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Abstract

Background: Use of electronic health records (EHRs) in health research may lead to the false 

assumption of complete event ascertainment. We present a systematic approach to estimate 

“observation windows” (OWs), defined as time periods within which the assumption of complete 

ascertainment of events is more likely to hold, as a quality control approach to reducing the 

likelihood of this false assumption. We demonstrate the impact of observation windows on 

estimating the rates of type 2 diabetes mellitus (diabetes) using EHR diagnosis, medication, and 

laboratory data from HIV clinical cohorts.

Methods: Data contributed by 16 HIV clinical cohorts to the North American AIDS Cohort 

Collaboration on Research and Design (NA-ACCORD) were used to identify and evaluate OWs 

for an operationalized definition of diabetes occurrence as a case study. Procedures included: 1) 

gathering cohort-level data; 2) visualizing and summarizing gaps in observations; 3) 
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systematically establishing start and stop dates during which complete ascertainment of diabetes 

events was reasonable; and 4) visualizing the diabetes OWs relative to the cohort open and close 

dates to identify periods of time during which immortal person time was accumulated and events 

were not fully ascertained. We estimated diabetes occurrence event rates and 95% confidence 

intervals ([,]) in the most recent decade that data were available (Jan 1, 2007 to Dec 31, 2016).

Results: The number of diabetes events decreased by 17% with the use of the diabetes OWs; 

immortal person-time was removed decreasing total person-years by 23%. Consequently, the 

diabetes rate increased from 1.23 (95% confidence interval [1.20, 1.25]) per 100 person-years to 

1.32 ([1.29, 1.35] per 100 person-years with the use of diabetes OWs.

Conclusions: As the use of EHR-curated data for event-driven health research continues to 

expand, OWs have utility as a quality control approach to complete event ascertainment, helping to 

improve accuracy of estimates by removing immortal person-time when ascertainment is 

incomplete.

Keywords

Electronic medical records; health research; diabetes; HIV; immortal person time; quality control

INTROUCTION

Combining and harmonizing longitudinal data from medical records has become an 

important approach to health research. The most common sources of data have been 

administrative records and, more recently, electronic health records (EHRs). Administrative 

health data systems have been used for population-based research for decades.1–4 The 

Health Information Technology for Economic and Clinical Health (HITEC) Act of 2009 and 

the Affordable Care Act (ACA) implemented in 2014 have been stimuli for the adoption of 

EHR systems across the United States (US);5,6 however, some health care systems had 

EHRs in place prior to ACA implementation.7 Although many of these systems are focused 

on increasing efficiency of healthcare delivery,8 there was also the desire to use data from 

EHR systems for research purposes.

Although there are still barriers to using EHR data for health research purposes, many clinic-

based, longitudinal cohort studies (i.e. clinical cohorts) are successful in extracting the 

necessary information from the EHR to answer research questions of interest.9–11 The North 
American AIDS Cohort Collaboration on Research and Design (NA-ACCORD) was 

established in 2007 to curate data from existing HIV cohort studies, thereby establishing a 

harmonized data platform for observational data from cohort-specific protocols for research 

questions that could not be as definitively answered in any single observational HIV cohort.
12 Collaborative study designs exists in other fields as well.13 Recently, the Environmental 
Influences on Child Heath Outcomes (ECHO) study was established by the Director’s Office 

of the by the National Institutes of Health (NIH) to combine the approaches of creating a 

harmonized data platform from existing children’s cohort data as well as a platform for new 

data collection protocols by participating cohorts.14 The All of Us research program, a $130 

million dollar initiative by the NIH, will access EHR data on 1 million adults in the United 

States.15
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Cohort collaborations have proven to be powerful in answering important questions, 

however, there are numerous challenges to using clinical cohort data abstracted from EHR 

systems, let alone pooling the individual-level data across cohorts. One such challenge is the 

false assumption of complete event ascertainment when using EHR data. Complete event 

ascertainment is achieved when all events occurring are believed to be accurately captured 

and measured using EHR data. Identifying time periods when data are not ascertained must 

be done at a local level, that is, the individual contributing cohort. Falsely assuming 

complete ascertainment can result in inaccurate results, including underestimated incidence 

rates due to the inclusion of immortal person-time when the event is not fully ascertained.

To overcome this challenge in the NA-ACCORD, where almost 80% of the data contributed 

by its individual clinical cohort studies originates in EHR systems, we developed a quality 

control approach that identifies “observation windows” (OWs), which define the period of 

time during which it is reasonable to assume the events of interest have been completely 

ascertained. Given the potential impact of including person-time when event ascertainment 

is incomplete, OWs were developed using an epidemiologic perspective.

There are few published resources for understanding details of data curation and analytic 

methodology in EHR systems.16 The objectives of this study two-fold. First, we describe our 

systematic approach to estimating OWs as a quality control approach to ensure a greater 

likelihood of the complete event ascertainment assumption. Second, we demonstrate the 

impact of OWs on event rate estimates using the example of type 2 diabetes mellitus 

(henceforth referred to as diabetes) within the context of comprehensive HIV care. This 

example was selected because diabetes is not typically included in core data elements of 

HIV clinical care cohorts; however, the aging of adults with HIV (largely attributed to 

successful treatment) necessitates investigations of age-related disease in the context of HIV. 

Differential data curation of data elements (e.g. CD4 counts and HIV RNA measurements 

vs. hemoglobin A1c (HgbA1c) measurements in cohorts designed to investigate outcomes 

among adults with HIV) is one example where OWs can assist with improving the accuracy 

of estimates.

METHODS

Study population

The NA-ACCORD is a collaboration of >20 clinical and interval cohorts of adults with HIV 

in the US and Canada. The collaborative study design has allowed investigators to follow 

>180,000 adults living with HIV, accumulating >1.25 million person-years of follow-up 

(www.naaccord.org). It serves as the North American region of the International 

Epidemiology Databases to Evaluate AIDS (IeDEA) project, supported by various institutes 

of the National Institutes of Health (www.iedea.org). Details on this collaboration have been 

published previously.12

NA-ACCORD-contributing cohorts annually submit data from adults (≥18 years old) 

receiving HIV clinical care or participating in classical HIV cohort studies. Data are 

submitted to the Data Management Core (DMC, University of Washington, Seattle WA) 

where they undergo quality control, are harmonized across cohorts, and transmitted to the 
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Epidemiology/Biostatistics Core (Johns Hopkins University, Baltimore, MD), which 

conducted the analyses presented here. The human subjects research activities of the NA-

ACCORD and each of the participating cohort studies have been reviewed and approved by 

their respective local institutional review boards and by the Johns Hopkins University School 

of Medicine.

A subset of 16 clinical cohorts within the NA-ACCORD with access to outpatient EHRs 

contributed to the nested study we present.

Outcome

The NA-ACCORD uses an operationalized definition of diabetes17k that relies on 

laboratory, diagnosis, and medication data abstracted from EHRs and is measured as the first 

occurrence of:

• hemoglobin A1c (HgbA1c) ≥6.5%, OR

• diabetes-specific medication prescription, OR

• a diabetes diagnosis recorded and a diabetes-related medication prescription.

We use the term diabetes “event” instead of “onset,” “diagnosis,” or “incidence.” Our 

definition does not observe the onset of disease, but rather the point in time when diabetes is 

recognized in a clinical setting and evidence is recorded in the EHR. We also avoid the term 

“diagnosis” as the data elements included in the definition are not restricted solely to a 

clinical diagnosis.

Step 1: Gather key meta-data to establish observation windows

Information on the following were needed to identify observation windows for diabetes 

events:

• The smallest unit of measure for an observation window: In our example, an 

individual contributing clinical cohort study was the smallest unit for which an 

observation window was needed (henceforth referred to as cohort); if the cohorts 

were multi-site, it may be necessary to consider an individual site as the smallest 

unit of measure

• Dates (in calendar time) corresponding to data element measurements, obtained 

at the person-level: The dates of HgbA1c laboratory measurements, diabetes 

diagnoses, and diabetes-specific and –related medication prescriptions were 

extracted from EHRs

• The date a cohort was established (henceforth referred to as the cohort open date)

• The date through which the cohort is contributing data (henceforth referred to as 

the cohort close date)

• The date at which the cohort switched from paper medical records to an EHR 

system or made a change to their EHR system that could potentially impact data 

curation.
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The information is collected at the cohort-level (as opposed to the individual-level) is 

referred to as “meta-data” (e.g. the cohort open and close dates, the date the cohort switched 

from paper medical records to an EHR system).

Step 2: Visualize and summarize potential gaps in ascertainment by year, for each cohort

Data visualization of the calendar dates at which a data element was measured within each 

cohort is an essential exploratory data analysis step that cannot be over looked. A histogram 

of the dates of measurement for each data element by cohort is the minimum visualization 

needed to identify potential gaps in measurement over time. Although important and 

powerful, it is unwieldy to harness visualized information from multiple plots stratified by 

data element and cohort.

We created a data visualization tool that transforms information from the histograms of the 

dates of measurements for each data element needed in the diabetes definition within each 

cohort. This tool summarizes visualized gaps in ascertainment across data elements. This 

tool is not intended to replace the data visualization that it attempts to summarize.

Figure 1a displays the frequency of observations for specific data elements (column headers) 

required by the diabetes definition within a hypothetical cohort, by calendar year (row 

headers). For the purposes of this demonstration, calendar time (in years) describes each 

row; however, this time metric and unit can be modified to fit the study context (e.g. 

calendar day, month, year, or life stage by day, month, year). Red signals years where no 

measurements were recorded, and green signals that ≥1 measurement of the data element 

was collected. Modification to this color scheme includes creating a heat map scaled by the 

largest number of measurements of the data element in a year.

The black solid lines in Figure 1b represent the cohort open and close dates, which is the 

OW for the cohort; the cohort open and close dates are also presented as decimal years 

below the table. The NA-ACCORD requires all individual contributing cohorts to ascertain 

and contribute CD4 count and HIV RNA laboratory measurements, first AIDS-defining 

illness, ART prescriptions, and deaths. Cohort open and close dates are created using the 

observation windows approach for these required core data elements. Thus, the cohort open 

and close dates attempt to define the period of time of complete (or nearly complete) 

ascertainment of the core data elements within each cohort.

Measurements occurring prior to the cohort open date may be present in data from the 

cohorts; we call these measurements “historical data.” These data reflect efforts made by the 

study staff when enrolling a participant to ascertain important events occurring prior to 

enrollment, such as (in the setting of an HIV clinical cohort) the date an individual initiated 

antiretroviral therapy or had their first AIDS-defining illness diagnosis. Because this data 

was not directly observed, but rather relied on self-report at the time of enrollment 

(sometimes followed by confirmation in the medical record if available), ascertainment of 

historical data is believed to be incomplete.

The black and white dotted line (Figure 1b) denotes the timing of a major change in the 

EHR system. A change from paper systems to an EHR system may have improved 
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ascertainment by decreasing the impact of physically missing paper records and/or a 

decrease in data abstraction errors. Changes from one EHR system to another EHR system 

(which was not uncommon after the implementation of the Affordable Care Act in 2014 

when community affiliates of major hospitals changed EHR systems to be compatible) are 

also important to note as roll-out of the new systems can take time and the new system may 

capture specific data elements with a different level of ascertainment.

In Figure 1b, the date of the oldest (minimum) measurement observed and the date of the 

most recent (maximum) measurement observed are added to the tool for each data element. 

This information becomes helpful guides and should allow for immediate recognition of 

egregious date errors (often related to data entry errors).

Identifying potential gaps in ascertainment of the date elements starts with a visual scan for 

changes in the number of observations from year to year that do not fit the expected pattern 

of the specific data element of interest. Expected patters are specific to the context and data 

and reflect true increases or decreases in the number of measurements, such as:

• Increases in the number of measurements, due to gradual increases in the number 

of observations reflecting recruitment, consent, and enrollment;

• Calendar time trends, for example in the late 1990s, when there was very little 

diabetes among adults with HIV as life expectancy was much lower, restricting 

the influence of age as a risk factor for diabetes; and

• Decreases in the number of measurements in the most recent years, as there may 

be differences in the lags between when the data element is recorded in the EHR 

and when it is available for research purposes and/or the cohort was not able to 

observe the specific data element until the end of the calendar year (which may 

also be reflected in the maximum date of measurement).

Unexpected patterns in the data that are artifacts of data collection or ascertainment methods 

can uncover periods of under ascertainment, such as:

• dramatic increases in the number of measurements in the early years that do not 

match the pace of enrollment of individuals into the cohort, as that may signal 

changes in data collection protocols that improved ascertainment, exposing 

potential under ascertainment in the prior years

• increases or decreases in the number of measurements around the time of 

changes in EHR systems, that may signal improved ascertainment, exposing 

potential under ascertainment in the prior years (conversely, the opposite could 

also occur)

Because differentiating expected from unexpected changes in the number of measurements 

is highly dependent upon the underlying number of people under observation (which 

changes over timein dynamic cohorts), we recommend enlisting a summary statistic to better 

understand the changes in the number of measurements accounting for changes in the 

underlying population. One such statistic is the percent change from one year to the next 

(percent change = (nt+1 – nt) / nt). The percent change is most useful in the context of an 

expected number of measurements in each period of time, and when there are no changes in 
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the underlying population, the risk factors for the outcome measured by the data elements, 

or guidelines that may impact the frequency of measurements). Other measurements. Other 

helpful summary statistics include the number of measurements per individual per year, or 

the proportion of individuals who have at least one measurement a year, particularly if there 

is a relevant clinical guideline with good adherence (e.g. at least once CD4 count 

measurement per person per year).

In this example using a dynamic clinical cohort, we chose to scale the number of 

measurements by the underlying number of patients under observation (the number of 

measurements of the data element / the number under observation, Figure 1d). Although this 

measure allows us to see changes in the number of measurements from one year to the next 

after crudely accounting for change in the total number under observation, this measure, is 

more stable and less variable with larger numbers under observation; the stability of the 

statistic when applied to a large number of measurements might mask potential gaps in 

ascertainment. We used a threshold +/− 0.05 scaled measurements to flag changes over time 

that may signal potential gaps in ascertainment (red text). We chose this cut-off that is more 

sensitive to even change from one year to the next because of the large total number under 

observation. We have also calculated the percent change in the number under observation 

from one year to the next to better depict changes in the size of the dynamic cohort over time 

because the number of measurements is scaled to the number under observation.

There are options for additional modification, including stratification into important 

subgroups and then estimating the summary statistic. For example, stratification of the 

number of diabetes diagnoses and the number under observation by decade of age group or 

body mass index may help to determine if unusual patterns exist and strengthen the evidence 

of the quality of the data when known patterns are observed (i.e. more diagnoses among 

older adults (vs. younger) adults and obese (vs. normal weight) individuals).

Step 3: Develop an algorithm to systematically establish the observation windows for 
diabetes across cohorts

The operationalized definition is the criteria used to classify someone as having the event, 

which may include combing data elements for a single criterion, such as a diabetes diagnosis 

and a diabetes-related medication prescription. “Start” and “stop” dates must be defined for 

each criterion in the definition of diabetes, which includes incorporating the objective 

measurements of unexpected patterns in the data and the subjective judgment of whether the 

cohort was completely ascertaining the data elements needed by the criterion (Figure 1c).

For diabetes definition criterion #1 (HgbA1c ≥6.5%) in our example, the scaled number of 

measurements increased from 0.06 in 2004 to 0.15 in 2005. As there were no changes in the 

recommendations for HgbA1c measurements, this is an unexpected change suggestive of a 

change in the EHR system or in the data curation protocol for the cohort that suggests under 

ascertainment prior to 2004. Thus, 2005.00 is the start date for criterion #1. HgbA1c scaled 

measurements decreased from 0.16 to 0.11 from 2015 to 2016, suggesting the hemoglobin 

A1c measurements were not completely ascertained from 2016.00 to the cohort close date of 

2016.23; therefore, the criterion #1 stop date is set at 2015.99.
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For diabetes definition criterion #2 (prescription of a diabetes-specific medication), there 

were no diabetes-specific medications prescribed prior to 2000; although this may be real, it 

is difficult to judge the completeness of the data when no measurements were ascertained. 

Thus, the criterion #2 start date is 2000.00. The scaled number of diabetes-specific 

medications measurements are consistent until the final year of data collection (2016). The 

number of measurements drops substantial from 83 in 2015 to 36 in 2016, but the cohort 

close date reminds us that the cohort did not collect data through 2016.99, but rather through 

2016.23. Because the scaled number of measurements are similar in 2015.00–2015.99 and 

2016.00–2016.23, the criterion #2 stop date is set at 2016.23.

For diabetes definition criterion #3 (diabetes diagnosis and prescription of a diabetes-related 

medication), the scaled number of diagnoses increased from 0.10 in 2001 to 0.16 in 2002, 

signaling potential gaps in ascertainment prior to the implementation of an EHR system in 

2002.74. The scaled number of diabetes-related medications must also be scrutinized to 

complete the start date for criterion #3 because it involves both data elements. Although 

there was only 1 prescription of a diabetes-related medication in the data in 2001 and the 

same number in 2002, the scaled number of diabetes related medications is low, and 

consistent from 2001 to 2016. Thus, the start date for criterion #3 is 2002.74. The number of 

diabetes diagnoses drops dramatically from 2015 to 2016, with a corresponding drop in the 

scaled number of measurements from 0.11 to 0.02. The stop date for criterion #3 is 2015.99.

The start and stop dates for all three criteria are depicted in Figure 1c, by the blue dashed 

lines and the blue text at the bottom of the table.

Finally, we identified the time period overlap across the three criteria using the criterion-

specific start and stop dates for each cohort. The start and stop dates for the diabetes 

observation window according to the specified definition is:

• Diabetes OW start date = maximum [Criterion #1 HgbA1c start date, Criterion 

#2 diabetes-specific medication start date, Criterion #3 diagnosis + diabetes-

related medication start date]

• Diabetes OW stop date = minimum [Criterion #1 HgbA1c stop date, Criterion #2 

diabetes-specific medication stop date, Criterion #3 diagnosis + diabetes-related 

medication stop date]

These diabetes OWs are denoted by the orange solid lines in Figure 1d.

For other event definitions, a less conservative approach may be appropriate, expanding the 

event observation window to the first and last year any of the criterion were ascertained (as 

opposed to restricting to the time period when the data for all three criterion were 

ascertained). We caution the use of this approach, as there is likely to be differential 

ascertainment across time and fluctuations in the event rate may be due to changes in the 

ascertainment of ≥1 criteria.
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Step 4: Visualize the outcome observation window relative to the cohort open and close 
dates

Once the observation window is established for the event, bar charts show the observation 

window in units of calendar time for each cohort (Figure 2). The calendar time between the 

cohort open date and the diabetes OW start date, as well as the time between the diabetes 

OW stop date and the cohort close date, are times when events were not being completely 

ascertained. Note three cohorts have no observation window. This was due to the fact that 

they did not have an overlapping window of the data elements needed for all three criterion 

(as defined using the criterion start and stop dates); these exclusions most dramatically 

reduce the immortal person time accumulated by these cohorts when ascertainment was 

incomplete.

As a modification to Figure 2, the width of the bars can reflect the size of the cohort to the 

total study population (we did not include this modification out of respect for the NA-

ACCORD contributing cohorts’ anonymity in all collaboration investigations).

Statistical Analysis

We estimated crude incidence rates (IR) per 100 person-years (PY) and 95% confidence 

intervals ([ , ]) for first diabetes occurrence in the most recent decade of data available using 

our operationalized definition of diabetes with, and without, OWs among adults who have 

initiated ART and without prior document of diabetes in the NA-ACCORD.

The study entry and exit dates define the period when an individual is under observation, 

may contribute events and person-time, and complete ascertainment of the event of interest 

is assumed. Individuals were followed until the outcome of interest (diabetes), death, loss to 

follow-up (defined as 1.5 years after the CD4 or HIV RNA measurement that preceded a gap 

of more than 2 years with no CD4 or HIV RNA measurement), or were censored at age 70 

(as the number of person-years observed over the age of 70 becomes small and estimates 

become unstable).

Definitions of study entry and study exit that ignored the diabetes observation windows were 

defined as:

• Study entry0 = maximum(date of enrollment, cohort open date)

• Study exit0 = minimum(date of diabetes occurrence, death date, date of CD4 or 

HIV RNA prior to a ≥2 year gap + 1.5 years, age 70 years, cohort close date)

Study entry and exit dates that incorporated the diabetes observation windows (thereby 

restricting to time periods where ascertainment is suspected to be complete) were defined as:

• Study entry1 = maximum(date of enrollment, diabetes OW start date, cohort 

open date)

• Study exit1 = minimum(date of diabetes occurrence, death date, date of CD4 or 

HIV RNA prior to a ≥2 year gap + 1.5 years, age 70 years, diabetes OW stop 
date, cohort close date)
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Note that when defining an individual’s study entry and study exit dates, it is important to 

incorporate cohort open date and cohort close date into the definition if they are not 

explicitly incorporated in the outcome-specific OW. Although it is rare that the cohort close 
date occurs before the diabetes stop date, this could occur if the cohort close date was based 

on an element that is not ascertained during the entire outcome-specific OW (see Figure 2, 

Cohort 4). Further, the cohort close date should be the date through which other needed 

measurements, such as risk factors, exposures, mediators, or interaction terms, are available.

RESULTS

Using the tool depicted in Figure 1a–d, we identified periods of calendar time during which 

there was greater likelihood of complete ascertainment of the criterion in the operationalized 

definition of diabetes for each of the 16 US clinical cohorts.

The number of person years decreased by 23% with the use of the OWs (from 729,413 

person years without the OWs to 563,209 person years with the OWs included in an 

individual’s study entry and exit). The number of diabetes events decreased by 17% (from 

8,949 without the OWs to 7,409 with the OWs). The cohorts with differing cohort start and 

diabetes OW start dates and/or differing cohort close and diabetes OW stop dates contributed 

to the change in the number of diabetes occurrences and person years of observation.

The incidence of diabetes events was underestimated when the cohort-specific diabetes OWs 

were ignored and the assumption of complete ascertainment did not hold (Figure 3). More 

specifically, the denominator of observed person years was reduced by removing the person 

time accumulated in years when the data elements needed to determine the occurrence of a 

diabetes event were under ascertained (i.e. immortal person-time). The incidence of diabetes 

was 1.32 ([1.29, 1.35] per 100 PY without the use of the diabetes OWs and increased to 1.23 

([1.20, 1.25] per 100 PY with the use of the diabetes OW.

DISCUSSION

Relevant EHR data curated by longitudinal clinical cohorts are considered valuable to health 

research initiatives.18 The number of health outcomes publications involving EHR data 

increased dramatically from 2007 to 2012.9,19 Our approach to identifying OWs as a quality 

control approach to scrutinize complete event ascertainment is one strategy to address 

challenges of event-driven research using longitudinal EHR data. Our findings show that 

failing to evaluate and incorporate OWs in the estimation of first occurrence of diabetes 

resulted in an underestimation of incidence, as immortal person time was included in the 

denominator of the incidence rate when ascertainment of the event was incomplete. We build 

on the known limitations of under ascertainment of events in observational and secondary 

data sources research with a practical approach to improve the quality of the data used in 

analyses by overcome incomplete ascertainment challenges in event-driven research using 

EHR data.20,21

Our methods may be particularly relevant for the All of Us research program, which will 

create a scientific platform for precision medicine.15 Precision medicine “is an approach to 

disease prevention, diagnosis, and treatment that seeks to maximize effectiveness by 
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considering individual variability in genes, environment, and lifestyle.”15 Data are needed 

on a large scale (to be adequately powered for rare events and interactions of genes and 

environment) and from a diverse population to provide the information needed to achieve the 

goals of precision medicine. According to version 1 of the All of Us study protocol, EHR 

data will be abstracted for participants biannually for those who consent, making EHR data 

an important data source of this large-scale observational cohort.15 Quality control efforts to 

evaluate event ascertainment from EHR will be essential to the ability of this initiative to 

generate findings that may change how we preserve health and prevent disease.

The reasons for under ascertainment of data elements needed to define events in EHR data 

can vary based on context, but we have identified two common reasons from our research 

context. The first is changes to, or in, the EHR system used by the healthcare entity. In 2008, 

only 9.4% of hospital medical records were electronic with clinical information, order entry, 

results management, and decisions support functions; in 2015, 96% of hospitals reported 

EHRs that met the technological capability, functionality and security requirements stated by 

the US Department of Health and Human Services.22 When creating OWs for a variety of 

data elements, we have found that the time of transition from paper to EHRs results in a gap 

in ascertainment for many contributing cohorts. This context is particularly relevant for 

longitudinal studies with data abstracted from paper medical record before EHRs. Many of 

our HIV cohort studies were initiated during, or immediately after, the advent of effective 

treatment in 1996, which was years prior to the implementation of an EHR system for many 

of our clinical cohorts. But beyond conversion from paper records to EHR systems, smaller 

changes to EHR systems, such as software updates, changes in software algorithms, and 

changes in diagnosis and medication coding, can create unintended disruptions to EHR data 

that is extracted from the system. Second, under ascertainment occurs when the individual 

contributing cohort makes a change to their data curation protocols. A common example is 

when a cohort collects a data element on a sub-set of participants, and then later expands it 

to all participants (often when piloting whether ascertainment is feasible, or complete 

ascertainment is possible). It is also important to note gaps can be the result of data 

management error by the cohort or at the centralized data processing and analytic centers for 

cohort collaborations. Thus, evaluating OWs also serves as one of many potential quality 

control approaches. Although many studies using EHR data are large in sample size, there is 

no guarantee that the signal will overcome the noise of poor quality data.23

Creating OW can be a time-intensive process, so deciding which data elements to prioritize 

for an OW approach is relevant. Based on our experience, we recommend starting with core 

data elements that are essential to answering the research questions of interest. In the NA-

ACCORD, our core data elements include demographic characteristics, CD4 T-lymphocyte 

cell and HIV RNA measurements (biomarkers of HIV disease progression), AIDS diagnoses 

measurements, measurements of antiretroviral therapy, and death; these data elements 

inform the cohort open and close date, which are the overall observation windows for each 

cohort. Next, create OWs for event-driven outcomes that are outside of the core data. Age-

related comorbidities, including diabetes, hypertension, chronic kidney disease, end-stage 

renal disease, cancer, myocardial infarction, and liver disease are important for HIV research 

as adults age with HIV, but are not part of the core data; OWs have been created for each of 

these event-driven outcomes in the NA-ACCORD. Important event-driven exposures, risk 
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factors, predictors, or covariates of interest have OWs such as time-varying smoking and 

alcohol use. Although we argue the need for creating OWs in the collaborative study design 

of the NA-ACCORD, our approach is also applicable to single-site cohort studies using EHR 

data. Finally, OWs are tied to the operationalized definitions of the event. As the 

comprehensiveness of widely-used EHRs continues to improve, and as guidelines for 

prevention, screening, diagnosis, and treatment of specific diseases change, it is possible that 

diagnoses codes will become obsolete for some diseases, replaced with laboratory 

measurements that meet stated guidelines, objectively verifying the presence of disease. As 

operationalized definitions evolve, the process presented here must be repeated to establish 

the OW for the new definition.

The approach and tools presented here are not without limitations. First, it should be noted 

that even if OWs are identified, evaluated, and employed with meticulous care, there is still 

an assumption of complete ascertainment. Although this approach makes this assumption 

more reasonable, validation studies of complete ascertainment are the gold-standard quality 

control methodology to ensuring this assumption strictly holds. If participants are seeking 

care outside of the health care system, the EHR database employed in the study may not 

ascertain those measurements. Also, it should be noted that if the cohort was established for 

a specific disease outcome (e.g. HIV), the data needed to investigate other outcomes (i.e. 

diabetes) may not be as carefully curated; ascertainment may vary by the emphasis placed 

on the curation of the data elements.

Second, the approach and tools presented here are basic first steps that are best suited for big 

research data that can afford to exclude a cohort from a nested study (assuming internal and 

external validity are not threatened). Modifying the data element start and stop dates to a 

time-frame when there is stabilization of the frequency of the measurement among those 

under observation from one year to the next likely captures years of complete ascertainment. 

Stabilization approaches must withstand 1) changes in the number of individuals entering, 

disengaging, re-engaging, and exiting observation which is common in dynamic clinical 

cohorts; 2) an increase in the number of participants meeting criteria for measurement of a 

biomarker (e.g. more HgbA1c measurements among older adults), and 3) changes in 

screening guidelines themselves, as many of the measurements used to create an 

operationalized definition rely on measurements made during screening). Modifications to 

the basic approach presented here may be needed and must be made with respect to specific 

research contexts, outcomes, exposures, risk factors, predictors or covariates of interest.

Third, the example we used demonstrated that by not incorporating OWs, person-time and 

number of events were quantified incorrectly, leading to an underestimation of the first 

occurrence of diabetes. It is not always the case, however, that the estimate will be 

underestimated as that is a function of the estimate and whether the outcome or the 

exposure(s) of interest needs an OW(s).

Fourth and finally, we cannot allow the size of an EHR database to blind us to the more 

important characteristics of the database when determining if the question of interest can be 

answered appropriately, with defendable internal and external validity.
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As the use of data curated from EHRs for event-driven health research continues to expand, 

approaches and tools are needed to overcome challenges to the quality of EHR data and 

ensure accuracy of estimates. As we have demonstrated, OWs are one approach that can help 

improve confidence in the assumption of complete event ascertainment and more accurate 

estimates.
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Figure 1a: 
Number of measurements of data elements in the diabetes definition within a hypothetical 

individual contributing cohort, by calendar year
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Figure 1b: 
The hypothetical individual contributing cohort’s start and stop dates (solid black lines), the 

year of switch from paper to electronic health record systems (black and white dashed line), 

and the minimum and maximum observation dates for each data element.
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Figure 1c: 
The hypothetical individual contributing cohort’s number of measurements scaled by the 

number under observation, the percent change in the number of individuals from one year to 

the next, the change of +/− 0.05 in scaled measurements from one year to the next (red text), 

and the start and stop dates for each diabetes definition criteria (dashed blue lines).
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Figure 1d: 
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The hypothetical individual contributing cohort’s diabetes observation window start and stop 

dates (solid orange lines).
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Figure 2: 
Diabetes observation windows for each cohort (orange bars) and the cohort open and close 

dates (black bars) for the 13 cohorts participating in the estimation of the diabetes event rate.
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Figure 3: 
Diabetes occurrence rate estimates and 95% confidence intervals with, and without, 

incorporating the observation windows (OWs), NA-ACCORD
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