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Abstract

Computational quantum chemistry can be more than just numerical experiments

when methods are specifically adapted to investigate chemical concepts. One impor-

tant example is the development of energy decomposition analysis (EDA) to reveal

the physical driving forces behind intermolecular interactions. In EDA, typically the

interaction energy from a good-quality density functional theory (DFT) calculation

is decomposed into multiple additive components that unveil permanent and induced

electrostatics, Pauli repulsion, dispersion, and charge-transfer contributions to non-

covalent interactions. Herein, we formulate, implement and investigate decomposing
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the forces associated with intermolecular interactions into the same components. The

resulting force decomposition analysis (FDA) is potentially useful as a complement to

the EDA to understand chemistry, while also providing far more information than an

EDA for data analysis purposes such as training physics-based force fields. We apply

the FDA based on absolutely localized molecular orbitals (ALMOs) to analyze inter-

actions of water with sodium and chloride ions as well as in the water dimer. We also

analyze the forces responsible for geometric changes in carbon dioxide upon adsorption

onto (and activation by) gold and silver anions. We also investigate how the force

components of an EDA-based force field for water clusters, namely MB-UCB, compare

to those from force decomposition analysis.

1 Introduction

Intermolecular interactions are important for understanding chemistry as they affect struc-

tures, properties, and reactivity of chemical systems. Examples include red- or blue-shifts

in vibrational frequencies when forming hydrogen bonds,1–7 wavelength tuning of organic

chromophores by the solvation or protein environment,8–14 and modulation of the catalytic

performance of molecular CO2RR catalysts through interactions with ligands in complexes’

second coordination sphere.15–22

Decomposing non-covalent interactions has been increasingly important to understand-

ing the origins of these interactions as well as the development of classical force fields for

the simulation of chemical and biochemical systems.23–31 Moreover, to obtain statistical me-

chanical ensembles of a condensed phase chemical system, molecular dynamics simulations

are required, for which accurate and efficient evaluation of intermolecular forces is important

for systems where quantum chemical calculations are impractical.

Many energy decomposition analysis (EDA) methods have been proposed for separating

different physical contributions to the non-covalent interaction energy, which are reviewed

elsewhere.32–38 Alternatively, Quantum Chemical Topology (QCT) methods such as the so-
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called Interacting Quantum Atoms (IQA)39,40 also afford the decomposition of the total (or

interaction) energies, in particular into atomic and diatomic terms. With such a strategy

both the covalent and non-covalent interactions are treated on equal footing41 and, with the

help of machine learning, force fields like FFLUX42 are being developed. In this work, we are

using the absolutely localized molecular orbitals EDA (ALMO-EDA),38,43–46 which divides

the interaction energy into frozen (interaction between unrelaxed monomers), polarization

(energy lowering due to intra-fragment relaxation of monomer wavefunctions), and charge

transfer (energy lowering due to electron delocalization between fragments) contributions.

The adiabatic EDA47 optimizes the geometry successively on each of the intermediate po-

tential energy surfaces (frozen, polarized, and fully relaxed), in essence attributing geometric

changes and shifts in other molecular properties upon the formation of intermolecular com-

plexes to the same terms as in ALMO-EDA. The adiabatic EDA has been successfully used

to understand geometric changes arising from intermolecular interactions in a wide variety of

systems.6,47–52 For example, the ̸ N-B-H angle in the ammonia-borane complex only bends

when charge is allowed to flow from the ammonia to the borane molecule.47,52 The adiabatic

EDA thus attributes changes in observables to the different EDA contributions, which can

be crucial for connecting to experimental results. Relationships between observables and

descriptors originating from QCT approaches have also been reported.53,54

Many fixed-charge and polarizable force fields have been developed over the years for

condensed-phase molecular simulations.27–29,31,55–61 Recently, the T. Head-Gordon lab devel-

oped the MB-UCB many-body force field for water-water and water-ion interactions,29,31

which employs terms that resemble those produced by ALMO-EDA of quantum mechani-

cal calculations. For example, the polarization energy in the second-generation ALMO-EDA

allows electrons to move to the space of dipolar and quadrupolar density response to an exter-

nal electric field, while MB-UCB uses distributed multipole analysis of classical anisotropic

dipolar polarization to evaluate the polarization energy. Impressively, the terms from the

different methods are consistent with each other for a wide variety of water dimer geometries
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despite being designed independently of each other.29 While the total interaction energy and

its breakdown given by MB-UCB and ALMO-EDA are in very good agreement, the forces

remain to be compared to ensure the quality of dynamics driven by MB-UCB within a large

ensemble of configurations.

In this work, we decompose the forces of an intermolecular interaction into constituent

terms that directly correspond to those within the ALMO-EDA. After presenting the relevant

theory, we demonstrate the usefulness of this decomposition for understanding chemistry

with proof-of-concept examples of water interacting with sodium and chloride ions as well

as the water dimer. We transform these forces to the internal coordinates using Wilson’s

B-matrix,62 allowing us to see forces that are more intuitive and relatable to vibrational

spectroscopy. For example, the H-O-H bending in the water molecule is used to understand

the molecular environment.63 We then study CO2 adsorption and activation on Au and

Ag anions and compare the two systems’ forces within internal coordinates. The force

decomposition is also applied to validate the forces produced by the MB-UCB force field. The

force decomposition results, based on high-quality DFT calculations of the forces, may also

be useful for future force-field training. This work builds on the adiabatic EDA to advance

the idea of “property decomposition” analysis, in which not only the interaction energy

is broken down, but also other derivatives of the energy, which are molecular properties.

This general approach can be extended to the effect of intermolecular interactions on other

properties of interest, such as the hessian matrix, NMR chemical shieldings, dipole moments

or polarizabilities, etc. The observable changes in properties associated with non-covalent

interactions can then be attributed to the different physical effects at play.
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2 Theory

2.1 Energy Decomposition Analysis

In the ALMO-EDA, the total binding energy of an intermolecular complex is broken down

into four components coming from the successive removal of constraints to minimize the

energy of the supersystem:

∆Ebind = ∆E GD + ∆Efrz + ∆Epol + ∆Ect (1)

The geometric distortion ∆EGD refers to the energy consumed for each fragment to change

its geometry from the equilibrium structure in isolation to that in the complex. The frozen

(FRZ) interaction energy, ∆Efrz, is defined by the energy of the frozen wavefunction,64

relative to that of the isolated non-interacting fragments (in distorted geometries). It cor-

responds to the energy change upon moving the isolated fragments into their positions in

the complex while keeping their own electronic structure unchanged. The frozen wavefunc-

tion is the antisymmetric product of the isolated fragment wavefunctions, whose associated

one-particle density matrix (1PDM), Pfrz, is given by

Pfrz = (Co)frzσ
−1
frz (Co)

T
frz, (2)

where (Co)frz is the direct sum of the (occupied) AO-to-MO coefficient matrices of the isolated

fragments and σfrz is the overlap matrix of the orbitals coming from the (Co)frz matrix. This

1PDM definition gives us the frozen interaction energy definition:

∆Efrz = E[Pfrz] −
∑
A

E[PA]. (3)

The next contribution, the polarization energy (∆Epol), arises from allowing the occupied

orbitals on each fragment to mix with the virtuals only on the same fragment. Minimizing
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the energy subject to this constraint, also known as the SCF-MI procedure,65–69 leaves the

AO-to-MO coefficient matrix still block-diagonal and the corresponding MOs ”absolutely

localized” on each fragment while also polarized in the presence of each other. The resulting

electronic wavefunction is referred to as the polarized state, whose 1PDM is denoted as Ppol.

The polarization energy is then defined as the energy lowering of the polarized state relative

to the frozen state:

∆Epol = E[Ppol] − E[Pfrz]. (4)

Since the polarization density comes from variationally minimizing the energy, ∆Epol is

negative semi-definite. Lastly, by removing the ALMO constraint, we obtain the fully relaxed

state for the intermolecular complex. The energy lowering due to electron delocalization is

defined as the charge transfer term (∆Ect):

∆Ect = E[Pfull] − E[Ppol], (5)

where Pfull is the 1PDM for the fully relaxed state.

2.2 Force Decomposition Analysis

Within a variational EDA scheme like the ALMO-EDA, the analytic nuclear forces associ-

ated with each of the intermediate (including the initial and final) states can be obtained.

Following the derivations in our previous work,47 namely the adiabatic EDA scheme where

the nuclear forces were used to optimize the complex geometry on the frozen, polarized,

and fully relaxed surfaces, here we introduce the ALMO-based force decomposition analysis

(FDA) method, where the nuclear derivatives of the frozen (∆Efrz), polarization (∆Epol),

and charge transfer (∆Ect) components of the interaction energy, as well as that of the clas-

sical electrostatics component of the frozen interaction (∆Ecls-elec), are obtained. Note that

many of the derivations here can be applied to other variational EDA schemes.

Just as ALMO-EDA decomposes an interaction energy, the ALMO-based FDA decom-
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poses intermolecular forces into frozen, polarization, and charge transfer components:

∆Fbind = ∆FGD + ∆Ffrz + ∆Fpol + ∆Fct (6)

We define the geometric distortion force ∆FGD consistently with the ∆EGD term. Thus

∆FGD consists of the forces associated with deforming to the complex geometry:

∆FGD =
∑
A

FA[PA] −
∑
A

Fiso.geom.
A [PA] (7)

The second term typically vanishes since the isolated fragment geometry has zero forces for

a stable geometry. As for ∆EGD, the geometric distortion force, ∆FGD, is non-zero if the

fragment geometries in the complex are different from the isolated ones. All of these forces

are standard electronic structure derivatives, and we do not discuss them further.

The frozen component of the intermolecular forces (∆Ffrz) can be obtained by differen-

tiating Eq. (3) with respect to the nuclear coordinates:

∆Ffrz = Ffrz[Pfrz] −
∑
A

FA[PA] (8)

where Ffrz denotes the forces on the frozen PES, and the term being subtracted on the

right-hand side is the collection of isolated fragment forces that arises from the distortion

of fragment structures within the complex. Note that these isolated fragment forces can

be compared to the nuclear derivatives of the bonded terms in molecular mechanical force

fields, while in this work we focus on the intermolecular force components. With superscripts

“x” signifying derivatives with respect to the x-th nuclear coordinate (and superscripts “S”

and “∆A” in the same fashion), based on the derivation in our previous work,47 the x-th

component of forces on the frozen surface, (Ffrz)x, is given by

(Ffrz)x = −

[
V x
nn + Pfrz · hx +

1

2
Pfrz · IIx ·Pfrz + Ex

xc + ES
frz · Sx +

∑
A

(
E∆A

frz ·∆x
A

)]
, (9)
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where Vnn is the nuclear-nuclear coulomb repulsion potential, h is the core Hamiltonian

(kinetic energy and nuclei-electron attractions), II is the AO two-electron integrals, Exc is

the Kohn-Sham (KS) exchange-correlation energy, S is the AO overlap matrix, and ∆A

is the matrix of occupied-virtual orbital rotations (variational parameters) within a given

fragment. The first four terms are identical to those in the KS-DFT nuclear forces, while the

last two terms require treatments that are specific to the frozen PES. The reader is referred

to Ref. 47 for details.

Similarly, the polarization contribution to the intermolecular forces can be evaluated by

differentiating Eq. (4):

∆Fpol = Fpol[Ppol] − Ffrz[Pfrz] (10)

The derivation of Fpol depends on the definition of fragment polarization subspaces in the

SCF-MI calculation,70 i.e., the degrees of freedom for each fragment’s occupied-virtual mixing

to occur. In the simplest case where the full AO space of each fragment is active in the

polarization (SCF-MI) calculation as in the 1st-generation ALMO-EDA,43 Fpol has a similar

expression to Eq. (9) except that the last term vanishes due to the stationary condition of

SCF-MI (E∆A
pol = 0):

(Fpol)x = −
[
V x
nn + Ppol · hx +

1

2
Ppol · IIx ·Ppol + Ex

xc + ES
pol · Sx

]
(11)

Note that in this simplest case, ES
pol has an identical form to that in the standard SCF

energy gradient.47 Finally, the charge-transfer contribution to the intermolecular forces can

be obtained by differentiating Eq. (5):

∆Fct = Ffull[Pfull] − Fpol[Ppol] (12)

where Ffull stands for the standard KS-DFT forces for the fully relaxed complex.

The frozen interaction term in ALMO-EDA comprises contributions from permanent elec-
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trostatics, Pauli repulsion, and dispersion.71 To improve the interpretability of FDA results

and to facilitate comparison with terms in polarizable force fields, here we introduce how

one can evaluate forces arising from “quasi-classical” electrostatics (∆Fcls-elec), i.e., coulomb

interactions between charge distributions (nuclei and electrons) of different fragments, which

can be employed to benchmark forces arising from permanent charge and multipole inter-

actions in a force field. The remainder of ∆Ffrz then incorporates contributions from the

non-electrostatic components of the frozen interaction (Pauli repulsion and dispersion), which

we refer to as the van der Waals (vdW) contribution since it corresponds roughly to the sum

of attractive and repulsive vdW potential in a force field:

∆Ffrz = ∆Fcls-elec + ∆Fvdw (13)

The quasi-classical electrostatic interaction among N fragments can be expressed in the

following compact form:

∆Ecls-elec =
1

2

N∑
A ̸=B

[
PA ·VB

ee+en + V AB
nn

]
(14)

where PA is the AO-basis 1PDM of isolated fragment A, VB
ee+en is the coulomb potential

(nuclear and electronic) arising from fragment B, also in the AO basis, and V AB
nn is the

nuclear-nuclear repulsion potential between fragments A and B. Differentiating Eq. (14)

yields

(∆Fcls-elec)x = −1

2

∑
A ̸=B

[
(PA)x ·VB

ee+en + PA · (VB
ee+en)x + (V AB

nn )x
]
, (15)

where the derivative of isolated fragment density PA can be further expanded based on its

dependence on fragment A’s AO overlap matrix (SA) and occupied-virtual orbital rotation

(∆A):

(PA)x = PSA
A · (SA)x + P∆A

A · (∆A)x (16)

Note that the detailed forms of PSA
A and P∆A

A have been derived in our previous work.47,72
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For completeness here we show the mathematical details regarding these two derivatives in

SI Sec. S1.

2.3 The MB-UCB Force Field

The MB-UCB force field29,31 was developed based on the principles of the many-body ex-

pansion combined with ALMO-EDA variational energy decomposition analysis for each of

the terms of the total intermolecular energy

Einter = Eelec + Epol + ECT + Edisp + EPauli (17)

This advanced non-reactive force field introduced anisotropic atomic polarizability of the

water molecule,73 as well as explicit treatment of charge transfer and charge penetration

contributions for both water and aqueous alkali metal and halogen ions.29,31

The permanent electrostatics for the MB-UCB force field uses atom centered point mul-

tipoles

Eelec =
∑
i<j

MT
i TijMj (18)

where MT
i is the multipole coefficient vector and Tij is the multipole interaction tensor

that consists of appropriate associated derivatives of 1/rij. The monopole-monopole term

is modified to describe charge penetration (CP) via separation of the atomic charge into

a core nuclear charge, Zi and smeared electron cloud charge Z − qi. Hence the modified

charge-charge electrostatic interactions between two atoms A and B with atomic charges qA

and qB are expressed as

Eq−q
elec =

ZAZB

r
− ZA (ZB − qB)

r
fdamp −

ZB (ZA − qA)

r
fdamp

+
(ZA − qA) (ZB − qB)

r
f overlap
damp

(19)
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The two damping functions,

fdamp = (1 − exp(−αr))

f overlap
damp = (1 − exp(−βAr))(1 − exp(−βBr))

(20)

require two parameters, α and β, to control the damping of core–electron and electron–electron

interactions, respectively, in order for the charge penetration effects to vanish rapidly and to

recover the classical Coulombic multipolar interactions at longer distances. We use the CP

model parameterization due to Piquemal and co-workers.74

Many-body polarization is explicitly incorporated by point induced dipoles, µind, at each

atomic center55

µind
i = αi

[∑
j

TijMj −
∑
j ̸=i

Td−d
ij µind

j

]
(21)

where αi is the atomic polarizability and TijMj formulates the permanent electric field.

Td−d
ij is the dipole-dipole interaction tensor in which the off-diagonal blocks of Td−d are

Thole damped75 Cartesian interaction tensors between induced dipoles of two polarizable

sites i and j. Unlike other polarizable force fields such as AMOEBA and AMOEBA+ that

use rotationally invariant isotropic atomic polarizabilities28,59,76, MB-UCB uses a rank two

anisotropic atomic polarizablity tensor. The polarization energy can expressed in terms of

induced dipoles as

Epol = −1

2

∑
i

µind
i Ei (22)

and the induced dipoles at each multipole site are obtained by solving Equation 21 self-

consistently.77,78

MB-UCB uses an empirical many-body function similar to the polarization energy in-

duced multipoles to incorporate the many-body charge transfer energy.79
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ECT−ind = −1

2

∑
i

µct−ind
i Ect

i

µct−ind
i = αct

i

[∑
j

Tct
ijMj −

∑
j ̸=i

T
ct[d−d]
ij µct−ind

j

] (23)

where αct
i controls the charge transfer energy between two multipole sites through a response

to the permanent electrostatics, and the multipole interaction matrix (Tct) elements are

damped with an exponential damping function.

Tct
ζ = −

[
1 − d exp

(
−bu3

)] rζ
r3ij

, ζ = x, y, z u =
rij(

αct
i α

ct
j

)1/6 (24)

The three parameters αct
i , b and d are responsible for the fast exponential decay of the charge

transfer energy, which should be more short-ranged than polarization.29,31

The remaining energy terms are Pauli repulsion and dispersion, and are modeled in MB-

UCB as a van der Waals interaction using a buffered 14-7 pairwise-additive function proposed

by Halgren80 and utilized in all AMOEBA force fields.55,59,76

EvdW =
∑
i<j

ϵij

(
1 + δ

σij + δ

)7(
1 + γ

σ7
ij + γ

− 2

)
(25)

where ϵ defines the energy scale, σ = R0/r is the distance between two atoms, and R0 is the

distance corresponding to the minimum energy. Like AMOEBA,81 we set the two constants

δ and γ to 0.12 and 0.07, respectively. Given the total functional forms of the energy terms

of MB-UCB, the corresponding force terms are easily defined through the usual chain rule

formulations and easily compared to the FDA analysis proposed here.

2.4 Computational details

The force decomposition analysis method discussed here was implemented in a developer

version of Q-Chem 5.82 The geometries used for molecular calculations were optimized and

run at the ωB97X-D83/def2-TZVPPD84 level of theory, with exception to the gold/silver
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CO2 complex, where ωB97X-V85 density functional instead along with the appropriate def2-

ECP.86 To diagnose the atomic forces of MB-UCB, we use the same level of theory used

in the original paper,29 namely ωB97X-V85/def2-QZVPPD.84 DFT numerical integration

was performed on (99,590) grid for XC functional and SG-187 for non-local correlation. All

geometries are included in the supporting information (SI).

Fifty water dimer geometries were used to compare the atomic force contributions be-

tween FDA and MB-UCB. The geometries were taken from the iAMOEBA training data

set,57 where pairs of molecules were randomly picked from AMOEBA liquid water simulation

between 257.15 - 373.15 K such that it is representative of a wide range of the phase space.

The geometries are provided in the SI.

Forces are turned into internal coordinates by a linear transformation using the pseudo-

inverse of Wilson’s B matrix.62,88,89 The B matrix was generated using Q-Chem 5.82 Details

are included in SI Sec. S2

3 Results and discussion

3.1 H2O · · ·Na+, Cl– · · ·HOH and the water dimer

First we look at the water molecule interacting with an innocent cation, Na+, and a simple

anion, Cl– . Aside from the importance of these examples in understanding water-ion inter-

actions, they will illustrate the nature of the FDA information, as well as its representation

in internal coordinates. We use geometries where the position of the ion is optimized rel-

ative to a water molecule constrained to its isolated geometry. This is a convenient choice

because Ftot = ∆Fint since FA = 0 for A = H2O. As a result, the interfragment degrees of

freedom will have zero net force, as well as zero resultant force in the FDA in order to see

how the FDA components cancel each other out. By contrast, there will be nonzero ∆Fint

for intramolecular degrees of freedom, which will indicate how such internal coordinates will

deform in a fully optimized complex. The FDA will reveal which component contributions
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are primarily responsible for such changes.

At equilibrium, the Na+ –O vector is aligned with the water dipole vector, optimizing the

charge-dipole interaction. With C2v symmetry, there are only three non-redundant internal

coordinates, namely O–H, O–Na, and ̸ HOH. The FDA is shown in the left panel of Fig. 1.

By far the most interesting result is ∆Fint(O − Na+), which is overall zero, as a result of a

strong force of extension due to Pauli repulsion (the van der Waals term in Fig. 1) being

compensated by an equally strong force of contraction due to electrostatic attraction. The

electrostatic attraction force is about 80% due to the permanent electrostatics, and only 20%

due to polarization (of water by Na+). There is negligible contribution from charge transfer,

emphasizing the innocent nature of Na+ as an ineffective Lewis acid. The O–H bonds are

remote from Na+, so the forces distorting the optimal monomer geometry in the complex

are small. The largest formation force is ∆Fint(O−H), which has a small force of extension

driven by polarization. We can understand this effect as a result of promotion of a fraction

of an electron from the σOH orbitals to antibonding orbitals, presumably with σ∗
OH character.
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Figure 1: FDA results in the internal coordinates for H2O interacting with Na+ (left) and
Cl– (right). These forces are evaluated at the PES minima, keeping the water molecule at
its isolated geometry. The tables at the bottom replicate the data with numbers for easier
comparison.

FDA for the hydrogen-bonded complex formed between water and the chloride anion, as

given in the right panel of Fig. 1, presents an interesting contrast with the H2O · · ·Na+ case,

which was previously analyzed by the ALMO-EDA.72,90 Despite on-going debate,91–95 it is

fairly well-established that hydrogen-bonds involve significant contributions from permanent

and induced electrostatics, and charge transfer,44,47,95 in competition with Pauli repulsion.

Focusing first on the inter-fragment Hd –Cl– force, which is optimized to zero, we see three

forces of contraction (permanent electrostatics > charge transfer > polarization) balanced

by the extension force due to Pauli repulsion. From a force equilibrium perspective, this

very nicely illustrates the “driving forces” that give rise to the hydrogen bond. The other

interfragment coordinate, ̸ OHdCl, is optimized as a balance between permanent electrostat-

ics (attempting to shrink the angle), and Pauli repulsion (attempting to enlarge the angle).

This competition is controlled by the frozen part of the interaction energy, as previously
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noted for the water dimer.47 Within the water molecule, there is a strong force of extension

along the OHd bond. Its primary origin is charge transfer, followed by Pauli repulsion, in-

duced electrostatics and permanent electrostatics. Both CT and polarization can be readily

understood in terms of partial occupation of the σ∗
OHd

orbitals.

Figure 2: FDA results in the internal coordinates for the water dimer at the minimum-
energy distance, with the monomers fixed in their isolated geometries. The table at the
bottom replicates the data with numbers for easier comparison.

Next, we examine FDA for the hydrogen-bonded water dimer, as shown in Fig. 2; this

system has also been carefully analyzed previously by the ALMO-EDA.72,93 The zero net

force on the hydrogen-bond coordinate, O1Hd, shows the FDA view of this characteristic

hydrogen-bond interaction. Classical electrostatics dominates the forces seeking to further

shorten the hydrogen bond, consistent with force-field viewpoints. Intermolecular charge

transfer is the second strongest force of contraction, followed by polarization. Pauli repulsion

provides an exactly balancing force of extension. Within the proton-donor water molecule

(which of course is the electron pair acceptor), the intramolecular O2Hd bond constrained

to the geometry of the free water molecule experiences a force of extension to which all

components contribute with the same sign. Similar to the water-chloride complex, charge
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transfer and polarization partially occupy the antibonding σ∗
OHd

orbitals and are the leading

drivers of O2Hd bond elongation.

3.2 Assessing force components of an advanced water force field

Generating the force vectors corresponding to each energy term in the ALMO-EDA yields

a greatly augmented set of data at each geometry. Such data can in principle be employed

to aid in the development or validation of advanced force fields, perhaps in conjunction

with powerful existing tools such as Force Balance76,96 or machine learning.97,98 To illustrate

the use of FDA data, we assess the forces that are obtained from a recently reported force

field for water, MB-UCB.29 Although the energies of MB-UCB have already shown to be in

excellent agreement with ALMO-EDA,29 no comparable assessment of the decomposed forces

has yet been done, although total and force components of the complete energy derivative

have been assessed for other force fields such as iAMOEBA57 and AMOEBA1459 to which

we compare below. The term-by-term force contributions from the FDA against MB-UCB

has been assessed for a set of 50 water dimer geometries extracted from finite temperature

MD trajectory as described in the computational details section. For these snapshots, the

ALMO-EDA energy components and the corresponding contributions for MB-UCB, shown

in SI Sec. S3, show excellent agreement, as expected based on our previous work.29

We begin our assessment by comparing the FDA and MB-UCB force components on the

center of mass (CoM) of each water molecule in the data set broken down by interaction. The

COM forces are a sum of all atomic forces on a molecule, also referred to as molecular forces

or net forces.57,99 The results are shown as correlation plots in Fig. 3 in which the RMS error

in the total CoM force is ∼8 kJ/mol/Å. This is a reasonably small error when considering

the fact that a DFT geometry optimization is considered converged at a maximum force

of ∼1-2 kJ/mol/Å, and is comparable to the ∼10 kJ/mol/Å RMS error in AMOEBA and

iAMOEBA forces versus ab initio forces reported for water clusters.57,59 Perhaps the most

important point that emerges from Fig. 3 is the fact that the RMSD in each non-bonded
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Figure 3: Correlation between FDA decomposed forces and the corresponding MB-UCB forces
on the centers of mass of each water molecule for a sample of 50 water dimer geometries.
The force decompositions considered are electrostatics (ELEC), van der Waals (vdW), po-
larization (POL), and charge transfer (CT), and the total intermolecular interaction (TOT).
The color bins indicate the distance to the closest atom of the other fragment, i.e., small
numbers indicate the dimer is in the compressed region. The equilibrium water dimer closest
contact atoms sit at 1.9 Å, which corresponds to the data points colored in blue. The dashed
line corresponds to a least squares fit of the errors, where the line fit equation is shown in
the legend of each plot.
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contribution to the MB-UCB CoM force is smaller than the RMSD in the MB-UCB total

force. Even the very large ELEC and vdW forces exhibit RMSD values of only 4.7 and

5.4 kJ/mol/Å, respectively. The largest deviations are associated with the largest forces, as

expected, where short-range damping, such as Thole damping of polarization,75 are likely to

exert an influence. Overall, we can conclude that the decomposed contributions to the CoM

forces via MB-UCB are as good or better behaved than the total MB-UCB CoM forces.

A more stringent FDA test is to assess the errors in the Cartesian forces on each atom,

for which a correlation plot between the FDA and MB-UCB decompositions is shown in

Fig. 4. The overall RMSD value is increased by only ∼10% for the atomic forces vs the CoM

forces, rising to ∼8.8 kJ/mol/Å, which is encouragingly good performance when compared

to iAMOEBA or AMOEBA, in which atomic forces showed RMS errors more than twice as

large as CoM forces.57 Although the RMS of the ELEC atomic forces increases relative to

the COM electrostatic forces, they are still comparable to the total atomic force errors.

However, the vdW term shows a significantly larger atomic force error compared to the

total or COM force error. It is pertinent to mention that MB-UCB situates the vdW centers

for the hydrogen atoms at a fixed fraction (0.91) of the OH bond length, rather than at

the atomic centers themselves. Hence the virtual site forces must be redistributed over

the particles with mass in a consistent way, which only guarantees that the total force is

preserved, and may explain some of the vdW force deviations observed. Even so, there is

some error cancellation between ELEC and vdW atomic forces as seen in the ELEC+vdW

plot in Fig. 4, which was not the case in the CoM force components. Finally, the more

challenging nature of the atomic force components (and the total atomic force) is also evident

in the fact that the largest errors no longer occur predominantly at the largest absolute force

values. Fig. 4 shows RMS errors when either MB-UCB predicts near zero atomic forces

compared to finite FDA forces (such as for POL or CT) or that finite MB-UCB atomic

forces are found when FDA forces are near zero (for example, vdW).
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Figure 4: Correlation between FDA decomposed component forces and the corresponding MB-
UCB forces on the atomic centers of each water molecule for a sample of 50 water dimer
geometries. Other details are as defined in Fig. 3.

One more way to compare MB-UCB forces against the FDA results, is to separately

evaluate the RMS deviations in the total CoM force (left panel) and the atomic forces (right
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panel) as a function of the closest intermolecular distance in Fig. 5. These plots make it clear

that errors decay rapidly as a function of intermolecular separation. The plots also serves

to emphasize the fact that the quality of the individual MB-UCB decomposed CoM force

is statistically better than the MB-UCB total force. On the other hand, at intermolecular

distances of 2 Å and shorter, errors in the MB-UCB vdW force contribution are larger than

the total MB-UCB RMSD; in other words, there is partial error compensation with the

ELEC term in particular. It is encouraging that the errors associated with the MB-UCB

description of charge transfer and polarization contributions remain relatively low even in

the compressed region for both the atomic force and CoM force, although their magnitude

increases with the reduction of the closest contact distance. The CT term shows more scope

for improvement, which is likely to be a result of the less physically appropriate form that

was employed within MB-UCB.29

Figure 5: Mean absolute deviations in the total CoM force (left panel) and the atomic forces
(right panel) as a function of the closest intermolecular distance. The mean errors in MB-
UCB forces plotted against the closest contact between the two water molecules broken down
into the non-bonded components of interaction. The left panel applies to the CoM force on
each water molecule, while the right panel applies to the atomic forces. Values plotted are
the RMSDs for all data points within each 0.1 Å bin of closest intermolecular distance. The
error bars indicate 95% confidence interval.
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3.3 Interaction of CO2 with Au– and Ag–

The reduction of CO2 to CO2
•– is the first step on the pathway towards conversion of CO2

into fuels, of which the simplest is 2-electron reduction to CO2.
100 The reverse reaction, CO

oxidation to CO2, is also well-studied.101 At the level of model systems, negatively charged

gold oxide clusters have been shown to react with CO to yield CO2,
102 via reactions as

simple as AuO– + CO −−→ Au– + CO2. The exit channel complex, [Au · · ·CO2]
– , has been

studied as part of that reaction,102 as well as characterized by separate experiments and

computations.103–105 Remarkably, as shown in Fig. 6(a) and (b), there are two local minima

in the exit channel: a strongly bound chemisorbed structure, which exhibits significant

activation (i.e., reduction) of the CO2 ( ̸ OCO = 143◦), and a physisorbed complex where

CO2 is not activated (̸ OCO = 172◦).

Figure 6: A diagram showing the different configurations of the Au–CO2 with the labeled
bond distances and angles; due to C2v symmetry, there are only 3 non-redundant internal
coordinates, which are the Au–C distance, the C–O bond length, and the CO2 bending
coordinate. (a) the chemisorbed species at R(AuC) ∼ 2.2 Å, (b) the physisorbed species
at R(AuC) ∼ 3.2 Å, (c) a constrained geometry (R(AuC) optimized with CO2 fixed at its
optimal isolated geometry) exhibiting a minimum at R(AuC) ∼ 3.4 Å, (d) the charged anion
of CO2

•– .

On the other hand, the silver anion was reported experimentally to exhibit only the

physisorbed species,105 perhaps reflecting the smaller size of the gold atom compared to

silver due to relativistic contraction. We show a fully relaxed potential energy scan along the
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M–C distance with the energy decomposition analysis results in Fig. 7. General agreement

with the experimental facts is evident in the PES scan. The size effect is already clear

with Ag showing more repulsive van der Waals interactions (sum of Pauli repulsion and

dispersion) at 4 Å and stronger electrostatic attraction than Au. Despite charge transfer

being a dominant contribution to the interaction, CT is very comparable for Au and Ag

at shorter M–C distances, although Ag’s CT is stronger than Au’s at longer distances due

to size. With an ionization energy of only 126 kJ/mol,106 Ag– is a stronger electron donor

(Lewis base) than Au– , whose ionization energy is 223 kJ/mol.107

Figure 7: Fully relaxed potential energy surface scans (kJ/mol) for Au–CO2 (black dashes)
and Ag–CO2 (black dots) with the EDA components (dashes for Au–CO2 and dots for
Ag–CO2).

Next, we look into the forces for both the physisorbed and chemisorbed species. For

easier comparison, we take the geometries of two minima for the gold complex and use these

same geometries for silver. Since the CO2 molecule in these geometries is distorted compared

to the isolated molecule, we will refer to that difference in energy as a geometric distortion

(GD) energy. Similarly, we refer to the forces that arise from the geometric distortion energy

(which will cause the CO2 to relax back to its isolated geometry) as the geometric distortion

force. The FDA results at the physisorbed geometry are shown in Fig. 8, while results at
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the chemisorbed geometry are shown in Fig. 9.

Figure 8: Comparison of the EDA components (in kJ/mol) and the decomposed forces
(in kJ/mol/Å) in internal coordinates for physisorbed Au– · · ·CO2 (left panel) and
Ag– · · ·CO2 (right panel) complexes, both evaluated at the nuclear coordinates optimized
for Au– · · ·CO2. The energies and forces are decomposed into geometric distortion (GD),
electrostatics (ELEC), van der Waals (vdW), polarization (POL), and charge transfer (CT),
and the total intermolecular interaction (Total). The table summarizes the same data with
additional significant figures.

We first discuss the physisorption results shown in Fig. 8. The larger size of Ag– versus

Au– results in a more attractive electrostatic interaction as well as stronger Pauli repulsion

in the van der Waals term, with no significant difference in polarization and charge transfer

terms. As we use the optimized Au– · · ·CO2 nuclear coordinates, the net force along each

internal coordinate is exactly zero for the Au– · · ·CO2 complex. Thus inspection of the FDA

reveals an exact force balance. Along the Au–C coordinate, van der Waals repulsion is pri-

marily balanced by electrostatics, with small contributions from polarization and CT also
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favoring shorter bonds. The fact that those latter contributions are so small indicates that

CO2 is scarcely activated, consistent with the near linearity of its optimized geometry. The

geometric distortion force favors removing the slight lengthening of the CO bond and very

slight bending of the CO2. In opposition, the drive for CO bond lengthening comes almost

entirely from CT, while van der Waals and CT both favor increased angle bending. Compar-

ing Ag– · · ·CO2 against Au– · · ·CO2 shows relatively subtle differences associated with the

stronger Pauli repulsion forces in the Ag system, which favor longer Ag–C separation, and

extension of the C–O distance as a result of its stronger CT (due to better donor-acceptor

overlap, as well as Ag– being a stronger Lewis base). Finally, as regards the physical driving

forces behind the physisorbed complex, both EDA and FDA reveal it to be synergy between

dispersion (as indicated by the net binding provided by ELEC+vdW), charge transfer, and

polarization.

For the chemisorbed Au– –CO2 and Ag– –CO2 species shown in Fig. 9, at the coordinates

of the optimized Au– –CO2 complex, there is a binding energy difference of 24 kJ/mol

in favor of the Au complex. Note that the scale for Fig. 9 is 10 times larger than for

the physisorbed structures given in Fig. 8. By far the dominant driving force behind the

chemisorption geometry is charge transfer. The smaller gold anion exhibits stronger binding

from electrostatics, polarization, and charge transfer as well as more repulsive van der Waals

interaction compared to the more diffuse silver anion. Despite the lower ionization energy

of Ag– vs. Au– , the compactness of the gold anion makes charge transfer in Au– –CO2

significantly more attractive than that in Ag– –CO2 in which the anion is more diffuse.

Accordingly, FDA on Ag– –CO2 shows a net force for Ag–C elongation. Turning to FDA

within the CO2 subunit, CT (elongation) vs. GD (contraction) determine the net force on

the C–O bond. On the other hand, the net ̸ OCO force displays an interesting synergy

between the van der Waals repulsion and charge transfer (both favoring bending), versus the

geometric distortion force (favoring linearization). To sum up, the compactness of the gold

versus silver anion trumps the stronger Lewis basicity of the silver anion in leading to much
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stronger chemisorption in the Au complex.

Figure 9: Comparison of the EDA components (in kJ/mol) and the decomposed forces (in
kJ/mol/Å) in internal coordinates for chemisorbed Au– –CO2 (left panel) and Ag– –CO2

(right panel) complexes, both evaluated at the nuclear coordinates optimized for Au– –CO2.
The energies and forces are decomposed into geometric distortion (GD), electrostatics
(ELEC), van der Waals (vdW), polarization (POL), charge transfer (CT), and the total
intermolecular interaction (Total). The table summarizes the same data with additional
significant figures.

4 Conclusions

We have reported theory, implementation, and model applications of an extension to the

adiabatic energy decomposition analysis47 to perform force decomposition analysis of the

force components obtained from an EDA method. In particular, the variational absolutely

localized molecular orbital EDA (ALMO-EDA) approach38 is used to analyze Kohn-Sham

density functional theory calculations on molecular complexes by differentiating key interme-
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diate energies associated with each non-bonded term. The result is a more information-rich

vector of how the different physical driving forces of intermolecular interactions affect each

atomic or internal coordinate force within a complex. We expect that our FDA approach

can be readily applied to other variational EDA schemes and extended to other molecular

properties besides nuclear forces.

More specifically, the net force on either each atom or each internal coordinate of a

molecular complex is decomposed into the following physically interpretable contributions.

1. A geometric distortion force (GD), which results from deforming a fragment optimized

in isolation to its geometry in the complex. The geometric distortion force will always

favor restoring the fragment to its isolated geometry.

2. Forces associated with quasi-classical electrostatics (ELEC), and van der Waals (vdW)

interactions (including attractive dispersion and repulsive Pauli interactions) are ob-

tained which sum to the net force resulting from the frozen interaction energy71 of the

ALMO-EDA method. For strongly interacting complexes ELEC and vdW forces are

strong and opposite in sign, and it can be advantageous to instead examine the frozen

force.

3. Forces associated with the polarization (POL) of the complex,70 as described by the

self-consistent field for molecular interactions (SCF-MI) approach65–69 in the basis of

fragment atomic orbitals.

4. Forces associated with charge delocalization or charge transfer72,108 between the frag-

ments comprising the complex, which represent the final increment to obtain the total

forces.

The model applications presented here are of some intrinsic interest, as well as serving

to illustrate the future utility of the FDA for more advanced problems. We presented three

sets of examples:
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1. We used FDA to examine the Na+H2O and Cl–H2O complexes, keeping H2O con-

strained to its free-molecule geometry. The resulting force balance along the inter-

molecular distance revealed a greater role for CT in the chloride complex. The net

forces within the water molecule showed the role of different components on the inter-

molecular interaction in distorting the geometry.

2. To illustrate the potential value of FDA to the advanced force field development com-

munity, we assessed the fidelity of contributions to the MB-UCB water force field

against the FDA components on snapshots of the water dimer. The results showed

very good performance for the total atomic forces, and particularly good performance

for the center of mass force decompositions, whose RMSD vs FDA components was

smaller than the total RMSD.

3. The FDA was also employed to analyze the physisorbed and chemisorbed complexes

formed between Au– and CO2, and to compare them against the corresponding Ag–CO2

complexes. The results showed that while Ag– is a stronger electron donor than Au– ,

the smaller size of Au– is crucial to the stronger chemisorption of CO2 to it.

Supporting Information

• Further details about deriving the classical electrostatics force, internal coordinate

transformation, energy comparison between MB-UCB and ALMO-EDA for the wa-

ter clusters, reduced basis set calculation for force decomposition, and potential en-

ergy surfaces of the gold and silver anions interaction with the carbon dioxide using

wavefunction-based methods (PDF)

• All molecular geometries used in this article (XYZ)
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