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CHARMM Parameter Optimization by

Truncated Singular Value Decompositions

Derek J. Urwin and Anastassia N. Alexandrova∗

Department of Chemistry and Biochemistry, University of California Los Angeles, Los

Angeles, Ca 90095

E-mail: ana@chem.ucla.edu

Abstract

We examine the use of the Truncated Singular Value Decomposition and Tikhonov

Regularization in standard form to address ill-posed least squares problems Ax = b

that frequently arise in molecular mechanics force �eld parameter optimization. We

illustrate these approaches by applying them to dihedral parameter optimization of

genotoxic PAH-DNA adducts that are of interest in the study of chemical carcinogen-

esis. Utilizing the Discrete Picard Condition and/or a well-de�ned gap in the singular

value spectrum when A has a well-determined numerical rank, we are able to systemat-

ically determine truncation and in turn regularization parameters that are correspond-

ingly used to produce truncated and regularized solutions to the ill-posed least squares

problem at hand. These solutions in turn result in optimized force �eld dihedral terms

that accurately parameterize the torsional energy landscape. As the solutions produced

by this approach are unique, it has the advantage of avoiding the multiple iterations

and guess and check work often required to optimize molecular mechanics force �eld

parameters.
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INTRODUCTION

Parameterization of novel residues for use with molecular mechanics (MM) force �elds fre-

quently requires optimization of a subset of parameters that cannot be accurately assigned

by analogy.1�9 Optimization of such parameters by least squares �tting of force �eld terms

to quantum mechanical (QM) target data is an e�ective approach to what is often a chal-

lenging and tedious task.10�13 Broadly, where we typically require m > n, the elements of

A ∈ Rm xn are composed of the functional form of the force �eld, the elements of x ∈ Rn are

the unknown force �eld terms to be optimized, and the elements of b ∈ Rm consist of the

QM target data. We then seek a solution x0 to the matrix equation Ax = b that minimizes

the 2-norm of the residual ‖r0‖22 = ‖Ax0−b‖22. Noting that in general ‖r‖22 is a di�erentiable

function of x, the least squares solution is that for which ∇‖r‖22 = 0.14,15

There exist several numerical approaches to solving least squares problems, but when

applied to force �eld parameter optimization utilizing QM target data, such problems are

frequently ill-posed as a result of the matrix A being ill-conditioned, whereby small pertur-

bations to A or b result in very large perturbations of the solution x0. This in turn can

result in unphysical force �eld terms when the ill-posedness of the underlying least squares

problem is not addressed or not recognized.10,12,14�18

A well established numerical approach to ill-posed least squares problems is Tikhonov

Regularization in standard form17�20 whereby the ill-conditioned matrix A is augmented by

λIn where λ is known as the regularization parameter. This results in a least squares problem

of full rank:

min

∥∥∥∥[ A

λIn

]
x−

[
b

0

]∥∥∥∥ (1)

with a unique regularized solution xλ.
17,18 This is similar to the force �eld parameter op-

timization approach described by Vanommeslaeghe and MacKerell12 which speci�es bias

factors as parameters for regularization in non-standard form. Note that regularized least
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squares problems not in standard form can be transformed into standard form as described

by Elden16,17 and we will thus work with the standard form (1) for simplicity.

Another well established numerical approach to ill-posed least squares problems is the

Truncated Singular Value Decomposition (TSVD)17,18 whereby the ill-conditioned matrix A

is decomposed into a product of matrices: A = UΣVT . The resulting truncated solution xk

is determined by identifying and discarding small singular values that result in unsatisfactory

solutions (i.e. truncating the singular value spectrum). This is similar to the force �eld

parameter optimization approach described by Dasgupta et. al.10 which speci�es a critical

condition number as a parameter that drives truncation of the singular value spectrum.

While e�ectively implemented, these previous approaches to ill-posed least squares prob-

lems in MM force �eld parameter optimization specify a range of regularization and trunca-

tion parameters based on the user's experience.10,12 However, Hansen has shown previously

that where an ill-posed least squares problem satis�es the Discrete Picard Condition de-

scribed below, both the regularization parameter λ and the truncation parameter k can be

determined systematically if not rigorously.17,18 The resulting regularized solution xλ and the

truncated solution xk will be similar where the Discrete Picard Condition is satis�ed and

furthermore, the truncation parameter k can be used to estimate an e�ective regularization

parameter λ.

Application of the TSVD and Discrete Picard Condition as regularization tools for ill-

posed least squares problems was developed rigorously in the Numerical Linear Algebra

community. Here we will show how these mathematical tools can be elegantly applied to

MM force �eld parameterization in order to study a wide range of chemical problems of

interest. While previously developed, the mathematics behind this approach is essential to

its application to chemical systems, hence in the sections to follow we will restate Hansen's

key results,17,18 abridging some details and elaborating on others for those interested in

force �eld parameterization. We then demonstrate an e�ective application to optimization

of dihedral parameters for genotoxic polycyclic aromatic hydrocarbon (PAH) - DNA adducts
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in the CHARMM force �eld. These systems pose unique challenges as the torsional potential

energy surface (PES) of the freely rotating single bond linking the purine in DNA and the

PAH adduct (henceforth adduct covalent bond) is asymmetric and highly dependent upon

the PAH structure (i.e. bay vs. fjord) despite identical atomic connectivity.21 Because the

genotoxicity and hence carcinogenic potential of PAH-DNA adducts is a function of geometric

conformation, accurate parameterization of the adduct covalent bond is essential to accurate

conformational sampling in molecular dynamics simulations of such systems.22�31 We note

however that this approach is applicable to most all ill-posed least squares problems that

arise in force �eld optimization, not merely dihedral parameter optimization.

Ill-Posed Least Squares Problems

Filtering Small Singular Values

The source of ill-posed least squares problems is well illustrated in terms of the singular value

decomposition of the matrix A in the unconstrained linear least squares problem:

min‖Ax− b‖2 A ∈ Rm xn m > n. (2)

The matrices AAT and ATA are symmetric positive semi-de�nite and hence each has or-

thogonal eigenvectors and they share positive eigenvalues. As a result the economy SVD of

A has the form:

A = UΣVT (3)

where U = [u1, ...,un] ∈ Rm xn with orthonormal column vectors {ui}, V = [v1, ...,vn] ∈

Rn xn with orthonormal column vectors {vi}, and Σ ∈ Rn xn is a diagonal matrix with

Σ = diag[σ1, σ2, ..., σn].14,15,17,18

Where rank(A) = r < n we have:
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σ1 ≥ ... ≥ σr > σr+1 = ... = σn = 0. (4)

Where we assume A to have full rank equal to n, we have:

σ1 ≥ σ2 ≥ ... ≥ σn > 0 (5)

and the condition number of the matrix A is de�ned as C = σ1/σn, where a large condition

number indicates the presence of small elements in the singular value spectrum of A. In

terms of the SVD, the matrix equation Ax = b has the least squares solution:

x0 = A+b = VΣ+UTb (6)

where:

Σ+ = diag

[
1

σ1
, ...,

1

σn

]
(7)

and the solution can be written as:17,18

x0 =
n∑

i=1

uTi b

σi
vi. (8)

From this we see that if A has very small singular values σi, these will cause the elements of

the solution x0 to become large. Consequently, small perturbations in A and/or b may result

in large perturbations of the solution x0. Such ill-conditioned matrices are characterized by

large condition numbers and are often the source of ill-posed least squares problems in force

�eld parameter optimization. These problems can be addressed by regularization methods

that �lter out small singular values that have a large impact on the solution. Such methods

yield an approximate solution to the ill-posed least squares problem by solving a well-posed

problem derived from the original ill-posed problem.17,18

The TSVD addresses ill-posed least squares problems by truncating the sum in (8) at
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a truncation parameter k < n thus eliminating the impact of small singular values on the

solution:

xk = A+
k b = VΣ+

k UTb (9)

where:

Σ+
k = diag

[
1

σ1
, ...,

1

σk
, 0, ..., 0

]
(10)

and similar to (8), the truncated solution can be written as:17,18

xk =
k∑

i=1

uTi b

σi
vi. (11)

Tikhonov Regularization in standard form addresses ill-posed least squares problems by

examining the quadratically constrained least squares problem (1), which has the unique

solution:

xλ = argmin{‖Ax− b‖22 + λ2‖x‖22} (12)

which can be written in terms of the SVD of A as:

xλ = AI
λb =

[
ATA + λ2In

]−1
ATb = VΣ+

λUTb (13)

where:

Σ+
λ = diag

[
σ1

σ2
1 + λ2

, ...,
σn

σ2
n + λ2

]
(14)

and similar to (8) and (11) the regularized solution can be written in the form:17,18

xλ =
n∑

i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi. (15)
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From this it is apparent that for σn ≤ λ ≤ σ1, the term
σ2

i

σ2
i
+λ2

�lters out the impact of

singular values that are smaller than the regularization parameter λ.

From (8), (11), and (15) it is apparent that the regularized solution xλ and the truncated

solution xk will be similar when λ ≈ σk as the �lter factor
σ2

i

σ2
i
+λ2

in (15) will dampen

the impact of singular values smaller than σk on the regularized solution. Indeed Hansen

has shown that setting λ ≈ (σ3
k σk+1)

1
4 minimizes the di�erence between the regularized and

truncated solutions while λ ≈ (σk σk+1)
1
2 minimizes the di�erence between the corresponding

residuals. Additionally, the truncated solution xk can be calculated as e�ciently as the

regularized solution xλ. Hence in most cases, the TSVD can be used as a tool to determine

the regularization parameter λ or can be used to calculate a regularized solution on its

own.17,18 In the sections to follow, we will examine Hansen's approach to determining the

regularization parameter λ and the truncation parameter k in order to obtain satisfactory

solutions.

The Discrete Picard Condition

Hansen formulated the Discrete Picard Condition (DPC) to establish a set of conditions un-

der which Tikhonov Regularization in standard form and the TSVD converge to satisfactory

solutions of the ill-posed least squares problem at hand. This was motivated by the well

established Picard Condition for Fredholm integral equations of the �rst kind utilizing the

corresponding singular value expansion.18

In de�ning the DPC, it is necessary to examine the coe�cient term
uT

i
b

σi

that appears in

the three solutions (8), (11), and (15) described above. Where A has very small singular

values, and the σi decay toward zero faster than the corresponding uTi b, our regularization

approaches may not be e�ective at �ltering out the impact of small singular values. To

quantify this, we can examine the decay of the terms uTi b relative to the singular values by

considering the relationship:
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uTi b = σαi i = 1, ..., n (16)

for some α ≥ 0. Where α > 1 and when σi < 1, we see from
uT

i
b

σi

=
σα

i

σi

that the terms uTi b

decay faster than the corresponding singular values σi and where 0 ≤ α ≤ 1 the opposite

holds. From this Hansen formulates the Discrete Picard Condition (DPC):18

In the matrix equation Ax = b, the unperturbed right hand side b satis�es the DPC if, for

every non-zero singular value, the terms |uTi b| decay to zero faster on average (not necessarily

monotonically) than the singular values σi (Fig. 1).

Figure (1) Hypothetical illustration of the Discrete Picard Condition satis�ed for i =
1, ..., 14. Red squares: singular value spectrum {σi}. Blue circles: terms {uTi b}. Green

triangles: coe�cients {u
T
i
b

σi
}.
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Hansen has shown that when the DPC is satis�ed, error bounds on the regularized and

truncated solutions xλ and xk relative to the solution x0 can be established [Thrm 3.1 Ref18]:

‖x0 − xk‖2
‖x0‖2

≤


√
n if 0 ≤ α ≤ 1

(σk+1

σ1
)α−1
√
n if 1 ≤ α

(17)

‖x0 − xλ‖2
‖x0‖2

≤



√
n if 0 ≤ α ≤ 1

( λ
σ1

)α−1
√
n if 1 ≤ α < 3

( λ
σ1

)2
√
n if 3 ≤ α

(18)

These indicate that when the DPC is satis�ed, and for small σk and λ relative to σ1, the

regularized and truncated solutions xλ and xk approximate the solution x0 and the error

bounds improve with faster decay of the terms uTi b relative to the singular values (i.e. for

larger α > 1). Note that if there are errors present such as a perturbation b + e to the right

hand side of the matrix equation, the DPC must be satis�ed for the unperturbed right hand

side for the regularized and truncated solutions to approximate x0. Additionally, Hansen

has shown that when the DPC is satis�ed and σk+1 << σ1, we can choose λ ∈ [σk+1, σk] for

which the regularized and truncated solutions are similar. As above, for larger α > 1 the

regularized and truncated solutions become yet closer [see Thrm 3.2 Ref18 for details].
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Perturbation Theory

Errors in least squares problems are often isolated to the right hand side of the matrix

equation Ax = b.17,18 Such is largely the case when using QM target data to optimize force

�eld parameters where the matrix A consists of the mathematical terms of the MM force

�eld at speci�ed geometries of the molecular system being parameterized, and the right hand

side consists of the corresponding QM energies. Computational errors that arise from QM

calculations at a given level of theory then result in perturbations b + e of the right hand

side. Although errors may occur in the mathematical terms in the elements of the matrix

A, we seek to follow Hansen's treatment of Tikhonov Regularization and the TSVD and

consider only perturbations b + e of the right hand side going forward. In order to proceed,

we de�ne several quantities:

b0 = Ax0 bk = Axk bλ = Axλ, (19)

x
(e)
0 =

n∑
i=1

uTi e

σi
vi x

(e)
k =

k∑
i=1

uTi e

σi
vi x

(e)
λ =

n∑
i=1

σ2
i

σ2
i + λ2

uTi e

σi
vi, (20)

x̃0 =
n∑

i=1

uTi (b + e)

σi
vi =

n∑
i=1

uTi b

σi
vi +

n∑
i=1

uTi e

σi
vi = x0 + x

(e)
0 (21)

x̃k =
k∑

i=1

uTi (b + e)

σi
vi =

k∑
i=1

uTi b

σi
vi +

k∑
i=1

uTi e

σi
vi = xk + x

(e)
k . (22)

x̃λ =
n∑

i=1

σ2
i

σ2
i + λ2

uTi (b + e)

σi
vi =

n∑
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi +

n∑
i=1

σ2
i

σ2
i + λ2

uTi e

σi
vi = xλ + x

(e)
λ (23)

Note that the solutions (21), (22), and (23) resulting from the perturbed right hand side

b + e are the analogs of the solutions (8), (11), and (15) resulting from the unperturbed
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right hand side.

Hansen has shown [Thrm 4.1 Ref18] that for λ ∈ [σn, σ1], the regularization and truncation

parameters λ and k can be chosen such that the corresponding solutions x̃k and x̃λ are not

largely impacted by the perturbation to the right hand side of the matrix equation, as seen

in the following error bounds:

‖xk − x̃k‖2
‖xk‖2

≤ σ1
σk

‖e‖2
‖bk‖2

(24)

‖xλ − x̃λ‖2
‖xλ‖2

≤ σ1
2λ

‖e‖2
‖bλ‖2

. (25)

Note that when λ ≈ σk the error bounds (24) and (25) will be similar.

Where the DPC is satis�ed, there is a balance to be struck between the error bounds

(17),(18) and the perturbation bounds (24),(25) when one selects the regularization and

truncation parameters. Because (17) and (18) respectively contain the terms σk+1

σ1
and λ

σ1
,

the truncated and regularized error bounds will shrink for smaller λ and correspondingly

larger k (i.e. smaller σk and σk+1), but the perturbation bounds will grow since (24) and

(25) respectively contain the terms σ1
σk

and σ1
2λ
, resulting in x̃λ and x̃k being more sensitive

to perturbations. Where larger λ and smaller k result in smaller perturbation bounds, the

error bounds become larger depending upon the rate of decay of the terms uTi b relative to

the singular values (i.e. depending on the value of α).

Determining Regularization and Truncation Parameters

Analysis of Regularized and Truncated Solutions

It is a standard practice to examine the least squares solutions produced by a given numerical

method by plotting the norm of said solutions against the norm of the corresponding resid-

uals.17,18,32 When examining our regularized and truncated solutions corresponding to the
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perturbed right hand side b + e, we will observe a distinct corner in the curve (‖r̃λ‖2, ‖x̃λ‖2)

as a function of the regularization parameter λ and in the plot of (‖r̃k‖2, ‖x̃k‖2) as a dis-

crete function of the truncation parameter k, that demarcates regions from which λ and k

should be selected. As noted by Hansen, the discussion to follow is not strictly rigorous, but

demonstrates a working application of the results outlined thus far. Additional details can

be found in Hansen's works on the TSVD and regularization.17,18

To illustrate this cornering behavior, the components of the truncated and regularized

residuals rk and rλ from the column space of A, corresponding to the unperturbed right

hand side are de�ned as:

rk = b0 −Axk = A
n∑

i=1

uTi b

σi
vi −A

k∑
i=1

uTi b

σi
vi =

n∑
i=k+1

uTi bui (26)

rλ = b0 −Axλ = A
n∑

i=1

uTi b

σi
vi −A

n∑
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi =

n∑
i=1

λ2

σ2
i + λ2

uTi bui (27)

The truncated and regularized residuals r̃k and r̃λ corresponding to the perturbed right hand

side are de�ned as:

r̃k = (b0 + e)−Ax̃k

= Ax̃0 −Ax̃k

= A(x0 + x
(e)
0 )−A(xk + x

(e)
k )

= A
n∑

i=1

uTi b

σi
vi + A

n∑
i=1

uTi e

σi
vi −A

k∑
i=1

uTi b

σi
vi −A

k∑
i=1

uTi e

σi
vi

=
n∑

i=k+1

uTi bui +
n∑

i=k+1

uTi eui

= rk + r
(e)
k

(28)
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r̃λ = (b0 + e)−Ax̃λ

= Ax̃0 −Ax̃λ

= A(x0 + x
(e)
0 )−A(xλ + x

(e)
λ )

= A
n∑

i=1

uTi b

σi
vi + A

n∑
i=1

uTi e

σi
vi −A

n∑
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi −A

n∑
i=1

σ2
i

σ2
i + λ2

uTi e

σi
vi

=
n∑

i=1

λ2

σ2
i + λ2

uTi bui +
n∑

i=1

λ2

σ2
i + λ2

uTi eui

= rλ + r
(e)
λ

(29)

For illustrative purposes, we begin by independently examining the curves (‖rλ‖2, ‖xλ‖2)

and (‖r(e)λ ‖2, ‖x
(e)
λ ‖2) as functions of the regularization parameter λ.

In the case of (‖rλ‖2, ‖xλ‖2), it is known that ‖xλ‖2 is a decreasing function of ‖rλ‖2 and

we have that as λ→ 0 the �lter factor
σ2

i

σ2
i
+λ2
→ 1 resulting in xλ → x0 and thus rλ → 0 .18

Hence, for values of λ much smaller than the smallest singular value σn, we can make the

approximations:
σ2

i

σ2
i
+λ2
≈ 1 and λ2

σ2
i
+λ2
≈ λ2

σ2
i

, resulting in xλ ≈ x0 and:

rλ =
n∑

i=1

λ2

σ2
i + λ2

uTi bui ≈
n∑

i=1

λ2

σ2
i

uTi bui. (30)

Hence we have ‖xλ‖2 ≈ ‖x0‖2 and since b0 =
∑n

i=1 uTi bui we have:

‖rλ‖2 ≈ λ2

√√√√ n∑
i=1

(
uTi b

σ2
i

)2

≤ λ2

√√√√ n∑
i=1

(
uTi b

σ2
n

)2

≤
(
λ

σn

)2

‖b0‖2. (31)

Thus for these small λ, we have that (‖rλ‖2, ‖xλ‖2) ≈ (‖rλ‖2, ‖x0‖2) and the curve traces

a nearly horizontal line for small values of ‖rλ‖2. As λ becomes larger, the regularization

�lter factor
σ2

i

σ2
i
+λ2

< 1 resulting in ‖xλ‖2 becoming smaller than ‖x0‖2 and ‖rλ‖2 becoming

larger. Noting that as λ→∞ the �lter factor
σ2

i

σ2
i
+λ2
→ 0, resulting in xλ → 0 and rλ → b0,

we have that the curve (‖rλ‖2, ‖xλ‖2) veers downwards toward the horizontal axis and the
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point ‖b0‖2 .18

In the case of (‖r(e)λ ‖2, ‖x
(e)
λ ‖2) we assume that for each i the terms uTi e seen in x

(e)
0 , x

(e)
λ ,

and r
(e)
λ (20) are all of approximately the same magnitude ε0 (i.e. the DPC is not satis�ed

for these terms). As above, we note that as λ → 0, x
(e)
λ → x

(e)
0 and r

(e)
λ → 0, and again for

very small λ << σn we have x
(e)
λ ≈ x

(e)
0 . With the additional assumption that |uTi e| ≈ ε0 we

have that:

x
(e)
0 ≈ ε0

n∑
i=1

1

σi
vi ≤ ε0

n∑
i=1

1

σn
vi, x

(e)
λ ≈ ε0

n∑
i=1

σi
σ2
i + λ2

vi, r
(e)
λ ≈ ε0

n∑
i=1

λ2

σ2
i + λ2

ui. (32)

We have then that ‖x(e)
λ ‖2 ≈ ‖x

(e)
0 ‖2 where ε0

σn
≤ ‖x(e)

0 ‖2 ≤
√
n ε0
σn

. Hence for these small

λ we have that (‖r(e)λ ‖2, ‖x
(e)
λ ‖2) ≈ (‖r(e)λ ‖2,

√
n ε0
σn

) and the curve traces a nearly horizontal

line for small values of ‖r(e)λ ‖2. As λ becomes larger than the smallest singular value σn we

have that x
(e)
λ in (32) is dominated by the terms for which λ ≈ σi where we can make the

approximation: σi

σ2
i
+λ2
≈ 1

2λ
. Supposing there are p such terms, we have that ‖x(e)

λ ‖2 ≈ p ε0
2λ

and hence as λ→∞ we have that ‖x(e)
λ ‖2 → 0. Since we also have that ε0 ≤ ‖r(e)λ ‖2 ≤

√
n ε0,

the curve (‖r(e)λ ‖2, ‖x
(e)
λ ‖2) decreases rapidly toward the horizontal axis and toward the point

√
n ε0 .

18

Note that Hansen has shown where the DPC is satis�ed and where k is large, we can

choose λ ∈ [σk+1, σk] such that the plots of (‖rk‖2, ‖xk‖2) and (‖r(e)k ‖2, ‖x
(e)
k ‖2) closely ap-

proximate the curves (‖rλ‖2, ‖xλ‖2) and (‖r(e)λ ‖2, ‖x
(e)
λ ‖2) with deviations occurring where

the DPC is not satis�ed.18 Hence, the features discussed above for regularized curves are

also observed for the truncated plots.

Regularization and Truncation Parameters Based on Cornering

We can organize the results outlined above into the following collection of conditions for the

perturbed right hand side b + e of the matrix equation [Assumption 5.1 Ref18]:
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1. The unperturbed right hand side b satis�es the DPC

2. ‖e‖2 < ‖b0‖2 where b0 = Ax0

3. The perturbation e is a random vector of zero mean and covariance matrix ε20I

As we have seen above, the �rst and second assumptions are required for x̃k and x̃λ to

produce reasonable approximations of x0. The third assumption ensures that the errors

in the perturbation are uncorrelated and results in the DPC not being satis�ed for the

perturbation e.

We now examine the curve of (‖r̃λ‖2, ‖x̃λ‖2) as a function of the regularization parameter,

applying the analysis utilized to examine the graphs of (‖rλ‖2, ‖xλ‖2) and (‖r(e)λ ‖2, ‖x
(e)
λ ‖2)

above and recalling that r̃λ = rλ + r
(e)
λ and x̃λ = xλ + x

(e)
λ . Again, ‖x̃λ‖2 is a decreasing

function of ‖r̃λ‖2. Where λ is small resulting in x
(e)
λ dominating x̃λ and the DPC not

being satis�ed, the curve (‖r̃λ‖2, ‖x̃λ‖2) resembles that of (‖r(e)λ ‖2, ‖x
(e)
λ ‖2), running nearly

horizontal at ‖x̃λ‖2 ≈ ‖x(e)
0 ‖2 ≈

√
n ε0
σn

for correspondingly small values of ‖r̃λ‖2, followed

by a rapid decrease toward the horizontal axis at the point
√
n ε0. As λ grows, xλ begins to

dominate x̃λ and the DPC is satis�ed, resulting in the curve (‖r̃λ‖2, ‖x̃λ‖2) resembling that

of (‖rλ‖2, ‖xλ‖2), again running nearly horizontal at ‖x̃λ‖2 ≈ ‖x0‖2, then gradually curving

toward the horizontal axis at the point ‖b0‖2 as λ grows large relative to σn. As above,

the plot of (‖r̃k‖2, ‖x̃k‖2) closely approximates the curve (‖r̃λ‖2, ‖x̃λ‖2) where the DPC is

satis�ed.18

We can thus observe a corner in the curve (‖r̃λ‖2, ‖x̃λ‖2) and the plot (‖r̃k‖2, ‖x̃k‖2) near

the point (
√
n ε0, ‖x0‖2) where x̃λ and x̃k are dominated by x

(e)
λ and x

(e)
k to the left of the

corner and dominated by xλ and xk to the right of the corner (Fig. 2). As described by

Hansen, the regularized and truncated solutions are similar and best approximate x0 to the

right of this corner, and the largest possible value of the truncation parameter k for which

the DPC is satis�ed for the perturbed terms uTi (b + e) should be chosen. Additionally, the

singular values should not be truncated between multiple or nearly multiple (i.e. repeated)

15



singular values. We then have for λ ∈ [rk+1, rk] as described above, the regularized and

truncated solutions will be reasonable solutions,33�35 satisfying: ‖x̃λ‖2 ≈ ‖x̃k‖2 ≈ ‖x0‖2 and

‖r̃λ‖2 ≈ ‖r̃k‖2 ≈ ‖e‖2 with x̃λ, x̃k → x0 as e→ 0 .18

Figure (2) Hypothetical illustration of a corner in the curve (‖r̃λ‖2, ‖x̃λ‖2) (solid line) and
the plot (‖r̃k‖2, ‖x̃k‖2) (red diamonds) as functions of λ and k. In the shaded region to

the left of the corner, x
(e)
λ and x

(e)
k dominate the solution, resulting in (‖r̃λ‖2, ‖x̃λ‖2) ≈

(‖r(e)λ ‖2, ‖x
(e)
λ ‖2). In the unshaded region to the right of the corner, xλ and xk dominate

the solution, resulting in (‖r̃λ‖2, ‖x̃λ‖2) ≈ (‖rλ‖2, ‖xλ‖2). Regularization and truncation
parameters and the corresponding solutions should be selected from the unshaded region
and where the DPC is satis�ed.
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Regularization and Truncation Parameters Based on Numerical Rank

While the analyses above cover selection of regularization and truncation parameters in gen-

eral, a special and convenient case arises for matrices A that have well-determined numerical

rank. The rank of a matrix A is the dimension of its column space (i.e. the number of lin-

early independent column vectors in A), and is revealed by the number of non-zero singular

values in the singular value spectrum of A. With ill-conditioned matrices such as those that

often occur in MM force �eld parameter optimization, it is uncommon to �nd identically

zero singular values, but it is very common to encounter numerically small singular values

as discussed above.17

When considering the singular value spectrum σ1 > ... > σk > σk+1 > ... > σn we can

examine the relative gap ωk = σk+1

σk
between neighboring singular values. We can then de�ne

ill-conditioned matrices with well-determined numerical rank k as those that have a large,

well-de�ned gap in the singular value spectrum between σk and σk+1, such that the singular

values σk+1, ..., σn are e�ectively zero in numerical applications.17 This is characterized by a

relative gap ωk that is markedly smaller than the other relative gaps in the singular value

spectrum. As shown by Hansen, such a well-de�ned gap can be used to select the truncation

parameter k (where the DPC should also be satis�ed for the �rst k singular values) without

having to examine the plot of (‖r̃k‖2, ‖x̃k‖2), yielding the same results as those discussed

above. The regularization parameter can then be determined, where λ should be chosen as

close to σk as possible following the analyses above.
17,18 In the case of ill-conditioned matrices

A where the singular value spectrum decays without a well-de�ned gap, A is considered to

have ill-determined numerical rank, and we instead have to examine the plot of (‖r̃k‖2, ‖x̃k‖2)

as described above.

Although the term "well-de�ned gap" does not strike one as a rigorous de�nition, we will

see in applications to optimization of dihedral force �eld parameters below that the relative

gap ωk can di�er by several fold as compared to the average relative gap in the system's

singular value spectrum, demarcating a numerically well-de�ned gap and corresponding nu-
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merical rank that allows for speci�cation of the truncation parameter k. We refer the reader

to Hansen's work on the TSVD and standard texts on numerical linear algebra for additional

details on numerical rank and the accompanying perturbation theory.14,15,17,18

Note that selection of the truncation parameter either by identifying the corner in the

plot of (‖r̃k‖2, ‖x̃k‖2) or by identifying a well-de�ned gap in the singular value spectrum

results in the condition number C = σ1
σk

of the matrix A as a function of the truncation

parameter k. If instead the condition number is speci�ed as a parameter that dictates the

singular values that are to be discarded when solving ill-posed least squares problems by the

TSVD, one runs the risk of the solution x̃k falling in the region for which the DPC is not

satis�ed for the given problem, thus being in�uenced by the perturbation x
(e)
k .
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Dihedral Parameterization of PAH-DNA Adducts

The results outlined above motivate a useful and practical application to ill-posed least

squares problems that arise in MM force �eld parameter optimization. Here we apply the

TSVD approach to select truncation and regularization parameters and optimize dihedral

force �eld terms for PAH-DNA adducts that are of toxicological interest to the occupational

and public health communities.36�46 PAHs are a very large class of compounds produced by

any process that involves the incomplete combustion of organic material, resulting in per-

vasive human exposure via inhalation, ingestion, and dermal absorption. Cellular pathways

involving cytochrome-P450 and epoxide hydrolase result in PAH-diol-epoxides (PAH-DEs)

that create covalent DNA adducts by bonding with the exocyclic amino group of purine. Such

PAH-DNA adducts are in turn known to result in cancer promoting cellular changes.22,23,31

Several PAHs are classi�ed as known, probable, or possible human carcinogens by the In-

ternational Agency for Research on Cancer while several remain largely unstudied.36,47,48

The relative genotoxicity of di�erent PAH-DEs is largely a function of the structural and

thermodynamic features of the resulting PAH-DNA adducts in a given sequence context,

hence there is great interest in studying these systems via molecular dynamics.22�31 Most

PAHs of interest are not standard residues in the CHARMM force �elds, hence custom

residues compatible with the CHARMM nucleic acid (NA) force �eld are required to study

these systems.1,49,50 While there exist a number of tools that either automate or facilitate

the parameterization of CHARMM compatible custom residues, we have shown previously

that dihedral parameterization of the freely rotating adduct covalent bond requires custom

dihedral terms for bay and fjord region PAH-DNA adduct systems despite identical atomic

connectivity in order to accurately �t QM target data.21

We begin with bay and fjord PAH-DNA adduct model systems derived from the NMR

solution structure of a (+)-anti-(7R,8S,9S,10R)-benzo[a]pyrene-DE adduct bound to the N6

nitrogen of adenine [(+)-trans-B[a]P-DE-N6-dA] (PDB: 1DXA51) as described in our pre-

vious work examining the contrast between bay and fjord model systems.21 Each model
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system consists of 9-methyl-adenine with either a bay region phenanthrene (trans-PHE-DE-

N6-dA, Fig. 3(a)) adduct or a fjord region benzo[c]phenanthrene (trans-B[c]P-DE-N6-dA,

Fig. 3(b)) adduct replacing the B[a]P-DE. With the exception of the dihedral parameters

dih1 [φdih1 : C6-N6-C20-C20a, highlighted red in Fig. 3(a)(b)] and dih2 [φdih2 : C6-N6-C20-

C19, highlighted green in Fig. 3(a)(b)] that characterize the torsional energy landscape of the

adduct covalent bond (Fig. 3(a) - φ), model systems are parameterized using low penalty

CHARMM General Force Field (CGenFF) / ParamChem.com1�3 analogy assignments as

well as VMD-Force Field Tool Kit4,52 optimized parameters for those that resulted in high

CGenFF penalties. Note that CGenFF / ParamChem.com assigned dihedral parameters

for dih1 and dih2 were the highest penalty parameters in our model systems (75 and 46.5

respectively) highlighting the need for focused optimization of these parameters as well as

the e�ectiveness of CGenFF / ParamChem.com penalty scoring.

Figure (3) Model systems: (a) bay region trans-PHE-DE-N6-dA, dihedral parameter dih1:
C6-N6-C20-C20a highlighted in red and dihedral parameter dih2: C6-N6-C20-C19 high-
lighted in green (b) fjord region trans-PHE-DE-N6-dA
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Relaxed QM torsion scans of the adduct covalent bond driven in 10° increments by

φdih1 ∈ (-180°,180°] were previously conducted at the MP2/6-31G(d) level of theory utilizing

the Gaussian 1653 software package for both the PHE and B[c]P model systems (respectively

Fig. 4(c)(d) and Fig. 5(c)(d) black triangles).21 Note this results in m = 36 discrete scan

points {(φdih1, i , φdih2, i)| i = 1, ...,m} where we plot the respective PESs using the driving

geometric parameter φdih1 . An analogous relaxed MM PES scan was conducted with the

dihedral force constants for dih1 and dih2 set to zero utilizing NAMD54 and conjugate

gradient minimization. Where {EQM
i | i = 1, ...,m} and {EMMkdih1,kdih2=0

i | i = 1, ...,m} are

respectively the QM and MM energies resulting from the corresponding relaxed PES scans,

the discrete di�erence potential Ediff = {Ei| i = 1, ...,m} where Ei = EQM
i −EMMkdih1,kdih2=0

i

elucidates the form of the dihedral potential that the sum of the dih1 and dih2 dihedral force

�eld terms must �t in order for the complete MM PES to accurately model the QM PES.

We have previously shown the e�cacy of utilizing asymmetric dihedral potentials to

parameterize dih1 in PAH-DNA adducts,21 hence we simultaneously optimize dihedral terms

for dih1 and dih2 by respectively calculating the coe�cients aj1 , bj1 and aj2 , bj2 that achieve

a least squares �t of the truncated Fourier series:

Eφdih1 +Eφdih2 =
∑
j1∈M1

[aj1 cos(j1φdih1)+bj1 sin(j1φdih1)]+
∑
j2∈M2

[aj2 cos(j2φdih2)+bj2 sin(j2φdih2)]

(33)

where M1,M2 ⊆ {1, 2, 3, 4, 5, 6} are the multiplicities of the dihedral terms. Optimized

dihedral terms are then transformed into the CHARMM requisite dihedral format:

Eφdih1 + Eφdih2 =
∑
j1∈M1

kj1
[
1 + cos(j1φdih1 − δj1)

]
+
∑
j2∈M2

kj2
[
1 + cos(j2φdih2 − δj2)

]
(34)

using:

kl =
√
a2l + b2l and δl = Arg(al + ibl) ∈ (−π, π] l = j1 or j2. (35)

Note above that i =
√
−1 where as "i" is an index.
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Where {(φdih1, i , φdih2, i)| i = 1, ...,m} are the PES scan points described above, n1 and

n2 are the largest multiplicities of the dih1 and dih2 dihedral terms respectively (we presume

j1 = 1, ..., n1 and j2 = 1, ..., n2 for simplicity), and where we treat the right hand side of

the matrix equation as a perturbation in order to apply the results outlined in the previous

sections; the resulting matrix equation Ax = b + e where A ∈ Rm x 2(n1+n2) and b + e ∈ Rm

have elements of the form:

Ai,2j−1 = cos(jφdih1, i)−
1

m

m∑
i=1

cos(jφdih1, i) (36)

Ai,2j = sin(jφdih1, i)−
1

m

m∑
i=1

sin(jφdih1, i) (37)

for i = 1, ...,m and j = 1, ..., n1

Ai,2j−1 = cos((j− n1)φdih2, i)−
1

m

m∑
i=1

cos((j− n1)φdih2, i) (38)

Ai,2j = sin((j− n1)φdih2, i)−
1

m

m∑
i=1

sin((j− n1)φdih2, i) (39)

for i = 1, ...,m and j = n1 + 1, ..., n1 + n2

(bi + ei) = Ei −
1

m

m∑
i=1

Ei (40)

for i = 1, ...,m.

Note that the respective data sets are shifted so that their averages are zero and that the

elements of A can be adjusted as needed to suit the desired multiplicities of the dihedral

terms being optimized.

The unknown vector x ∈ R2(n1+n2) has elements consisting of the unknown Fourier coe�cients

from (33) in the form:

x2j−1 = aj1 and x2j = bj1 (41)
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for j = 1, ..., n1 and where j1 = j and,

x2j−1 = aj2 and x2j = bj2 (42)

for j = n1 + 1, ..., n1 + n2 and where j2 = j− n1.

We obtain optimized Fourier coe�cients for (33) and in turn optimized dihedral force and

phase constants for (34) from the least squares solution to the matrix equation.

It is well understood that it is an established best practice to utilize even functions

with multiplicities appropriate to the symmetry of the molecular system at hand in order

to optimize parameters that are transferable among systems with similar atomic connectiv-

ity.5,12,55 However, where we seek to optimize custom dihedral terms for bay and fjord region

PAH-DNA adduct systems that are only meant for use in stereochemically and structurally

analogous systems, and where we seek to demonstrate the e�cacy of the TSVD approach,

dih1 and dih2 are each parameterized by a six term series with variable phase. In each

case, the singular values σi and terms uTi (b + e) were examined for regions over which the

DPC is satis�ed and for well-de�ned gaps in the singular value spectrum (Figs. 4(a) and

5(a)). In both cases a well de�ned gap in the singular value spectrum is observed between

σ12 and σ13, coinciding with the indices over which the DPC is satis�ed in practice. Note

that for the B[c]P model system, the DPC appears to be satis�ed for i = 1, ..., 11, but the

singular values σ1, ..., σ12 are nearly multiple and the singular value spectrum should not be

truncated between nearly multiple singular values. Relative gaps of ωk=12(PHE) = 0.1059

and ωk=12(B[c]P ) = 0.1182 are observed where the average relative gaps in each system's

singular value spectrum are: ω(PHE) = 0.7788 and ω(B[c]P ) = 0.8009. Additionally, where

we treat the right hand side of the matrix equation as described above, we observe a corner

in the log scale graph of the curve (‖r̃λ‖2, ‖x̃λ‖2) and the plot (‖r̃k‖2, ‖x̃k‖2) that indicates

the truncation parameter should be k = 12.

Utilizing these observations, we obtain the TSVD solutions x̃k=12(PHE) and x̃k=12(B[c]P )

and using Hansen's estimate λ = (σk σk+1)
1
2 we obtain regularized solutions x̃λ=1.8936(PHE)
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and x̃λ=1.8800(B[c]P ). The resulting (and very similar) CHARMM compatible dihedral terms

are listed in Tables 1 and 2.

Table (1) TSVD and Tikhonov Regularization optimized dihedral terms for the PHE model
system.

PHE x̃k=12 x̃λ=1.8936

n kn(kcal/mol) δn kn(kcal/mol) δn
dih1 1 1.9836 -163.3974° 1.8087 -163.7064°

2 1.0361 175.6410° 0.9515 175.5172°
3 0.1689 -105.5212° 0.1628 -111.3787°
4 0.4336 -94.13046° 0.4042 -95.8530°
5 0.3374 -109.4845° 0.3012 -118.7172°
6 0.0619 -157.9412° 0.1356 98.1378°

dih2 1 1.9822 -38.1046° 1.8015 -38.1292°
2 1.0697 69.3318° 0.9610 69.6258°
3 0.2503 -134.1464° 0.2305 -134.2927°
4 0.3125 39.4302° 0.2482 37.1320°
5 0.3365 159.8988° 0.2981 169.9803°
6 0.1428 -110.1871° 0.2644 -84.9764°

Table (2) TSVD and Tikhonov Regularization optimized dihedral terms for the B[c]P model
system.

B[c]P x̃k=12 x̃λ=1.8800

n kn(kcal/mol) δn kn(kcal/mol) δn
dih1 1 2.8736 -145.8997° 2.6145 -145.5963°

2 1.5336 -172.9189° 1.3922 -172.3537°
3 0.2343 126.6249° 0.2158 125.8856°
4 0.2127 79.1159° 0.2373 94.0870°
5 0.2334 50.8627° 0.1727 52.2543°
6 0.2297 172.6102° 0.1487 159.7990°

dih2 1 2.8802 -20.6135° 2.6183 -20.7331°
2 1.4288 76.6190° 1.2897 75.8955°
3 0.1162 108.7005° 0.0857 99.3821°
4 0.2065 162.5793° 0.2541 143.4855°
5 0.3242 -64.0855° 0.3336 -63.7747°
6 0.0994 -29.2053° 0.1220 -56.0529°
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Relaxed MM scans of the adduct covalent bond were repeated for the PHE and B[c]P

model systems utilizing the TSVD (Fig 4(c) and 5(c)) and Tikhonov Regularization (Fig

4(d) and 5(d)) optimized dihedral terms. In all cases the MM PES achieved an accurate

�t to the target QM PES with the resulting RMSEs less than the 1.0 kcal/mol threshold

for chemical accuracy (Table 3) and demonstrating the e�ectiveness of this parameterization

approach. Note that while we have applied this approach to optimize a pair of dihedral

parameters around the same rotatable bond, it can be applied to any number of parameters

by augmenting the matrix equation Ax = b with the appropriate force �eld terms and target

QM energies.

Table (3) Error Data (kcal/mol): Adduct covalent bond dihedral angle φ, MM PES �t to
QM PES

PHE B[c]P
x̃k=12 x̃λ=1.8936 x̃k=12 x̃λ=1.8800

max abs error 1.3889 1.3003 1.2162 1.6645

RMSE 0.4102 0.4885 0.4817 0.6923
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Figure (4) PHE model system:
(a) Well de�ned gap in the singular value spectrum between σ12 and σ13
[red squares: {σi}] and in practice, the DPC satis�ed for i = 1, ..., 12[
blue circles: {uTi b} & green triangles: {u

T
i
b

σi
}
]
resulting in k = 12.

(b) Corner in the log scale curve (‖r̃λ‖2, ‖x̃λ‖2) (solid line) and the plot (‖r̃k‖2, ‖x̃k‖2) (red
diamonds)
(c) MM PES (red circles) with TSVD optimized dihedral terms (k = 12) and target QM
PES (black triangles) for the adduct covalent bond dihedral angle φ
(d) MM PES (red circles) with Tikhonov Regularization optimized dihedral terms

(λ = (σ12 σ13)
1
2 = 1.8936) and target QM PES (black triangles) for the adduct covalent

bond dihedral angle φ
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Figure (5) B[c]P model system:
Well de�ned gap in the singular value spectrum between σ12 and σ13 [red squares: {σi}]
and in practice, the DPC satis�ed for i = 1, ..., 11. Note the truncation parame-
ter should not be set between (nearly) multiple singular values, resulting in k = 12[
blue circles: {uTi b} & green triangles: {u

T
i
b

σi
}
]
.

(b) Corner in the log scale curve (‖r̃λ‖2, ‖x̃λ‖2) (solid line) and the plot (‖r̃k‖2, ‖x̃k‖2) (red
diamonds)
(c) MM PES (red circles) with TSVD optimized dihedral terms (k = 12) and target QM
PES (black triangles) for the adduct covalent bond dihedral angle φ
(d) MM PES (red circles) with Tikhonov Regularization optimized dihedral terms (λ =

(σ12 σ13)
1
2 = 1.8800) and target QM PES (black triangles) for the adduct covalent bond

dihedral angle φ
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Conclusion

We have seen that in molecular mechanics force �eld parameter optimization, ill-posed least

squares problems can be understood in terms of small elements in the singular value spectrum

of the matrix A that cause standard least squares solutions to blow up, resulting in unusable

force �eld terms. Both the TSVD and Tikhonov Regularization in standard form are e�ective

approaches to ill-posed least squares problems that eliminate or dampen the impact of small

singular values on the least squares solution. In order to e�ectively apply these approaches,

truncation and regularization parameters must be selected so that the resulting solutions

are not overtly impacted by perturbations in the matrix equation. To this end, we have

outlined Hansen's development of the Discrete Picard Condition and accompanying results

that allow for systematic determination of the appropriate truncation parameter. This in

turn allows for systematic determination of a corresponding regularization parameter, with

the resulting truncated and regularized solutions being similar. This approach has been

e�ectively applied to optimization of dihedral parameters in genotoxic PAH-DNA adducts

that results in MM PESs that �t target QM PESs with chemical accuracy. As the TSVD and

accompanying truncated solutions can be calculated as e�ciently as Tikhonov regularized

solutions in standard form, and because the truncation parameter can be used to determine

the regularization parameter, the TSVD is an e�ective approach to ill-posed least squares

problems that arise in force �eld parameter optimization.

Data Availability

The data that support the �ndings of this study are openly available at:

https://github.com/derekjurwin/PAH-DNA-TSVD.56
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