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ABSTRACT 25 
Shared automated electric vehicles (SAEVs) 26 

hold great promise to improve transportation 27 

access in urban centers while drastically 28 

reducing transportation-related energy 29 

consumption and air pollution. Using taxi trip 30 

data from New York City, we develop an 31 

agent-based model to predict the battery range 32 

and charging infrastructure requirements of a 33 

fleet of SAEVs operating on Manhattan 34 

Island. We also develop a model to estimate 35 

the cost and environmental impact of providing service, and perform extensive sensitivity 36 

analysis to test the robustness of our predictions. We estimate that costs will be lowest with a 37 

battery range of 50-90 miles, with either 66 chargers per square mile rated at 11 kilowatts or 44 38 

chargers per square mile rated at 22 kilowatts. We estimate that the cost of service provided by 39 

such an SAEV fleet will be $0.29-$0.61 per revenue mile—an order of magnitude lower than the 40 

cost of service of present-day Manhattan taxis and $0.05-$0.08/mi. lower than that of an 41 

automated fleet composed of any currently available hybrid or internal combustion engine 42 

vehicle (ICEV). We estimate that such an SAEV fleet drawing power from the current NYC 43 

power grid would reduce GHG emissions by 73% and energy consumption by 58% compared to 44 

an automated fleet of ICEVs.   45 
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INTRODUCTION 46 
 47 

Transportation represents the fastest-growing segment of the world’s greenhouse gas (GHG) 48 

emissions, with cars accounting for 8.7% of global energy-related carbon dioxide emissions in 49 

2013, and car sales set to more than double by 2050.1 Fortunately, battery electric vehicles 50 

(BEVs) have emerged as a market-ready technology with the potential to reduce the carbon 51 

intensity of private transportation.2,3 Meeting the Paris Agreement’s 2 °C and 1.5 °C targets will 52 

require massive deployment of electrified transportation. However, adoption of electric vehicles 53 

has been relatively slow for several reasons, including technological uncertainty, slow charging, 54 

range anxiety, and higher capital costs compared to other types of vehicles.4,5 The convergence 55 

of electrification with two other emerging technologies—vehicle automation and smartphone-56 

enabled shared mobility—could overcome the barriers described above and speed the transition 57 

to an electrified transportation system. Shared automated electric vehicles (SAEVs)6 would offer 58 

on-demand transportation in electric and self-driving cars similar to the service provided by 59 

current transportation network companies such as Uber and Lyft but likely at much lower cost 60 

and carbon intensity. Because each SAEV need only have enough seats (known as “right-61 

sizing”) and battery range for the trip requested, and charging can be split over many short 62 

periods in between trips, the shared mobility paradigm could enable the use of smaller cars with 63 

shorter battery range, overcoming the barriers of slow charging speed and high capital cost.7,8 64 

Furthermore, because shared vehicles typically travel many more miles annually than 65 

privately-owned vehicles, deployment of SAEVs would increase the per-vehicle GHG reductions 66 

relative to private ownership, and spread the capital costs over more miles. SAEVs deployed in 67 

2030 could reduce GHG emissions per mile by more than 90% relative to privately-owned 68 

conventional vehicles while substantially increasing cost-effectiveness.7 A recent Rocky 69 

Mountain Institute report predicted that the marginal cost of SAEVs will quickly fall below that 70 

of conventional private vehicles so that SAEVs will dominate the mobility market by 2050.9 It is 71 

possible that such cost savings will increase overall vehicle miles traveled as a result of induced 72 

demand, but some studies have predicted that the efficiency gains would outweigh any resulting 73 

potential increases in emissions.10  74 

Several previous studies have employed agent-based modeling techniques to explore the 75 

feasibility of a fleet of automated taxis operating in an urban environment.6,11–17 Building on 76 

these results, we develop an agent-based model to predict the system costs of a fleet of SAEVs 77 

operating in New York City (NYC). Manhattan is a good test case because it is likely one of the 78 

world’s best-suited cities to implement an SAEV fleet. With 1.6 million people living in an area 79 

of 23 square miles, it is also the most densely populated region in the U.S. Car ownership in 80 

Manhattan is both challenging and expensive; average household vehicle ownership in 81 

Manhattan is about 0.3 vehicles,18 compared with 1.9 in the U.S. as a whole.19 As a result, taxi 82 

usage is relatively high—taxi trips currently represent about 8% of all daily trips taken by 83 

Manhattan residents.20 84 

Previous studies have shown that electric taxi fleets are viable options under certain 85 

circumstances. However, those studies have chosen fixed values for various fleet parameters. To 86 

our knowledge, ours is the first study that explores a variety of vehicle, operational, and 87 

infrastructure parameters to identify the fleet configuration with lowest cost, and the 88 

corresponding environmental and energy impacts. In contrast to previous work, our analysis also 89 

assumes that taxis can relocate to charge whenever they are idle, which may reduce both the 90 

required battery range and overall cost as well as the impact of the vehicle fleet on the power 91 
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grid. Furthermore, instead of assuming that batteries will be replaced on a fixed schedule, we 92 

study the optimal battery replacement schedule by investigating the impact of battery 93 

degradation on the number of taxis required to serve demand. Including this flexibility in our 94 

model allows us to make substantive recommendations regarding how SAEV fleets should be 95 

designed, the greatest barriers facing implementation, and how the impact of this technology 96 

might differ from adoption of personal BEVs.  97 

 98 

 99 

METHODS 100 
 101 

Taxi trip data 102 
All trip data for our analysis were downloaded from the NYC OpenData 2015 database of yellow 103 

taxi trips. For most of our simulation runs, Wednesday, February 4, 2015 was used as a typical 104 

weekday (415,249 total trips) during the winter months when demand is at its highest. To test for 105 

stability over time as well as the impact of higher demand on two consecutive weekends, the 106 

simulation was also run with trip data for a 10-day period, February 6-15, 2015. To test the 107 

impact of fluctuations in seasonal demand (taxi demand is somewhat lower during summer 108 

months), this longer-period simulation was repeated using data from August 7-13, 2015. 109 

As with current pilot projects,21 automated vehicles will likely need to remain within a 110 

defined geo-fenced area for the foreseeable future (i.e., level 4 automation),22 so, for both realism 111 

and computational simplicity, the data set was restricted to trips that both started and ended on 112 

Manhattan Island. Trips outside of Manhattan would presumably be served by a different fleet 113 

entity, as they largely are today by Green Cabs.23 Removing trips falling outside these 114 

boundaries on our representative day left us with 349,026 trips or 84% of total demand. Other 115 

potential limitations of level 4 automation (inclement weather, accidents, road construction, etc.) 116 

fall outside the scope of this study. 117 

The data retrieved from NYC OpenData contain starting and ending trip times, 118 

geolocations, and distances for all taxi trips, but do not include times and distances that taxis 119 

traveled between drop-offs and pickups. To estimate these data, Google Maps API was used to 120 

retrieve bidirectional times and distances for a 498-point set of points of Manhattan (248,004 121 

point pairs), which were then used to interpolate values for a total of 4,482 points approximately 122 

representing each street corner. To account for congestion, Google Maps was used to estimate 123 

times and distances for a subset of 50 points (2,500 point pairs) at every hour of the day, which 124 

were then used to extrapolate delays for the rest of the data set. This data was verified by running 125 

simulations with random error based on correlation to trip times and distances in the taxi dataset, 126 

and found our estimates to be conservative (for details, see supporting information section 2). 127 

 128 

Taxi routing model description 129 
Using the R coding platform version 3.3.3, we developed an agent-based model to simulate the 130 

movement of taxis around Manhattan throughout the day. Agent-based modeling is well-suited 131 

to our research question because as compared to other analysis techniques, it allows for more 132 

realistic interaction between vehicles, passengers and charging stations, and easy modification of 133 

various assumptions such as strategies for charging, trip assignment, and vehicle relocation.24  134 

The model proceeds chronologically, assigning taxis to trips in each minute throughout 135 

the day. Trip timestamps are used to represent the time when the trip was requested via a 136 

smartphone app, and priority is given to the first trip requested within the minute. The model 137 
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assigns to each trip the closest available taxi that has at least enough range to both serve the trip 138 

and then make it to the closest charging station. In cases where more than one taxi meets these 139 

criteria, the model assigns the taxi with the greatest battery range. Given that Uber has already 140 

become the single-largest taxi service in NYC,25 and industry experts predict that automation 141 

will give further monopoly power to large fleets,26 we assume that all trip assignments are 142 

managed by a single operator. 143 

To assess a constant level of service across all model runs, we chose 10 minutes as the 144 

maximum amount of time a passenger would be willing to wait between trip request and pickup. 145 

If no taxi is able to reach a trip request within this window, a new taxi is created to serve the trip. 146 

As such, the simulated taxi fleet grows gradually over the course of the day, and the simulation is 147 

designed to produce the minimum number of taxis required to serve the demand given 148 

constraints in battery range and charging infrastructure. It is assumed that “created” taxis 149 

represent vehicles that had been idle up until that point in the day. 150 

To manage vehicle relocation between trips, we assumed that the fleet operator would 151 

have a well-trained algorithm to predict the spatial distribution of future trip demand and 152 

efficiently route taxis between trips when necessary, to ensure vehicles are located within a 10-153 

minute radius of trip requests whenever possible. Assuming perfect foresight, in cases where no 154 

taxi can reach a trip request within 10 minutes, the model allows taxis to start relocating as soon 155 

as they ended their previous trips. For example, a taxi that had been idling for five minutes could, 156 

within the 10-minute tolerance window, reach trips requests up to 15 minutes away. This 157 

assumption was verified with simulations that managed vehicle relocation based on historic trip 158 

data, and we explore the impact of changing relocation algorithms in our sensitivity analysis (see 159 

supporting information section 7 for details). In reality, relocation times will be stochastic, such 160 

that some trips will not be served within the 10-minute threshold. In this study we use 10 minutes 161 

merely as a benchmark for comparison between different fleets; real-world fleet operators must 162 

weigh the value of decreasing wait times against the cost of increasing fleet size.  163 

 164 

Charger routing simulation 165 
In between trips, taxis must also decide whether or not to drive to a charger. Again assuming 166 

accurate demand prediction, in each minute, each taxi identifies the charging locations where it 167 

could have driven and spent enough time charging to at least replenish the energy expended to 168 

get there. It is assumed that chargers are automated (either wireless or employing a robotic arm), 169 

such that vehicles begin to charge as soon as they arrive at a station. Each vacant charging point 170 

accepts the closest feasible taxi that has not already been assigned and is then designated as 171 

occupied until the taxi either accepts a trip request or its battery is fully charged. Note that this 172 

method differs significantly from previous models because it allows taxis to charge for very short 173 

periods in between trip requests instead of waiting to run out of charge and then remaining at a 174 

charger until the battery is fully charged. Our hypothesis is that this method allows for greater 175 

flexibility in charging, thus allowing the system to adjust to both shorter battery ranges and 176 

dynamic electricity pricing. In our simulations, the empty miles that taxis spent relocating to 177 

charge and to pick up passengers represented about 20-25% of passenger miles, or about 25 178 

miles per vehicle per day. While this is significantly more than that found by other studies, over 179 

half of trips are served by vehicles less than 0.1 mi. away, so we expect that increased empty 180 

miles are an artifact of the short average distance of Manhattan taxi trips (1.9 mi.; see supporting 181 

information section 2 for more details). Simulations of a fleet of ICEVs suggest that empty miles 182 
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are almost the same as for an electric fleet, so we do not expect that electrifying Manhattan’s taxi 183 

fleet would increase congestion.  184 

 185 

Charger distribution model  186 
To rationally populate our model with a network of chargers, we used an elimination method, 187 

starting with all possible charging points and iteratively removing the location whose absence 188 

caused the least impact on the system. In an initial simulation, taxis charged whenever idle, no 189 

matter where they were located. This initial iteration was run with several different battery 190 

ranges, and it was found that the charger distributions produced with 20-mile battery range 191 

resulted in the smallest fleet sizes. For each location, the algorithm then calculated the total 192 

amount of charging time that would be lost if all the taxis at that point were forced to relocate to 193 

the next nearest point with chargers, and the charging location with the lowest loss was removed. 194 

The chargers at that location were transferred to the next nearest point and the process was 195 

repeated. By removing the lowest-loss location in each iteration, this algorithm runs the risk of 196 

missing a globally optimal solution that could entail a different combination of removal steps. To 197 

protect against falling into a locally optimal but globally suboptimal solution, 100 points were 198 

randomly added back each time the algorithm had removed 500.  199 

After synthesizing each distribution of charging locations, we ranked the importance of 200 

each individual charger by calculating the amount of time for which it was occupied on the 201 

simulated day. When limiting the number of individual chargers, chargers were removed in order 202 

of occupancy time, from least to most.  203 

 204 

Simulation runs 205 
Simulations were first performed using a single day of data, testing 10-mi. increments of battery 206 

ranges between 10 mi. and 200 mi., 250-count increments of the number of individual chargers 207 

between 1,000 and 4,000, and 100-count increments of the number of charging locations 208 

between 100 and 1,000, for a total of 2,600 simulations. All of these simulations were performed 209 

assuming a charging speed of 7 kW (Level 2 charging), or roughly 0.5 mi./min. assuming 210 

average energy consumption of 0.25 kWh/mi.15 To measure the impact of not being able to fully 211 

recharge the fleet before the next day started, 84 parameter sets representing the range of values 212 

shown to be most influential were then used for simulations where the same day was repeated 213 

until the difference between the fleet’s mean state of charge at the beginning and end of the day 214 

was less than five percent of battery range.  Based on expected specifications for commercial 215 

wireless charging stations,27, 28,29 these multi-day simulations were then repeated with charging 216 

speeds of 11 kW (0.75 mi./min.), 22 kW (1.5 mi./min.), and 50 kW (Level 3, 3.3 mi./min.), for a 217 

total of 336 simulations. Several hundred additional simulations were conducted to test the 218 

impact of varying different model assumptions (see supporting information section 7 for details). 219 

  220 

Cost model 221 
The taxi service’s cost per mile was estimated using a model with the components summarized 222 

in Table 1. As shown in Equation 1, where CRF represents the capital recovery factor and ci 223 

represents the annual cost of the ith component in the cost model, levelized cost of service was 224 

found by dividing total net present value (NPV) of costs by NPV of passenger miles. We used a 225 

discount rate of 5% and a system time horizon of 20 years, assuming constant costs and demand 226 

throughout this period. In our sensitivity analysis, we varied the cost of each of these 227 

components to study the impact that different future cost trajectories would have on our 228 
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conclusions. Note that vehicle lifetimes were significantly shorter than the 20-year system time 229 

horizon, about 8.2 years for the cost-optimal configuration. This life-span is longer than that of 230 

current taxis because we expect electrification and automation will result in lower maintenance 231 

requirements, and because our simulated vehicles travel significantly fewer miles searching for 232 

passengers. 233 

 234 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 =  
𝑁𝑃𝑉𝑐𝑜𝑠𝑡

𝑁𝑃𝑉𝑚𝑖𝑙𝑒𝑠
=

∑ 𝐶𝑖∙𝐶𝑅𝐹𝑖

∑ 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑚𝑖𝑙𝑒𝑠∙𝐶𝑅𝐹
   (1) 235 

 236 

𝐶𝑅𝐹 =  
1 − 1.05−20

0.05
≈ 12.5 237 

 238 

 239 

 240 

Table 1. Summary of cost model components 241 

Component Value Source 

Vehicle purchase $20,000/vehicle Based on 16, 17 

Vehicle lifetime 300,000 mi. Based on 7, 20 

Automation $10,000/vehicle 13, 30 

Battery cost $200/kWh plus 30% fleet discount 31, 17 

Battery lifetime Rate of degradation estimated using  

semi-empirical model (see supporting 

information section 4 for more details) 

32, 33,34 

Charging infrastructure $700/charger/kW + $15/charger/kW/year + 

$10000/location Based on 35, 9, 17 

Electricity consumption $0.12/kWh 36 

Vehicle efficiency 0.25 kWh/mi. +  

0.0006 kWh/mi. per kWh  

battery capacity a 

15, 37 

Parking $300/space-month b Based on 38, 39 

Insurance $600/vehicle-year + $0.05/mi. 40, 13, 20 

Maintenance $0.04/mi. 41, 9 

Administrative overhead $2.50/vehicle-day Based on 20, 9 

a) When calculating the cost of electricity, we corrected vehicle efficiency for the additional weight of the battery.  242 
b) Although we recognize that it is unclear who will pay for SAEV parking, we included the total cost to society of 243 
providing parking so that we could compare the total cost of various fleet configurations. It was assumed that the 244 
operator would need to buy a parking space to store all idle vehicles at the point of lowest demand, or about 90% of 245 
the total fleet size. 246 

 247 

  248 
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RESULTS AND DISCUSSION 249 
 250 

Fleet-sizing simulation results 251 
As shown in Figure 1, we found that the minimum fleet size required to serve all trips within 10 252 

minutes of requests decreases asymptotically with increasing battery range and number of 253 

chargers, ultimately falling to 6,470 vehicles at battery ranges of 70 mi. and greater. This 254 

minimum fleet size requires at least 2,000 chargers rated at 7 kW (88 chargers per square mile, 255 

or one for every 3.2 vehicles), but adding more chargers beyond this point has diminishing 256 

returns, especially at higher battery ranges. Increasing the number of charging locations has a 257 

much smaller effect than increasing battery range or number of chargers; this effect becomes 258 

negligible once battery range exceeds 50 mi. For more simulation results, such as wait times and 259 

empty vehicle miles, see supporting information section 2. 260 
 261 

 262 
Figure 1. Required fleet size by battery range and charging network. Lines represent exponential fits for simulation results, which were collected 263 
at 10-mi. intervals in battery range. 264 

In multi-day simulations, we obtained similar results to those displayed above, with a 265 

slightly higher minimum fleet size of 6,510 vehicles, and at least 2,000 Level 2 chargers. We 266 

also found that higher charging speeds can reduce both the number of chargers and the battery 267 

range required to reach the lower limit of required fleet size. Increasing charging power to 11 268 

kW reduced the battery range required to 50 mi and the number of chargers to 1,000 (44 per 269 

square mile, or one for every 6.5 vehicles), and increasing to Level 3 charging (50 kW) allowed 270 

fleets with around 6,500 vehicles and over 80-mi. battery range to meet demand with only 200 271 

chargers (9 per square mile, or one for every 32.5 vehicles). 272 

These results suggest that the main challenge to introducing SAEV fleets is not battery 273 

range—currently available models like the Nissan Leaf more than suffice for meeting demand in 274 

Manhattan. The greater challenge may be building out sufficient charging infrastructure. In 275 

contrast with the scenarios of thousands of chargers considered above, according to the charger 276 

database ChargePoint, there are currently only 456 chargers in Manhattan, including many 277 

proprietary stations only accessible by Tesla owners.42 278 
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 279 

Cost model results 280 
Given the results of the fleet-sizing simulation, we can see that there are several trade-281 

offs between different fleet parameters. Increasing battery range, charging speed, and the density 282 

of chargers can decrease the number of vehicles required, but also increases other costs. For 283 

example, Level 3 chargers reduce the number of chargers required, but cost on the order of ten 284 

times as much as Level 2 chargers35, and also increase battery degradation. As shown in Figure 285 

2, taking all these trade-offs into account, we identify a lowest-cost configuration at a battery 286 

range of 90 mi., 1,500 chargers, and a charging power of 11 kW, with an estimated cost of 287 

service of $0.42 per revenue-mile. As shown in Figure 3, when paired with the appropriate 288 

charging infrastructure, all battery ranges between 30 mi. and 150 mi. result in costs of less than 289 

$0.45/mi. As battery range increases beyond the point at which fleet size reaches a plateau, cost 290 

continues to fall briefly because batteries can degrade further before being replaced. After battery 291 

range surpasses 90 miles, however, the cost of battery purchase becomes the dominant factor, 292 

and overall cost begins to rise again.  293 

While these costs may seem optimistic, it should be noted that they do not include cost 294 

reductions from improvements in battery technology or charging agreements, improvements in 295 

BEV efficiency, right-sizing, dynamic ride-sharing,17 bulk purchasing contracts, or optimal trip 296 

assignment algorithms, and so could be considered conservative. These cost estimates are also 297 

consistent with Burns et al.’s finding that a fleet of conventional SAVs could replace Yellow Cab 298 

trips on Manhattan with a cost of $0.50/mi.,20 as well as Chen et al.’s estimate that an SAEV 299 

fleet could serve taxi demand in Austin, Texas at a cost of $0.40-$0.50/mi.13 (see supporting 300 

information section 1).  301 

 302 

 303 
Figure 2. Estimated cost per mile of simulated taxi fleets with a given charging network and battery range. Numbers represent the number of 304 
chargers that returned the least cost for each combination of battery range and charging speed. 305 
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 306 
Figure 3. Breakdown of cost of service by component. The outlined column, representing results for a fleet with 90-mi. battery range, represents 307 
the lowest-cost configuration. Numbers represent the lowest-cost charging power (top), and number of chargers (bottom) for each battery range. 308 

Looking at the breakdown of cost by component, we find that the cost of vehicle 309 

purchase varies only slightly with battery range, despite a large difference in the number of 310 

vehicles required. This result arises from the assumption that vehicle lifespan is based on 311 

distance traveled (taxis are replaced after 300,000 miles), rather than being based on a fixed 312 

amount of time. Because each additional taxi added to the fleet reduces the average daily 313 

distance traveled by all taxis, each new taxi extends the lifespan of the fleet as a whole, such that 314 

the net present cost of each additional taxi purchase of only about $10,000. If taxis were instead 315 

replaced on a fixed-time schedule, our results would become more sensitive to fleet size. At the 316 

same time, each additional taxi has associated costs: insurance (estimated at $600/vehicle/year 317 

plus mileage), administrative overhead ($2.50/vehicle-day), and parking ($300/vehicle-month). 318 

Together, these costs add close to $60,000 of NPV per vehicle, shifting the overall cost structure 319 

in favor of the smallest possible fleet size.  320 

 321 

 Comparison with conventional taxi fleets 322 
Comparison with a hypothetical fleet of conventional vehicles reveals that, unless both 323 

fuel prices and conventional vehicle purchase prices fall dramatically, a battery electric vehicle 324 

fleet will be cheaper. Simulation results show a minimum fleet size of 6,469 conventional 325 

vehicles, slightly less than the lowest result for a fleet of battery electric vehicles. The lack of 326 

relocation to chargers also reduces the total distance traveled by 1.4%. To determine the cost of 327 

service of this hypothetical fleet, we used a similar cost model to that for electric vehicles but 328 

with a maintenance cost of $0.06/mi and no costs for electricity, batteries, or charging 329 

infrastructure. As shown in Figure 4, we then calculated the cost for a range of combinations of 330 

vehicle cost and fuel cost and compared them with estimates for four commercially available 331 

models: Toyota Prius, Chevrolet Volt, Smart Fortwo, and Toyota Corolla. As with the electric 332 

vehicles in our earlier analysis, we added $10,000 to the purchase price to account for the cost of 333 

automation. In each case, even when using the cheapest model configuration and the cheapest 334 
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U.S. gasoline price ($2.15 in June, 2017), all four of these models would cost significantly more 335 

than a comparable fleet of electric vehicles. Using mean values, the cost increase ranges from 336 

$0.05/mi. for the Prius to $0.08/mi. for the Volt.  337 

Relative to the current cost of Manhattan taxis—median fare was $5.42/mi. in August, 338 

201543—our estimated cost for the operation of an SAEV fleet represents roughly an order of 339 

magnitude reduction (assuming about 10% profit margin). Aside from savings due to 340 

electrification, the elimination of driver labor reduces cost by roughly $1.30/mi,9 with the 341 

remainder of the savings coming from the increased efficiency of a single-operator, smartphone-342 

based system (fleet size is reduced by half), and the lack of medallion fees. 343 

 344 
Figure 4. Comparison of estimated fleet costs for four different models of conventional vehicles. Ellipses represent ranges in manufacturer 345 
suggested retail prices and gas prices across the U.S. in June, 2017. 346 
  347 

Using data cited elsewhere,44–50 we can also project the energy, GHG and air pollution 348 

emission savings that would result from taxi fleet electrification (see supporting information 349 

sections 5 and 6 for details). As shown in Table 2, SAEV fleets result in significantly lower 350 

impact in every case except for sulfur dioxide emissions, which would increase by 10% due to 351 

high emissions from battery production with the current power grid. Naturally, the air pollution 352 

caused by electric vehicles comes from manufacturing facilities and power plants that tend to be 353 

located in relatively rural areas, and so will likely result in much lower health impacts than 354 

emissions from ICEVs.51,52 Meanwhile, NYC plans to reduce the carbon intensity of its 355 

electricity mix by half by 2030,53 which would further reduce the GHG emissions of electric 356 
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vehicle fleets by a third, and substantially reduce air pollution as well. Serving the same trips 357 

with personal electric vehicles driven 15,000 miles per year and 300 miles of battery range 358 

would lead to 74,000 tons CO2-eq per year, meaning that replacing personal vehicles with short-359 

range SAEVs could reduce GHG emissions by more than half. 360 

 361 

Table 2. Comparison of energy, GHG, and air pollution emissions 362 
tons/yr, unless noted 

otherwise 
BEV 

ICEV 

(BEV % savings) 

HEV  

(BEV % savings) 

Energy (GWh/yr) 205 460 (55) 280 (27) 

GHG (ktCO2-eq/yr) 33 122 (73) 76 (57) 

Carbon monoxide 43 932 (95) 922 (95) 

Nitrogen oxides 40 101 (60) 96 (58) 

Particulate matter 11 20 (45) 20 (45) 

Volatile organic compounds 70 132 (47) 104 (33) 

Sulfur dioxide 78 71 (-10) 70 (-11) 

 363 

Sensitivity analysis 364 
To test the robustness of our results, we performed a variety of sensitivity analyses (see 365 

supporting information section 7 for details). First, we ran a subset of our simulations for a full 366 

10 days, and found that this increases the minimum required fleet size from 6,500 to 7,000, as 367 

well as increasing the lowest-cost battery range by 10 miles. This result suggests that as demand 368 

increases, if the taxi operator wishes to maintain the same level of service, costs must rise, and 369 

battery range may need to increase moderately. Of course, if taxi fares were to actually fall by an 370 

order of magnitude as predicted here, demand might shift dramatically, and so we do not expect 371 

that these results more accurately represent reality than those based on a single day of data. 372 

Second, we conducted simulations with naïve relocation algorithms to test the impact of 373 

our assumption regarding perfect foresight. If taxis do not relocate until they are assigned a trip, 374 

we found that the number of taxis required increased to more than 10,000, and cost of service 375 

increased to around $0.50/mi., but fleet size became less sensitive to battery range so that the 376 

lowest-cost battery range at 7-kW charging decreased from 110 mi. to 70 mi. The effect of 377 

assuming taxis cannot predict when they should relocate to charge is the opposite: overall cost 378 

does not increase significantly, but battery range becomes more critical, with a lowest-cost 379 

battery range of 140 mi. Thus, any errors in our assumptions regarding the two relocation 380 

algorithms have counterbalancing effects, suggesting that our results are robust to inaccuracies in 381 

our relocation assumptions. Given that the taxi operator has information on the location and state 382 

of charge of all taxis at any point in time, most likely charging availability will be easier to 383 

predict than trip demand. In turn, this means that our result for battery range represents an upper 384 

bound, while that for cost of service represents a lower bound. 385 

 Next, we tested the effect of restricting chargers to a few locations, using the algorithm 386 

described in the methods section. Given the challenges of obtaining permits and property, SAEV 387 

charging might take place primarily in a few discrete parking garages that each have a large 388 

number of chargers. However, we found that with an efficient charging algorithm, results for 389 

fleet size and battery range do not change appreciably until the number of locations falls below 390 

50. Given that there are already charging stations at over 100 locations in Manhattan,42 we 391 

expect the impact of constraints on charging locations to be minimal. 392 
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Finally, as summarized in Table 3, we tested the sensitivity of our results to a variety of 393 

changes in cost components, including cost of parking, vehicles, batteries, and electricity. These 394 

scenarios result in cost of service estimates ranging from $0.29/mi. to $0.61/mi. and a lowest-395 

cost battery range of 50 - 90 mi. This result contrasts with current trends in electric vehicle 396 

development to expand battery range until it equals the travel range of internal combustion 397 

engine vehicles, i.e., more than 300 mi. Our study shows that battery range will not be the main 398 

obstacle for SAEV fleets. Currently available ranges more than suffice, and significant cost 399 

savings could result from reducing battery range from current levels.  400 

 401 

  402 
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Table 3. Summary of results of cost model sensitivity analyses 403 

Scenario Explanation Changes to cost model 
Minimum cost of 

service ($/mi.) 

Lowest-cost fleet 

configuration 

Baseline 
See methodology 

section 
None $0.423 

90 mi. battery 

1500 chargers  

11 kW 

Dynamic 

electricity rates 

Power utility bases 

electricity rates on 

time of use to reduce 

peak system load. 

Electricity: 

$0.17/kWh on-peak 

$0.11/kWh off-peak36 

 

No change in charging 

patterns 

$0.427 

90 mi. battery 

1500 chargers  

11 kW 

Cheap batteries, 

expensive vehicles 

Cost of batteries falls 

quickly, but 

automation costs are 

more than expected. 

Vehicle: 

$50,000 with 

automation 

200,000 mi. lifespan 

 

Battery: 

$100/kWh to buy 

$50/kWh to sell 

$0.608 

90 mi. battery 

1500 chargers  

11 kW 

Cheap vehicles, 

expensive batteries 

Effective battery 

capacity is reduced by 

cold weather and 

aggressive driving, but 

vehicle cost is reduced 

by right-sizing and 

cheap automation. 

Vehicle: 

$17,500 with 

automation 

50% reduction in 

parking and insurance 

 

Battery: 

$250/kWh to buy 

$0 to sell 

$0.294 

70 mi. battery 

1000 chargers  

22 kW 

No battery 

degradation 

Battery technology 

improves so that 

degradation becomes 

negligible 

Batteries replaced when 

vehicles reach 300,000 

mi. (no battery resale 

value) 

$0.419 

50 mi. battery 

1500 chargers  

11 kW 

Nonlinear battery 

degradation 

Batteries degrade non-

linearly after reaching 

cut-off 34 
2

arg

5
4.0

AhLoss

I
Loss

cycle

ech



   
$0.428 

70 mi. battery 

1500 chargers  

11 kW 

No parking costs 

Society bears the cost 

of parking, providing it 

for free to the taxi 

operator 

No parking costs $0.339 

90 mi. battery 

1500 chargers 

11 kW 
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Limitations and directions for future research 404 
The first limitation to our results arises from our assumption of exogenous demand—if costs fall 405 

as dramatically as projected in our analysis, demand for taxis will likely skyrocket. More 406 

research is needed to study the optimal vehicle parameters for a fleet serving the majority of all 407 

Manhattan trips, as well as those to and from the outlying boroughs. If SAEVs begin to replace 408 

other modes of travel, empty miles may lead to increased congestion, which also deserves further 409 

study. 410 

Furthermore, our results apply only to the densest area in the U.S., and it is difficult to 411 

generalize our conclusions to other areas. Another next step will be to ask: what is the impact of 412 

changing the geography of the network in which the fleet operates? It will be interesting to apply 413 

our model to other cities (particularly those of lower density) and compare results. 414 

Accounting for higher demand and less dense geography would both likely require larger 415 

fleets, and so operating these fleets could cost more than we have estimated in this study. On the 416 

other hand, we did not consider the possibility of a heterogeneous fleet, in which some chargers 417 

have higher speeds than others, and some taxis have more or less battery capacity, or different 418 

numbers of seats. Because the average occupancy of NYC taxi trips is less than two people,40 if 419 

there is no need to provide space for a driver, then most shared vehicles need have no more than 420 

two seats. Given that these vehicles will be smaller and rarely get into collisions,30 they might 421 

also enable significant reductions in weight, leading to substantial reductions in energy 422 

consumption, cost and GHG emissions.7  423 

We also have not considered issues of equity in this paper, which deserve further analysis 424 

in future research. Our simulated fleet can only serve customers with smartphones, and fleet 425 

rebalancing based on demand forecasting could lead to worse service in low income 426 

neighborhoods. However, these issues already exist with services like Uber and Lyft, and 427 

smartphone ownership is approaching ubiquity in urban areas,54 such that our simulation can still 428 

provide useful insights as to the future of shared mobility. 429 
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