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ABSTRACT OF THE THESIS

Investigating an Approach for Discovering Second Hop Neighbors in BGP

by

Jae Hyun Park

Master of Science in Computer Science

University of California, San Diego, 2017

Kimberly C. Claffy, Chair
Alex C. Snoeren, Co-Chair

BGP prefix hijacking, which is illegitimate takeover of IP prefixes by announcing

forged AS paths, is a major threat to the Internet. A number of hijacking events with

severe consequences in the Internet routing system have been documented. Several

studies have proposed techniques for network operators to detect hijacking autonomously

to quickly react to attacks. In this thesis, we focus on autonomously detecting one of the

impactful types of hijacks, a hijack event in which a forged AS is placed two AS-hops

from the origin AS in AS paths. Thus, we develop an approach to discover second hop

neighbors of an AS owner based on carefully crafted BGP announcements, and use this

ix



information as a baseline to evaluate anomalies in AS paths and detect hijacking events.

Second hop neighbors of an AS are ASes two hops from the origin AS in a BGP-observed

topology. An AS owner can quickly classify an announcement as legitimate if the ASN

that is two AS-hops from the origin ASN in an AS path is in its set of second hop

neighbors. Thus, the more second hop neighbors an AS owner discovers, the more AS

paths it can correctly classify as legitimate announcement, resulting in less false-positive

rate. Through simulation experiments, we show that our approach finds more than 80%

of second hop neighbors for 80% of origin ASes that we study.
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Chapter 1

Introduction

This thesis investigates an approach for discovering second hop neighbors of

an autonomous system (AS) in Border Gateway Protocol (BGP). BGP is the de-facto

Internet inter-domain routing protocol, controlling routing paths between interconnected

ASes. As of May 2017, there are more than 57,000 unique ASes [BSH17], forming a

complex AS topology. Second hop neighbors of an AS are ASes two hops from the origin

AS in a BGP-observed AS topology. By extending this notion, we define n-hop neighbors

of an AS, which are ASes that are n AS-hops from the origin AS in a BGP-observed

topology, where n≥ 1.

BGP prefix hijacking is illegitimate takeover of an IP prefix due to a malicious or

misconfigured router either originating a prefix that it does not own (origin-AS hijack),

or announcing an illegitimate path for such a prefix (false link hijack). Due to security

gaps in the design of BGP, which allows any AS to announce illegitimate routes in the

Internet, BGP hijacking is a major threat to Internet operators and users. Several BGP

hijacking events have been documented [CGHS16, GCHS17], some leading to severe

consequences with the Internet routing system and economy. Fast detection of BGP

hijacking is essential for preventing the attack from resulting in severe consequences.

1
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Currently, many network operators use third-party services to detect hijacking events

[SKG+]. These services notify the operators upon hijacking events detection, which does

not allow fast mitigation.

The main motivation for discovering second hop neighbors is for the AS owner

to autonomously and quickly detect BGP prefix hijacking attacks against it. From the

perspective of an AS, it is possible to detect a hijacking attack of its own prefix by (i)

knowing its n-hop neighbors and (ii) scanning for suspicious BGP announcements using

route monitors. Route monitors are operational routers that peer with route collectors,

which are hardware or software routers that collect and store BGP route announcements

[oO17, NCC17]. These monitors provide a global view of BGP routes announced on the

Internet. Ideally, an AS owner can use real-time monitors and knowledge of its n-hop

neighbors to detect hijacking events seen by at least one monitor, using this knowledge

as a baseline to evaluate anomalies in AS paths and to classify BGP announcements as

suspicious or legitimate.

The BGP Monitoring Protocol (BMP) [JSNF+16] allows BMP-enabled route

collectors to receive all BGP routes from its BGP peers in real-time using BMP mes-

sages. Currently, however, BMP-enabled monitors placed around the world are in their

experimental stage [CAI17]. Thus, in this thesis, we use near real-time route monitors,

such as Route Views [oO17] and RIPE Routing Information Service (RIS) [NCC17].

We focus on detecting impactful types of BGP hijacking events. We refer to

origin-AS hijacking as Type-0 hijacking, and false link hijacking as Type-N (N ≥ 1),

where N is the number of hops from the hijacker’s AS number (ASN) to the origin ASN

in the announced path. Also, we define an AS as polluted if it selects a path that contains

the ASN of the hijacker according to its routing policy. [SKG+] quantifies the impact of

a hijacking event by the percentage of polluted ASes due to the event, and shows that

Type-0, Type-1, and Type-2 hijacks have large impact on the Internet. These types of
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hijacks tend to be more impactful because the attacker generates a shorter path compared

to a Type-N (N ≥ 3) hijacks; therefore, there is a higher chance that other routers will

prefer the forged path over the legitimate path, thus, letting it propagate further. An

AS owner can easily detect Type-0 and Type-1 hijacks because the owner knows not

only which ASes are allowed to originate its prefixes, but also its first hop neighbors.

However, the owner cannot easily detect Type-2 hijacks without knowledge of its second

hop neighbors. Therefore, in this thesis, we focus on the development and evaluation of

an approach for discovering second hop neighbors.

The simplest way to discover second hop neighbors is to scan all route monitors

and extract second hop neighbors from the AS paths. However, using this approach, we

cannot discover hidden second hop neighbors, which are connected through back-up

paths or less-preferred paths. If we use this set of second hop neighbors as a baseline to

evaluate anomalies in AS paths, we will suffer from a high false-positive rate because

routers may include hidden second hop neighbors in AS paths due to legitimate routing

changes, such as policy changes or outages.

Thus, we have devised an approach using BGP poisoning [Col06]. BGP poisoning

is a technique that involves announcing carefully crafted BGP messages to discover

alternative routes that do not traverse certain ASes. ASes that should not be traversed

(poisoned) are prepended in a BGP announcement of a prefix p so that the AS path is

rejected when the message reaches such ASes due to BGP’s loop prevention mechanism.

These ASes then withdraw their paths from their neighbors since they do not have

a valid route towards prefix p. We use this technique to reveal alternative routes and

discover hidden second hop neighbors. We evaluate our approach in terms of (i) discovery

coverage, percentage of second hop neighbors discovered, and (ii) deployment feasibility,

the maximum required length of AS paths in poisoned BGP announcements.

The contributions in this thesis are as follows:
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• Developing various approaches to discover second hop neighbors in BGP.

• Evaluating these approaches in terms of discovery coverage using simulation, and

deployment feasibility using real world data.

The remaining chapters in this thesis are structured as follows. We discuss

background and related work in Chapter 2. In Chapter 3, we explain data and tools

used in this thesis. In Chapter 4, we propose and discuss various approaches to discover

second hop neighbors in BGP. In Chapter 5, we perform simulation experiments of the

approaches discussed in Chapter 4 and discuss our results. In Chapter 6, we discuss

benefits and limitations of these approaches and future work. Lastly, we conclude the

thesis in Chapter 7.

1.1 Acknowledgement
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Xenofontas; Park, Jae Hyun; Cicalese, Danilo; King, Alistair; Dainotti, Alberto. The
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Chapter 2

Background and Related Work

In this chapter, we review BGP prefix hijacking and BGP poisoning. Then, we

discuss related work.

2.1 BGP Prefix Hijacking

BGP prefix hijacking is illegitimate takeover of IP prefixes using bogus adver-

tisement in BGP. It can occur due to a malicious or misconfigured router originating a

prefix, or announcing an illegitimate path for a prefix not owned by the AS operating the

router. Due to security gaps in the design of BGP, which allows any ASes to announce

illegitimate routes in the Internet, routers may propagate the illegitimate announcement

and route traffic to the hijacker. After receiving the traffic, the hijacker may eavesdrop,

steal, or modify the traffic. BGP prefix hijacking is also referred to as BGP hijacking,

prefix hijacking or IP hijacking.

We review types of BGP hijacking events that we use as reference in the rest

of this thesis. For the sake of illustration, we assume the following: (i) AS O owns

and legitimately announces the prefix 10.0.0.0/23, and (ii) AS H is the hijacker’s AS

number. We denote a BGP message with two fields: its AS path and announced prefix.

5
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For example, [X Y O | 10.0.0.0/23] is a BGP announcement message for the prefix

10.0.0.0/23 with AS path [X Y O] originated by the legitimate AS O. Also, we define an

AS as polluted if it selects a path that contains the ASN of the hijacker according to its

routing policy.

2.1.1 Hijacking Types: Announced Path

Origin-AS Hijacking

In origin-AS hijacking, a hijacker announces a prefix that it is not authorized to

originate. In our example, neighboring ASes of AS H would receive an illegitimate BGP

announcement, [H | 10.0.0.0/23], and propagate this announcement. Then, these polluted

ASes would route their traffic to the hijacker. Origin-AS hijacking is the most commonly

observed hijacking type, and may occur due to an attack or a misconfiguration, which we

also call Type-0 hijacking.

False Link Hijacking

In false link hijacking, a hijacker deliberately originates an illegitimate path for a

prefix it does not own. The path announced by the hijacker contains both its AS number

as the last hop and the sequence of ASes that constitutes an illegitimate AS path. An

example of fake link hijacking announced by AS H is [H X Y O | 10.0.0.0/23], where

AS H is not a neighbor of AS X . As a result, the polluted ASes route their traffic through

the hijacker, which can then eavesdrop, steal, or modify the traffic.

We refer to a false link hijacking event as Type-N (N ≥ 1), where N is the number

of hops from the hijacker’s AS number (ASN) to the origin AS number in the announced

illegitimate path.
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2.1.2 Hijacking Types: Affected Prefix

Exact Prefix Hijacking

In exact prefix hijacking, a hijacker originates a path for the exact same prefix

that the legitimate AS announces. In this case, only a portion of ASes in the Internet

that prefer routes to the hijacker are polluted, switching the routes towards the hijacker.

Typically, the ASes that are closer to the hijacker in number of AS-hops are polluted,

since BGP route selection algorithms executed at each router prefer shorter paths.

Sub-prefix Hijacking

In sub-prefix hijacking, a hijacker announces a more specific prefix that is covered

by the prefix of the legitimate AS. For example, the hijacker announces a path [H |

10.0.0.0/24] or [H X Y O | 10.0.0.0/24]. Since more specific prefixes are preferred in

BGP routing, all ASes in the Internet are polluted, switching routes toward the hijacker

for the announced sub-prefix.

2.2 BGP Poisoning

BGP poisoning is a technique to find alternative BGP routes that do not traverse

certain ASes by announcing carefully crafted BGP messages. It leverages the AS loop

prevention mechanism in BGP [RLH06]. An AS prepends ASes that should not be

traversed (poisoned) in a BGP announcement. These ASes, upon receiving the crafted

announcement, then reject the AS path and withdraw their paths from their neighbors due

to BGP’s loop prevention mechanism. For example, to find routes that do not traverse AS

P towards a prefix p owned by AS O, AS O can announce an AS path that includes P,

such as [O P O | p]. When this announcement reaches AS P, AS P rejects the path and

withdraws its path from neighbors because propagating this announcement by prepending
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Figure 2.1: An example of BGP poisoning technique. AS V announces [V X V ] to
poison AS X .

its ASN results in a loop in the AS path. Thus, no routes towards the prefix p will traverse

AS P: AS P is poisoned.

We can also poison multiple ASes at the same time. One simple approach is to

include all ASes we intend to poison in the AS path of the announcement, such as [O

P1 P2 ... Pn O], where P1, P2, ... Pn are the ASes to poison. However, we cannot use

this approach when the number of ASes to poison is large because BGP routers filter

out BGP messages with long AS paths. Another approach is to use an AS set, which is

an unordered set of AS numbers, to include all ASes to poison in the AS path, such as

[O {P1, P2, ... , Pn} O], where {P1, P2, ... , Pn} is an AS set with ASes to poison. By

using this approach, which is known as AS-set stuffing [Col06], we always send BGP

announcements with lengths of 3 to poison any number of ASes. However, this approach

is also problematic because BGP routers may filter out messages with a large AS set in

an AS path. To maximize the number of ASes to poison, we need to use multiple AS

sets in AS paths. We can calculate the maximum number of ASes to poison in a BGP
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announcement as follows:

Pmax = (Lmax−2)×Smax, (2.1)

where Pmax is the maximum number of ASes we can poison, Lmax is the maximum length

of the AS path in a BGP announcement, and Smax is the maximum size of an AS set in a

BGP announcement. Currently, there are no standardized limits for the length of the AS

path and the size of AS sets in a BGP announcement. In this thesis, we use 6 as the limit

for both the length of the AS path and the size of AS sets, allowing us to poison up to 24

ASes by announcing [O {P1, ... ,P6} {P7, ..., P12} ... {P19, ..., P24} O].

An example of BGP poisoning is illustrated in Figure 2.1. In this simple topology,

the monitor M observes a path [S X N V | p] towards a prefix p announced by AS V . To

find alternative routes from AS S toward p, we poison AS X by announcing [V X V | p].

The loop prevention mechanism withdraws the paths from AS X to AS V , causing AS S

to choose an alternative route to the prefix p, which is [S Y N V | p].

BGP poisoning allows us to discover alternative routes towards a prefix, which

will help us to discover second hop neighbors of an AS. From the newly discovered

routes, we may find new second hop neighbors of an AS. We use BGP poisoning as our

main approach to discover second hop neighbors.

2.3 Related Work

A number of systems have been proposed for detecting BGP prefix hijacking

based on control plane [LMP+06, QGRN07] or data plane [ZJP+07, ZZH+08] or both

[HM07]. However, most of them are designed to operate as third-party services that

monitor the Internet and notify involved ASes upon detection of suspicious incidents.

In addition, hijacking detection techniques based on control plane BGP data do not use
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n-hop neighbors as baselines to evaluate anomalies in AS paths. A number of studies use

BGP poisoning (Section 2.2) to find alternative BGP paths [Col06, ANC+15, JCC+13,

KBSC+12]. However, none of these studies focus on detecting BGP hijacking events.

This thesis work is the first step to explore how an AS owner can detect BGP

hijacking events autonomously by leveraging the knowledge of second hop neighbors

discovered using BGP poisoning.

2.4 Acknowledgement

Chapter 2, in part, is currently being prepared for submission for publication

of the material. Sermpezis, Pavlos; Kotronis, Vasileios; Gigis, Petros; Dimitropoulos,

Xenofontas; Park, Jae Hyun; Cicalese, Danilo; King, Alistair; Dainotti, Alberto. The
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Chapter 3

Data and Tools

In this chapter, we discuss about data and tools we use throughout the discovery

of second hop neighbors.

3.1 CAIDA AS Relationship Data

CAIDA AS relationship data [LHD+13] provides a set of inferred relationships

between ASes. The AS relationships are inferred from BGP paths in the routing table

snapshots collected by the Route Views [oO17] and RIPE RIS [NCC17] monitors. The

dataset contains a list of AS pairs with a peering link, which is annotated based on their

relationship as provider-to-customer or peer-to-peer.

We use CAIDA AS relationship data in the BGP simulator (Section 3.5). AS

relationship data is necessary to simulate BGP routing policies, such as the Gao-Rexford

model [GR01].

11
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3.2 Data Concierge

Data Concierge is a Python library that allows effective and efficient use of

CAIDA AS relationship data. At initialization, it reads CAIDA AS relationship data,

parses them, and stores them in an efficient manner to retrieve data. Some useful interfaces

include: get customer cone(), in customer cone(), get relationships(), get common neighbors().

In this work, we use the in customer cone() and get relationships() interfaces.

3.3 Route Views and RIPE RIS

The Route Views project [oO17], developed by University of Oregon, provides

near real-time information about the global routing system through Route Views routers

that peer with Internet transit providers. Route Views route collectors collect a full BGP

routing information base (RIB) every 2 hours and BGP updates every 15 minutes. All

collected data are archived in the multi-threaded routing toolkit routing information

export format (MRT format) [BKN+11].

The RIPE’s Routing Information Service (RIS) [NCC17] also provides Internet

routing data collected from routers in several locations around the globe. The data can be

accessed via the raw files in MRT format. RIPE RIS route collectors collect full BGP

RIB every 8 hours and BPG updates every 5 minutes.

Throughout this work, we use AS paths provided by the Route Views and RIPE

RIS monitors that are placed in 258 different ASes around the world.

3.4 BGPStream

BGPStream [OKG+16] is an open-source software framework, providing an easy

and efficient way of processing large amounts of live and historical BGP measurement
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data. It provides a set of APIs and tools to process large amounts of BGP measurement

data, which are often used in scientific research, operational monitoring, and post-event

analysis. There are several sources of BGP measurement data, including Route Views

and RIPE RIS collectors. This framework provides two programming APIs for accessing

BGP measurement data: libBGPStream, a C API, and PyBGPStream, a Python API.

Throughout this work, we use PyBGPStream to read RIB dumps and updates

from Route Views and RIPE RIS route collectors.

3.5 BGP Simulator

The BGP simulator [SKG+], developed by the Institute of Computer Science

(ICS) of the Foundation for Research and Technology - Hellas (FORTH), considers ASes

as single nodes, and simulates BGP routing among them. Specifically, it simulates (i)

BGP message exchanges between nodes and (ii) selection of BGP paths from nodes

based on routing policies. The BGP simulator uses CAIDA AS relationship data (Section

3.1) to infer AS relationships, provider-to-customer or peer-to-peer, between nodes.

For the routing policies between ASes, it simulates the Gao-Rexford model [GR01].

The simulator is implemented in Python3. We use this simulator in all our simulation

experiments to discover second hop neighbors.

3.6 PEERING Testbed

PEERING [PEE17] is a BGP testbed for researchers to conduct Internet routing

experiments, such as announcing/selecting routes and sending/receiving traffic. It is

connected with real networks via BGP at universities and Internet exchange points (IXPs)

around the world, including Amsterdam Internet Exchange, Phoenix Internet Exchange,
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Georgie Institute of Technology, University of Washington, and Universidade Federal de

Minas Gerais.

To use the PEERING testbed, researchers must submit proposals describing their

experiment. Upon project approval, they are given a set of prefixes to experiment on. The

PEERING testbed administrators restrict the frequency of BGP announcement to one

BPG announcement modification per 90 minutes to prevent experiment from disrupting

the Internet. For a similar reason, the length of BGP announcement is restricted to ≤ 5.

The PEERING testbed currently uses the BIRD Internet Routing Daemon (BIRD)

to control BGP route announcements and withdrawals. Although this is the default

tool provided by the the PEERING testbed administrators, we can send announcements

through other BGP implementations, such as ExaBGP [EN17] and Quagga [Qua17].
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Chapter 4

Approaches to Discover Second Hop

Neighbors

We discover second hop neighbors of an AS by using near real-time route moni-

tors, such as Route Views [oO17] and RIPE RIS [NCC17] monitors. The simplest way to

discover second hop neighbors of an AS is to scan all AS paths from the route monitors.

However, using this approach, we only discover second hop neighbors that are connected

through active, or “best”, paths. To discover hidden second hop neighbors, we propose to

use BGP poisoning (Section 2.2), which is a technique to reveal alternative BGP routes

using carefully crafted BGP messages. With BGP poisoning, we can discover a large set

of second hop neighbors of an AS.

An AS owner needs knowledge of its second hop neighbors to autonomously

detect BGP hijacking events of Type-2 (Section 2.1). Ideally, with knowledge of all

second hop neighbors, an AS owner does not misclassify observation of a second hop

neighbor that was previously hidden as a BGP hijacking event, since the owner is already

aware that this AS is its second hop neighbor. The owner classifies observation of a new

second hop neighbor that is not in its set of second hop neighbors as a suspicious event.

15
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Figure 4.1: An example of AS topology illustrating observable second hop neighbors
of an AS. V is the origin AS, F1 and F2 are first hop neighbors of V , S1−S7 are second
hop neighbors of V , and M1−M3 are monitors.

This suspicious event may be due to an illegitimate announcement or to the establishment

of a new link or BGP peering session. Distinguishing whether new second hop neighbors

are observed due to illegitimate announcements or to the establishment of new links or

BGP peering sessions is out of the scope of this thesis.

4.1 Observable and Observed Second Hop Neighbors

An AS owner cannot observe all its second hop neighbors through the route

monitors. The observability of the second hop neighbors depends on the route export

policy and placement of the monitors in the AS topology. We first define observable,

non-observable, and observed second hop neighbors.
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• Observable second hop neighbor: a second hop neighbor that can be observed

from at least one monitor at some point in time. Usually, the monitor is in the

provider chain or in the customer cone of an observable second hop neighbor.

• Non-observable second hop neighbor: a second hop neighbor that cannot be

observed from monitors at any time due to monitor placement and existing AS

relationships, if all BGP announcements are legitimate.

• Observed second hop neighbor: a second hop neighbor that is observed from

monitors in a specific simulation / emulation experiment.

Figure 4.1 illustrates examples of observable and non-observable second hop

neighbors. In this example, AS V is the prefix owner, AS F1 and AS F2 are first hop

neighbors of AS V , AS S1-S7 are second hop neighbors of AS V , and AS M1-M3 are

the monitors. Assume a prefix p is announced by AS V , and BGP routing follows the

Gao-Rexford model [GR01]. In the remainder of this section, we only use the AS label

for brevity. F1 is a provider of V , so it exports the received route to all of its neighbors.

Similarly, S3 and S4 export the received route to all of their neighbors because S3 and

S4 are providers of F1. Thus, the monitor M1, which is neighbor of both S3 and S4,

receives the AS paths [S3 F1 V | p] and [S4 F1 V | p] from S3 and S4, respectively, and

chooses preferred path according to its routing policy. Let us assume that M1 prefers

[S3 F1 V | p]. As a result, the prefix owner sees the active AS path, [M1 S3 F1 V | p]

from M1 monitor, and discovers that S3 is a second hop neighbor of V . In this case, S4 is

also an observable second hop neighbor of V because it is a hidden second hop neighbor.

At any point in time, M1 monitor may observe [S4 F1 V | p] due to policy changes in

ASes, outages, link failures, or poisoning S3. In case of S2 and S1, they export routes

only to their customers because they received routes from F1, which is their peer and

provider, respectively. In this case, the prefix owner cannot observe the AS path from S2
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to V through the monitors because there are no monitors in the customer cone [LHD+13]

of S2. However, in case of S1, since there is a monitor M2 in the customer cone of S1,

the prefix owner observes the AS path from S1 to V through M2, such as [M2 S1 F1 V |

p], and discovers S1 as its second hop neighbor. If a first hop neighbor of V is a peer or a

customer, such as F2, it exports the received route only to its customers. Thus, in the

example, the routes from S5 to V and S7 to V towards prefix p do not exist, as S5 is a

provider of F2 and S7 is a peer of F2. Therefore, the prefix owner cannot observe S5 and

S7 through the monitors regardless of monitor placement. For a customer of F2, such as

S6, the observability depends on the existence of monitors in the customer cone of the

AS. Since there are no monitors in the customer cone of S6, the route from S6 to V is not

observable through the monitors.

For the detection of Type-2 BGP hijacking events, we need to focus on discovering

observable second hop neighbors. Let us assume that an AS owner discovered a complete

set of its observable second hop neighbors. Then, in case of legitimate routing changes,

which may be due to outages or policy changes, the owner will observe second hop

neighbors that are already in its set. Thus, legitimate routing changes are not misclassified

as suspicious events. When the owner sees a new, non-observable, second hop neighbor

in a BGP announcement, the owner will classify it as a suspicious event. This suspicious

event may be due to illegitimate announcements or to the establishment of new links

and peering sessions. Thus, the owner can correctly classify illegitimate announcements

and new links as suspicious events only with a set of observable second hop neighbors.

Therefore, we focus only on exhaustively discovering observable second hop neighbors

to detect these suspicious events.

In the next chapter, we proceed by performing simulation experiments of our

approaches, where we evaluate the ability of different approaches to discover second

hop neighbors. To correctly evaluate such a capability, we first need to know the set of
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Algorithm 1: Identifying all observable second hop neighbors of an AS given
full knowledge of the AS topology.

Data: prefix owner AS V , a set Sobservable (observable second hop neighbors
of V ), a set of monitor ASes M

1 Fp = Providers of V
2 Fcp = Customers and Peers of V
3 foreach AS F in Fp do
4 Sp = Providers of F
5 Scp = Customers and Peers of F
6 Sobservable = Sobservable∪Sp
7 foreach AS S in Scp do
8 if Any M in customer cone of S then
9 Add S to Sobservable

10 end
11 end
12 end
13 foreach AS F in Fcp do
14 Sc = Customers of F
15 foreach AS S in Sc do
16 if Any M in customer cone of S then
17 Add S to Sobservable
18 end
19 end
20 end
21 return Sobservable
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observable second hop neighbors in order to compare it with the set of observed second

hop neighbors. Thus, we have devised an algorithm to identify all observable second

hop neighbors of an AS given full knowledge of the AS topology (Algorithm 1). This

algorithm classifies a second hop neighbor as observable if at least one monitor exists

in the provider chain or in the customer cone of it. We assume that BGP routing policy

follows the Gao-Rexford model [GR01]. Ideally, using BGP poisoning (Section 2.2), we

would have equivalent sets of observable and observed second hop neighbors of an AS.

4.2 Approaches for Discovering Second Hop Neighbors

In this section, we present a series of algorithms to discover second hop neighbors

of an AS. In all algorithms, we use the BGP poisoning approach (Section 2.2) in an

attempt to discover all observable second hop neighbors. We also discuss limitations

of each algorithm in terms of (i) second hop neighbor discovery coverage, and (ii)

deployment feasibility. For deployment feasibility, we focus on the required length of

AS path to perform our approaches because BGP announcements with long AS path may

be filtered by routers. We present four approaches, each approach improving on either

discovery coverage or deployment feasibility of the previously-introduced approach: (i)

naive poisoning approach, which is not deployable and has small discovery coverage, (ii)

depth-first poisoning approach, which is not deployable but has large discovery coverage,

(iii) poisoning first hops only approach, which is deployable but has medium discovery

coverage, and (iv) poison by divide and conquer approach, which is deployable and has

large discovery coverage.
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Algorithm 2: Discovering second hop neighbors of an AS by naively poison-
ing all second hop neighbors seen by the monitors.

Data: Prefix Owner AS V , Prefix P (announced by V ), a set Sobserved
(observed second hop neighbors of V ), a set of monitor ASes M

1 while Any M has path to P do
2 foreach monitor in M do
3 for AS path to P do
4 Add second hop neighbors of V to Sobserved
5 end
6 end
7 Announce AS path [V Sobserved V ] from V to poison ASes in Sobserved

8 end
9 return Sobserved

4.2.1 Naive Poisoning Approach (Approach 1 - Naive)

One simple approach to discover second hop neighbors of a prefix owner AS, AS

V , is to repeat the process of collecting all the second hop neighbors of AS V seen from

the AS paths in the monitors and poisoning all the collected second hop neighbors until

all monitors do not see any path towards the prefix originated from AS V , as described in

Algorithm 2. We refer to this approach as the naive poisoning approach or Approach 1 -

Naive.

Although this approach is simple and easy to implement, it fails to discover all

observable second hop neighbors of a prefix owner AS. Figure 4.2 illustrates a limitation

of Approach 1 - Naive in discovering second hop neighbors. In this topology, we observe

paths [X B A V ], [Y B A V ], and [Z B A V ] from the monitors, M1, M2, and M3,

respectively. Then we poison AS B, which is discovered as a second hop neighbor of

AS V . After AS B is poisoned, we cannot discover additional second hop neighbors.

However, in the example topology, AS X , AS Y , and AS Z are also observable second

hop neighbors of AS V . Therefore, this approach fails to discover AS X , AS Y , and AS Z

as observed second hop neighbors of AS V . This shows that Approach 1 - Naive cannot
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Figure 4.2: Limitation of discovering second hop neighbors using Approach 1 - Naive.

discover all observable second hop neighbors.

Furthermore, Approach 1 - Naive has deployability limitations. For most cases,

this approach poisons hundreds of ASes, which is not possible due to the limitation in

the length of AS path in a BGP announcement. BGP announcements with long AS path

are filtered by BGP routers.

4.2.2 Depth-First Poisoning Approach (Approach 2 - Depth-First)

We devised an algorithm to overcome the discovery limitation of Approach 1 -

Naive and maximize the number of observed second hop neighbors of an AS (Algorithm

3). The main concept of this approach is to focus on each first hop of an origin AS in

turn and the second hops that are connected to that first hop. For each first hop, poison

all other first hops, then poison all the observed second hop neighbors until no monitors

see any route to the origin AS. This approach solves the problem illustrated in Figure 4.2:

in the example, AS B is poisoned first and no second hops are discovered. Then, AS A
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Algorithm 3: Discovering second hop neighbors of an AS by poisoning first
hops first.

Data: Victim AS V , Prefix P (announced by V ), a set F (first of neighbors of
V ), a set Sobserved (observed second hop neighbors of V ), a set of
monitor ASes M

1 for each AS X in F do
2 Let S′ is a new set
3 Let F ′ = F - AS X
4 Announce AS path [V F ′ V ] to poison all first hop ASes except AS X
5 while Any M has path to P do
6 foreach monitor in M do
7 for AS path to P do
8 Add second hop neighbors of V to S′

9 end
10 end
11 Announce AS path [V F ′ S′ V ] to poison ASes in S′

12 end
13 Sobserved = Sobserved ∪S′

14 end
15 return Sobserved

is poisoned and we discover that AS X , AS Y , and AS Z are the second hop neighbors

of AS V ; thereby, overcoming the limitation of Approach 1 - Naive. We refer to this

approach as depth-first poisoning approach or Approach 2 - Depth-First.

However, there are still some AS topologies where we cannot find all observable

second hop neighbors using this approach. Let us consider Figure 4.3. Assume that AS

S is observable. Then AS X is also observable as it exports routes to its provider AS S.

However, from the monitor AS M, we do not see a path from AS S to AS V through AS

X because [S N V ] has a shorter path than [S X N V ]. After we poison AS S according to

the algorithm, we do not see any paths toward AS V (right graph in Figure 4.3) because

there are no alternative routes from the monitor to AS V while avoiding the poisoned

AS S. Thus, we cannot actually observe AS X , even though it is an observable second

hop neighbor of AS V . Therefore, Approach 2 - Depth-First (Algorithm 3) allows us to

discover a larger set of observed second hop neighbors of a prefix owner AS, but still
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Figure 4.3: Limitation of discovering second hop neighbors using Approach 2 - Depth-
First.

still fails to discover all observable second hop neighbors.

Furthermore, similar to Approach 1 - Naive, Approach 2 - Depth-First also has

deployability limitations as this approach often poisons hundreds of ASes.

4.2.3 Poison First Hops Only Approach (Approach 3 - First Hops

Only)

To overcome the practical limitations of Approach 1 - Naive and Approach 2 -

Depth-First, we introduce Approach 3 - First Hops Only (Algorithm 4). This approach

poisons all first hop neighbors of an AS excluding one, in turn, and discovers the second

hop neighbors from the AS paths provided by the monitors. The number of ASes to poison

reduces drastically, as this approach only poisons first hop neighbors. As a consequence,

however, we cannot observe some hidden second hop neighbors. This approach is very

similar to Approach 2 - Depth-First, but compromises discovery coverage of second hop
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Algorithm 4: Discovering second hop neighbors of an AS by poisoning first
hops only.

Data: Victim AS V , Prefix P (announced by V ), a set F (first of neighbors of
V ), a set Sobserved (observed second hop neighbors of V ), a set of
monitor ASes M

1 foreach AS X in F do
2 S′ = new set
3 F ′ = F - AS X
4 Announce AS path [V F ′ V ] to poison all first hop ASes except AS X
5 while Any M has path to P do
6 foreach monitor in M do
7 for AS path to P do
8 Add second hop neighbors of V to S′

9 end
10 end
11 end
12 Sobserved = Sobserved ∪S′

13 end
14 return Sobserved

neighbors for deployability.

To show the deployability of this approach, we first collected 1 month period

of AS path data, in April 2017, from all Route Views and RIPE RIS monitors using

BGPStream. We collected a full RIB in the beginning of April 2017 and all BGP updates

for the month from all monitors; therefore, this data may include transient paths. Then,

we extracted the number of first hop neighbors seen by the monitors for all 56,800 origin

ASes, which is one more than the number of ASes that we need to poison for each AS in

order to discover second hop neighbors using Approach 3 - First Hops Only. In Figure

4.4, we show the CDF of the number of ASes we need to poison using this approach for

all origin ASes. Assuming we set the upper bound for both the length of AS path and the

size of AS set as 6 (Section 2.2), we can poison up to 24 ASes in the real world Internet.

We see that we need to poison ≤ 24 ASes for 95% of the origin ASes. Therefore, we can

use this approach for 95% of the origin ASes.
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Figure 4.4: CDF of number of ASes the owner AS must poison in order to perform
Approach 3 - First Hops Only and discover second hop neighbors for all origin ASes.
Red vertical line represents the 90th percentile.
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4.2.4 Poison by Divide and Conquer Approach (Approach 4 - Di-

vide and Conquer)

Algorithm 5: Discovering second hop neighbors of an AS by poisoning by
divide and conquer.

Data: Victim AS V , Prefix P (announced by V ), a set F (first of neighbors of
V ), a set Sobserved (observed second hop neighbors of V ), a set of
monitor ASes M

1 foreach monitor m in M do
2 for each AS X in F do
3 Let S′ is a new set
4 Let F ′ = F - AS X
5 Announce AS path [V F ′ V ] to poison all first hop ASes except AS X
6 while m has path to P do
7 for AS path to P from m do
8 Add second hop neighbors of V to S′

9 end
10 Announce AS path [V F ′ S′ V ] to poison ASes in S′

11 end
12 Sobserved = Sobserved ∪S′

13 end
14 end
15 return Sobserved

We introduce poisoning by divide and conquer approach or Approach 4 - Divide

and Conquer, which is deployable and has large second hop neighbor discovery coverage.

In Approach 2 - Depth-First, we poison second hop neighbors observed by all monitors;

thereby, poisoning hundreds of ASes in a BGP announcement. However, we can reduce

the number of ASes to poison in an announcement by leveraging the fact that the number

of second hop neighbors that each monitor discovers is small. Thus, in this approach,

we focus on each monitor in turn, and perform Approach 2 - Depth-First using AS paths

seen only by that monitor. Then, the longest announcement is calculated as follows:

Npoison = (N f irsthop−1)+Nsecondhop max, (4.1)
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Figure 4.5: CDF of number of ASes the owner AS must poison in order to perform
Approach 4 - Divide and Conquer and discover second hop neighbors for all origin
ASes. Green, blue, and red vertical line represents the 70th, 80th, and 90th percentiles,
respectively.

where Npoison is the number of ASes to poison using this approach, N f irsthop is the

number of first hop neighbors, and Nsecondhop max is the maximum number of second hop

neighbors that a monitor can discover among all monitors. This dramatically reduces

the number of ASes to poison, while still maintaining the large coverage in discovering

second hop neighbors.

Based on the routing policy and placement of monitors, each monitor can only

observe a small number of observable second hop neighbors. We show this using the

real world data that we collected in Section 4.2.3. From the data, we use all AS paths

seen by the monitors for all 56,800 origin ASes. We also extract the number of first hop
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neighbors for all origin ASes from the data. We can identify which second hop neighbors

a monitor can observe using AS relationships. To infer AS relationships, we use CAIDA

AS relationship data for April 2017. For a specific monitor, we check all observed AS

paths. In each AS path, if the second hop neighbor is a provider of the first hop neighbor,

we consider it as observable from the monitor because it will export routes to all its

neighbors. If the second hop neighbor is a peer or customer of the first hop neighbor,

we consider this second hop neighbor as observable if and only if the monitor is in the

customer cone of the second hop neighbor. We repeat this process for all monitors and

found that each monitor only observes a small number of second hop neighbors. With

this result and the number of first hop neighbors, we calculate the required number of

ASes to poison to perform Approach 4 - Divide and Conquer using Equation 4.1. Figure

4.5 shows the CDF of the required number of ASes to poison to use Approach 4 - Divide

and Conquer for all origin ASes. We see that for 90% of the origin ASes, we need to

poison 24 ASes, which is the maximum number of ASes we can poison in the Internet

(Section 2.2), to discover second hop neighbors using this approach. Therefore, this

approach is deployable for 90% of the ASes.



Chapter 5

Simulation Experiments to Discover

Second Hop Neighbors

In this chapter, we evaluate the discovery coverage of different second hop

neighbor discovery algorithms through simulation experiments: Approach 1 - Naive,

Approach 2 - Depth-First, Approach 3 - First Hops Only, and Approach 4 - Divide and

Conquer. We evaluate each approach by calculating the similarity of sets of observable

and observed second hop neighbors for 56,800 origin ASes. To calculate the similarity

of the two sets we use Jaccard’s similarity measure:

J(Sobservable,Sobserved) =
|Sobservable|∩ |Sobserved|
|Sobservable|∪ |Sobserved|

, (5.1)

where Sobservable is a set of observable second hop neighbors and Sobserved is a set of

observed second hop neighbors.

For all simulation experiments, we use 2017-04-01 CAIDA AS relationship data

(Section 3.1), and 258 different ASes where Route Views [oO17] and RIPE RIS [NCC17]

monitors (Section 3.3) are located.

To identify observable second hop neighbors, we use the Data Concierge (Section

30
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3.2) to find AS relationship inferences between ASes and the customer cones of ASes.

For all 56,800 origin ASes, we run Algorithm 1 and identify observable second hop

neighbors.

To discover observed second hop neighbors, we use the BGP simulator (Section

3.5) to simulate prefix announcements and BGP poisoning. For all 56,800 ASes, we run

our second hop neighbor discovery algorithms to extract observed second hop neighbors,

and calculate the similarity with observable second hop neighbors using Equation 5.1.

For all simulations, we found that Sobserved ⊂ Sobservable for all origin ASes. Thus,

the similarity between Sobserved and Sobservable can be interpreted as the percentage of

Sobservable actually discovered in simulations.

5.1 Naive Poisoning Approach (Approach 1 - Naive)

Figure 5.1(a) shows the CDF graph of similarity between observable and observed

second hop neighbors for all origin ASes using Approach 1 - Naive. The result is

disappointing. For only 37% of the origin ASes, this approach found over 80% of the

observable second hop neighbors, respectively. This is largely due to the limitation of

this approach mentioned in Section 4.2.1.

5.2 Depth-First Poisoning Approach (Approach 2 - Depth-

First)

Figure 5.1(b) shows the CDF graph of similarity between observable and observed

second hop neighbors for all origin ASes using Approach 2 - Depth-First. The result of

this approach shows that in 85% of the origin ASes, it found over 80% of the observable

second hop neighbors, respectively. This approach shows a great improvement from
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(a)

(b)

(c)

Figure 5.1: CDF of similarity (%) of observable second hop neighbors and observed
second hop neighbors discovered using (a) Approach 1 - Naive, (b) Approach 2 -
Depth-First, and (c) Approach 3 - First Hops Only.
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Approach 1 - Naive in discovering second hop neighbors. However, this approach still

does not discover a complete set of observable second hop neighbors due to the limitation

mentioned in Section 4.2.2.

5.3 Poison First Hops Only Approach (Approach 3 - First

Hops Only)

We also simulate Approach 3 - First Hops Only. Since this approach compromises

discovery coverage of second hop neighbors for deployability, we cannot discover as

many second hop neighbors as Approach 2 - Depth-First using this approach. However,

Figure 5.1(c) shows that this approach is still quite effective. For 65% of the origin ASes,

it discovered over and 80% of observable second hop neighbors, respectively, which is a

great improvement from Approach 1 - Naive.

5.4 Poison by Divide and Conquer Approach (Approach

4 - Divide and Conquer)

The result of the final approach, Approach 4 - Divide and Conquer, is identical to

the result of Approach 2 - Depth-First (Figure 5.1(b)). Thus, this approach also has large

second hop neighbor discovery coverage. However, unlike Approach 2 - Depth-First,

this approach is also deployable because it does not require sending BGP announcements

with long AS path.
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Table 5.1: Summary of simulation experiments. Coverage represents percentage of
observable second hop neighbors discovered. Each data cell represents that n% of
56,800 origin ASes discovered over 80% (Column 2) and 90% (Column 3) of its
observable second hop neighbors.

≥ 80% Coverage ≥ 90% Coverage
Approach 1 - Naive 37% 20%
Approach 2 - Depth-First 85% 67%
Approach 3 - First Hops Only 65% 50%
Approach 4 - Divide and Conquer 85% 67%

5.5 Summary of Simulation Experiments

Table 5.1 summarizes the evaluation of the simulation experiment. We evaluate

the discovery coverage of observable second hop neighbors for 56,800 origin ASes.

As shown in Table 5.1, Approach 1 - Naive discovers the fewest observable second

hop neighbors, with only 20% and 37% of 56,800 origin ASes discovering over 90%

and 80% of the observable second hop neighbors, respectively. Approach 3 - First

Hops Only discovers more second hop neighbors than Approach 1 - Naive, with 65%

of the origin ASes discovering over 80% of the observable second hop neighbors. Both

Approach 2 - Depth-First and Approach 4 - Divide and Conquer have the largest discovery

coverage, with 85% of the origin ASes showing over 80% similarity between observed

and observable second hop neighbors. Moreover, Approach 4 - Divide and Conquer is

deployable in the real world Internet (Section 4.2.4). Therefore, Approach 4 - Divide and

Conquer is our best approach.



Chapter 6

Discussion

In this chapter, we discuss benefits and limitations of our approach for discovering

second hop neighbors in BGP. Also, we discuss future work.

6.1 Benefits

We presented and evaluated various approaches to discovering second hop neigh-

bors of an AS in BGP. We found that Approach 4 - Divide and Conquer discovers large

sets of second hop neighbors for most origin ASes, and is also practical for use in the

real world Internet. This approach offers two benefits in detecting BGP hijacking attacks:

(i) the prefix owner can detect the attack by oneself, and (ii) in a timely manner.

Most impactful BGP hijacking attacks are Type-0, Type-1, and Type-2 [SKG+].

For Type-0 and Type-1 hijacking, the prefix owner can self-detect the attack. To detect

Type-0 hijacking, the owner simply checks ASes that are authorized to originate its

prefixes. To detect Type-1 hijacking, the owner simply checks if an AS that is one hop

away from the origin AS in an AS path is one of its first hop neighbors. If not, then the

owner can safely assume a Type-1 hijacking attack. However, unlike first hop neighbors,

the owner lacks information about its own observable second hop neighbors. Using our
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approach, the owner can discover a set of its second hop neighbors, and use this set as a

baseline to detect suspicious events that are potentially Type-2 hijacks. If AS S, that is

two hops away from origin AS in an AS paths, is not in the set of second hop neighbors,

then a potential Type-2 hijacking event is detected.

6.2 Limitations and Future Work

Although discovering second hop neighbors of an AS reaps great benefits, our

approach has some limitations.

First, we need to send a large number of BGP announcements to discover second

hop neighbors using Approach 4 - Divide and Conquer. The upper bound of the number

of BGP announcements using this approach is:

Nannouncement = Nmonitors×Npoison, (6.1)

where Nannouncement is the number of BGP announcements, Nmonitors is the number of

monitor ASes, and Npoison is maximum number of ASes to poison for each monitors. If

Nmonitors = 250 and Npoison = 20, then we need to send 5,000 announcements. Assuming

that it takes 5 minutes for a BGP announcement to converge, this would take 17 days to

discover second hop neighbors in the worst case.

Another limitation of our approach is that we cannot find all the observable

second hop neighbors for some origin ASes. Currently, for 20% of the 56,800 origin

ASes, we discover fewer than 80% of the observable second hop neighbors. Without

exhaustive discovery of observable second hop neighbors for all origin ASes, we may

detect many legitimate announcements as suspicious events. By improving second hop

neighbor discovery coverage, we can increase the the number of correct classification of

legitimate announcements, resulting in a lower false-positive rate.
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We also need to standardize the upper bounds for length of an AS path and

size of an AS set in a BGP announcement. Currently, network operators have different

thresholds to filter out BGP messages with long AS paths or large AS sets in the path.

Thus, we cannot calculate a precise number of ASes we can poison using BGP poisoning

in the Internet. Standardizing the upper bounds would greatly benefit in evaluating our

approaches as well as in practical use of BGP poisoning to detect BGP hijacks in the real

world Internet.

Lastly, Approach 4 - Divide and Conquer needs rigorous evaluation in the real

Internet routing before deployment. The routing policy in the Internet is much more

complex than the Gao-Rexford model [GR01] that we use in the simulator. Thus, we

must test and evaluate this approach rigorously in the Internet. Since there are limitations

in announcing AS sets on the PEERING testbed using BIRD [BIR17] and ExaBGP

[EN17], we can use a Quagga software router [Qua17] to evaluate this approach. This

would allow us to perform emulation experiment of Approach 4 - Divide and Conquer

and evaluate it in the real world Internet.
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Conclusion

This thesis investigates an approach for discovering second hop neighbors of an

AS in BGP. To discover a complete set of observable second hop neighbors – including

ASes connected through active paths, back-up paths, and alternative paths – we use a

BGP poisoning technique. We devise a series of approaches to discover second hop

neighbors using BGP poisoning and evaluate each approach using two criteria: (i)

discovery coverage, percentage of second hop neighbors discovered, and (ii) deployment

feasibility, necessary length of the AS path in a BGP announcement. We found that

our Approach 4 - Divide and Conquer is deployable and has large second hop neighbor

discovery coverage; therefore, it is the most suitable approach for discovering second

hop neighbors of an AS.

We evaluated our approaches in discovering second hop neighbors by calculating

the similarity of observable and observed second hop neighbors for 56,800 origin ASes.

Approach 1 - Naive discovers the fewest of the observable second hop neighbors, with

only 35% of the origin ASes discovering more than 80% of the observable second hop

neighbors. Approach 2 - First Hops First and Approach 4 - Divide and Conquer have

large discovery coverage, with 85% of the origin ASes discovering more than 80% of the
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observable second hop neighbors.

We also evaluated the deployability of each approach in terms of the necessary

length of the AS path in a BGP announcement to discover second hop neighbors. We

found that Approach 3 - First Hops Only and Approach 4 - Divide and Conquer need AS

path length ≤ 6 for over 95% and 90% of the 56,800 origin ASes, respectively. Approach

1 - Naive and Approach 2 - First Hops First are not deployable as they need AS path

length > 6 to poison hundreds of ASes for most of the origin ASes.

Finally, we built the foundations for a new approach to BGP hijacking detection.

A prefix owner can easily detect BGP hijacking attacks against its own prefixes using the

set of observable second hop neighbors discovered by our approach. The accuracy of

hijacking detection will increase as we improve the discovery coverage of our approach.
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