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There are few published examples of absolute risk estimated from epidemiologic data subject to censoring and

competing risks with adjustment for multiple confounders. We present an example estimating the effect of injection

drug use on 6-year risk of acquired immunodeficiency syndrome (AIDS) after initiation of combination antiretroviral

therapy between 1998 and 2012 in an 8-site US cohort study with death before AIDS as a competing risk. We es-

timate the risk standardized to the total study sample by combining inverse probability weights with the cumulative

incidence function; estimates of precision are obtained by bootstrap. In 7,182 patients (83% male, 33% African

American, median age of 38 years), we observed 6-year standardized AIDS risks of 16.75% among 1,143 injection

drug users and 12.08% among 6,039 nonusers, yielding a standardized risk difference of 4.68 (95% confidence

interval: 1.27, 8.08) and a standardized risk ratio of 1.39 (95% confidence interval: 1.12, 1.72). Results may be sen-

sitive to the assumptions of exposure-version irrelevance, nomeasurement bias, and no unmeasured confounding.

These limitations suggest that results be replicated with refined measurements of injection drug use. Nevertheless,

estimating the standardized risk difference and ratio is straightforward, and injection drug use appears to increase

the risk of AIDS.

AIDS; cohort study; competing risks; HIV; survival function

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; CNICS, Centers for AIDS Research Network

of Integrated Clinical Systems; HIV, human immunodeficiency virus; IP, inverse probability.

There have been repeated calls for epidemiologists to pre-
sent estimates of risk based directly on the survival function
(1–5). Risk differences and ratios based on the survival func-
tion are superior to contrasts based on the rate, hazard, or
odds because the risk is a collapsible parameter (5, 6). For
a collapsible parameter, in the absence of confounding, the
crude and covariate-adjusted population values are the same;
this is not the case for noncollapsible parameters. In addition,
risk differences and ratios are more easily communicated to
scientists and the lay community.
Epidemiologists are increasingly using regression models

that properly account for competing risks (7). However, to
date, there are relatively few published examples of “risk” es-
timated from epidemiologic data using the survival function

with adjustment for multiple measured confounders (3). One
obstacle to the presentation of such estimates is the lack of
examples to familiarize epidemiologists with the methods
needed to produce estimates that account for confounding
by measured factors. Moreover, these methods are compli-
cated when there are competing risks that preclude partici-
pants from incurring the event of interest (7, 8), and in this
setting, even fewer examples are found (9). Here, among
human immunodeficiency virus (HIV)–infected therapy ini-
tiators, we estimate the effect of injection drug use on the risk
of acquired immunodeficiency syndrome (AIDS) with death
before AIDS as a competing risk. Our goal is to illustrate the
estimation of risk in the presence of multiple confounders and
competing risks.
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METHODS

Study sample

The National Institutes of Health–funded Centers for
AIDS Research Network of Integrated Clinical Systems
(CNICS) was initiated in September 2006 to develop a com-
prehensive and standardized clinical data repository from
point-of-care electronic medical record systems to support
population-based HIV research (10). The CNICS includes
data on more than 25,000 HIV-positive adults engaged in
clinical care from January 1, 1995, to the present at 8 centers
for AIDS research (University of Alabama at Birmingham
(Birmingham, Alabama); Case Western Reserve University
(Cleveland, Ohio); Fenway Community Health Center of
Harvard University (Boston, Massachusetts); Johns Hopkins
University (Baltimore, Maryland); University of California,
San Francisco (San Francisco, California); University of
California, San Diego (San Diego, California); University
of North Carolina (Chapel Hill, North Carolina); and Univer-
sity of Washington (Seattle, Washington)). The frequency
of follow-up averages every 3 months; however, patients
can be seen more or less often depending on provider sched-
uling recommendations. The CNICS is a dynamic cohort
with approximately 1,400 new patients enrolling and 10%
of existing patients leaving care each year (10). Institutional
review boards at each site approved study procedures. Partic-
ipants provided written informed consent or contributed
administrative and clinical data with a waiver of written
informed consent where approved by the local institutional
review board.

We included the 7,936 CNICS participants who initiated
therapy without an AIDS diagnosis between January 1,
1998, and December 31, 2012. Therapy initiation was de-
fined as the date of initiation of a regimen consisting of
3 or more antiviral agents. We included participants with
documented prior mono/dual antiretroviral therapy expo-
sure. We excluded the 188 (2%) patients who were missing
injection drug use classification, and the 566 (7%) patients
who did not have a measured CD4 cell count (in cells/
mm3) and viral load (in log10 copies/mL) within 180 days
before to 14 days after therapy initiation. Sex and race (Cau-
casian vs. other) were recorded for each participant at
cohort entry. Age and calendar year were recorded at therapy
initiation.

The exposure of interest was injection drug use. Reported
history of injection drug use was elicited at cohort entry as a
possible transmission factor. Such a reported history is an im-
perfect proxy for current injection drug use, to the extent that
behaviors go unreported or change over time. Moreover, in
this example, the confounding variables were determined at
therapy initiation, which was a median of 92 days after injec-
tion drug use was assessed. We defer these points until the
discussion.

The outcome of interest was first incident AIDS diagnosis
after therapy initiation. Time at risk was measured in days
from therapy initiation to the first date of AIDS diagnosis,
death, dropout (>12 months without contact), 6 years, or De-
cember 31, 2012 (December 31, 2011, for the Johns Hopkins
University site because of a lag in death updates).

Statistical methods

In the absence of the competing risk of death, the
cumulative incidence of AIDS at time t is simply the comple-
ment of the survivor function of time until AIDS diagnosis,
R(t) = 1 – S(t) = P(Ti ≤ t), where Ti is a continuous random
variable denoting time from therapy initiation to AIDS for
i = 1 to 7,182 patients, R(0) = 0, and R(∞) = 1 (11).

In the presence of the single competing risk of all-cause
mortality before AIDS, the cumulative incidence of AIDS
at time t is the joint probability of incurring either event by
time t and that the event is AIDS, Rj(t) = P(Ti ≤ t, Ji = j),
where Ji is a discrete random variable denoting AIDS ( j = 1)
or all-cause mortality before AIDS ( j = 2). Here, again
R1(0) = 0, but now R1(∞) = P(Ji = 1) ≤ 1, which is the even-
tual risk of AIDS (7).

Let Ai be a discrete random variable denoting exposure to
injection drugs (a = 1) or not (a = 0) for patient i. Let Ta

i be
the potential (i.e., factual or counterfactual) time from ther-
apy initiation to AIDS or death before AIDS for patient i,
and Jai be the analogous potential event-type indicator,
under (possibly counterfactual) exposure A = a, where
Jai ¼ 1 denotes AIDS, and Jai ¼ 2 denotes deaths before
AIDS. Then the potential cumulative incidence of AIDS at
time t is Ra

1ðtÞ ¼ PðTa
i � t; Jai ¼ 1Þ (12). Although we are in-

terested in the entire function over time t, we concentrate in-
ference on AIDS incidence at times t = 2 years and 6 years
from therapy initiation. Our estimands are then the AIDS
risk difference RDðtÞ ¼ R1

1ðtÞ � R0
1ðtÞ and AIDS risk ratio

RRðtÞ ¼ R1
1ðtÞ=R0

1ðtÞ at t = 2 and 6.
To accommodate censoring, let T�

i ¼ minðTi;CiÞ, where
Ci is a continuous random variable denoting right censoring
because of dropout or administrative end of follow-up, and let
j = 0 when T�

i ¼ Ci. Below, we assume that administrative
censoring is noninformative, and censoring because of drop-
out is noninformative given measured covariates.

We estimate Ra
1ðtÞ as follows:

R̂a
1ðtÞ ¼

X
tk�t

fŜŴðtÞðtk�1Þg dŴðtÞ
1 ðtkÞ
nŴðtÞ
1 ðtkÞ

( )
;

where tk are the ordered event times, ŜŴðtÞðtÞ is the Nelson-
Aalen estimator of the overall inverse probability (IP)–
weighted survival function (i.e., ŜŴðtÞðtÞ ¼ expf�ĤŴðtÞðtÞg,
where ĤŴðtÞðtÞ ¼ P

tk�t d
ŴðtÞðtkÞ=nŴðtÞðtkÞ), dŴðtÞðtkÞ is the

IP-weighted number of events at ordered event time tk
(i.e., AIDS cases and deaths), and nŴðtÞðtkÞ is the IP-weighted
number at risk at time tk. One could alternatively use the
Kaplan-Meier estimator of the survival function, which is as-
ymptotically equivalent to the Nelson-Aalen estimator; how-
ever, the Nelson-Aalen estimator is reported to have better
finite-sample properties (13, p. 94). Using theKaplan-Meier es-
timator, R̂a

1ðtÞ þ R̂a
2ðtÞ þ ŜŴðtÞðtÞ ¼ 1. This formula for Ra

1ðtÞ
cumulatively sums the probability of surviving all events mul-
tiplied by the instantaneous cause-specific hazard of having the
event of interest in the IP-weighted data. Thus, the cumulative
incidence function, Ra

1ðtÞ, is a partition of the cumulative
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incidence function for the composite outcome (e.g., R1(t) +
R2(t) = 1 – S(t)). Next, we describe its calculation with addi-
tional detail.
First, we estimate the IP of exposure weights. Specifically,

we fit a linear-logistic model P(Ai = 1|Li) = expit(α0 + α1Li),
where expit = exp(·)/{1 + exp(·)}, and L is a vector of mea-
sured confounders. Specifically, L consisted of age (spline),
CD4 cell count (spline), viral load (spline), indicators for
male sex, black race, Hispanic ethnicity, prior mono/dual an-
tiretroviral therapy, calendar year of therapy initiation, and
study site. Splines were restricted quadratic with 4 knots
placed at the 5th, 35th, 65th, and 95th percentiles of the con-
founder’s distribution in the study sample (14). IP exposure
weights were then constructed as Ŵ1

i ¼ P̂ðAi ¼ aÞ=P̂ðAi ¼
ajLiÞ, where the stabilizing factor P̂ðAi ¼ aÞ is given by the
marginal proportion at exposure level a in the study sample.
Second, we estimate the IP of dropout weights. Specifically,

we partition the 6-year follow-up period into quintiles defined
by the distribution of dropouts (i.e., 1.42, 1.92, 2.56, and 3.47
years from therapy initiation). Then we fit a pooled linear-
logistic model P{Di(q) = 0|Li} = expit(β0,q + β1Li), where
Di(q) is an indicator of dropout during interval q, and L is
the same vector of measured covariates as defined above for
confounding. IP dropout weights were then constructed as

Ŵ2
i ðtÞ ¼

Y
q�t

P̂fDiðqÞ ¼ 0g=P̂fDiðqÞ ¼ 0jLig;

where the stabilizing factor P̂fDiðqÞ ¼ 0g is given by themar-
ginal proportion who had not dropped out by time q. Although
we used the same vector of covariates for dropout as used for
confounding, it is not necessary that the same vector be used
for both.
The final IP of exposure and dropout weight was defined as

ŴiðtÞ ¼ Ŵ1
i Ŵ

2
i ðtÞ. The mean overall IP weight was 1.00

(range, 0.27–13.09). The mean exposure IP weight was
1.00 (dropout IP weight, 1.00), (range, 0.29–13.09; dropout
range, 0.73–1.83). Results were not meaningfully altered

when overall IP weights were censored (sometimes referred
to as truncated) to the interval 1/10, 10 (15).
Third, we estimate the overall Nelson-Aalen IP-weighted

survival function, as well as the IP-weighted hazard for
AIDS, and combine information as shown in R̂a

1ðtÞ above.
Our estimator requires no tied event times within or between
the AIDS events and the competing risk of death to allow a
simple partition of event types, so we randomly jitter the
observed times up to 1 day.When applied to unweighted data,
this approach yields an estimate of the cumulative incidence
function (16), which equals the function obtained from the
SAS macro CUMINCID (17) or the R package CMPRSK
(R Foundation for Statistical Computing, Vienna, Austria).
We obtain 95% confidence intervals as a measure of uncer-

tainty due to sampling error using a nonparametric bootstrap.
Specifically, we resampled 7,182 patients at random with re-
placement with equal probability 200 times and conducted
the above procedure (including estimation of the IP weights).
The standard deviation of the 200 bootstrap resamples is used
as an estimate of the standard error. In the Appendix, we pre-
sent a limited simulation, which provides experimental evi-
dence in support of this approach under the null hypothesis.

Table 1. Characteristics of 7,182 HIV-Positive Adults Who Initiated Antiretroviral Therapy Between 1998 and 2012, CNICS

Characteristic

Injection Drug Use
Overall (n = 7,182)

Yes (n = 1,143) No (n = 6,039)

Median (IQR) No. % Median (IQR) No. % Median (IQR) No. %

Age, years 40 (34–46) 37 (30–44) 38 (31–45)

Year of ART initiation 2006 (2002–2009) 2007 (2003–2009) 2006 (2003–2009)

CD4 count, cells/mm3 260 (153–396) 292 (170–434) 287 (168–428)

Viral load, log10 copies/mL 4.51 (3.75–5.06) 4.48 (3.49–5.04) 4.49 (3.53–5.04)

Prior mono/dual ART 138 12 671 11 809 11

Male 925 81 5,035 83 5,969 83

African American 378 33 2,000 33 2,378 33

Hispanic 111 10 864 14 975 14

Abbreviations: ART, antiretroviral therapy; CNICS, Centers for AIDS Research Network of Integrated Clinical Systems; HIV, human

immunodeficiency virus; IQR, interquartile range.

Table 2. Disposition of 7,182 HIV-Positive Adults Who Initiated

Antiretroviral Therapy Between 1998 and 2012, Followed for Up to 6

Years, CNICS

Characteristic

Injection Drug Use
Overall

(n = 7,182)Yes
(n = 1,143)

No
(n = 6,039)

No. % No. % No. %

Person-years at risk 3,556 19,371 22,927

Incident AIDS 156 14 504 8 660 9

Death (from all causes) 69 6 158 3 227 3

Dropout 416 36 2,202 36 2,618 36

Abbreviations: AIDS, acquired immunodeficiency syndrome;

CNICS, Centers for AIDS Research Network of Integrated Clinical

Systems; HIV, human immunodeficiency virus.
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For our estimator to consistently estimate RD(t) and RR(t),
we make several assumptions; namely, we assume treatment-
version irrelevance (18), no interference, positivity (19), con-
ditional exchangeability (20), no measurement bias (21), and
correct specification of the exposure and dropout models. We
address each of these assumptions in detail in the discussion.
SAS, version 9.3, software (SAS Institute, Inc., Cary, North
Carolina) was used for all analyses.

RESULTS

Eighty-three percent of the 7,182 patients were male, 33%
were African American, 14% were Hispanic, and 11% re-
ported prior mono/dual antiretroviral therapy. At therapy ini-
tiation (i.e., study entry), patients were a median of 38 years
of age with a median CD4 count of 287 cells/mm3 and a

median viral load of 4.49 log10 copies/mL (Table 1). The
1,143 of 7,182 patients who reported injection drug use
were 3 years older when they initiated therapy 1 calendar
year earlier than non–injection drug users, with a lower
CD4 cell count and higher viral load (Table 1).

During the 6-year study follow-up, 22,927 person-years
accrued, during which 660 incident AIDS cases were ob-
served, yielding a rate of 2.88 AIDS cases per 100 person-
years (Table 2). These rates were 4.39 AIDS cases per 100
person-years among the 1,143 who reported injection drug
use and 2.60 AIDS cases per 100 person-years among the
6,039 who did not report injection drug use. The rate of
death before AIDS was 0.99 deaths per 100 person-years.
This rate was 1.94 deaths per 100 person-years among the
1,143 patients who reported injection drug use and 0.82
deaths per 100 person-years among the 6,039 patients who
did not report injection drug use. Thirty-six percent of the

Table 3. Crude and Standardized 2-Year and 6-Year Risks of AIDS by Injection Drug Use in 7,182 HIV-Positive

Adults Who Initiated Antiretroviral Therapy Between 1998 and 2012, CNICS

Risk Type

AIDS Incidence, %
Risk

Difference
95% CIa Risk Ratio 95% CIaInjection

Drug Use
No Injection
Drug Use

Crude

2-Year 10.22 6.61 3.61 1.75, 5.47 1.55 1.27, 1.89

6-Year 19.47 11.60 7.87 4.73, 11.0 1.68 1.41, 2.00

Standardizedb

2-Year 8.13 6.82 1.31 −0.46, 3.08 1.19 0.95, 1.50

6-Year 16.75 12.08 4.68 1.27, 8.08 1.39 1.12, 1.72

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; CNICS, Centers for AIDS

Research Network of Integrated Clinical Systems; HIV, human immunodeficiency virus.
a Standard error based on standard deviation of 200 nonparametric bootstrap resamples.
b Standardized for age (spline), CD4 cell count (spline), indicators for male sex, black race, Hispanic ethnicity, prior

mono/dual antiretroviral therapy, calendar year of antiretroviral therapy initiation, and study site.
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7,182 patients were censored alive and AIDS free before 6
years of follow-up, or on December 31, 2012 (December
31, 2011, for the Johns Hopkins University site).
The 6-year crude AIDS risks were 19.47% among thosewho

reported injection drug use and 11.60% among those who did
not, yielding a risk difference of 7.87 (95% confidence inter-
val (CI): 4.73, 11.0) and a risk ratio of 1.68 (95% CI: 1.41,
2.00; Table 3). Figure 1 provides a visual display of both the
crude risk of AIDS and death by time from therapy initiation.
After accounting for confounding and dropout by charac-

teristics measured at therapy initiation and the competing risk
of death, we found that the 6-year standardized AIDS risks
were 16.75% for injection drug users and 12.08% for

nonusers, yielding a 6-year standardized risk difference of
4.68 (95% CI: 1.27, 8.08) and a 6-year standardized risk
ratio of 1.39 (95% CI: 1.12, 1.72). The standardized risk
ratio was 17% (i.e., 1–1.39 / 1.68) smaller than the crude
risk ratio. As expected, the 6-year standardized risk ratio
was less precise (ratio of upper to lower CI = 1.54) compared
with the 6-year crude risk ratio (ratio of upper to lower CI =
1.42) because of the accounting for possible confounding and
selection bias. Figure 2 provides a visual display of both the
standardized risk of AIDS and death by time from therapy
initiation. Figure 3 provides a nuanced view of the standard-
ized risk difference and risk ratio as they evolve over time
from therapy initiation.
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DISCUSSION

After accounting for measured covariates and the compet-
ing risk of death, we observed a 6-year risk of AIDS among
injection drug users that was 39% larger than that of non-
users; the 6-year risk for nonusers was 12.08%. This mod-
estly higher risk is consistent with those reported in existing
literature. For instance, using a subset of the data used here,
Moore et al. (22) reported on 2,141 patients followed from
starting therapy between 1995 and 2002, of whom, 827 had
a history of injection drug use. Summarizing their results over
calendar years, they observed a rate ratio for AIDS-defining
illness of 1.26 (95%CI: 1.11, 1.43) compared to those without
a history of injection drug use and adjusted for age, sex, race,
prior AIDS-defining illness, and baseline CD4 count and viral
load. More recently, Qian et al. (23) reported on 1,712 patients
followed for up to 7 years from starting therapy, of whom, 262
had a history of injection drug use. They reported a hazard ratio
for AIDS or death of 1.83 (95% CI: 1.09, 3.06) compared to
those without a history of injection drug use and adjusted for
age, sex, race, prior antiretroviral therapy, and baseline CD4
count and viral load. However, prior work did not report abso-
lute risks and accounted for the competing risk of death by cen-
soring (22) or using a composite endpoint (23).

Our findings are subject to several limitations. First, to ob-
tain results, we assume our exposures map to well-defined in-
terventions. This assumption is implied by the simplified
consistency statement, Ti ¼ Ta

i for Ai = a. A general consis-

tency statement is Ti ¼ Ta;kðaÞ
i for Ai = a, Ki(a) = k(a), where

K(a) are the possibly a-dependent K versions of exposure. In
our setting, no exposure to injection drugs (a = 0) is well de-
fined because there is arguably only 1 version. However, ex-
posure to injection drugs (a = 1) has many possible versions
and is therefore not very well defined. For example, those ex-
posed could be infrequently injecting cocaine or frequently
injecting heroine. With multiple versions of exposure, to
apply inferences directly to other populations (where the
mixture of exposure versions may differ), we must assume

exposure/treatment-version irrelevance, Ta;kðaÞ
i ¼ Ta;k0ðaÞ

i for
all i, a, and k(a) ≠ k′(a). Informally, we must assume that
the potential outcomes do not depend on the version of the
exposure. For additional details on treatment-version irrele-
vance, please see the article by Vanderweele (24). We do
not believe exposure-version irrelevance holds in the present
illustrative setting. As is commonly the case, we are limited
by the coarseness of the information collected (e.g., we do
not have information on injection frequency or type). There-
fore, because there may be a modest effect of injection drug
use on AIDS incidence, future work is needed to explore the
exposure response with more refined measurements of injec-
tion drug use. A related point regarding exposure measure-
ment error is discussed below.

Second, we assumed positivity. In our setting, this as-
sumption states that we must have both exposed and unex-
posed, P(A = a|L = l) > 0, as well as nondropouts, P{D(q) =
0|L = l} > 0, at every level of the confounders, P(L = l) ≠ 0.
These assumptions were relaxed somewhat by smoothing over
the data through the use of a linear-logistic model for P(A = a|
L = l) and a linear-pooled logistic model for P{D(q) = 0|L = l},

with continuous components of L specified using splines
(rather than an indicator for each level), as well as by omis-
sion of several terms for the products between confounders.
It did not appear that relaxing of the positivity assumption
in this way reintroduced confounding or selection bias,
and positivity appeared to hold based on exploration of the
data including additional product terms and using finer con-
trol for continuous covariates and time, as previously illus-
trated (15).

Third, we assumed conditional exchangeability. Condi-
tional exchangeability is equivalent to the assumption of no
unmeasured confounders and no unmeasured selection bias.
An Achilles heel of observational science is the ever-present
threat of unmeasured confounding. It remains possible that
further adjustment for unmeasured factors would further re-
duce (or enhance) the effect reported. Although dropout was
common at 36%, concern over selection bias due to this drop-
out rate is limited by the fact that we observed the same pro-
portion of dropout among injection drug users and nonusers.
We coarsened the time scale to improve estimation of the
dropout weights. In principle, such coarsening may re-
introduce some selection bias. In practice, our results were
insensitive to inclusion of the dropout weights.

Fourth, we assume that injection drug use, AIDS inci-
dence, death, and confounders are measured with negligible
error. This assumption likely holds for all-cause mortality,
AIDS incidence, and several demographic confounders (e.g.,
age, sex). Although AIDS incidence is likely well measured,
in the current era of effective therapies, AIDS incidence may
become less common and therefore less germane than total
mortality. Here, we focus on AIDS incidence, which was
more common than death during the study period. Injection
drug use is likely measured with nonnegligible error. How-
ever, Qian et al. (23) demonstrated in a single-site clinical
HIV cohort with similar demographic distributions that a re-
ported history of injection drug use had 91% sensitivity and
88% specificity for current injection drug use. Such strong
measurement properties limit the extent of measurement
bias. Given the prospective nature of our study, we expect ex-
posure misclassification to be nondifferential with respect to
AIDS and death. With our binary classification of injection
drug use, we therefore expect that the limited measurement
bias is toward the null (21). Methods to account for exposure
measurement exist (25, 26), but they must be adapted to the
current setting and are beyond the scope of this paper. On a
related note, epidemiologists demand temporal order be-
tween exposure and disease but often neglect the temporality
between confounders and exposure (27). Here, we knowingly
account for covariates that are assessed after exposure; we do
so under the assumption that injection drug use is fixed over
this relatively short time period.

It is not uncommon for epidemiologists to report rates
(e.g., 4.39 AIDS cases per 100 person-years among those
who reported injection drug use). One might apply a com-
peting risks extension (28) of the so-called exponential for-
mula (29) to these crude rates found in Table 2 and obtain
a 6-year crude risk in the injection drug users of 23.14%,
rather than the 19.47% shown in Table 3. This difference be-
tween estimates may be due to the fact that the cause-specific
hazards of AIDS and/or death are not constant over the 6
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years after therapy initiation, which is a restrictive assump-
tion of this rate-based approach (30), although a piecewise
approach could be used to relax this assumption.
One might have censored the competing deaths and used

an IP-weighted Cox proportional hazards model (where
deaths are combined with dropouts). The resulting standard-
ized cause-specific hazard ratio of 1.31 (95% CI: 1.06, 1.62)
is roughly similar to the 6-year risk ratio shown in Table 3, yet
the absolute risk estimates themselves are numerically larger
and would diverge more so had we observed a greater propor-
tion of competing deaths. This is because, when using stan-
dard survival analysis techniques, a portion of the censored
deaths are implicitly “redistributed” to become AIDS cases
after death. This is due to the fact that the risk defined as
the cumulative incidence, Ra

1ðtÞ, is a function of the compos-
ite survival curve (i.e., a function of both cause-specific haz-
ard functions). Therefore, when risk is based upon a single
cause-specific hazard, it will increasingly overestimate
Ra
1ðtÞ as the frequency of competing events increases. There-

fore, one should not interpret the cause-specific hazard ratio
as a risk ratio. Rather, the cause-specific hazards for each
event are to be interpreted as “momentary event forces” act-
ing together to determine event times (31). In addition, one
might adjust for measured confounders using proportional
hazards regression rather than standardize using IP weights.
Such an approach results in a covariate-conditional effect
estimate rather than a covariate-marginal estimate and is
therefore often subject to issues of interpretability regarding
the noncollapsibility of the hazard ratio (5, 32). Specifically,
for noncollapsible parameters like the hazard, rate, and
odds ratios, the population value of the covariate-conditional
parameter may depend on which covariates are included
in the linear predictor of the regression model even in the ab-
sence of confounding. For example, expected estimates of the
hazard ratio from 2 large, well-conducted randomized trials
may not be comparable when different covariates are in-
cluded in the 2 models, even when it may be assumed that
confounding is not present because of randomization.
We define our parameter of interest using potential outcomes,

such that we are estimating a so-called causal effect. Indeed,
what we have proposed is a marginal structural competing-
risks model for a time-fixed exposure. However, we purpose-
fullyavoided theuseof the term “causal”because the assessment
of causality often requires more than a single consistently es-
timated parameter based on potential outcomes. The methods
presented here to estimate the standardized risk difference
and standardized risk ratio are straightforward to implement
using standard software. These methods can be extended
easily to handle multiple exposure groups or categorized
continuous exposures. In principle, and under additional
assumptions, these methods can be extended to handle left-
truncated data that arise when one uses an alternate timescale,
such as age. Finally, these methods can be extended to handle
time-varying exposures (3, 33).
In summary, we present results that suggest a modestly

higher 6-year risk of AIDS among injection drug users com-
pared with nonusers. Strengths of this study include the large,
representative cohort of HIV-infected patients, high-quality
study measurements, and quantitative methods tailored to
the question at hand.
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APPENDIX

Here, we present results of an experiment to assess whether
the proposed approach provides a valid estimate of the risk
difference and risk ratio under the null hypothesis. We per-
muted injection drug use exposure in 500 copies of our
data while maintaining the observed proportion exposed.
Whatever the true effect of injection drug use on acquired im-
mune deficiency syndrome (AIDS) risk, the expected associ-
ation in such permuted data should be null.

In each of the 500 permutations of the data, we conducted
the analyses described in the main text for the 6-year AIDS
risk. The average 6-year risks were 12.94 in the “exposed”
group and 12.93 in the “unexposed” group, yielding a
6-year AIDS risk difference of 0.01 and a risk ratio of 1.00.
The average standard errors for the risk difference and risk
ratio were 1.42 (empirical standard error, 1.48) and 0.11 (em-
pirical standard error, 0.11), respectively. The 95% confi-
dence interval coverage for the risk difference and risk ratio
were 93.8% and 94.2%, respectively. These experimental re-
sults suggest that the proposed approach is approximately un-
biased for the risk difference and ratio with approximately
correct estimates of precision and appropriate confidence in-
terval coverage, at least at the null. Limitations notwithstand-
ing, this simulation provides experimental support for the
proposed method.
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