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Abstract. The paper studies the issue of stability of solutions to the Navier-Stokes and
damped Euler systems in periodic boxes. We show that under action of fast oscillating-in-
time external forces all two dimensional regular solutions converge to a time periodic flow.
Unexpectedly, effects of stabilization can be also obtained for systems with stationary forces
with large total momentum (average of the velocity). Thanks to the Galilean transformation
and space boundary conditions, the stationary force changes into one with time oscillations.
In the three dimensional case we show an analogical result for weak solutions to the Navier-
Stokes equations.

1. Introduction

In many analytical and computational studies of the forced Navier-Stokes or Euler equa-
tions, subject to periodic boundary conditions, it is usually assumed that spatial average
of the forcing term is zero. This in turn implies that the spatial average of the solution is
invariant, and for simplicity it is also taken to be zero. In this paper we investigate the long-
time behavior of these systems when the spatial average of the initial velocity is taken to be
large. By using the Galilean transformation of such systems the problem is transformed into
a similar system with fast time-oscillating forcing term. Therefore, we investigate instead
the long-time dynamics of the transformed Navier-Stokes equations and the damped Euler
equations under the action of fast time-oscillating force. Specifically, we show that the fast
time-oscillating forces have a stabilization effect; and that the long-time dynamics consists
of a globally attracting unique time-periodic solution. This result is consistent with other
results concerning the investigation of the Navier-Stokes and Euler equation with high os-
cillations. Fast rotation is, for example, a stabilizing mechanism of inviscid turbulent flows
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[BMN, CG, GIM, MN]. Moreover, in the case of the forced two-dimensional Navier-Stokes
equations it is observed that fast rotation is trivializing the long-time dynamics, i.e., the
global attractor is a single stable steady state at the limit of large rotation rate [W].

Naturally, we distinguish in our proofs between the two-dimensional and the three-di-
mensional cases. For the two-dimensional models we show that the long-time dynamics
of regular solutions is trivial; specifically, that all solutions tend to a unique time-periodic
solution generated by the fast time-oscillating forcing term. For the three-dimensional case
we only consider the Navier-Stokes equations, and we show that all Leray-Hopf weak solutions
converge, as time tends to infinity, to a unique time periodic solution generated by the fast
time-oscillating forcing term. Notably, we do not impose any restriction on the magnitude
of spatial norms of the forcing term, and we only assume that the size spatial average of the
initial data (or equivalently the rate of oscillation in the forcing term) is large enough. In the
last section of this paper we also provide some numerical results supporting our qualitative
theoretical results.

The paper is organized as follows. In the next section we motivate our study and introduce
the relevant models. In section 3 we treat the two-dimensional models, and in section 4
we consider the three-dimensional Navier-Stokes system. Numerical results are reported in
section 5. We also provide an Appendix section in which we sketch the construction of time
periodic solutions.

2. Settings and motivation

In this paper we consider the Navier-Stokes and the damped Euler systems of equations

(2.1)
vt + v · ∇v − ε∆v + α[v] +∇p = F,

div v = 0,

subject to periodic boundary conditions in the n-dimensional torus Tn, for n = 2, 3, and with
divergence-free initial datum v0. Here we denote by

(2.2) [v] = v − 1

|Tn|

ˆ
Tn
vdx,

and assume that

(2.3)

ˆ
Tn
F (x, t)dx = 0, for all t > 0.

Assumptions (2.2) and (2.3) imply the conservation of the total momentum of the flow, i.e.,

(2.4)

ˆ
Tn
v(x, t)dx =

ˆ
Tn
v0(x)dx.

Throughout this work we assume that max{α, ε} > 0.
In this section we consider two special cases of system (2.1):

Case (A): In the first case we consider a very fast (i.e., Ω in (2.5) below is very large)
constant background flow motion in the x1−direction, given by the initial data, i.e.,

(2.5)
1

|Tn|

ˆ
Tn
v0dx = Ωê1.



3

In addition, we assume that the external force in (2.1) is time independent, i.e., F (x, t) =

F (x); and that the Fourier coefficients F̂k = 0, for k = (0, k2) in the 2d case, and for
k = (0, k2, k3) in the 3d case. As it will become clear later, this assumption implies that the
forcing term does not resonate with the background constant flow given in (2.5).

The choice of the direction x1 for the background flow is not important, but it simplifies
the presentation. The above assumptions allow us in this case to make the following change
of the variables, using the Galilean transformation,

(2.6) x→ x+ Ωtê1 and v → v − Ωê1 with Ω ∈ R+.

Consequently, we arrive to the following equivalent system to (2.1)

(2.7)
vt + v · ∇v − ε∆v + αv +∇p = F (x1 + Ωt, x′),

div v = 0,

with initial datum v0 such that
´
Tn v0dx = 0. Here x′ = x2 for the 2d case, and x′ = (x2, x3)

for the 3d case. For large values of Ω, the speed of the background flow, transformation (2.6)
yields a new system, (2.7), that governs the perturbation about the background flow, with
fast oscillating in time forcing term, with period Tper = 2π

Ω , but with zero total momentum.

Case (B): In the second case we consider system (2.1) with a special type of fast oscillating
forcing term. Specifically, we consider fast oscillating force of the form

(2.8) F (x, t) = f(x) sin Ωt.

We also assume that

ˆ
Tn
f(x)dx =

ˆ
Tn
v0(x)dx = 0. Here [v] = v.

The key observation in both, case (A) and case (B), is that we consider systems with fast
oscillating forcing terms in (2.7) and (2.8), respectively. The main purpose of this study is
to take advantage of these fast oscillating forcing terms to stabilize the long-time behavior
of the solutions of the corresponding systems. Consequently, our analysis will concentrate on
the limit, as Ω→∞. Note that the force (2.8) is, roughly speaking, a particular case of the
force considered in (2.7), since F (·) is spatially periodic.

In both cases, (A) and (B), we require the force F to be sufficiently smooth and we do
not restrict the magnitude of its spatial norms. In particular, the L2(Tn) and H−1(Tn) type
norms can be arbitrary large and fixed. The same we assume about the size of the initial
data.

Next, we provide a rough description of the main results presented in this article.

Results for the two-dimensional case:

1. Periodic in time solutions. Let δ > 0 be sufficiently small, and let F be sufficiently
smooth, fulfilling the forms in case (A) or case (B). Let ε ≥ 0 and α ≥ 0 with max{ε, α} > 0.
Then there exists a periodic in time solution, vper, to (2.1) such that

(2.9) ‖∇vper‖L∞(T2×TperS1) ≤ δ,

provided Ω is sufficiently large. The period is Tper = 2π/Ω. Theorem 1 from Section 3.
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2. Global stability and uniqueness of the periodic solution. Let v be a solution to (2.1),
with arbitrary, divergence-free, initial datum v0 ∈ L2. Then for every Ω large enough, such
that the above statement is valid, we have

(2.10) ‖v(t)− vper(t)‖L2(T2) → 0, as t→∞,

where vper is as above. In particular, and under the above assumptions, it follows from (2.10)
that vper is unique. Theorem 2 from Section 3.

Here we shall mention about a current result from [CZ] concerning dissipative PDEs which
intersects with the case A for some class of external forces. Note however that methods used
there are significantly different from ones we apply in the present paper.

Results for the three-dimensional case:

We also investigate the long-time behavior of the three-dimensional Navier-Stokes equa-
tions, for large values of Ω. However, due to our inability to prove global existence of strong
solutions, or the uniqueness of weak solutions for the 3d Navier-Stokes equations, we will
focus on the long-time behavior of the Leray-Hopf class of weak solutions of the 3d Navier-
Stokes system. Thus, by taking α = 0 and ε = ν > 0 in (2.1), we consider the following 3d
Navier-Stokes system:

(2.11)
vt + v · ∇v − ν∆v +∇p = F,

div v = 0,

subject to periodic boundary conditions on the torus T3, and with the divergence-free initial
datum v0 ∈ L2(T3) that has zero spatial average on T3. Moreover, the forcing term in (2.11),
F , is assumed to satisfy the conditions in either case (A) or case (B), above.

3. Periodic in time solutions. Let δ > 0 be sufficiently small. Let F be sufficiently smooth
satisfying either case (A) or case (B). Then there exists a periodic in time solution, vper, to
(2.11) such that

(2.12) ‖vper(t)‖L∞(T3×TperS1) ≤ δ,
provided Ω is sufficiently large. Theorem 3 from Section 4.

4. Global stability and uniqueness of the periodic solution. Let v be a Leray-Hopf weak
solution to (2.11), with arbitrary divergence-free initial datum v0 ∈ L2(T3). Then, for every
Ω sufficiently large, we have

(2.13) ‖v(t)− vper(t)‖L2(T3) → 0, as t→∞,

where vper is as above. In particular, and under the above assumptions, it follows from (2.13)
that vper is unique. Theorem 4 from Section 4.

Numerical results for the two-dimensional case:
We conclude the paper with numerical tests illustrating our analytical results for certain

class of flows. Specifically, we consider the 2D Kolmogorov flows in the flat torus T2
β =

[0, 2π] × [0, 2πβ], for β > 0; which is the 2D NS equations, subject to periodic boundary
condition, forced by an eigen-function of the Stokes operator. This problem is on the one
hand simple, but on the other hand is dynamically rich enough to illustrate the phenomena
at hand.
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We consider the vorticity formulation of the 2D version of (2.7) with the specific forcing
term F = (−λβ sin( yβ + Ωt), 0) which yields

(2.14) ωt + v · ∇ω − ε∆ω + αω = λ cos(
y

β
+ Ωt).

Observe that ω(z, t) is a solution of (2.14), for z = (x, y) ∈ T2
β, if and only if ω̃(z, t) =

ω(z + βΩtê2, t) is a solution to the evolution equation

(2.15) ω̃t + (ṽ + βΩê2) · ∇ω̃ − ε∆ω̃ + αω̃ = λ cos(
y

β
).

In particular, ω∗(z) is a stationary solution of (2.15) if and only if ω(z, t) = ω∗(z + βΩtê2),
for z = (x, y) ∈ T2

β, is a time periodic solution to (2.14). Moreover, ω∗(z) is globally stable

for the dynamics of (2.15) if and only if ω∗(z+ βΩtê2) is global stable time periodic solution
of (2.14).

• Based on the above observation we present a bifurcation analysis of the stationary
solutions to (2.15). In particular, investigate the bifurcation diagram of (2.15) for
large values of Ω. Moreover, we show that the range of λ’s for which system (2.15)
admits a unique stationary solution increases proportionally to Ω.
• We investigate the stationary solutions of (2.15) rather than direct numerical inte-

gration in order to avoid working with rapidly oscillating in time functions.
• We also investigate the rate of convergence to the globally stable solution of (2.15).

The purpose of this study is to provide an evidence of the exponential convergence
rate, which we show in Theorem 2.

All of the numerical results were derived using a finite dimensional Galerkin approxima-
tions, we argue that the dimensions we used are sufficient.

An illustrative linear toy model with friction – Newton’s second law

To illustrate the stabilization mechanism, due to the fast oscillations in the forcing term,
we focus here on the following simple linear equation with friction/damping/drag term:

(2.16) wt + αw = F (x,Ωt),

in the torus Tn. Here F is time periodic, with period Tper = 2π
Ω . First, we observe that the

solution to system (2.16) does not involve dynamically the spatial variable, x, so the solution
will treat x as a parameter (label), i.e., we have a parameterized system of simple ODEs.

We assume that the forcing term F (x,Ωt), in (2.16), enjoys specific structure, namely,
there exists a smooth function g(x,Ωt), periodic in space and time, such that

(2.17) ∂tg(x, t) = F (x, t), consequently
1

Ω
∂tg(x,Ωt) = F (x,Ωt).

We have two prototypical examples in mind of the forcing terms, F (x,Ωt), satisfying the
above structure. Specifically, let f(x), for x ∈ Tn, be a smooth spatially periodic function.
We consider again the cases:

(2.18) (A) g(x,Ωt) =
1

Ω
D−1

1 f(z)|z=x+Ωtê1 , (B) g(x,Ωt) = − 1

Ω
f(x) cos Ωt.
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Here we put D−1
1 f(z) as the primitive function of f with respect to the first variable, i.e., we

have 1
Ω∂tD

−1
1 f(x+ Ωtê1) = f(x+ Ωtê1). Put it in other words we define

(2.19) g(x,Ωt) =
∑
k∈Zn

f̂k
ik1

eik·xeiΩtk1

via Fourier series. Here we see that the assumption f̂k = 0, for k = (0, k′), is required to
justify the above form of g.

As a result of the previous assumptions on f we have in both cases that

(2.20) ‖g(·,Ωt)‖C2(Tn) ≤
C

Ω
,

where C depends on the spatial norms of f , but is independent of Ω. Notice that only the
time derivatives of g will add multiplication by factors of Ω. Set

(2.21) w(x, t) = W (x, t) + g(x,Ωt), then W satisfies Wt + αW = αg.

Therefore, from (2.21), by (2.20) we have

(2.22) W (x, t) = exp{−αt}W0(x) +

ˆ t

0
exp{−α(t− s)}αg(x,Ωs)ds ∼ e−αt +

1

Ω
.

Thus, the solution to (2.16) satisfies

(2.23) ‖w(t)‖L∞(Tn) ∼ e−αt +
1

Ω
.

Since the problem is linear, the above structure holds for arbitrary positive α and Ω.
Next, let us consider the time periodic solutions to (2.21):

(2.24) Wper,t + αWper = αg.

The construction of periodic solutions to the (2.24) can be done explicitly through the Fourier
series in time, on the time periodic interval TperS. Using the energy methods we immediately
obtain the following bound

(2.25) ‖Wper‖L∞(TperS1) ≤ ‖g‖L∞(TperS1).

Comparing the solutions to (2.21) and to (2.24) we obtain the trivial identity

(2.26) ∂t(W −Wper) + α(W −Wper) = 0.

The above identity implies

(2.27) |W (x, t)−Wper(x, t)| = |W0(x)−Wper(x, 0)|e−αt ∼ e−αt.
Summing up we obtain the following:

Proposition 1. Let α > 0, and g has one of the forms in (2.18), then every solution to
(2.16) admits the following structure

(2.28) ‖w(·, t)‖L∞(Tn) . e−αt‖w0‖L∞(Tn) +
1

Ω
‖f‖L∞(Tn).

and

(2.29) ‖w(·, t)− wper(·, t)‖L∞(Tn) ≤ e−αt‖w0 − wper(·, 0)‖L∞(Tn),
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where wper = Wper − g.

3. The two-dimensional case

System (2.1), that we consider here, is a modification of the Navier-Stokes and Euler
equations, by basically adding a linear friction/damping/drag force with coefficient α ≥ 0.
We require in addition that max{α, ε} > 0, thus, (2.1) is a dissipative form of the Euler
system. We use the special proprieties which are valid in the 2d case. Namely, we analyze
system (2.1) in the vorticity formulation which takes the form

(3.1) ωt + v · ∇ω − ε∆ω + αω = rotF,

where

(3.2) ω = rot v.

Our result concerning system (3.1)-(3.2) is the following

Theorem 1. Let α ≥ 0, ε ≥ 0, with max{α, ε} > 0, and let F be sufficiently smooth force
of form (A) or (B). In addition, for case (A) let us assume that there exists a scalar function
g(x,Ωt) such that

1

Ω
∂tg(x,Ωt) = rotF (x1 + Ωt, x2) and sup

s
‖g(·, s)‖C3(T2) ≤ G,

where G is independent of Ω. Choose δ small enough such that

0 < δ ≤ 1

4
(α+ aε),

where a is an absolute constant. Then there exists a regular periodic in time solution to
problem (2.1) such that

(3.3) ‖v‖L∞(TperS1;W 1
∞(T2)) ≤ δ,

provided Ω is sufficiently large, depending on α, ε,G and δ, with Tper = 2π/Ω.

Proof. The construction of time periodic solutions is based on the domain T2 × TperS1.
We consider system (2.1) in the form of (3.1). Let v̄ be a given smooth enough time periodic
velocity field satisfying:

(3.4) div v̄ = 0 with ‖v̄‖L∞(TperS1;W 1
∞(T2)) ≤ δ.

We then look for a time periodic vorticity ω that solves the following ”linearized” transport,
by the velocity field v, version of problem (3.1):

(3.5) ωt + v̄ · ∇ω − ε∆ω + αω = rotF.

Then we construct the time periodic velocity field, v, corresponding to the vorticity ω such
that

(3.6) rot v = ω, div v = 0,

ˆ
T2

vdx = 0.

We show that the above procedure defines a map

T : L∞(TperS1;W 1
∞(T2) ∩ {div v = 0})→ L∞(TperS1;W 1

∞(T2) ∩ {div v = 0}),
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such that T (v̄) = v. And we look for a fixed point of this map, which will in turn define a
time periodic solution to (3.1). Indeed, we show that T maps the set

Ξ = {div v = 0 with ‖v‖L∞(TperS1;W 1
∞(T2)) ≤ δ}

into itself and that T is a compact map. Then the assumptions of the Schauder fixed point
theorem are fulfilled, which will imply the existence of a fixed point of map T . Given v̄
satisfying (3.4), the existence of time periodic solution to the linearized system (3.5) is not
difficult, and it can be proved easily by the Galerkin method – see the Appendix. Next, we
establish the required estimates.

We split our proof into two cases, distinguishing influences of ε∆w and αw.

The dominant-damping case is when α ≥ aε, for some positive absolute constant a to be
specified later. This is the case when the damping α > 0 is dominating the viscosity ε which
is very small or maybe even equal to zero. In the latter case we essentially have the damped
Euler system. Recalling (2.18) we set

(3.7) W = ω − 1

Ω
g(x,Ωt).

For case (A), the function g is given by (2.19); and for case (B) we take, as before, g(x,Ωt) =
− cos Ωt · f(x). Then ∂t

1
Ωg(x,Ωt) = rotF . Then W fulfills

(3.8) Wt + v̄ · ∇W − ε∆W + αW = v̄ · ∇ 1

Ω
g − ε∆ 1

Ω
g + α

1

Ω
g.

Multiplying (3.8) by |W |p−2W and integrating over T2 we obtain

(3.9)
1

p

d

dt
‖W‖p

Lp(T2)
+ ε

ˆ
T2

(p− 1)|∇W |2|W |p−2dx+ α‖W‖p
Lp(T2)

dx ≤

1

Ω

ˆ
T2

(
|v̄||∇g|+ ε|∆g|+ α|g|

)
|W |p−1dx.

Integrating with respect to time, over TperS1, and using the periodicity in time, we get

(3.10) ε

ˆ
TperS1

ˆ
T2

(p− 1)|∇W |2|W |p−2dxdt+ α‖W‖p
Lp(T2×TperS1)

≤

C(
G

Ω
‖v̄‖Lp(TperS1;L∞(T2))‖W‖

(p−1)/p
Lp(TperS1;Lp(T2))

+
G

Ω
(ε+ α)T 1/p

per ‖W‖
(p−1)/p
Lp(TperS1;Lp(T2))

).

In particular, we have

(3.11) α‖W‖Lp(TperS1;Lp(T2)) ≤ C
G

Ω
T 1/p
per (‖v̄‖L∞(TperS1;L∞(T2)) + α).
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However this regularity is not enough, one more spatial derivative is required, so we differ-
entiate (3.8) with respect to xi ∈ {x1, x2} getting

(3.12) Wxi,t + v̄ · ∇Wxi − ε∆Wxi + αWxi = −v̄xi · ∇W

+ v̄xi · ∇
1

Ω
g + v̄ · ∇ 1

Ω
gxi − ε∆

1

Ω
gxi + α

1

Ω
gxi .

Multiplying (3.12) by |Wxi |p−2Wxi , integrating over T2×TperS1, and using the periodicity in
time, we get

(3.13)
2∑
i=1

[
(p− 1)ε

ˆ
TperS1

ˆ
T2

|∇Wxi |2|Wxi |p−2dxdt+ α

ˆ
TperS1

ˆ
T2

|Wxi |pdxdt
]

≤ ‖∇v̄‖L∞‖∇W‖
p
Lp(TperS1;Lp(T2))

+
G

Ω
T 1/p
per (‖v̄‖L∞(TperS1;W 1

∞(T2)) +α)‖∇W‖(p−1)/p
Lp(TperS1;Lp(T2))

.

Assuming, as required in (3.3), that ‖∇v̄‖L∞ ≤ δ, and observing that in this case we have
δ ≤ 1

2α, we conclude that

(3.14) α‖∇W‖Lp(TperS1;Lp(T2)) ≤ C
G

Ω
T 1/p
per (‖v̄‖L∞(TperS1;W 1

∞(T2)) + α) ≤ CαG
Ω
T 1/p
per .

Substituting estimates (3.14) and (3.11) into equation (3.8) we find that

(3.15) Wt − ε∆W ∈ Lp(TperS1;Lp(T2)).

Based on the classical result for the heat equation [A, LSU] of the maximal regularity esti-
mates for the Lp spaces, we obtain information with no dependence from ε. Hence

(3.16) ‖Wt‖Lp(TperS1;Lp(T2)) ≤ C
G

Ω
T 1/p
per (‖v̄‖L∞(TperS1;W 1

∞(T2)) + α) ≤ CαG
Ω
T 1/p
per .

Concerning estimates (3.8)-(3.16), we observe that the term −ε∆W , for ε > 0, has the right
sign. Moreover, it also has the right good sign even in the maximal regularity (3.15).

The dominant-viscosity case when aε ≥ α, with possibly α = 0. This case allows us to take
full advantage of the parabolicity of (3.8), which reads

(3.17) Wt − ε∆W + αW = −v̄ · ∇W + v̄ · ∇ 1

Ω
g − ε∆ 1

Ω
g + α

1

Ω
g.

The maximal regularity estimate for the heat equation [LSU] or more direct [Mu2] implies
that

(3.18) ‖Wt, ε∇2W,αW‖Lp(T2×TperS1) ≤ Cp‖v̄ · ∇W, v̄ · ∇
1

Ω
g, ε∆

1

Ω
g, α

1

Ω
g‖Lp(T2×TperS1),

where the constant Cp depends only on p, there is no dependence on Tper, since we consider
only homogeneous norms in (3.18). Observe that

Cp‖v̄ · ∇W, v̄ · ∇
1

Ω
g, ε∆

1

Ω
g, α

1

Ω
g‖Lp(T2×TperS1) ≤ Cpδ‖∇W‖LpT2×TperS1) + C

εG

Ω
T 1/p
per ,
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since v̄ ∈ Ξ we have ‖v̄‖L∞ ≤ δ. Furthermore, since in this case we have δ ≤ 1
2aε then the first

term above can be absorbed by the left-hand side of (3.18), thanks to the facts
´
T2 Wdx = 0

and ‖∇W‖Lp(T2) ≤ C‖∇2W‖Lp(T2). Hence we conclude the following bound

(3.19) ‖Wt, ε∇2W,αW‖Lp(T2×TperS1) ≤ C
εG

Ω
T 1/p
per ,

for the case aε ≥ α, establishing the analogue of (3.14) and (3.16) for this case.

Now we return to studying properties of the map T treated for both cases. Before we
establish the L∞-bound for ∇v, a comment is in order. The key problem is the length of
Tper. In general the constant in the Sobolev imbeddings may highly depend on Tper in a bad
way. Hence a solution, which here seems to be most natural, is to consider v̄ over several
periods of time. Here we think about S∗ ∼ [ 1

Tper
]TperS1, where [t] denotes the integer part of

t. Then S∗ is close to S1. The functions are defined over the domain T2×S∗, so the problems
with thinness of domain will disappear.

For this purpose we set v = v2−v1, where v2 is given as a solution to the following problem

(3.20) rot v2 = W, div v2 = 0

and v1 is given by

(3.21) rot v1 =
1

Ω
g(x,Ωt), div v1 = 0.

The functions are considered on time interval S∗, since we assumed that Ω is large, hence
Tper << 1. Then from (3.14) and (3.16), together with (3.11), and from (3.19), we get

(3.22) ‖∇v2‖W 1,1
p (T2×S∗) .

1

T
1/p
per

‖rot v2‖W 1,1
p (T2×TperS1)

≤ C(1 + α)
G

Ω
.
G

Ω
.

So the Sobolev imbedding W 1,1
p (T2 × S∗) ⊂ L∞(T2 × S∗) gives

(3.23) ‖∇v2‖L∞(0,1;L∞(T2)) ≤ C
G

Ω
,

where C is independent of Tper. Thus,

(3.24) ‖∇v‖L∞(T2×S∗) ≤ ‖∇v2‖L∞(T2×S∗) + ‖∇v1‖L∞(T2×S∗) ≤ C
G

Ω
≤ δ,

provided Ω large enough.
We showed that T maps the set Ξ into itself, and the imbedding (for the case α ≥ aε)

(3.25) W 1,1
p (T2 × TperS1) ⊂ L∞(T2 × TperS1)

for p > 3 is compact – (3.14) and (3.16). The space W 1,1
p (T2 × TperS1) is defined as a set of

functions f such that ∇xf ∈ Lp(T2 × TperS1) and ∂tf ∈ Lp(T2 × TperS1). The case aε ≥ α is
simpler.

By the Schauder fixed theorem we obtain existence of at least one fixed point of the map
T fulfilling (3.3). This implies existence of time periodic solutions to the nonlinear system
(3.1)-(3.2) satisfying bound (3.3). Theorem 1 is proved.
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Global stability of the time periodic solutions

Theorem 2. Let p > 3, let v(t) be a solution to (3.1-3.2) corresponding to the initial data
v0 ∈W 2

p (T2) and F fulfills the assumptions from Theorem 1, then

(3.26) ‖v(t)− vper(t)‖L2 → Ce−
(α+ε)t

2 , as t→∞,
where vper is the time periodic solution established by Theorem 1. Moreover vper must be
unique.

Proof. Note that for smooth enough initial datum v0 we have the global in time existence
of solutions to system (2.1). Consider the difference δv(t) = v(t) − vper(t), it fulfills the
following system

(3.27)

δvt + v · ∇δv − ε∆δv + αδv +∇δp = −δv · ∇vper,

div δv = 0,

δv|t=0 = v0 − vper(·, 0).

Multiplying (3.27) by δv and integrating over T2 yields

(3.28)
1

2

d

dt

ˆ
T2

(δv)2dx+

ˆ
T2

(
ε|∇δv|2 + α(δv)2

)
dx ≤ ‖∇vper‖L∞

ˆ
T2

(δv)2dx.

Applying the Poincaré inequality we get

(3.29)
1

2

d

dt

ˆ
T2

(δv)2dx+ (ε+ α)

ˆ
T2

(δv)2dx ≤ δ
ˆ
T2

(δv)2dx.

In our setting the constant from the Poincar’e inequality (in the L2 spaces) is equal 1. Our
choice of δ guaranteed that δ ≤ 1

2(ε+ α), so we get

(3.30)
d

dt

ˆ
T2

(δv)2dx+ (ε+ α)

ˆ
T2

(δv)2dx ≤ 0.

We immediately conclude (3.26). In particular (3.26) shows that constructed time periodic
solution by Theorem 1 is unique.

4. The 3d case

Theorem 3. Let ν > 0, and F be sufficiently smooth divergence-free vector field of form
(A) or (B). Suppose that for case (A) there exists a divergence-free vector field H satisfying

(4.1) ∂t
1

Ω
H(x,Ωt) = F (x1 + Ωt, x′) and sup

t
‖H(·,Ωt)‖C1(T3) ≤ G.

There exists Ω0(ν,G) > 0 such that there exists a time periodic solution, with period Tper =
2π/Ω satifying

(4.2) ‖vper‖L∞(T3×TperS1) ≤
C∗(1 + ν)G

Ω
,

provided Ω ≥ Ω0, where C∗ depends on ν, only.

Proof. Let δ = C∗(1+ν)G
Ω . Introduce the set

(4.3) X = {v ∈ L∞(T3 × TperS1) : div v = 0 and ‖v‖L∞ ≤ δ}.
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Let v̄ ∈ X , then we consider the linearization of (2.11)

(4.4)

vt − ν∆v +∇p = −div (v̄ ⊗ v) + F,

div v = 0,

ˆ
T3

v(x, t)dx = 0.

This process introduces a map T (v̄) = v. We will show T : X → X and T is compact. As a
result this will establish existence of a time periodic solution to the nonlinear system (2.11).

Similar to the 2d case we set

(4.5) v = V − 1

Ω
H(x,Ωt).

In case (A) we take H =
∑

k∈Z3
F̂k
ik1
eikxeiΩtk1 and for case (B) we take H = − cos Ωtf(x),

thus ∂t
1
ΩH = F . Then we get

(4.6)
Vt − ν∆V +∇p = −div (v̄ ⊗ V ) + div (v̄ ⊗ 1

Ω
H) +

ν

Ω
∆H.

div V = 0,

The existence of solutions to (4.6) is sketched in Appendix. The estimates for solutions to
(4.6) are done in the domain T3 × S∗ with S∗ = ([ 1

Tper
] + 1)TperS1 just in order to avoid the

possible problem with smallness of Tper. Provided we solved system (4.4) with v̄ ∈ X , we
want to find a suitable estimate guaranteeing v in L∞. Here we work with the Slobodeckii

spaces W
1,1/2
p (T3 × S∗) [A, LSU]. In the Appendix we explain the details. Then we find the

following inequality for system (4.6)

(4.7) ‖V ‖
W

1,1/2
p (T3×S∗) ≤ Cν‖v̄V,

1

Ω
v̄H,

ν

Ω
∇H‖Lp(T3×S∗).

Now we use Ω large enough to guarantee the smallness of δ such that Cν‖v̄‖L∞ ≤ 1/2,
(observe the norm ‖V ‖

W
1,1/2
p

contains ‖V ‖Lp , as well), then

(4.8) ‖V ‖
W

1,1/2
p (T3×S∗) ≤

Cν(δ + ν)

Ω
G.

Next, we note that if p > 5 then the space W
1,1/2
p (T3 × S∗) is compactly imbedded in

L∞(T3 × S∗) [BIN], Chap XII. Consequently we have

(4.9) ‖V ‖L∞(T3×TperS1) ≤
C(δ + ν)

Ω
G.

The constant is independent from Tper, since (4.7) is considered on T3 × S∗. Therefore (4.5)
implies that

(4.10) ‖v‖L∞(T3×TperS1) ≤ C(
(δ + ν)

Ω
+

1

Ω
)G ≤ δ = C∗

1 + ν

Ω
G

which is guaranteed for Ω larger than Ω0(ν,G).
Thus, we T : X → X is compact. Hence the Schauder theorem implies existence of a fixed

point of the map T , what yields existence of a time periodic solution to the original system
(2.11). Theorem 3 is proved.
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Attraction of weak solutions – the 3d case

Theorem 4. Let v0 ∈ L2(T3) be a divergence-free vector field, and let v(t) be a Leray-Hopf
weak solution to (2.11) with initial datum v0. Then

(4.11) ‖v(t)− vper(t)‖L2(T3) → 0, as t→∞,

where vper is the time periodic solution given by Theorem 3, provided Ω is large enough.

Proof. Since weak solutions are not known whether they satisfy the energy equality, in
the three-dimensional case, it will not be possible for us to follow the same arguments as in
the proof of Theorem 2. However, since we are considering here Leray-Hopf weak solutions,
then, on one hand, v(t) satisfies following strong energy inequality

(4.12) ‖v(t)‖2L2(T3) + 2ν

ˆ t

s
‖∇v(τ)‖2L2(T3)dτ ≤ ‖v(s)‖2L2(T3) + 2

ˆ t

s
(F, v)dτ,

for all t > 0 and a.e. s such that t > s ≥ 0. On the other hand, time periodic solutions are
regular solutions, thus they do satisfy the energy equality

(4.13) ‖vper(t)‖2L2(T3) + 2ν

ˆ t

s
‖∇vper(τ)‖2L2(T3)dτ = ‖vper(s)‖2L2(T3) + 2

ˆ t

s
(F, vper)dτ,

for every t ≥ s ≥ 0. To obtain an estimate for ‖v(t) − vper(t)‖L2(T3) we use the observation
that

(4.14) ‖v(t)− vper(t)‖2L2(T3) = (v(t)− vper(t), v(t)− vper(t)) =

(v(t), v(t)) + (vper(t), vper(t))− (v(t), vper(t))− (vper(t), v(t)).

To control the last terms we use the weak formulation for the solutions v and vper. Specifically,
since vper is a sufficiently smooth we are allowed, on the one hand, to use it as a test function
in the weak formulation for the weak solution v to obtain

(4.15) 2∂t(v, vper)− 2(v, vper,t) + 2ν(∇v,∇vper) + 2(v · ∇v, vper) = 2(F, vper).

On other hand, since vper is regular enough solution and the equation holds in L2(T3×TperS1),
we can multiply by v and integrate over T3 to infer

(4.16) 2(vper,t, v) + 2ν(∇vper,∇v) + 2(vper · ∇vper, v) = 2(F, v).

Both (4.15) and (4.16) are meant in the distributional sense in time. We add (4.15) and
(4.16) and integrate over time interval (s, t), and obtain

(4.17) 2(v(t), vper(t)) + 2ν

ˆ t

s
(∇v,∇vper) + (∇vper,∇v)dτ

+ 2

ˆ t

s
(v · ∇v, vper) + (vper · ∇vper, v)dτ =

2(v(s), vper(s)) + 2

ˆ t

s
(F, v + vper)dτ
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Taking (4.12)+(4.13)-(4.17) we obtain

(4.18) ‖v(t)− vper(t)‖2L2(T3) + 2ν

ˆ t

s
‖∇(v(t)− vper(t))‖2L2(T3)dτ

≤ ‖v(s)− vper(s)‖2L2(T3) + 2

ˆ t

s
(v · ∇v, vper) + (vper · ∇vper, v)dτ.

Let δv(t) = v(t)− vper(t). Consider the term

(4.19) (v · ∇v, vper) + (vper · ∇vper, v).

We have

(4.20) (v · ∇v, vper) + (vper · ∇vper, v) = (v · ∇v, vper)− (vper · ∇v, vper) =

(v · ∇vper, vper)− (vper · ∇vper, vper) + (v · ∇δv, vper)− (vper · ∇δv, vper) =

0 + 0 + (δv · ∇δv, vper).
Two first terms vanished. Next we note that

(4.21) |
ˆ
T3

δv · ∇δv vperdx| ≤
ν

2
‖∇δv‖2L2(T3) +

C

ν
‖vper‖2L∞‖δv‖

2
L2(T3).

Next, the Poincaré inequality yields ‖δu‖L2(T3) ≤ ‖∇δu‖L2(T3). Moreover, we observe that

‖vper‖L∞ ≤ δ – see the proof of Theorem 3, with δ very small so that C
ν δ

2 ≤ ν
4 which holds

as Ω is sufficiently large. Using the above to finally obtain

(4.22) ‖δv(t)‖2L2(T3) + ν

ˆ t

s
‖∇δv(t)‖2L2(T3)dτ ≤ ‖δv(s)‖L2(T3).

Again using the Poincaré inequality we obtain

(4.23) ‖δv(t)‖2L2(T3) + ν

ˆ t

s
‖δv(t)‖2L2(T3)dτ ≤ ‖δv(s)‖2L2

,

for all t > 0 and a.e. s ≥ 0. Simple analysis of (4.23) implies

(4.24) ‖δv(t)‖L2(T3) ≤ Ce−cν t.
Theorem 4 is proved. As a corollary we obtain the fact that time periodic established by
Theorem 3 are unique for sufficiently large Ω.

5. Numerical results for 2D case

The numerical results presented in this section focus on the system (2.1), i.e.

vt + v · ∇v − ε∆v + α(v − Ωê2) +∇p = F (z),(5.1a)

div v = 0,(5.1b)

1

|T2|

ˆ
T2

v0 dz = Ωê2,(5.1c)

where v : [0,∞) × T2 → R2, z = (x, y). In the following sections we are concerned with
the numerical investigation of the dependence of the long-time qualitative behavior of the
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solutions of the above system on the parameter Ω, for a given particular external forcing term
F (z). In the sequel we are going to assume (2.3), i.e., that average of the forcing term over
T2 is zero. In turn, this implies that the spatial average of the solutions remain constant.

In view of the theoretical analysis, presented in the previous sections, it follows that when
the values of Ω exceed certain critical value implies the stabilization of the evolutionary
problem (5.1a). More precisely, for a given particular forcing F (z) the stationary problem
(5.1a) might have multiple solutions, however, after increasing Ω beyond certain critical value
one obtains a unique stationary solution.

5.1. Numerical investigation particular setting. In our numerical investigation we focus
on a particular case study of the Kolmogorov flow that was discussed in details at the end of
section 2. Specifically we consider system (2.14) in the flat torus T2

β. As we have discussed

earlier, in the end of section 2, the global stability of time period solutions of (2.14) is
equivalent to the global stability of stationary solutions of (2.15). For this reason we focus
in the next section the study of the bifurcation diagram of stationary solutions of (2.15).

5.2. Stationary problem bifurcation analysis. After dropping the tilde system (2.15) is
given by

ωt + (v + βΩê2) · ∇ω − ε∆ω + αω = λ cos(
y

β
),(5.2)

subject to periodic boundary condition, with basic domain T2
β = [0, 2π] × [0, 2πβ]. In this

section we present our numerical investigations of the stationary problem of (5.2):

(v + βΩê2) · ∇ω − ε∆ω + αω = λ cos(
y

β
),(5.3)

subject to periodic boundary condition, with basic domain T2
β = [0, 2π]× [0, 2πβ].

In the case β = 1 (the square) and when Ω = 0 system (5.2) admits a globally stable
stationary solution (called trivial solution) [CFT, M]. Consequently this globally stable
stationary solution does not undergo any bifurcation when λ is increased. On the other
hand, numerical experiments in [OS] show that for β ∈ (0, 1) system (5.3), when Ω = 0, the
trivial stationary solution undergoes a pitchfork bifurcation (see also [BV]). In the remaining
part of this section we restrict our attention to the particular case β = 0.7, for which we
present bifurcation diagram on Figure 1 (reproduced from [OS]).

Looking at Figure 1 it is evident that problem (5.3), with Ω = 0, exhibits unique stationary
solution for λ values smaller than a critical value (we denote it by λ0) – the point of the
pitchfork bifurcation, at which two branches of stable solutions are born. Let λ0(Ω) denote
the point of the pitchfork bifurcation in problem (5.3), and let ω(λ0(Ω)) denote the solution
at bifurcation point.

We investigate here the dependence of λ0(Ω), and the dependence of ‖ω(λ0(Ω))‖ – the
solution at bifurcation point L2 norm on Ω. The numerical tests are in agreement with the
theory presented in the theoretical part of this paper, from which it follows that the region
of the parameter λ, for which one has unique stable stationary solution of (5.3), is enlarged
while Ω increases, and that ‖ω(λ0(Ω))‖ should increase with the order of magnitude lower
than that of λ0. Figure 2 agrees with theoretical derivations of (3.23) for equation (5.3)
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Figure 1. The bifurcation diagram for the problem (5.2) with β = 0.7,Ω =
0, ε = 1, α = 0 (reproduced from [OS]), the scaling parameter here is the
Reynolds number defined by the authors Re ' λ

ε2β3 . Let a(1, 0) denotes

the ω’s Fourier coefficient corresponding to exp ix basis function. The stable
solution (in blue) having a(1, 0) = 0 becomes unstable (in red) at particular
critical value of the Reynolds number, where two new stationary solutions are
being born.

showing ‖ω‖L2 ∼ λΩ−1 (G from (3.23) is proportional to λ). Presented numerical results
indicate also that the lost of uniqueness occur for λ & Ω2 hence the norm of the solution at
bifurcation point is of linear growth in Ω.

In Figure 2 we present the calculated results for the problem (5.3) with (ε, α) = (1, 0), we
skip here results for other choices of (ε, α), as we did not observe any qualitative difference
in this case.

5.3. Effect of stabilization. This part illustrates the stabilization effect for problem (5.2).
For particular initial conditions provided later on we integrate in time the evolution equations
(5.2). In (5.2) we force the second mode (the forcing is λ cos(2y

β )), as we observe a rich

dynamics for that case. For a fixed λ we compare Ω = 0 case with Ω large. As a result
we obtain the stabilization effect with exponential convergence rate for the latter case, as
Theorem 2 predicts.

In order to numerically integrate (5.2) forward in time we invoke standard numerical inte-
grator. We write ω in (complex) Fourier basis, i.e., ω(t, z) =

∑
ak(t) exp i(k, z). We consider

a Galerkin approximation of the infinite system of ODEs including only modes ak with k
such that |k|∞ ≤ N . We call N the approximation dimension. In the presented experiment
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we fixe N = 13, this choice is motivated by the fact that this approximation dimension repre-
sents well the dynamics of the PDE, we validate this by checking that for a larger dimension
(N = 19) the obtained results are qualitatively the same (not provided here). To perform
time integration procedure we use the Taylor method, the time step is selected adaptively, is
maximized under constraint such that the local error do not exceed the machine precision.
In our actual computations we fix Taylor’s method order to 15, which is relatively high order
as for a high dimensional system, however, in our case it provides an efficient procedure.

We describe the following numerical experiment.
We fix λ = 100, β = 0.75, N = 13, order of the Taylor method is 15. We pick four initial

conditions and integrate the equation on the time interval [0, 5].

(1) Initial condition I – ωI0(x, y) = 60 cos(x+ y); it is attracted by a periodic orbit of L2

norm in (19.7, 20),
(2) Initial condition II – ωII0 (x, y) = 2 cos(x); it is attracted by a stationary solution of

L2 norm approximately 9.68043,
(3) Initial condition III – ωIII0 (x, y) = 2 cos(2x); it is attracted by a stationary solution

of L2 norm approximately 14.2384,
(4) Initial condition IV – ωIV0 (x, y) = 0; it is attracted by a stationary solution of L2

norm approximately 25.

Observe that for Ω = 100 all of the initial conditions, even the periodic orbit case, are
being attracted by the same stationary solution, so the stabilization is achieved for Ω &

√
λ,

which agrees with our expectations.

5.4. Evolutionary problem convergence rate analysis. In this section we present the
results of our investigation of the global convergence to the unique stationary solution, for
large initial values, of the general time dependent solutions of the evolution equation (5.2).

First we fix the forcing amplitude λ = 1, in (5.2), and we consider the initial value ω0 =
Ω(sinx+ cosx), Ω here is the large parameter and is the amplitude of the initial value. We
recorded the time needed for ω0 to be attracted by the stationary solution of (5.2), with
λ = 1. We stopped our numerical integration procedure at time T when

‖v(T ) · ∇ω(T )− ε∆ω(T ) + αω(T )− λ cos(
y

β
)‖L2 ≤ 10−5.

In Figure 4a we present the results for the case (ε, α) = (1, 0) (other cases were qualitatively
very similar). Figure 4a is plotted in the logscale, and the apparent linear growth of T matches
the exponential convergence established in Theorem 2.

To perform the numerical time integration we invoke the same techniques as in the previous
section, however, for this particular choice of initial condition and λ = 1 the dynamics is
apparently low dimensional, so we fix N = 3. This low Galerkin approximation may seem
not sufficient. Therefore to argue that the results for larger Galerkin approximation, in
this case, do not differ qualitatively from the obtained results, we perform an additional
numerical test in which we measure the relative difference between two approximation of
dimensions N and M by E(Ω, N,M) = |(λ0(Ω, N)− λ0(Ω,M)) /λ0(Ω, N)|, where λ0(Ω, N)
is the bifurcation point for particular Ω, calculated using the approximation dimension N .
We present the obtained diagrams for N = 3, and M = 5 in Figure 4b. Clearly, the values
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shown remain essentially constant for larger Ω values, and does not exceed 0.0004, which
supports our claim that it is enough to use a small approximation dimension to provide a
qualitatively correct illustration.
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5.5. Conclusions from numerical experiments and future work. The goal of this
section was to present a numerical investigations of a simple case, as an illustration of the
theoretical results presented in the theoretical sections of this paper. Obviously, the numer-
ical results match the theoretical predictions. All theorems in this paper are about periodic
solutions, but in order to obtain the numerical results we always reduce the problem to the
stationary case. This is imposed by the fact that for high values of Ω the periodic solutions
oscillate rapidly, which is a major obstacle for numerical integration in time. Due to the
equivalence between the two problems, as we have indicated in this section, the conclusions
from the numerical results are meaningful for the case of oscillating rapidly periodic solutions,
although the computations are performed for the stationary case. There exist several numer-
ical methods which probably allow to treat the case with rapid oscillations directly, but our
current goal was solely to provide an illustration for the theoretical results established in this
paper, rather than invoking sophisticated numerical methods to deal with rapid oscillations
generated by large values of Ω. We leave the task for future research.

6. Appendix

In this part we explain the construction of time periodic solutions for the “linearized”
problem. We establish this for the three-dimensional case, which is an essential step in the
proof of Theorem 3. The case for Theorem 1 is almost the same.
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Having v̄ ∈ X we consider (4.6) in the following form

(6.1)
Vt − ν∆V +∇p = −div (v̄ ⊗ V ) + div (V̄ ⊗ 1

ΩH) + ν
Ω∆H,

div V = 0.

The issue of existence for the above system lays in the classical theory. The simplest approach
is through Fourier methods using series in time and space to the linear system with given
right-hand side. We acts on the domain T3 × TperS1 and we represent the solution in the
form

(6.2) V (j)(x, t) ∼
∑

l∈Z,k∈Z3

V
(j)
lk eiltTpereikx, j = 1, 2, 3.

The solvability of the system for the finite dimensional approximation is clear, so we need
just a good estimate which allows to pass to the limit. But the energy estimate is allowed to
be used in the chosen framework, so we get

(6.3) V ∈ L2(TperS1;H1(T3)),

with the a priori estimate

(6.4) ‖V ‖L2(TperS1;H1(T3)) ≤ C(
1

Ω
‖v̄‖L∞‖H‖L2(T3×TperS1) +

ν

Ω
‖∇H‖L2(T3×TperS1)).

The construction by approximation in the time periodic functions ensures the solution V is
Tper - periodic. The form of (6.2) guarantees the periodicity in time and space. The term
div (v̄⊗ V ) can be treated as a perturbation, and thanks to the estimate (6.4) we obtain the
existence to system (6.1), too.

Next, we improve the regularity of solutions V . Here we apply the maximal regularity

result for the Stokes operator in the Slobodeckii spaces of type W
1,1/2
p (T3×S∗) [A, BIN, Tr].

For solutions to

(6.5)
Vt − ν∆V +∇p = divF,
div V = 0

the following estimate holds

(6.6) ‖V ‖
W

1,1/2
p (T3×S∗) ≤ Cν‖F‖Lp(T3×S∗).

The definition of the Slobodeckii space [Sol, Tr] is by the following norm
(6.7)

‖V ‖p
W

1,1/2
p (T3×S∗)

= ‖V ‖p
Lp(T3×S∗) + ‖∇V ‖p

Lp(T3×S∗) +

ˆ
Ω

ˆ
S∗

ˆ
S∗

|V (x, t)− V (x, t′)|p

|t− t′|1+ 1
2
p

dtdt′dx.

Thus we justify estimate (4.7).
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