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ARTICLE

Preferred crystallographic orientation of cellulose
in plant primary cell walls
Dan Ye1,9, Sintu Rongpipi1,9, Sarah N. Kiemle2,8, William J. Barnes2, Arielle M. Chaves3, Chenhui Zhu4,

Victoria A. Norman 4, Alexander Liebman-Peláez4, Alexander Hexemer4, Michael F. Toney 5,

Alison W. Roberts3, Charles T. Anderson 2, Daniel J. Cosgrove2, Esther W. Gomez 1,6✉ &

Enrique D. Gomez 1,7✉

Cellulose, the most abundant biopolymer on earth, is a versatile, energy rich material found in

the cell walls of plants, bacteria, algae, and tunicates. It is well established that cellulose is

crystalline, although the orientational order of cellulose crystallites normal to the plane of the

cell wall has not been characterized. A preferred orientational alignment of cellulose crystals

could be an important determinant of the mechanical properties of the cell wall and of

cellulose-cellulose and cellulose-matrix interactions. Here, the crystalline structures of cel-

lulose in primary cell walls of onion (Allium cepa), the model eudicot Arabidopsis (Arabidopsis

thaliana), and moss (Physcomitrella patens) were examined through grazing incidence wide

angle X-ray scattering (GIWAXS). We find that GIWAXS can decouple diffraction from

cellulose and epicuticular wax crystals in cell walls. Pole figures constructed from a combi-

nation of GIWAXS and X-ray rocking scans reveal that cellulose crystals have a preferred

crystallographic orientation with the (200) and (110)/(1�10) planes preferentially stacked

parallel to the cell wall. This orientational ordering of cellulose crystals, termed texturing in

materials science, represents a previously unreported measure of cellulose organization and

contradicts the predominant hypothesis of twisting of microfibrils in plant primary cell walls.
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Cell walls of growing plants are dynamic, heterogeneous
hydrated networks comprised of cellulose, hemicellulose,
pectin, and structural proteins. The spatial organization of

these components in the cell wall is an important determinant of
anisotropic growth and mechanical properties in plants1–3. Cel-
lulose is synthesized by enzyme complexes in the plasma mem-
brane as elementary microfibrils4, here termed microfibrils,
consisting of 18 extended, β-1,4-linked glucan chains5,6. X-ray
diffraction (XRD) reveals that the glucan chains are arranged in a
crystalline lattice7–9. The crystalline structure of cellulose impacts
biological processes controlling plant growth, efficiency of con-
version of cellulosic biomass into renewable energy, and physical
properties of cellulose-derived materials.

In cell walls, cellulose ordering exists over a wide range of length
scales. At the smallest scale, cellulose order is defined by how glucan
chains crystallize through hydrogen bonding and van der Waals
interactions10. Cellulose crystals adopt a microfibril habit, whose
reported diameters are often between 3 and 4 nm11. Many primary
cell walls have a crossed polylamellate structure in which micro-
fibrils are oriented in a common direction within a lamella, but
orientation varies between adjacent lamellae12,13. At larger scales,
the polylamellate structure may exhibit a net microfibril alignment
at an angle relative to the elongation axis of the cell14–16. Several
studies have reported these forms of cellulose ordering in plant cell
walls of onion, pineapple, cabbage, wheat straw, and inflorescence
stems of Arabidopsis thaliana through various techniques, such as
solid-state 13C nuclear magnetic resonance (NMR) spectroscopy,
atomic force microscopy (AFM), X-ray scattering, and sum fre-
quency generation (SFG) spectroscopy10,14–16. The distribution and
alignment of cellulose microfibrils within the cell wall contributes to
mechanical anisotropy, which enables directional cell expansion17.

Another possible type of cellulose ordering, largely unex-
amined, is the orientation of cellulose crystallites relative to the
plane of the cell wall and thus relative to other crystallites as well.
Crystal planes orienting along a specific direction over a long
range such that they exhibit a preferred crystallographic direction
is called “texturing.” Orientational order of cellulose crystallites
with respect to the plane of the cell wall has rarely been examined
in primary cell walls. Lack of this orientational order may suggest
twisting of cellulose microfibrils (such twist has been previously
predicted in primary cell walls12,18) or a random orientation of
cellulose crystals during cell wall deposition or wall assembly. As
such, identifying a preferred orientational order with respect to
the plane of the cell wall would imply an aspect of cell wall
assembly not previously considered and may have consequences
on how we describe the link between microstructure and
mechanical properties of primary cell walls.

Grazing incidence wide-angle X-ray scattering (GIWAXS) is a
structural characterization tool that is commonly used to study
the preferred crystal orientation in polymer and nanoparticle thin
films19–23. In this technique, the X-ray beam is incident to the
sample at a shallow angle. Working in a grazing incidence geo-
metry near the critical angle for total external reflection, often
between 0.1° and 0.2° for carbonaceous materials, enhances the
external electric field at the sample, increases the X-ray path
length on the sample, and thereby increases the scattering sig-
nal24. Furthermore, using a two-dimensional (2D) detector
reveals the orientation of crystallites, such as the texture of
crystals in orientations that are in plane, out of plane, or at some
intermediate angle with respect to the sample surface. GIWAXS
of plant cell walls can provide information about chain packing
along the direction of and normal to the plane of the cell wall.

We examined the orientation of cellulose crystals with respect
to the plane of primary cell walls of onion epidermis, Arabidopsis
hypocotyls, and moss leaves (phyllids) using GIWAXS. By cap-
turing diffraction in the direction parallel and perpendicular to

the cell wall plane, GIWAXS decouples diffraction from cellulose
and epicuticular wax crystals. Clear evidence of a preferred crystal
orientation for cellulose is observed, where the (200) and (110)/
(1�10) planes are preferentially stacked parallel to the cell wall. The
net isotropy of in-plane microfibril alignment allows us to
quantify the degree of preferred crystal orientation of cellulose in
cell walls through χ-pole figures constructed from a combination
of GIWAXS and X-ray rocking scans. The strong orientational
ordering of cellulose crystals detected here is inconsistent with
previously predicted twisting of cellulose crystals in plant primary
cell walls12,18,25,26. We expect that crystal texture, a measure of
cellulose organization, will aid in linking nanoscale and micro-
scale cellulose structure to the mesoscale organization of cellulose
microfibrils and to macroscale mechanical properties of plant
cell walls.

Results
Transmission Wide-Angle X-ray Scattering (WAXS) of onion
primary cell walls. Transmission WAXS has been used to reveal
alignment of cellulose microfibrils in well-ordered cell walls, such
as spruce wood7 and celery collenchyma12. We used WAXS
measurements of unextracted and chloroform-treated onion
epidermis, where the incident X-ray beam is perpendicular to the
cell wall plane, to probe the possibility of alignment of crystal
planes of cellulose along the plane of the cell wall due to a
net alignment of microfibrils. The scattering pattern obtained
from the unextracted onion epidermal cell wall is largely domi-
nated by bright sharp rings at scattering vectors q of about 1.52
and 1.70 Å−1 (q= 2π/d, d is the lattice spacing), which are not
seen in the scattering from a chloroform-treated onion epidermal
cell wall (Supplementary Fig. 1).

The onion epidermis consists of a cell wall layer and a cuticle
layer. The cuticle contains heterogeneous polymers including
cutin, cutan, and epicuticular wax crystals27,28. Previous electron
and XRD studies have reported lattice spacings of epicuticular
wax as 4.13 and 3.73 Å29, which correspond well to d-spacings of
4.13 Å and 3.70 Å obtained from transmission WAXS data of
unextracted onion cell wall (Supplementary Fig. 1a). Chloroform
treatment of cell wall samples, which is known to remove
wax27,28,30,31, results in the disappearance of the bright rings in
WAXS data (Supplementary Fig. 1b), likely indicating the loss of
wax crystals. The broad scattering feature at q between about 1.0
and 1.6 Å−1 is consistent with Bragg reflections of cellulose Iβ in
primary cell walls9,12. Scattering intensities shown in Supple-
mentary Fig. 1b are isotropic along the ring, suggesting an average
random orientation of cellulose crystals within the cell wall plane.
This is likely due to the polylamellate cell wall, where cellulose
microfibrils have a preferred direction along each lamella, but the
orientation of cellulose microfibrils varies between different
lamellae13.

GIWAXS decouples scattering from cellulose and epicuticular
wax crystals. GIWAXS measurements can reveal diffraction
along and perpendicular to the cell wall plane, as shown in
Fig. 1a. Plant tissues were mounted on silicon substrates with the
cell wall side face up and the cuticle side down in the case of
onion. Arabidopsis hypocotyls and moss leaves were also
mounted flat on a silicon wafer as whole tissues, as described in
the “Methods” section. Scattering is enhanced near the critical
angle for total external reflection, which we can estimate using the
density. The tissues are mostly made up of primary cell wall, itself
composed of cellulose, pectin, and hemicellulose (i.e., mostly
composed of hexoses and pentoses), with similar densities (cel-
lulose32 1.5 g/cm3, pectin33 1.5 g/cm3, and hemicellulose34 1.52 g/
cm3). The density of our samples was calculated by assuming that
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primary cell wall is composed of 40% cellulose, 30% pectin, and
30% hemicellulose35. This gives a cell wall density of 1.5 g/cm3,
which is consistent with a previous report of the density of dried
cell wall36. Thus, at X-ray energies of 10 and 12 keV, critical
angles are 0.148° and 0.116°, respectively. Despite the roughness
of cell walls, e.g., approximately 10 nm root mean square from
AFM images of onion cell wall previously reported37, GIWAXS
intensities peak at these incidence angles (Supplementary Fig. 2).
For our experiments, we use incident angles of 0.15° for 10 keV
X-rays and 0.12° for 12 keV, leading to penetration depths of 1.32
and 1.67 μm into the cell wall, respectively. Given that the
thicknesses of the dried cell walls examined are about 3.4 μm for
onion38, 2.5 μm for Arabidopsis hypocotyls, and 10 μm for moss
leaves39 as measured by profilometry and electron microscopy,
these penetration depths probe a significant portion of the cell
wall.

GIWAXS 2D images of the onion epidermal cell wall,
Arabidopsis hypocotyls, and moss phyllids reveal anisotropic
scattering as shown in Fig. 1b–d, respectively. Because of the
grazing incidence scattering geometry, the detector cannot
capture the entire Ewald sphere, and GIWAXS images need to
be geometrically corrected24. This leads to a partial lack of data in
the out-of-plane direction as denoted by dark triangular regions
in Fig. 1b–d. As discussed below, data were acquired using
specular X-ray rocking scans to compensate for the missing data
in GIWAXS images. For all three tissues, Bragg reflections as
partial arcs are seen along both the out-of-plane and the in-plane
directions, corresponding to diffraction emanating perpendicular
to and along the plane of the cell wall, respectively.

To probe the origins of the reflections seen in GIWAXS
images, we treated onion cell walls with Driselase and chloroform.
Driselase is an enzyme that removes all polysaccharides including

cellulose, pectins, and hemicelluloses, leaving behind the cuticle.
In Fig. 2a, GIWAXS data of Driselase-digested onion cell wall
retain the reflections in the in-plane direction seen in unextracted
onion walls but no longer show two bright arcs in the out-of-
plane direction seen in Fig. 1b. Instead of the arcs in the out-of-
plane direction, there is a faint and azimuthally isotropic band.
This implies that cellulose crystals are completely digested, and
amorphous residues of the digested cell walls contribute to this
broad peak. Furthermore, epicuticular wax is known to be
crystalline29,30, and in-plane features near q= 1.5 Å−1 and q=
1.7 Å−1 (Fig. 2a, c) agree with previously reported XRD data from
platelet waxes29. We thus attribute the in-plane GIWAXS peaks
to cuticular waxes.

Scattering profiles were reduced from 2D images by azimuthally
integrating over sectors along the out-of-plane direction (−17° to
17°) and the in-plane direction (78° to 88°), as shown in Fig. 3a.
GIWAXS data in the out-of-plane direction from primary cell wall
samples (Supplementary Fig. 3a) have peaks around scattering
vectors q= 1.15 Å−1 and q= 1.55 Å−1 (q= 4π Sin(θ/2)/λ, where θ
is the scattering angle and λ is the X-ray wavelength) for onion
and Arabidopsis hypocotyls. The peak positions for the out-of-
plane reflections of moss leaves are slightly different, at
approximately q= 1.13 Å−1 and q= 1.57 Å−1. The in-plane
reflections from the three different cell walls (Supplementary
Fig. 3b) are slightly different from each other. GIWAXS data from
onion show two sharp in-plane reflections near q= 1.52 Å−1 and
q= 1.68 Å−1, Arabidopsis hypocotyls show one sharp in-plane
reflection at q= 1.52 Å−1, while data from moss show two in-
plane reflections at q= 1.46 Å−1 and q= 1.54 Å−1.

After chloroform treatment, the GIWAXS in-plane features
disappear, but out-of-plane features remain intact (Figs. 2b and
3b), as compared to unextracted onion (Fig. 1b). Sharp peaks are
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not observed from the in-plane scattering profile in Fig. 3c;
instead, a weak shoulder is present near q= 1.5 Å−1. The loss of
sharp peaks at q= 1.5 Å−1 and q= 1.7 Å−1 is also observed in the
azimuthally integrated WAXS data (Supplementary Fig. 4).
Altogether, the GIWAXS and WAXS data suggest that chloro-
form treatment of the cell wall removes crystalline wax.

Wax crystals were also reconstituted by drop casting the
chloroform-extracted solution onto silicon wafers. The
GIWAXS image (Fig. 2c) from reconstituted wax has similar
in-plane features as the unextracted (Fig. 1b) and Driselase-
digested (Fig. 2a) onion epidermal cell wall. The in-plane
scattering profiles in Fig. 3c indicate that both the peak
locations and the shape of the peaks of the reconstituted wax
are slightly different than the native wax in unextracted and
Driselase-digested epidermis. We speculate that this is a result
of re-crystallization of the wax from an organic solvent as
opposed to the native state of cuticle-associated wax, given that
organic crystal structures are sensitive to the crystallization
process and the local environment40,41.

SFG spectroscopic studies indicate that onion cellulose is
dominated by the Iβ allomorph42, such that the (110), (1�10), and
(200) planes should produce diffraction peaks at q= 1.05 Å−1,
q= 1.18 Å−1, and q= 1.62 Å−1, respectively43 (see Supplemen-
tary Table 1). We attribute the broad peak near q= 1.15 Å−1 in
the out-of-plane GIWAXS profile from onion (Fig. 3b) as
combined (110) and (1�10) reflections. Such overlap of (110)
and (1�10) reflections has been observed in bleached softwood44,
spruce wood7, celery collenchyma12, sugarcane bagasse45, mung
bean cell wall9, and A. thaliana seedlings46 with XRD and WAXS.
Part of the peak overlap is likely due to small changes in the unit
cell beta angle47. Peak broadening can arise from many factors,

such as limited instrumental resolution, paracrystallinity, and
small crystallite size48–53; small crystal size has been implicated as
the main culprit for diffraction peak broadening of plant cell
walls54. We attribute the peak near q= 1.55 Å−1 as the (200)
reflection, although it is lower than the value (q= 1.62 Å−1) for
the reported structure of cellulose Iβ43. The spacing between
(200) planes (d= 4.05 Å, d= 2π/q) of the onion epidermal cell
wall determined from GIWAXS falls in the range of values
reported for mung bean cell walls (d= 4.10 Å)9 and spruce wood
(d= 4.00 Å)7. This variability observed in d-spacing of (200)
planes might be due to higher disorder in cellulose crystals of
plant cell walls compared to tunicate cellulose, which was used to
solve the unit cell dimensions of cellulose Iβ43.

We compare our GIWAXS pattern to expected diffraction
from cellulose Iβ using GIXSGUI, a software used for
visualization and data reduction for grazing incidence X-ray
scattering55. Bragg reflections simulated by GIXSGUI overlap
GIWAXS data from onion cell wall, as shown in Supplementary
Fig. 5a. The cell wall appears to contain two populations of
crystals, leading to the (200) or (110/1�10) plane stacked in the
direction normal to the plane of the cell wall. The off-
meridional reflections of either population are not observed,
which we speculate is a signature of significant in-plane
disorder, as discussed below. Comparing GIWAXS profiles
with predicted diffraction for a crystal size of 3 nm using
MAUD, a Rietveld refinement tool56, shows reasonable
agreement (Supplementary Fig. 5b). We speculate that the
slight shifts in peak positions with respect to tunicate cellulose
Iβ are due to the mixture of cellulose Iα and cellulose Iβ found
in higher plants57 or because cellulose crystals in tunicates are
much larger and more ordered than in plants58.
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Quantifying degree of preferred crystal orientation through X-
ray pole figures. The uniform distribution of intensities along
scattering rings in transmission WAXS data (Supplementary
Fig. 1) suggests an isotropic orientation of microfibrils along the
plane of onion cell walls. Furthermore, GIWAXS patterns (Sup-
plementary Fig. 6) do not change significantly upon rotation in
steps of 45 degrees in the xy-plane (plane of the cell wall). Thus qx
and qy are equivalent and cell wall samples are in-plane isotropic
on the length scale illuminated by the incident X-ray beam
(roughly 105 µm2).

Taking advantage of the in-plane isotropy, we can represent the
distribution of crystal orientations through χ-pole figures, where χ
is the angle normal to the substrate, by representing the polar
angle dependence of a given reflection. χ-pole figures from
GIWAXS of plant cell walls can depict the population of crystals
oriented with respect to the plane of the cell wall; as shown in
Fig. 1, however, GIWAXS data are missing information along the
out-of-plane direction. Flat 2D detectors cannot intercept the
entire Ewald sphere due to the grazing incidence geometry, such
that crystallites that are oriented perfectly parallel to the substrate
are not sampled in GIWAXS24.

We construct χ-pole figures through combinations of local
specular rocking scans with GIWAXS to sample all crystallite
orientations. Rocking the sample within a few degrees of the
Bragg reflection angle integrates over crystallites that are not
aligned exactly parallel to the substrate19,20,59. This approach has
been demonstrated for polymeric thin films with a fiber texture,
where the crystallite orientation distribution is isotropic in the
plane of the substrate22,24,59–63. A χ-pole figure of (110)/(1�10)
crystal planes for fifth scale unextracted onion epidermis is shown
in Fig. 4, where a preferential orientation along the out-of-plane
direction is apparent. Integrating the area under the pole figures
allows quantification of the degree of preferred orientation, and
we find that about 50% of the (110)/(1�10) planes are oriented
between −34° and +34° from the substrate normal. An
illustration of the relative orientation of (110)/(1�10) planes with
respect to the cell wall plane as implied by the intensities
at specific polar angles is also shown schematically in the bottom
of Fig. 4. Similar χ-pole figures for Arabidopsis hypocotyls
and moss are shown in Supplementary Fig. 7. A preferred crystal

orientation with respect to the plane of the cell wall is clear for all
primary cell walls examined in this study.

Lack of cellulose-preferred orientation in ground cell walls and
at the base of growing region in 6-week-old Arabidopsis
inflorescence stems. Chloroform-treated onion epidermal cell
walls were ground using a vertical vibrator mill to reduce the
inherent cellulose-preferred orientation and were used in
GIWAXS experiments. The crystallinity index, computed from
the Segal method64, of intact chloroform-treated onion cell wall is
29%, while that of ground chloroform-treated cell wall is 26%,
consistent with previous reported values for onion of 31%65.
GIWAXS data shown in Supplementary Fig. 8a from ground cell
wall reveal a much more isotropic pattern as compared to the
onion epidermis seen in Fig. 1b. The break-up of plant tissues
into small particles that can be randomly oriented leads to iso-
tropic scattering and significantly diminished signatures of pre-
ferred crystal orientation of cellulose, as expected. The diminished
signature of a preferred orientation for cellulose is not likely to be
due to reduced crystallinity, given the similar values obtained
from the Segal method.

We also collected GIWAXS data from segments 1 cm in length
from the base of the growing region of inflorescence stems of 6-
week-old Arabidopsis plants. These segments are designated as
segment #1 to segment #4 as previously reported66, where
segment #4 is toward the base of the Arabidopsis inflorescence
stem. Segment #4 is also where secondary cell wall formation
begins. GIWAXS data from segment #4 are shown in Supple-
mentary Fig. 8b. We propose two hypotheses that could lead to
isotropic GIWAXS intensities from inflorescence stems. One, the
tissue geometry may allow for geometrical averaging of scattering
from cellulose. Inflorescence stems resist flattening, unlike onion
peels, Arabidopsis hypocotyls, and moss leaves. A cylindrical
arrangement of cell walls would lead to isotropic GIWAXS peaks.
Another possibility is that microfibrils are twisted or that the net
orientation of cellulose crystals in secondary cell wall is less
pronounced than in primary cell walls. Indeed, previous work has
shown differences in the cellulose content and microfibril
arrangement between segment #4, where secondary cell wall
starts to form, and segment #1, which consists of primary cell
walls66.

Grazing incidence small-angle X-ray scattering (GISAXS) of
primary cell walls in onion epidermis and Arabidopsis hypo-
cotyls. GISAXS can complement GIWAXS by providing struc-
tural information on the length scale of a few nanometers to
hundreds of nanometers19,21. GISAXS data from onion epidermal
cell wall and Arabidopsis hypocotyls are shown in Supplementary
Fig. 9. Although integrated profiles from onion cell walls do not
show any apparent features (Supplementary Fig. 9c, d), profiles
from Arabidopsis hypocotyls show stronger scattering, a broad
feature at about q ~ 0.1 Å−1 along the out-of-plane direction
(Supplementary Fig. 9c), and a weak feature at about q ~ 0.15 Å−1

along the in-plane direction (Supplementary Fig. 9d). These
features correspond to length scales (2π/q about 4–6 nm) that are
consistent with the size of microfibrils in primary cell walls11,67.
Given that GISAXS peaks arise from periodicities in the sample,
we speculate that the 4–6-nm length scale arises when micro-
fibrils pack tightly in bundles. We further hypothesize that the
lack of scattering features in the small-angle regime for onion
implies that cellulose microfibrils are more bundled or more
regularly packed in bundles in Arabidopsis hypocotyls than in
onion cell walls.
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Fig. 4 χ - pole figure constructed from a combination of GIWAXS and a
rocking scan. GIWAXS (black) and rocking scan (red) data are combined
to generate a χ-pole figure at the cellulose (110)/(1�10) reflection from the
unextracted onion epidermal cell wall. Schematic shows the orientation of
cellulose crystallites relative to the cell wall plane as implied by the pole
figure from onion epidermis. Inset: cross-section of cellulose microfibril
highlighting relevant crystal planes.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18449-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4720 | https://doi.org/10.1038/s41467-020-18449-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Discussion
GIWAXS data after various treatments of the onion epidermal
cell wall reveal that in-plane scattering arises from epicuticular
wax crystals. We speculate that this in-plane orientation is a
consequence of layered wax structures lying on the plane of the
cell wall, which have been previously identified through electron
and XRD studies29. Out-of-plane scattering arises from pre-
ferentially oriented cellulose crystals, as shown in the schematic in
Fig. 5. These findings suggest that two populations of crystals are
oriented such that the (200) or (110) planes are mostly stacked in
the direction normal to the cell wall plane. One possibility is that
these populations are segregated into separate lamella within the
cell wall. The texturing of crystallites allows GIWAXS to decouple
scattering from cellulose and epicuticular wax crystals in primary
cell walls, enabling their independent study. An alternative
approach to independently examine cellulose is through chloro-
form treatment to remove wax; but Fig. 3b shows that the loca-
tion of the (110)/(1�10) and (200) reflections and the shape of
GIWAXS out-of-plane scattering profiles of the chloroform-
treated samples differ slightly from unextracted samples. The
slight differences in peak shape and location could be due to a
change in crystalline structure of cellulose introduced by inter-
action of chloroform with hydrophobic faces of cellulose crystals
or because of solvent-based dehydration that could differ from
ambient drying of cell walls.

Twisting of microfibrils has been observed through simula-
tions25,26,68–74 and experiments12,18,25. The twist observed in
simulations has been attributed to van der Waals interactions that
aid in packing of crystals between layers75 or trans-glycosidic lin-
kages due to hydrogen bonds76. Macroscopic twisting of bacterial
microfibrils composed of cellulose has been observed experimen-
tally through direct visualization. Left-handed or right-handed
helically twisted bacterial microfibrils were observed during cellu-
lose synthesis in Acetobacter xylinum using transmission electron
microscopy (TEM)18,77–79. Local twisting of microfibrils was also
observed through AFM and TEM ofMicrasterias denticulata cell
walls80 and through electron microdiffraction of aqueous sus-
pensions of tunicate cellulose nanocrystals81. In addition, the

cellulose suspension extracted from wood pulp forms a chiral
nematic suspension in water82. Helical twisting of cellulose
microfibrils has also been observed in molecular dynamics
simulations of cellulose Iβ25,68,70,71,73,83 and Iα72 and in density
functional theory (DFT) calculations on cellulose Iβ26,69. The
reported degree of twist is mostly from simulations, with ranges
between 0.2 and 9 degrees/nm70,71,75,83, and from a few
experimental reports, which report values between 3.5 × 10−3

and 1 degrees/nm25,84. Nevertheless, anisotropic scattering in
GIWAXS as seen in Fig. 1 indicates that cellulose microfibrils
are not twisted in these three primary cell walls. χ-pole figures
show that cellulose crystals have a preferred out-of-plane
orientation with respect to the cell wall plane, as shown in
Fig. 4. Twisted cellulose microfibrils would create a net isotropic
orientation of cellulose crystals, yielding isotropic rings in
scattering profiles and pole figures that lack a preferred orien-
tation. Lack of twisting of cellulose microfibrils is consistent
with an AFM-based study of cellulose microfibrils in onion
epidermis13.

The loss of texturing observed after grinding of cell walls
(Supplementary Fig. 8a) demonstrates that the apparent texture
is not an artifact of the scattering instruments. This is further
support by the GIWAXS data from segment #4 (base of growing
region where secondary cell wall begins to form) of inflores-
cence stems of 6-week-old Arabidopsis plants that show iso-
tropic scattering (Supplementary Fig. 8b), which could be
a result of the tissue geometry (random orientation of cell
walls), a random orientation of cellulose crystals, or twisting of
cellulose microfibrils.

We hypothesize that the physiological environment in which
cellulose microfibrils are deposited is important for the pre-
ferred crystal orientation. In plant primary cell walls, cellulose
microfibrils are synthesized by the cellulose synthase complex
and are then deposited into an amorphous polysaccharide
matrix85–87. A preferred orientation of cellulose crystals relative
to the plane of the cell wall supports the hypothesis that cel-
lulose synthase complexes do not rotate within the plasma
membrane88. Furthermore, a previous TEM study has shown
that carboxymethyl cellulose (CMC), a negatively charged
water-soluble cellulose derivative, reduces twisting of micro-
fibrils secreted by Acetobacter xylinum78. Low degrees of sub-
stitution in CMC enable it to closely associate with native
cellulose, thus affecting cellulose assembly. Some of the hemi-
celluloses in plant cell walls are structurally similar to CMC and
could have a similar effect on cellulose microfibril twisting in
plant cell walls, although DFT calculations suggest that xylan
does not interact with cellulose strongly enough to affect con-
formations89. Nevertheless, recent AFM studies of onion
epidermis13,14,90,91, celery parenchyma walls92, celery col-
lenchyma12, and maize primary cell walls93 show no evidence of
cellulose microfibril twisting. Correlating experimental δ13C
NMR chemical shifts with chemical shifts for twisted cellulose
microfibrils predicted using DFT suggests that twisting is
unlikely or very minor (at most 0.2 degrees/nm)26.

The out-of-plane GIWAXS data (Fig. 3) suggest that two
populations of crystallites are present in primary cell walls, each
with either (110)/(1�10) or (200) planes stacked in the direction
normal to the plane of the cell wall. Thus, we expect a com-
plementary reflection to be present away from the out-of-plane
direction, at an angle that is consistent with the unit cell structure
(for example, see Supplementary Fig. 5 for when (200) planes are
stacked out of plane). This is not observed in our GIWAXS data
(Fig. 1). We hypothesize that chain packing within microfibrils,
and degree of order, is strongest in the out-of-plane direction,
such that more disorder along the plane of the cell wall leads to
weaker diffraction that is not apparent in our data. Comparing

Cellulose (200)

Cellulose (110)/(110)

Cuticular
wax

(110)/(110)

(200)
(110) (110)

qz

qxy

X-rays
Cuticular wax

Cell wall plane

(200)

Fig. 5 Schematic of crystal orientation of cellulose with respect to the
plane of the cell wall. The out-of-plane grazing-incidence scattering from
primary cell walls arises from preferentially oriented cellulose crystals,
whereas in-plane scattering arises from epicuticular wax crystals. Crystal
planes that lead to out-of-plane reflections are denoted in the two
populations of cellulose crystals shown. The presence of both (110)/(1�10)
or (200) along the out-of-plane direction in GIWAXS data suggests that
two populations of crystallites are present in primary cell walls, each with
either (110)/(1�10) or (200) planes stacked parallel to the plane of the cell
wall. Non-crystalline polysaccharides, such as pectin and hemicellulose, are
not shown. Inset, top left: cross-section of cellulose crystals with labeled
crystal planes.
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azimuthally integrated WAXS profiles and sector integrated
GIWAXS profiles (out-of-plane, in-plane, Supplementary Fig. 4)
shows that peak positions of (200) reflections differ (WAXS at
q= 1.52 Å−1, GIWAXS out-of-plane at q= 1.55 Å−1, and
GIWAXS in-plane at q= 1.5 Å−1). Because transmission WAXS
probes planes stacked in directions along the cell wall plane,
whereas out-of-plane GIWAXS probes the direction normal to
the cell wall plane, this difference in peak position indicates that
(200) planes are more tightly packed within microfibrils in the
direction normal to the cell wall plane (d= 4.2 Å) than along the
plane of the cell wall (d= 4.05 Å). We speculate that this is a
signature of less densely packed cellulose in-plane when com-
pared to the out-of-plane direction.

In cellulose crystals, the surfaces of (200) planes are hydro-
phobic, whereas surfaces of (110)/(1�10) planes are hydrophilic12.
Hydrophobic–hydrophobic and hydrophilic–hydrophilic inter-
actions are likely to be important for inter-crystallite interactions
and cell wall mechanics. It has been proposed that wall extensi-
bility is controlled by sites of close contact between cellulose
microfibrils, potentially mediated by trace amounts of xyloglu-
cans. These regions are called “biomechanical hot-spots”94,95.
Because xyloglucan is hypothesized to bind preferentially to
hydrophobic surfaces of cellulose crystallites74,96, it is possible
that the preferred orientation of crystallites could promote for-
mation of the proposed biomechanical hot-spots through
hydrophobic–hydrophobic interactions. A preferred orientation
of cellulose crystals could also lead to formation of large hydro-
phobic or hydrophilic surfaces that could be important for
mediating interactions with matrix polysaccharides and for pro-
moting a network capable of propagating stress throughout pri-
mary cell walls.

Even though the out-of-plane and in-plane scattering from
primary cell walls of onion epidermis, Arabidopsis hypocotyls,
and moss look similar, there are subtle differences in the Bragg
reflections. This suggests structural variations in primary cell
walls depending on the source of tissue. The peak positions for
the out-of-plane reflections of moss leaves are slightly different
from those of the onion epidermal cell wall and Arabidopsis
hypocotyls. Because cellulose in land plants is a mixture of cel-
lulose Iα and cellulose Iβ57,97, the difference in peak positions
could be a reflection of a change in composition of cellulose Iα
and cellulose Iβ depending on the source. Bryophytes (moss) and
angiosperms (onions and Arabidopsis) are also reported to have
subtle differences in cell wall composition98,99, which could
impact interactions or packing of glucan chains. The (110/1�10)
planes have broader reflections in moss when compared to onion
epidermis and Arabidopsis hypocotyls, suggesting less crystalline
cellulose, the presence of more crystal defects, or perturbations to
the unit cell beta angle that affect the overlap between the 110 and
1�10 reflections47. The in-plane reflections seen in the three dif-
ferent samples are also slightly different from each other, indi-
cating a difference in crystalline structure of epicuticular wax
crystals in the three different species.

The canonical description of cell wall assembly assumes that
microfibrils are deposited in random orientations or in a way that
allows microfibrils to twist. GIWAXS of plant primary cell walls
shows that this description is likely not correct. Instead, we report a
new type of cellulose organization, where microfibrils have some
coherence in terms of their relative crystal orientation. Our findings,
seen so far in primary cell walls from onion epidermis, Arabidopsis
hypocotyls, and moss, imply that a general mechanism of cell wall
biosynthesis somehow leads to this cellulose crystal texturing. Thus,
not only does measuring the orientation of cellulose crystallites
relative to the plane of the cell wall reveal a previously unreported
aspect of cell wall structure but also implies an aspect of cell wall
assembly not previously considered.

Methods
Chemical treatments of samples. Onion epidermal cell wall: Abaxial fifth scale
onion epidermis was peeled from white onion bulbs (Allium cepa, cv. Cometa)
purchased from a local grocery store. Fifth scale epidermis peel refers to the peel
from the onion scale that comes fifth when fleshy scales are numbered con-
secutively (1,2, 3,…,n) from the outside with the first scale as the outermost fleshy
scale after removing the dried layers90. All peels were washed in 0.1% Tween-20 in
20 mM HEPES buffer (pH 6.8) for 1 h90. Driselase powder (a fungal enzyme
cocktail; Sigma; Cat # D9515) was dissolved in 20 mM sodium acetate buffer (pH
5.5) for 30 min to make a final concentration of 10 mg/mL. The Driselase solutions
were centrifuged at 2500 × g for 5 min, and then the supernatant was passed
through a 0.2-µm filter to remove any insoluble particles. To examine the cuticle,
peels were treated with 10 mg/mL Driselase solution at 37 °C in 20 mM Tris (pH
8.5) for 6 days with gentle shaking at 50 rpm. To extract epicuticular wax from the
epidermis, peels were gently stirred in 2 mL of chloroform overnight at room
temperature. The epidermis was subsequently collected using tweezers. The
chloroform solution was filtered into a glass vial with a 0.45-μm polyvinylidene
difluoride filter and then the chloroform was evaporated. Afterwards, the extracted
wax was redissolved in 100 μL of chloroform and drop cast on a silicon substrate.
The unextracted, Driselase-digested, and chloroform-treated epidermises were then
washed with deionized (DI) water six times.

Arabidopsis hypocotyls: Hypocotyls of 6-day-old dark grown A. thaliana were
washed in 0.1% Tween-20 in 20 mM HEPES buffer (pH 6.8) for 1 h with shaking at
50 rpm and then washed with DI water.

Moss: Ten moss (Physcomitrella patens) leaves (phyllids) were extracted in 1%
sodium dodecyl sulfate (SDS) for 24 h and rinsed three times, 10 min each, with
DI water.

Ground onion cell wall: Abaxial fifth scale onion epidermis peels from white
onion bulbs were extracted with chloroform as described above. Thirty onion peels
were then finely ground using a vertical vibration mill (Sweco Vibro-Energy
Grinding Mill, Model No. GM005) with yttrium-stabilized zirconia balls (diameter:
5 mm) in DI water as a liquid media at 1140 rpm for 72 h. Some solvent was
evaporated from the solution containing ground cell wall to form a slurry.

Arabidopsis inflorescence stems: A. thaliana stem segments were prepared as
previously reported66. Arabidopsis stem segment 4 was chosen for this experiment.
Five Arabidopsis stems were washed in 2% SDS for 12 h, flattened between slides
with a 700-g weight, washed in SDS for three additional cycles (48 h total), and
then equilibrated in water. The stems were extracted with chloroform under
stirring for 24 h to remove epicuticular wax.

GIWAXS and GISAXS sample preparation. Silicon substrates for GIWAXS and
GISAXS experiments were cleaned by sonication in acetone, iso-propanol, and DI
water sequentially. For unextracted, Driselase-digested, and chloroform-treated
onion GIWAXS samples, a single peel was mounted on a silicon substrate in a
hydrated state so that the samples adhered better to the substrate as they air dried.
A single peel of unextracted onion cell wall in a hydrated state was mounted on a
cleaned silicon substrate for GISAXS measurements as well. Chloroform-extracted
epicuticular wax was drop-cast on a silicon substrate for GIWAXS measurements.

For GIWAXS and GISAXS of Arabidopsis, 30 hydrated hypocotyls, each
approximately 15 mm long, were mounted flat side by side on a silicon substrate
and then air dried. Once dry, hypocotyls are macroscopically flat. For each moss
sample, 10 hydrated moss leaves were mounted flat and air dried on a silicon
substrate so as to resemble a thin film. The GIWAXS sample of ground onion cell
wall was made by drop-casting a slurry of the ground onion cell wall on a cleaned
silicon substrate.

Flattened, chemically treated Arabidopsis inflorescence stem segments were
mounted on cleaned silicon substrates and air dried. The stems were adhered to the
substrate using carbon tape at the edges of the stem segments as they partially
dried. For GIWAXS measurements, the inflorescence stem samples were mounted
along the beam such that the tape was not in the path of the X-ray beam.

Wide-angle X-ray scattering. For transmission WAXS experiments, 10 unex-
tracted and 7 chloroform-treated onion epidermal peels, as prepared for GIWAXS
experiments, were stacked together on washers with the longitudinal direction of
the epidermal cells aligned to enhance scattering intensity.

WAXS experiments were performed at beamline 7.3.3 of the Advanced Light
Source (ALS) at Lawrence Berkeley National Laboratory. Samples were loaded in a
helium chamber to minimize background scattering. Data were collected using 10
keV X-rays and a Pilatus 2M detector. A sample-to-detector distance of 27.5 cm
was used to cover a q range of 0.08–3.38 Å−1. 2D images were azimuthally averaged
to obtain the reported one-dimensional (1D) scattering profiles using the Nika
package100. Three independent samples were measured for each condition to
ensure repeatability.

GIWAXS and analysis. GIWAXS experiments were carried out at beamline
7.3.3101 of the ALS at Lawrence Berkeley National Laboratory and beamline 11-3 of
Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator
Laboratory. Samples mounted on silicon substrates were examined in a helium
environment to minimize background scattering. At ALS, data were collected using
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10 keV X-rays and a Pilatus detector with an incident angle of 0.15°. At SSRL, data
were collected using 12.7 keV X-rays and a Raxyonics 225 detector with an incident
angle of 0.12°. For analysis, GIWAXS 2D images were corrected for the curvature
of the Ewald sphere using Xi-cam102 for data collected at ALS and using WxDiff103

for data collected at SSRL. The out-of-plane scattering profile was obtained by
integrating over polar angles (χ) from −17° to +17° (where 0° is along the vertical
direction), and the in-plane scattering profile was obtained from integrated data
with polar angles between +78° and +88°. Three independent samples were
measured for each condition to ensure repeatability.

GISAXS and analysis. GISAXS experiments were carried out at beamline 7.3.3101

of the ALS at Lawrence Berkeley National Laboratory. Samples mounted on silicon
substrates were examined in vacuum to minimize background scattering. At ALS,
data were collected using 10 keV X-rays and a Pilatus detector with an incident
angle of 0.15°. For analysis, GISAXS 2D images were reduced to 1D data using Xi-
cam102. 1D GISAXS scattering profiles along out-of-plane and in-plane directions
are obtained from a vertical line cut (width, Δqy= 0.005 Å−1) centered at qy ~
0.012 Å−1 and a horizontal line cut (width Δqz= 0.005 Å−1) at qz= 0.03 Å−1,
respectively.

Rocking scans. Rocking scans were carried out at Experimental Station 11-3 of
SSRL at SLAC National Accelerator Laboratory. Data were collected using 12.7
keV X-rays and a Raxyonics 225 detector. For pole figures of the (110)/(1�10)
reflection, samples were rocked at 4.4° ≤ θ ≤ 5.9° corresponding to 0.99 ≤ q ≤
1.31 Å−1. Three independent samples were measured for each condition to
ensure repeatability.

Pole figures. A pole figure is a representation of the orientation distribution of
crystallographic planes in a sample, which illustrates the texture of a material.
Partial pole figures with polar angles (χ) between −90° to −7.5° and 7.5° to 90°
were obtained by azimuthally integrating the (110)/(1�10) reflection over q= 1.15 ±
0.16 Å−1 from corrected GIWAXS images. Data for pole figures near the specular
direction were obtained from rocking scans. A sector integration was performed for
the (110)/(1�10) reflection at q= 1.15 ± 0.16 Å−1 within −30° < χ < 30° of the 2D
rocking scan images. To construct the complete pole figure, a scaling factor was
used to scale the background-corrected GIWAXS data to match rocking scan data
at χ= ±7.5°.

Background correction. Background correction for χ-pole figures was done by
subtracting a local background from the azimuthal integration of the cellulose
(110)/(1�10) reflection in both GIWAXS and rocking scan data. An azimuthal
integration along polar angle (χ) of a region outside the (110)/(1�10) reflection was
selected as the local background. The sector with q-range from 0.5 to 0.6 Å−1 was
selected as local background for GIWAXS data for onion. The sector with q-range
of 0.6–0.7 Å−1 was selected for Arabidopsis and moss. The intensity of the local
background at each polar angle was subtracted from the intensities of azimuthal
cuts over the (110)/(1�10) reflection at the corresponding polar angle. Similarly, the
regions selected as backgrounds for rocking scans have a q-range of 2–2.2 Å−1 for
onion samples, 1.8–1.9 Å−1 for Arabidopsis samples, and 0.7–0.8 Å−1 for moss
samples. The integrated intensities of these regions were subtracted from the
intensities of the azimuthal cuts over the (110)/(1�10) reflection in rocking scan data
at the corresponding polar angle.

Indexing of GIWAXS patterns. GIWAXS 2D and 1D patterns were indexed by
comparison to diffraction patterns for cellulose Iβ simulated in GIXSGUI, a
software used for visualization and data reduction for grazing incidence X-ray
scattering55, and MAUD, a Rietveld refinement tool56, respectively. Previously
reported unit cell parameters for cellulose Iβ were used for simulating diffrac-
tion patterns43. The 2D GIWAXS diffraction pattern generated in GIXSGUI was
overlaid on GIWAXS 2D data of onion cell wall for comparison. In addition, the
1D powder diffraction pattern generated in MAUD was overlaid on GIWAXS
1D data for onion cell wall for comparison. The 1D diffraction data generated in
MAUD was for crystal size 30 Å and the pattern was also refined for background
to match experimentally obtained GIWAXS 1D data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study can be found in Supplementary
Information and are available on Penn State ScholarSphere at https://scholarsphere.psu.
edu/collections/bnz805z87t.
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