UCLA
UCLA Previously Published Works

Title
Kronos: a workflow assembler for genome analytics and informatics

Permalink
bttgs:ééescholarshiQ.orgéucéitem46866g05;|
Journal

GigaScience, 6(7)

ISSN
2047-217X

Authors
Taghiyar, M Jafar
Rosner, Jamie
Grewal, Diljot

Publication Date
2017-07-01

DOI
10.1093/gigascience/gix042

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at bttgs://creativecommons.orq/licenses/bv/4.0,|

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/6866g0s1
https://escholarship.org/uc/item/6866g0s1#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

GigaScience, 6, 2017, 1-10

n
OXFORD (Glgé[)ElN {i\ E Q:;]:;Z; Access Publication Date: 26 June 2017

RESEARCH

M. Jafar Taghiyar!?, Jamie Rosner?, Diljot Grewall?, Bruno M. Grande?,
Radhouane Aniba’?, Jasleen Grewal3, Paul C. Boutros*>, Ryan D. Morin3,
Ali Bashashati»>* and Sohrab P. Shah’%*

1Department of Molecular Oncology, British Columbia Cancer Agency, 675 West 10th Ave, V5Z 1L3 Vancouver,
BC, Canada, 2Department of Pathology and Laboratory Medicine, University of British Columbia, 2211
Wesbrook Mall, V6T 2B5 Vancouver, BC, Canada, 3Department of Molecular Biology and Biochemistry, Simon
Fraser University, 8888 University Drive, V5A 1S6 Burnaby, BC, Canada, *Ontario Institute for Cancer Research
(OICR), 661 University Avenue, M5G 0A3 Toronto, ON, Canada and *Department of Medical Biophysics,
University of Toronto, 101 College Street, M5G 1L7 Toronto, ON, Canada

*Correspondence address. Ali Bashashati, Department of Molecular Oncology, British Columbia Cancer Agency, 675 West 10th Ave, V5Z 1L3 Vancouver,
BC, Canada; E-mail: abashash@bccre.ca; Sohrab P. Shah, Department of Molecular Oncology, British Columbia Cancer Agency, 675 West 10th Ave, V5Z 1L3
Vancouver, BC, Canada; E-mail: sshah@bccrc.ca

Background: The field of next-generation sequencing informatics has matured to a point where algorithmic advances in
sequence alignment and individual feature detection methods have stabilized. Practical and robust implementation of
complex analytical workflows (where such tools are structured into “best practices” for automated analysis of
next-generation sequencing datasets) still requires significant programming investment and expertise. Results: We present
Kronos, a software platform for facilitating the development and execution of modular, auditable, and distributable
bioinformatics workflows. Kronos obviates the need for explicit coding of workflows by compiling a text configuration file
into executable Python applications. Making analysis modules would still require programming. The framework of each
workflow includes a run manager to execute the encoded workflows locally (or on a cluster or cloud), parallelize tasks, and
log all runtime events. The resulting workflows are highly modular and configurable by construction, facilitating flexible
and extensible meta-applications that can be modified easily through configuration file editing. The workflows are fully
encoded for ease of distribution and can be instantiated on external systems, a step toward reproducible research and
comparative analyses. We introduce a framework for building Kronos components that function as shareable, modular
nodes in Kronos workflows. Conclusions: The Kronos platform provides a standard framework for developers to implement
custom tools, reuse existing tools, and contribute to the community at large. Kronos is shipped with both Docker and
Amazon Web Services Machine Images. It is free, open source, and available through the Python Package Index and at
https://github.com/jtaghiyar/kronos.

Keywords: genomics; workflow; pipeline; reproducibility

Received: 7 March 2017; Revised: 6 June 2017; Accepted: 7 June 2017

© The Author 2017. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http:/creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

http://www.oxfordjournals.org
mailto:abashash@bccrc.ca
mailto:sshah@bccrc.ca
https://github.com/jtaghiyar/kronos
http://creativecommons.org/licenses/by/4.0/

The emergence of next-generation sequencing (NGS) technology
has created unprecedented opportunities to identify and study
the impact of genomic aberrations on genome-wide scales. Data
generation technology for NGS is stabilizing, and exponential
declines in cost have made sequencing accessible to most re-
search and clinical groups. Alongside progress in data genera-
tion capacity, a myriad of analytical approaches and software
tools have been developed to identify and interpret relevant
biological features. These include computational methods for
raw data preprocessing, sequence alignment and assembly, vari-
ant identification, and variant annotation. However, major chal-
lenges are induced by rapid development and improvement of
analytical methods. This makes construction of analytical work-
flows a near dynamic process, creating a roadblock to seamless
implementation of linked processes that navigate from raw in-
put to annotated variants.

As a consequence, robust analysis and continuous iterative
improvements in the analysis of large sets of sequencing data
remain labor intensive and costly and require considerable an-
alytical expertise. As best practices (e.g., [1]) remain a moving
target, software systems that can rapidly adapt to new (and op-
timal) solutions for domain-specific problems are necessary to
facilitate high-throughput comparisons.

Several tools and frameworks for NGS data analysis and
workflow management have been developed to address these
needs. Galaxy [2] is an open, web-based platform to perform, re-
produce, and share analyses. Using the Galaxy user interface,
users can build analysis workflows from a collection of tools
available through the Galaxy Tool Shed [3]. The Taverna suite
[4] allows the execution of workflows that typically mix web ser-
vices and local tools. Tight integration with myExperiment [5]
gives Taverna access to a network of shared workflows, includ-
ing NGS data processing.

Although the current workflow management systems such
as Galaxy are great for routine bioinformatics tasks, the develop-
ment of customized tools and workflows is not convenient, and
experienced bioinformaticians commonly work at a lower pro-
gramming level and write their own workflows in scripting lan-
guages such as Bash, Perl, or Python [6]. A number of lightweight
workflow management tools have been specifically developed
to simplify scripting for these target users, including Ruffus [7],
Bpipe [8], and Snakemake [9]. Common Workflow Language [10]
is another similar tool that has roots in GNU make and aims
to build portable workflows across a variety of platforms by us-
ing a set of standard specification to define wrappers around
command line tools as well as creating nested workflows. While
these workflow management tools reduce development over-
head, users still need to write a substantial amount of routine
code to create their own workflows, maintain the existing ones,
replace subsets of workflows with new ones, and run subsets of
existing workflows.

To further facilitate the process of creating workflows,
Omics-Pipe proposed a framework to automate best practice
multi-omics data analysis workflows based on Ruffus [11]. It
offers several preexisting workflows and reduces the develop-
ment overhead for tracking the run of each workflow and logging
the progress of each analysis step. However, it remains cum-
bersome to create a custom workflow with Omics-Pipe as users
need to manually write a Python script for the new workflow by
copy/pasting a specific header to the script and writing the anal-
ysis functions using Ruffus decorators. The same applies when
adding or removing an analysis step to an existing workflow.

We introduce a highly flexible open source Python-based
software tool (Kronos) that enables bioinformatics developers,
i.e., bioinformaticians who develop workflows for analyzing ge-
nomic data, to quickly create a workflow. It uses Ruffus [7] as
the underlying workflow management system and adds a level
of abstraction on top of it, which significantly reduces program-
ming overhead for workflow development and provides a mech-
anism to represent a workflow by a top-level YAML configuration
file.

Kronos is shipped with Docker and Amazon Machine Images
to further facilitate its use locally on high performance com-
puting clusters and in the cloud infrastructures. A number of
workflows for the analysis of single human genomes and cancer
tumour-normal pairs following best analysis practices accom-
pany Kronos and are freely available.

Kronos creates modular workflows that can be easily updated
by editing their corresponding configuration file. Each module in
the workflow corresponds to a component, which is a wrapped
command line tool (i.e., described in more detail later). As shown
in Fig. 1, users can create a workflow from a set of existing com-
ponents by following the 3 steps listed below (referred to as Steps
1,2, and 3 in the remainder of this paper). Section 2 of Additional
file 1 provides an example of how to make a variant calling work-
flow.

* Step 1. Given a set of existing components, create a con-
figuration file template by running the following Kronos
command:

kronos make'config
[list of components] -o <output_-name>

where [list of components] refers to the component names
that we aim at using in our workflow.

® Step 2. In the configuration file template, specify the order
by which the components in the workflow should be run.
This does not require programming skills and is merely text-
based.

¢ Step 3. Create the workflow by running the following Kronos
command with the configuration file as its input:

kronos init -y <config_file.yaml>
-0 <workflow_name>

The output is an executable Python script that runs the
workflow. Depending on its corresponding configuration file, the
script is encoded to automatically parallelize eligible tasks, pro-
vide pause/resume functionality, make unique run IDs, make
the desired output directory tree, submit jobs to cluster or run
them locally, and log the events.

A component is a wrapper around a command line tool that
encapsulates all the required programming. The purpose of
components is to modularize workflows with reusable building
blocks that require minimal development. As shown in Section
1 of Additional file 1, the number of lines of codes for mak-
ing a new component is very small. The simple development
instructions eliminate, e.g., the need to use Ruffus decorators,

Kronos
g (A)
Q ; 2
5 Gi list of
= iven a list of components, -
5__’ create a configuration file template: -y
5 kronos make config m -
= comp_1 comp_2 ... comp_5 - W
= -0 my config W
()]
=3
¢ [T
(3]
g J
[}
=
i - \(B)
2 conflgura_tlon file
é a. Specify system requirements: (my_config.yaml)
g system-specific —=—===—=—=-=} »| GENERAL_:
g b. Specify connections and dependencies: __PIPELINE_INFO__:
v workflow-specific ———————-———-- » __TASK_1_:
S e _TASK_2_:
< c. Specify input data a}nd arguments: “SHARED_
O wser-specific. ——— > SAMPLES -
(C)
Transform the customized
configuration file into a workflow: workflow Python script
(my_workflow.py)
. kronos init —y my config. yaml
o —e my_workflow
<
S -
: G
()
7=
Q The final result is a Python script:
= - & -
2 my workflow. py W W
= II
G

Figure 1: Make a workflow. Making a new workflow with Kronos includes 3 steps: (A) make a configuration file template: given a set of existing components, users
can generate this file by running the command make_config; (B) configure the workflow: users can specify the desirable flow of their workflow using the connections
and dependencies, customize output directory names, and specify input arguments and data to the required fields in the configuration file template; (C) initialize the
workflow: this is achieved by running the command init on the configuration file, which transforms the YAML file into the Python workflow script.

4 | Taghiyaretal

Make a new component

component_seed directory

component_test directory

Figure 2: Make a component. Making a new component for Kronos includes the following steps: (A1) make a new component template by running the command
make_component; (B2) fill in the resulting template accordingly; (C3) copy or link the source code of the seed used in the component; (D4) optionally create README.md and
tests for the component.

input/output management using regex expressions, and com-
plicated dependency management in the code that can easily
become very complex with the number of tasks in a workflow.
Furthermore, a large workflow can be divided into a set of small
components that results in a much faster and more manage-
able workflow development. Kronos also provides a command
for making component templates that helps develop a new com-
ponent in a few minutes.

All command line tools, such as a simple copy command
or a complicated single nucleotide variant (SNV) caller, can be
wrapped as Kronos components. Regardless of how complicated
they are, their corresponding components have a standard di-
rectory structure composed of specific wrappers and subdirec-
tories. The wrappers are also independent of the programming
language used for developing the command line tool.

The components should be developed prior to making the
workflow. However, since they are individually and indepen-
dently developed and due to their reusability, the initial prepara-
tion of a component happens only once, and various workflows
can use the already developed component.

Kronos workflows are represented by a YAML configuration file.
For a given set of components, the Kronos make_config com-
mand generates a configuration file template that is mostly pre-
filled with default values. For each input component, there is
a corresponding section with a unique name in the configura-
tion file called task. Users should use these sections to spec-
ify the order by which each task in the workflow should be run
(Step 2 of creating a workflow). This can be done by a simple
convention called I0-connection. An IO-connection is basically
a pair of values comprising a task name and 1 of its parame-
ters. It determines which task should be followed by the cur-
rent task and is specified as an argument to 1 of the parame-
ters of the current task. For example, in the following configu-
ration file, (’ _TASK_1_’, ’out_file’) is an IO-connection that
makes _TASK_2_ follow _TASK_1_, i.e., the input to the parame-
ter in_file of _TASK_-2_ comes from the parameter out_file of
_TASK_1_.

_TASK_1_:

out_file: 'foo.txt’

TASK 2:

in_file: (_TASK.1_, out_file’)

The run options for each task are also set in the configuration
file, including granular resource requests such as free memory
or the number of CPUs, running locally or on cluster, running
with parallelization, pause/resume functionality, etc.

A configuration file has the following blocks (see Additional
file 1: Fig. S1):

* system-specific, which captures the system-dependant re-
quirements of the workflow (such as the paths to the local
installations) and includes the GENERAL and PIPELINE_INFO
sections;

* user-specific, which contains the input files and arguments
and includes the SHARED and SAMPLES sections

¢ workflow-specific, which defines the connection between the
components in the workflow. Task sections related to each
component are in this group.

This design has the following advantages: (i) if users want
to rerun the same workflow for various sets of input files and

arguments, they would only need to update the user-specific
sections. This prevents inadvertent changes in the flow of the
workflow when changing the inputs; and (ii) the segregation of
system-specific information from the rest of the sections en-
ables users to run a workflow practically anywhere. In other
words, by simply updating the system-specific sections with
proper values, the requirements of the workflow can be observed
on any machine.

Each workflow made by Kronos is a directed acyclic graph (DAG)
of components where every node in the graph corresponds to a
task section in the configuration file. Task sections can indepen-
dently be added, removed, or replaced in the configuration file
(Fig. 3). Therefore, to add, remove, or replace a component in the
workflow or equivalently a node in the DAG, users simply need to
change the corresponding task section in the configuration file
and run the command in Step 3. As a result, the workflows are
highly modular and maintaining them is as easy as updating the
configuration file without having to rewrite the workflow. Finally,
a workflow can be run by simply running the Python workflow
script using the command line as depicted in Fig. 4.

Full details of how to use each of the following features can be
found in the software documentation.

Parameter sweeping

It is sometimes desired to run a particular tool or algorithm with
various sets of parameters in order to select the parameter set
with superior performance for a given problem. For example, a
user may want to find the proper model parameters (such as
mapping quality and base quality thresholds) for a variant call-
ing tool to accurately detect single nucleotide variants. Kronos
provides a mechanism for this purpose where users can spec-
ify all different sets of input arguments (or parameters) in the
SAMPLES section of the configuration file. In this case, running
Step 3 creates a number of intermediate workflows, each for 1
set of input arguments, along with the main workflow. When
running the main workflow, Kronos runs the intermediate work-
flows in parallel, each on one set of the input arguments. We
have provided a variant calling workflow with parameter sweep-
ing functionality in Section 3 of Additional file 1 to demonstrate
this feature.

Tool comparison

In bioinformatics, it is often required to compare the perfor-
mance of 2 or more algorithms or compare a new analysis tool
to the existing ones to select the 1 that best fits the particular
goals of a project. For example, it is often helpful to evaluate
the performance of different variant calling algorithms [12]. The
modularity of the workflows generated by Kronos facilitates the
comparison of different algorithms and tools. For this purpose,
as shown in Fig. 3, the user can simply replace a task section
corresponding to an analysis tool with another task section cor-
responding to another similar tool and run Step 3.

Automatic parallelization and merge

Most of the recent tools developed in the bioinformatics field
are parallelizable or have the potential to run in parallel. How-
ever, the majority of these tools are shipped without the built-
in functionality and require the users to manually break the

6 | Taghiyar etal.

Configuration file 1

name:
version:
author:

reserved:
run:
component:

————

reserved:
run:
component:

__TASK 3__

reserved:
run:
component:

_TASK 4__

reserved:
run:
component:

selected section ——
common sections
TASK sections

name:
version:
author:

reserved:
run:
component:

[————

reserved:
run:
component:

_TASK 3__

reserved:
run:
component:

__TASK_4__

reserved:
run:
component:

Figure 3: Replace a component in a workflow. The configuration file has different sections as shown in the figure. These sections are: GENERAL, PIPELINE_INFO, SHARED,
SAMPLES, and TASKs. The modular organization of the configuration file allows for easy customization of workflows, which can serve different purposes such as tool
comparison. Adding, removing, or replacing nodes in the DAG of the workflows can be easily done by adding, removing, or replacing the corresponding TASK sections
in the configuration file. For instance, to go from workflow DAG1 to workflow DAG2, i.e., to replace comp-1 (e.g., variant caller 1) in the first workflow with comp.5 (e.g.,
variant caller 2) in the second, the user only needs to replace the TASK-1 section with the TASK-5 section in the configuration file and perform Step 3.

analysis into smaller analyses. For example, many variant call-
ing algorithms are capable of running on user-specified coordi-
nates of the genome but are not shipped with parallelization
functionality. However, a user can analyze whole genome se-
quencing data chunk by chunk in parallel with the caveat of
manually scripting the parallelization steps. Due to the cumber-
some nature of manual parallelization, many users might avoid
running the tools in parallel, which considerably increases the
runtime of the analysis. To resolve this issue, Kronos automati-
cally parallelizes tasks in the workflow if feasible. Then, it aggre-
gates the outputs of all child tasks and merges them if necessary.

Reproducible workflows
The configuration file and components of a workflow are
portable.

Therefore, users can readily duplicate a workflow elsewhere
by only running the kronos init command in Step 3. To show
this functionality, we have included an example of a workflow
that performs somatic variant calling on whole genome data of a
breast cancer case using the Strelka algorithm [13] and generates
a number of plots based on Strelka calls (Fig. 5). Detailed step-
by-step instructions to reproduce this figure are in Section 3 of
Additional file 1. It should be noted that Kronos workflows can

Results directory structure

python my workflow. py [options]
:f Computing nodes :
| I
| |
| |
| |
|
i 1 I >
| L; :
| : |
| |
i Cluster —— i
| |
| |
| |
| |
| |
| l
| |
| Local :
| |
i A, T I
|
.-] L

<working_dir>
L—— <run_ID>

—— <my_workflow>_<run_ID>.log

—— <sample_ID_1>_<my_workflow>
| F——logs

—— outputs

| F—— <custom_dir_1>

| F—— <custom_dir_2>

| | L—— <custom_subdir_a>

| | “—— <custom_subdir_b>
| ——results

—— scripts

L—— sentinels

—— <sample_ID_2>_<my_workflow>
——logs

—— outputs

| F—— <custom_dir_1>

| F—— <custom_dir_2>

| | L—— <custom_subdir_a>
| | L—— <custom_subdir_b>
| L——results

—— scripts

L—— sentinels

|
|
I
I
1
|
l

L—— <my_workflow>_<run_ID>.yaml|

Figure 4: Run a workflow. Workflows generated by Kronos are ready to run locally on a cluster of computing nodes and in the cloud. To run a workflow, users only
need to run the Python workflow script. Each run of a workflow generates a specific directory structure tagged with a run-ID. When running a workflow for multiple
samples, a separate directory is made for each sample to make it convenient to locate the results corresponding to each sample. This figure shows the tree structure
of the resulting directory. There are 4 subdirectories that are always generated for each sample: (Ai) logs: to store the log files; (Bii) outputs: to store all the output
files generated by all the components in the workflow; (iii) scripts: to store the scripts automatically generated by Kronos to run each component in the workflow; (iv)
sentinels: to store sentinel files used by Kronos to pick up the workflow from where it left off in a previous run.

be duplicated elsewhere but the user would still need to manage
tool installations and dependencies.

Cloud support

The massive scale of genomic data justifies a move to the cloud
for storage and analyses in order to minimize cost and handle
the ebb and flow of computational demands. Kronos’ flexibil-
ity addresses the emerging need for rapid deployment of anal-
ysis workflows in the cloud. Several command line tools ex-
ist for managing fleets of compute nodes on cloud platforms
such as Amazon Web Services, including StarCluster, CfnClus-
ter, and Elasticluster. A guide on the creation and management
of a cloud cluster using StarCluster software and deployment of
Kronos is provided in the online documentation, and an Amazon
Machine Image is provided for convenience.

Controlled pause/resume by breakpoints

When running a workflow, certain blocks of the workflow may
need to run multiple times, e.g., to tune a particular parameter of
a component or to inspect the results of the previous tasks in the
workflow before the next tasks are triggered. Analogous to the

debuggers, Kronos provides users with breakpoints to perform a
controlled pause/resume action.

In addition, with the breakpoint mechanism, users can break
the flow of a workflow into several subworkflows and run each
part on a different machine or cluster. In other words, once a
breakpoint happens, i.e., 1 subworkflow is complete, the main
workflow can be transferred to a different machine and it will
pick up running from where it left off on the previous machine,
provided that all the intermediate files are present. For exam-
ple, a workflow can contain a component as its last step that
loads the final results to a local database that can be reached
only from a specific IP or machine. In this case, the user can run
the workflow on a powerful computing node or a cluster with a
breakpoint set for the component prior to the last component,
i.e., database loader in this example. Once the breakpoint is ap-
plied, the user can resume the workflow on the other machine,
so that the results can be loaded to the local database.

Forced dependency

Often in a workflow, a task requires the output of the previous
one. As explained earlier, Kronos handles this explicit depen-
dency by I0-connection. However, sometimes a task might need

(A)

TASK 1 - Run strelka

&

TASK 2 - Plot strelka

(B)

o 8, .
3 .
S ! @ |
n OO
o 8 T o —
g : g s
o 3] L«
3 g o °
S =
s L =y =
- ——
o —_— 2 -
o _
-
© |
2 3
Z
n
B «© |
c O
o
£
g <
© o
o
N
S A
=3
o
C>A C>G C>T T>A T>C T>G

Base substitution

(D)

Total number of SNVs = 5364

1500 2000
1

Frequency
1000
L
|

500
1

T T 1
0 100 200 300
Quality score for somatic SNVs (QSS)
(E) n

200 300 400
| | |
]
]

Number of SNVs

100
|

(

19 21 X

1 3 5 7 9 11 13 15 17

Chromosome

Figure 5: Strelka workflow. Results from the tumour-normal variant calling workflow on whole genome data of a breast cancer case (SA500 - EGA accession number
EGAS00001000952). (A) Schematic of the workflow, which is comprised of 2 tasks. The plots generated by the workflow are in fact the output of TASK.2: (B) box plot
of coverage and variant allelic ratios for the SNVs detected by Strelka, (C) base substitution patterns for the somatic SNVs, and (D) total number of SNVs and their
histogram based on the quality score (QSS), (E) distribution of the number of SNVs across different chromosomes.

to wait for 1 one or more other steps in the workflow to finish al-
though there are no explicit IO-connections between them. For
example, when 2 tasks intend to write results in the same file,
one needs to make sure that both tasks do not run at the same
time. Another example would be a variant calling algorithm (e.g.,
GATK) that accepts a bam file as input. However, it also expects
the index of the bam file to be present in the same directory
as the bam file. If the index is created in 1 of the previous tasks in
the workflow, then the current task that needs the bam file and
its index would depend implicitly on the other task that creates
the index file. In this case, a mechanism is required to force the
variant calling task to wait until the index file is ready. Kronos
provides a forced dependency feature to overcome this problem
(see Additional file 1: Fig. S2).

Results directory customization

It is desirable to have full control of the structure of the re-
sults directory when running a workflow. With Kronos, users
can readily determine the structure of the results directory in
the configuration file. This provides easy file management for
the users. Figure 4 shows an example of the tree structure of the
results directory generated for a workflow.

Boilerplates

Users can use this feature to insert a command or a script into
the begining of the command used to run a task in a workflow.
This is particularly useful for setting up the environments using
the Environment Modules package [14]. It also provides a means

to run preprocessing steps for a specific task prior to running the
task itself.

Keywords

There are several specific keywords that users can use in the
configuration file that will be automatically replaced by proper
values in runtime. This enables users to customize the paths
and file names based on the workflow-specific values in runtime
such as run-ID, workflow name, or sample ID.

We have developed a number of standard genome analysis
workflows using Kronos. These workflows utilize many of the
Kronos features introduced earlier and are publicly available.

This workflow accepts paired-end FASTQ files as input and
aligns them using the Burrows-Wheeler aligner [15]. It also sorts
the aligned bam file, flags the duplicates, indexes the file, and
generates statistics for the final bam file.

This workflow is an implementation of the best practices guide
established by the Broad Institute [1] applied to variant discovery
using haplotypecaller. In short, it runs the Bowtie2 aligner, cre-
ates targets using GATK RealignerTargetCreator, and calls SNVs
and indels using GATK.

HMMCopy is a suite of tools for copy number estimation of
whole genome sequencing data [16]. This workflow takes a bam
file as an input and estimates the copy number with GC and
mappability correction using HMMCopy. It also segments and
classifies the copy number profiles with a robust Hidden Markov
Model.

This workflow takes a pair of tumour/normal bam files as in-
puts and detects the somatic SNVs and indels using the Strelka
algorithm [13], annotates the resulting VCF files using SnpEff
[17], and flags the variants observed in 1000 genomes and db-
SNP databases.

This workflow aligns RNA-seq FASTQ files using STAR aligner
[18], followed by Cufflinks, which assembles transcriptomes
from RNA-seq data and quantifies their expression [19].

A foundation for rapid and reliable implementation of genomic
analysis workflows is an essential need as a myriad of poten-
tial applications of genomics (ranging from personalized cancer
therapies to monitoring the evolution and spread of infectious
diseases) are projected to produce massive amounts of genomic
data in the next few years. We have developed Kronos to address
this need by expediting workflow development. It minimizes

the tedious process of writing code by transforming a YAML
configuration file into a Python script and manages its execu-
tion. Given a set of premade components, constructing a work-
flow by Kronos does not need programming skills as the user
only needs to fill out specific sections of the configuration file.
Making components still requires programming. However, their
development time and effortis minimal given their design struc-
ture. They also provide a powerful and highly flexible framework
for bioinformatics developers to fully customize their workflows
with reusable modules.

A number of standard genomic analysis workflows and
their building components that have been made by Kronos ac-
company this software and are available to the public. Kro-
nos has been developed for genomics applications, but it
can be readily utilized in other scientific and nonscientific
fields.

The configuration file and components of a Kronos work-
flow are portable. This is a step toward reproducible research;
however, it should be noted that while Kronos workflows can
be duplicated elsewhere, the user would still need to manage
tool installations and dependencies. For fully reproducible re-
search, a Docker image of the whole workflow or the environ-
ment is perhaps more plausible. Kronos is complementary to
other efforts for reproducible research. For example, in order to
unify representation of workflow definitions and tool wrappers,
the Common Workflow Language working group [10] and the
Workfow Description Language [20] offer specifications that en-
able data scientists to describe analysis tools and workflows that
are human-readable, easy to use, portable, and support repro-
ducibility. It would be beneficial for workflow management tools
to adopt these representation standards once they are agreed
upon in the field.

In conclusion, this work provides a framework toward rapid
integration of new (and optimal) genomic analysis advances
in high-throughput studies. The flexibility, customization, and
modularity of Kronos make it an attractive system to use in any
high-throughput genomics analysis endeavour. We expect that
Kronos will provide a foundational platform to accelerate toward
the need to standardize and distribute NGS workflows in both
clinical and research applications.

The supplementary information is in pdf format and expalins
(a) how to make a component, (b) how to make a workflow, (c)
how to run a workflow, and (d) Fig. S1 and Fig. S2.

DAG: directed acyclic graph; NGS: next-generation sequencing;
SNV: single nucleotide variant.

Project name: Kronos
Project home page: https://github.com/jtaghiyar/kronos
Operating system(s): Linux, Windows, Mac OS
Programming language: Python 2.7.5
Other requirements: Ruffus, PyYaml
License: MIT

https://github.com/jtaghiyar/kronos

Snapshots of the code can be found in the GigaScience repository,
GigaDB [21].

The authors would like to thank Shadrielle Melijah G.
Espiritu and Andre Masella for their feedback on the
manuscript/software. This project has been supported by
funding from Genome Canada/Genome British Columbia (grant
No. 173CIC), the Natural Science and Engineering Research
Council of Canada (grant No. RGPGR 488167-2013), and Terry
Fox Research Institute - Program Project Grants (grant No. 1021).

The authors declare that they have no competing interests.

J.T. developed the software, wrote the documentation, and con-
tributed to manuscript writing. J.R. assisted in developing part
of the logger and a few of the helper functions for the soft-
ware, testing software features, and providing feedback on the
manuscript. D.G. developed a number of pipelines accompany-
ing the manuscript, tested the software, and provided feedback
on the software features and manuscript. B.G. deployed and
tested Kronos in the cloud, wrote the documentation for cloud
deployment, tested software, and provided feedback on the soft-
ware features and manuscript. R.A. developed the germline vari-
ant calling workflow and provided feedback on the manuscript.
J.G. tested and provided feedback on the software. P.B. provided
feedback on the manuscript. R.M. provided resources, super-
vised testing Kronos in the cloud, and provided feedback on the
manuscript. A.B. contributed to the design and development of
the software. A.B. and S.S. co-supervised, provided intellectual
contributions to the work, and contributed to manuscript writ-
ing. A.B. and S.S. are joint senior authors.

1. GATK Best Practices - Recommended workflows for vari-
ant analysis with GATK. Available from: https://www:.
broadinstitute.org/gatk/guide/best-practices.

2. Goecks J, Nekrutenko A, Taylor] et al. Galaxy: a comphre-
hensible approach for supporting accessible, reproducible,
and transparent computational research in the life sciences.
Genome Biol 2010;11(R86):1-13.

3. Galaxy Tool Shed. Available from: https://toolshed.g2.bx.
psu.edu.

4. Wolstencroft K, Haines R, Fellows D et al. The Taverna
workflow suite: designing and executing workflows of Web

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Services on the desktop, web or in the cloud. Nucl Acids Res
2013;41:W557-W561.

Goble CA, Bhagat], Aleksejevs S et al. Myexperiment: a repos-
itory and social network for the sharing of bioinformatics
workflows. Nucl Acids Res 2010;38(2):W677-W682.

Spjuth O, Bongcam-Rudloff E, Hernadndez GC et al. Experi-
ences with workflows for automating data-intensive bioin-
formatics. Biology direct 2015;10(1):1-12.

Goodstadt L. Ruffus: A lightweight Python library for
computational pipelines. Bioinformatics 2010;26(21):
2778-9.

Sadedin S, Pope B, Oshlack A. Bpipe: A tool for run-
ning and managing bioinformatics pipelines. Bioinformatics
2012;28(11):1525-6.

Koster J, Rahmann S. Snakemake - A scalable bioinformatics
workflow engine. Bioinformatics 2012;28(19):2520-2.
Common Workflow Language (CWL). Available from: http://
www.commonwl.org/draft-3/index.html.

Fisch KM, Meifdner T, Gioia L et al. Omics Pipe: a community-
based framework for reproducible multi-omics data analy-
sis. Bioinformatics. 2015.

Ewing AD, Houlahan KE, Hu Y et al. Combining tumor
genome simulation with crowdsourcing to benchmark so-
matic single-nucleotide-variant detection. Nat methods.
2015.

Saunders CT, Wong WS, Swamy S et al. Strelka: accurate so-
matic small-variant calling from sequenced tumor-normal
sample pairs. Bioinformatics 2012;28(14):1811-7.
Environment Modules Project - Software environment man-
agement. Available from: http://modules.sourceforge.net/.
Li H, Durbin R. Fast and accurate short read alignment
with burrows-wheeler transform. Bioinformatics 2009;25:
1754-60.

Ha G, Roth A, Lai D et al. Integrative analysis of genome-
wide loss of heterozygosity and mono-allelic expression at
nucleotide resolution reveals disrupted pathways in triple
negative breast cancer. Genome Res 2012;22(10):1995-2007.
Cingolani P, Platts A, le Wang L et al. A program for an-
notating and predicting the effects of single nucleotide
polymorphisms, snpeff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly 2012;6:80-92.
Dobin A, Davis CA, Schlesinger F et al. STAR: ultrafast uni-
versal RNA-seq aligner. Bioinformatics 2013;29(1):15-21.
Trapnell C, Roberts A, Goff L et al. Differential gene and
transcript expression analysis of RNA-seq experiments with
TopHat and Cufflinks. Nat Protoc 2012;7(3):562-78.
Workflow Description Language (WDL). Available from:
https://github.com/broadinstitute/wdl.

Taghiyar JM, Rosner J, Grewal D et al. Supporting materi-
als for “Kronos: a workflow assembler for genome analytics
and informatics.” Gigascience Database 2017. Available from:
http://dxdoiorg/105524/100307.

https://www.broadinstitute.org/gatk/guide/best-practices
https://www.broadinstitute.org/gatk/guide/best-practices
https://toolshed.g2.bx.psu.edu
https://toolshed.g2.bx.psu.edu
http://www.commonwl.org/draft-3/index.html
http://www.commonwl.org/draft-3/index.html
http://modules.sourceforge.net/
https://github.com/broadinstitute/wdl
http://dxdoiorg/105524/100307

