7.8) and (7.9). As shown in this Figure, we can see again

superiority of our algorithm where mass of the testing errors (approximately 90% of them) is

closer to the origin in Trimmed MEE compared to MEE and MEEF. Note that for noise (7.9),

which makes large gap between MEE and MCC cost functions, MEEF even performs worse than

MEE.
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a. b.

c. d.

e. f.

Figure 7.9: Testing error histograms of MEE, MEEF and Trimmed MEE obtained based on 2000
testing samples under Mixture of two Gaussians noises (7.8) and (7.9).

7.4 Conclusion

In this chapter, we address again robust online linear regression in the presence of

non-Gaussian noises, especially those with heavier tails than that of Gaussian. Error entropy

as a robust cost function has been utilized for robust learning under non-Gaussianity, however

since entropy is shift-invariant we need to take some extra steps to locate the error PDF around

the origin. To this end, two methods has been proposed nevertheless we show the shortcomings
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of these methods in this chapter and propose our alternative. Indeed, we employ our online

algorithm proposed in Chapter 5 in order to find the running quartiles of the error samples. Then,

we use them to detect and eliminate major outliers from learning procedure based on MEE.

We call our proposed method Trimmed MEE. Simulation results show the robustness of our

algorithm to non-Gaussian noises and its superiority over known methods in locating error PDF

around the origin. In more details, proposed algorithm results in a learning curve with faster

convergence to lower steady-state misalignment and also achieves lower testing error compared

to other algorithms.

In the next chapter, we conclude this thesis and make some recommendations for future

research directions.
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Chapter 8

Conclusion and Future Work

In this thesis, we discussed the fact that although the well-known classical central

limit theorem in introductory statistics creates the expectations that we must see the Gaussian

distribution everywhere in the real world, this is not necessarily true and the emergence of

non-Gaussian distributions in the environments such as computer systems and networks, stocks

and many more should be expected not surprising. Indeed, classical central limit theorem is

concluded under some assumptions that do not hold in many real scenarios. In real world,

many non-Gaussian distributions may arise that result in outliers. The problem of learning a

system affected by these distributions is of great importance inasmuch as conventional learning

approaches that are mostly based on Gaussian assumption are not effective anymore. In this

thesis, we addressed this problem by means of information theory as a more comprehensive

learning paradigm that encompasses effectively data distributions other than Gaussian as well.

More precisely, we improved the performances of correntropy and quadratic Renyi’s entropy as

two robust information-theoretic cost functions in the online linear regression (or linear adaptive

filtering).

In Chapter 3, we proposed a new hybrid algorithm based on recursive MCC and
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gradient-based MCC. This algorithm was demonstrated to outperform previous work in terms of

both convergence speed and steady-state misalignment. At the same time, the proposed algorithm

benefited from lower computational complexity compared to many other algorithms.

In Chapter 4, a modified version of MCC was proposed where an existing MCC

algorithm with adaptive kernel bandwidth was improved to learn the underlying linear system

more efficiently . In this improved version of MCC, abnormally large error samples or major

outliers were detected by using error quartiles and concepts of the inner and outer fences.

Quartiles were obtained by simply sorting error samples in each iteration. This elimination

of major outliers from learning process leads to better steady-state performance compared to

previous algorithms.

Chapter 5 was devoted to proposing an efficient technique to detect, and then exclude

abnormally large error samples from MCC. This technique is indeed an efficient running quartile

estimation based on quantization of error samples which is used instead of sorting. Using these

efficiently obtained quartiles and concepts of the inner and outer fences, we were able to reject

major outliers. This technique alongside correntropy led to lower steady-state misalignment

compared to previous algorithms.

In Chapter 6, we challenged the deployment of fiducial points in MEE. We saw that

error entropy is minimized to extract as much information as possible about the data generating

system. However, this minimum entropy can also occur for other error PDFs not located at the

origin inasmuch as entropy is shift-invariant. In these cases, an undesired estimate of the system

parameters is obtained. Therefore, an extra step needs to be taken to concentrate error samples

around the origin. The most celebrated approach towards that end is MEEF, in which some

external and artificial zero error samples, called fiducial points (not generated by the underlying

system), are added to the cost function as the reference points to force actual error samples to

get concentrated around them. Using these fiducial points translates MEEF into a weighted
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combination of MEE and MCC. We showed that incorporating these fiducial points into MEE

can even degrade the steady-state misalignment and/or convergence speed.

Eventually, we proposed an alternative to MEEF in Chapter 7 to concentrate error

samples around zero. We used our proposed quantization technique by which not only aforemen-

tioned need of setting errors around the origin in MEE was addressed, but also major outliers

were rejected from MEE-based learning and MEE performance was improved from convergence

rate and steady-state misalignment points of view.

Despite various researches on aforementioned information-theoretic cost functions

and many recent improvements, still many aspects of them have remained untouched. For

example, we have seen so far that real world data sets are conducive to non-Gaussian PDFs that

can even change in time, therefore data distribution cannot be found in terms of finite set of

parameters, consequently we need to use a non-parametric PDF estimation method such as Parzan

to estimate information-theoretic cost functions from unknown statistics. Better non-parametric

PDF estimation will yield more accurate results and need to be further investigated. As another

research direction, we can point to adaptation of kernel bandwidth. To the best of our knowledge,

there is no universal updating technique available for kernel bandwidth adaptation yet, while

proper adaptation of this free parameter can improve the learning performance significantly. In

addition to above research directions, note that we only discussed the deployment of information-

theoretic cost functions in online linear regression, while it seems that the appealing part of

incorporating information theory into learning is the fact that we can simply modify many other

conventional supervised and unsupervised learning methodologies [1]. As an example, we can

launch more investigations on incorporating information theory into deep learning. This is well-

known that deep learning outperforms traditional machine learning as the scale of data increases,

therefore, due to abundance of data these days and also having access to powerful graphics

processing units (GPUs) it is extensively being used as a strong tool, especially for feature
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engineering on its own [95–98]. Despite vast studies on deep architectures (such as [99–101]),

comprehensive deep learning topology for both Gaussian and non-Gaussian environments needs

further investigation [102]. As another direction for future research, note that the benefits of

incorporating information theory into learning are achieved at the cost of higher computational

complexity that may pose computational bottlenecks for large-scale data sets, therefore we can

search for more efficient approximates of information-theoretic cost functions to mitigate this

issue.

To sum up, we saw that the efficient extraction of information from data is the funda-

mental goal of data processing, however, if the environment does not follow Gaussian distribution,

employing conventional learning methods may fail to achieve satisfactory results. Unfortunately,

in many real world applications data statistics are unknown, in other words, we do not know

whether data follows a Gaussian behaviour or not, therefore, there is no guarantee that we can

efficiently extract information. This means, any future research on robust learning needs to

address efficient extraction of information in data processing and propose a comprehensive

learning paradigm with no need to have knowledge about statistics of the underlying environment.

The outcomes of these researches may find many new applications in computer science, biology,

physics, the social sciences, engineering, and everywhere that non-Gaussian distributions are

extensively observed.
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to Probability and Statistics: Understanding why and how. Springer Science & Business
Media, 2005.

[95] R. Sen, H.-F. Yu, and I. Dhillon, “Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting,” arXiv preprint arXiv:1905.03806,
2019.

[96] Q. Lou and L. Jiang, “She: A fast and accurate deep neural network for encrypted data,”
arXiv preprint arXiv:1906.00148, 2019.

[97] A. Siddique, S. Oymak, and V. Hristidis, “Unsupervised paraphrasing via deep reinforce-
ment learning,” in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1800–1809, 2020.

[98] P. Dütting, Z. Feng, H. Narasimhan, D. Parkes, and S. S. Ravindranath, “Optimal auctions
through deep learning,” in International Conference on Machine Learning, pp. 1706–1715,
PMLR, 2019.

[99] D. Zou and Q. Gu, “An improved analysis of training over-parameterized deep neural
networks,” arXiv preprint arXiv:1906.04688, 2019.

[100] Y. Xu, P. Cao, Y. Kong, and Y. Wang, “L dmi: A novel information-theoretic loss function
for training deep nets robust to label noise.,” in NeurIPS, pp. 6222–6233, 2019.

[101] S. Oymak and M. Soltanolkotabi, “End-to-end learning of a convolutional neural network
via deep tensor decomposition,” arXiv preprint arXiv:1805.06523, 2018.

[102] L. Chen, H. Qu, and J. Zhao, “Generalized correntropy based deep learning in presence of
non-gaussian noises,” Neurocomputing, vol. 278, pp. 41–50, 2018.

112


	List of Figures
	List of Tables
	Introduction
	Contributions of the Dissertation
	A Hybrid Approach to Online Regression Based on Maximum Correntropy Criterion
	Mitigating Outlier Effect in Online Regression: An Efficient Usage of Error Correntropy Criterion
	An Efficient Running Quartile Estimation Technique alongside Correntropy for Outlier Rejection in Online Regression
	Challenging the Deployment of Fiducial Points in Minimum Error Entropy
	Trimmed Minimum Error Entropy for Robust Online Regression

	Outline

	Preliminaries
	Introduction
	Correntropy and Quadratic Renyi's Entropy
	Correntropy
	Quadratic Renyi's Entropy
	Parzen Non-parametric PDF estimation
	Relation Between Parzen PDF Estimation and ECC or EEC


	A Hybrid Approach Based on Correntropy
	Introduction
	RLS-type and LMS-type MCC
	Recursive MCC
	LMS-type Method based on MCC

	The Proposed Hybrid MCC
	Simulation Results
	Conclusion

	Outlier-Rejected Adaptive MCC 
	Introduction
	Our Proposed Outlier-Rejected AMCC
	Review of AMCC Algorithm
	Modification to AMCC Algorithm

	Simulation Results
	Conclusion

	Efficient Outlier Detection in MCC
	Introduction
	Our Running Quartile Estimation Technique
	Simulation Results
	Conclusion

	Challenging MEEF
	Introduction
	What is wrong with MEEF?
	Simulation Results
	Conclusion

	Trimmed MEE
	Introduction
	Combining Outlier Detection with MEE
	Simulation Results
	Comparison of MCC and MEE
	Performance Analysis of Algorithm 3 for Error Samples Generated from MEE Algorithm
	Trimmed MEE

	Conclusion

	Conclusion and Future Work
	Bibliography

