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Abstract

This study assessed whether a sample of two hundred seven 3- to 7-year-olds could interpret 

multidigit numerals using simple identification and comparison tasks. Contrary to the view that 

young children do not understand place value, even 3-year-olds demonstrated some competence 

on these tasks. Ceiling was reached by first grade. When training was provided, there were 

significant gains, suggesting that children can improve their partial understandings with input. 

Findings add to what is known about the processes of symbolic development and the incidental 

learning that occurs prior to schooling, as well as specifying more precisely what place value 

misconceptions remain as children enter the educational system.

Research has established that most children enter school with basic counting skills and a 

firm conceptual understanding of numbers up to 10. From an early age, children can name, 

match, order, and calculate with these quantities (for a review, see Mix, Huttenlocher, & 

Levine, 2002). This early competence provides a strong foundation upon which to build 

conventional skills and most children fare well as long as single-digit number facts are 

involved. However, when multidigit numbers are introduced, even competent children 

struggle— struggles that manifest themselves not only in weak place value concepts, but 

also in rote, error-prone application of algorithms for multidigit calculation (Fuson, 1990; 

Kamii, 1986; Kouba et al., 1988; Labinowicz, 1985; Miura, 1987; Ross, 1990; Towse & 

Saxton, 1997). This pattern is concerning because place value is the gateway to 

conceptualizing large quantities and more complicated mathematical operations, such as 

addition with carrying. Moreover, there is a significant relation between children’s place 

value skills in early elementary grades and subsequent problem-solving ability. In short, 

© 2013 The Authors Child Development © 2013 Society for Research in Child Development, Inc. All rights reserved.

Correspondence concerning this article should be addressed to Kelly S. Mix, College of Education, Michigan State University, 620 
Farm Lane, East Lansing, MI 48824. kmix@msu.edu. 

HHS Public Access
Author manuscript
Child Dev. Author manuscript; available in PMC 2015 June 09.

Published in final edited form as:
Child Dev. 2014 ; 85(3): 1306–1319. doi:10.1111/cdev.12197.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



children who fail to master place value face chronic low achievement in mathematics (Ho & 

Cheng, 1997; Moeller, Martignon, Wessolowski, Engel, & Nuerk, 2011).

These difficulties have led researchers to conclude that place value notation is 

fundamentally inaccessible to young children. Some have argued that the spoken and written 

numeration systems are so different that children fail to see how they are related without 

specialized instruction, such as lessons using base-10 blocks (e.g., Fuson, 1990; Fuson & 

Briars, 1990). Others have argued that children lack the logical capacity to comprehend 

place value notation (Chandler & Kamii, 2009; Fosnot & Dolk, 2001). On either account, it 

is assumed place value notation is incomprehensible to children without significant 

development and direct instruction.

However, these assumptions are inconsistent with what we know about early cognition and 

learning. We know, for example, that toddlers acquire the complex grammatical structures in 

their native languages simply through exposure—without the need for direct instruction 

(Aslin & Newport, 2012; Huttenlocher, Vasilyeva, Cymerman, & Levine, 2002; 

MacNamara, 1972). The same is true for word learning. Even in complex scenes with 

numerous potential referents (Smith & Yu, 2008), or long speech streams without gaps 

between words (Graf-Estes, Evans, Alibali, & Saffran, 2007), infants can segment and learn 

the meaning of new words with only brief exposure. Researchers have explained these 

findings in terms of statistical learning—the idea that learners actively make sense of the 

perceptual stream by tabulating the statistical patterns in it (e.g., Kidd, 2012; Yu, Ballard, & 

Aslin, 2005). So, for example, infants identify word segments in an uninterrupted speech 

stream by noticing that /pa/ follows /ba/ more frequently than it follows /do/.

It is possible children acquire a partial understanding of multidigit numerals the same way. 

Parents and teachers provide relatively little direct input related to number (Gunderson & 

Levine, 2011; Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 2006) so it is unlikely 

they deliberately teach children to read multidigit numbers. However, multidigit numerals 

are ubiquitous in children’s environments—as room numbers, phone numbers, and street 

addresses; in books, calendars, and menus; and throughout stores on packaging, price tags, 

and signs. Because statistical learning happens rapidly, this admittedly limited exposure 

could be sufficient to begin extracting certain structural patterns. For example, two-digit 

number names almost always have the sound /ee/in the middle and three-digit number 

names almost always have the word hundred in them. Obviously, this correlation is not 

perfect and it breaks down further when longer number names are considered, but it is 

consistent enough to help children guess that the words thirty-four, for example, map onto a 

number that looks like XX and not one that looks like X. Children could detect this 

correlation by hearing multidigit numbers named while also seeing them in print, as they 

might when parents are commenting on a calendar, asking their child to push the buttons on 

an elevator, or looking for a room number in an office building. Other statistical cues to 

number identity include the word order of number names (e.g., seventy-eight maps onto 78 

better than the name eighty-seven in left-right reading order) and the association of single-

digit numerals to their verbal names (e.g., the numeral 324 is probably not named six 

hundred fifty-one because it has neither a six, a five, or a one in it).
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Identifying a word’s referent in a complex perceptual scene is the first step toward 

determining its meaning, but statistics could also support inferences about multidigit number 

meanings. For example, children could use their knowledge of single-digit number meanings 

to make guesses about the ordinality of multidigit numbers. Preschool children know large 

single-digit numerals (e.g., 7, 8, 9) represent larger quantities than small single-digit 

numbers (e.g., 1, 2, 3), even if they have not learned the precise meanings of these symbols 

(LeCorre & Carey, 2007; Sarnecka & Gelman, 2004). This association would be enough to 

support the correct guess that 899 represents more than 122. Eventually, children may 

realize that the magnitude of the leftmost digit matters more than the others, or that the 

number of digits matters more than the meanings of the individual digits. These realizations 

could stem from experiences with package labels (e.g., a box of blocks labeled XXX is 

bigger and has more in it than the box labeled XX). Such insights, though not the same as a 

complete understanding of place value, could be significant steps toward this understanding. 

However, the possibility that children bootstrap into the place value system has been largely 

overlooked due to the intense focus on subsequent misconceptions and limitations (e.g., 

error-prone multidigit calculation).

In fact, there is emerging evidence that young children know quite a lot about multidigit 

numerals. In a recent study, preschool children demonstrated the ability to write multidigit 

numerals with some success (Byrge, Smith, & Mix, in press). Moreover, their errors were 

“intelligent”—appearing to reflect inferences about the structure of written notation gleaned 

from statistical patterns in verbal input. For example, rather than using spatial position alone 

to indicate base-10 units in written numerals, children frequently invent a sort of expanded 

notation, such that 113 is written as 10,013. Although this error has been viewed by some as 

further evidence of children’s struggles with place value notation (e.g., Bussi, 2011), Byrge 

et al. (in press) argued that it is more akin to grammatical overgeneralizations (e.g., goed 

instead of went) and may represent an important developmental milestone even if it does not 

align completely with cultural conventions.

In summary, although children may lack a complete understanding of place value until late 

elementary school and may well struggle with certain misconceptions without instructional 

support, it is unlikely they enter school a blank slate. Instead, they may bring partial 

knowledge of the place value system derived from sensitivity to statistical patterns in 

multidigit numerals and verbal number names. However, this partial knowledge has not 

been demonstrated empirically and little is known about its developmental course. By taking 

a broader, developmental perspective, in which multidigit numerals are seen as akin to other 

forms of language input, this study addresses that gap. Specifically, rather than embedding 

our assessment in complex tasks, such as multidigit calculation, we used simple tasks that 

focused directly on the mappings among written numerals, spoken numbers, quantities of 

dots, and block patterns. Thus, we could more sensitively ascertain the extent to which 

young children actively make sense of the place value system.

Experiment 1

The first experiment examined the performance of kindergarten, first-, and second-grade 

children in two tasks: (a) mapping spoken number names to digits, dots, or block 
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representations and (b) indicating which of two arrays—digits, dots, or blocks—represented 

“more.”

Method

Participants—The total sample of 91 children was divided into three age groups based on 

grade in school (kindergarten: M = 61 months, range = 49–73 months, n = 31; first grade: M 

= 74 months, range = 61–84 months, n = 25; second grade: M = 86 months, range = 72–96 

months, n = 35). Roughly half the participants (n = 37) were boys, and they were evenly 

divided among the three grades (kindergarten: n = 12; first grade: n = 12; second grade: n = 

13). An a priori power analysis, using the statistical program G*Power 3.1 (Faul, Erdfelder, 

Buchner, & Lang, 2009), indicated that a sample size of 21 participants per age group (or n 

= 63 total) would be adequate to achieve 80% power with a medium effect size.

All children came from the same, ethnically diverse, middle-socioeconomic-status (SES) 

population, for which the 2010 U.S. Census reported 78.4% European American, 10.6% 

Asian, 6.8% African American, 1.4% from other ethnicities, and 2.9% from two or more 

ethnicities. Within these groups, 3.4% were identified as Hispanic or Latino. The median 

family income in this community was $81,158.

Materials and Procedures—Children’s knowledge of multidigit numerals was assessed 

using two tasks. For the Which is x? task, children saw two quantities represented with either 

(a) written numerals, (b) base-10 blocks, or (c) clouds of dots, and were asked to point to the 

quantity named by the experimenter (e.g., “Which is one hundred thirty-two?”). The same 

20 items were used in each stimulus condition (numerals, blocks, and dots), but they were 

presented in one of two random orders. The order of the three stimulus conditions was 

counterbalanced across children.

The numeral displays consisted of two numerals printed in black ink, 96-point Calibri font, 

and placed side by side in the center of a horizontally oriented 8 × 11 in. sheet of white 

paper. The two numerals were separated by 2.6–4 in. of white space, depending on how 

many digits were involved (i.e., one-digit numerals were spaced farther apart than two- and 

three-digit numerals). Across the 20 trials, the larger of the two quantities was presented on 

the right for 10 trials and on the left for 10 trials, in a random order.

The blocks displays showed the same quantities, also presented side by side on a horizontal 

8 × 11 in. sheet of white paper, but represented using photographs of base-10 blocks. The 

blocks were lined up left to right, from highest to lowest place, just as they are in written 

numerals. The overall length of each quantity was 15.65 mm on average (range = 3.81–

29.46 mm). As for the numerals condition, the larger quantity appeared on the left for half 

the trials, and the order of left-right presentation was randomized.

The dot displays contained two arrays of black dots (dot diameter = 1.3 mm), arranged side 

by side on an 8 × 11 in. sheet of white paper, and separated by a vertical line. Within each 

display, the dots were randomly dispersed within an imaginary 93 × 70 mm rectangle (total 

area = 6,510 mm). The sizes of the individual dots varied depending on how many dots were 

in the display, such that more numerous displays contained smaller individual dots (range = 
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1.3–3.0 mm). In this regard, number varied inversely with dot size and density, but overall 

area of the dot clouds was controlled. This was acceptable because our aim was not to test 

whether children could map or compare exact numbers of discrete dots. Instead, we aimed 

only to test whether children could (a) map numerals to an approximate quantitative referent 

and (b) compare such quantities as a baseline for interpreting their performance in the other 

conditions. Thus, it was not important to control dimensions of continuous amount and, 

given the set sizes involved, it was preferable to allow access to these dimensions if it helped 

children discriminate the sets. As for the other stimulus conditions, the larger quantity 

appeared on the left for half the trials, and the order of left-right presentation was 

randomized.

The Which is more? task was similar except that instead of being asked to identify a specific 

number (e.g., 58), children were asked to identify which numeral, block configuration, or 

dots picture represented the larger quantity (e.g., “Which is more?”). The parameters of the 

displays were the same across tasks, however. For example, the dot displays in the Which is 

more? task contained two arrays of black dots (dot diameter = 1.3 mm, range = 1.3–3.0 

mm), arranged side by side on an 8 × 11 in. sheet of white paper and separated by a vertical 

line. Within each display, the dots were randomly dispersed within an imaginary 93 × 70 

mm rectangle (total area = 6,510 mm). As before, the same 20 items were used for all three 

stimulus conditions (numerals, blocks, and dots) but in different random orders. The order of 

three stimulus conditions within each task was counterbalanced across children, and the 

order of the two tasks was counterbalanced such that half the children within each grade 

completed the Which is x? task first.

Because children completed three versions of the 20 Which is x? items, and three versions of 

the 20 Which is more? items, they completed 120 items total. Although this constituted a 

rather lengthy test in terms of number of items, children required only about 10–15 min to 

complete it and there were no signs of fatigue—that is, all children completed all items. 

Testing took place in the late fall or early winter, when children had received about 3 

months of grade level instruction. For the majority of children, this instruction was based on 

the Everyday Mathematics curriculum. Children were tested in groups of two or three, but 

were seated in such a way that they were unable to view their peers’ test papers.

The sets of items for the Which is more? and Which is x? tasks were selected to be roughly 

comparable but not identical, so that they could be used as within-subject measures in some 

experiments and because the likely source of errors (and their diagnosis) would benefit from 

somewhat different comparisons. Both sets included some one-digit numerals so that we 

could assess whether even young preschoolers could map names to single-digit numbers and 

compare those numbers with respect to quantity. Furthermore, the Which is x? set included 

numbers that differed only in the addition or place of zero since pilot work indicated one 

early common error in mapping names to numbers was knowing how to interpret 0. For the 

Which is more? task, pilot work indicated that children generally picked the string with more 

digits as “more” and therefore the set tested included more (but not all) equal length strings 

and strings composed of the same digits in different places or that different in just one digit.
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Results and Discussion

Children’s proportions correct by task and grade level are presented in Table 1. An 

inspection of the means suggests there is improvement from kindergarten to second grade, 

but that all children performed well above chance. This pattern was confirmed using t tests 

that compared each age group’s mean score to chance (i.e., 50%). Actual performance was 

significantly different from chance across age, task, and condition (all ps < .001). We 

examined group differences using a repeated measures analysis of variance (ANOVA) with 

task (Which is x? vs. Which is more?) and stimulus condition (numerals, dots, and blocks) as 

within-subjects factors, and grade level (K, 1, 2) as a between-sub-jects factor. As expected, 

there was a significant main effect of grade, F(2, 264) = 94.37, mean square error MSE = .

03, p < .001, , due to significant improvement on the tasks with increasing age such 

that second graders (M = 0.87, SD = .10) outperformed both first graders (M = 0.81, SD = .

12), t(178) = 4.02, p < .001, and kindergarten students (M = 0.66, SD = .15), t(196) = 11.77, 

p < .001, and first graders outperformed kindergarteners, t(166) = 6.87, p < .001, all two-

tailed, Bonferroni t tests.

The ANOVA also revealed a significant main effect of stimulus condition, F(2, 264) = 

34.44, MSE = .03, p < .001, , that was due to better performance in the numerals 

condition (numerals vs. blocks: p < .001; numerals vs. dots: p < .0001; blocks vs. dots: p = .

65) and a significant main effect of task type, F(1, 264) = 97.51, MSE = .01, p < .0001, 

, that reflected higher scores overall on the Which is more? task (vs. Which is x?). 

These effects were mediated by significant interactions between task and stimulus, F(2, 264) 

= 29.73, MSE = .01, p < .001, , and age and stimulus, F(4, 264) = 3.05, MSE = .03, p 

= .02, . Pairwise comparisons indicated that the Task × Condition interaction was due 

to several significant condition differences in the Which is x? task (Mnumerals = .86, SD = .

17; Mblocks = .68, SD = .68), numerals versus blocks, t(180) = 6.95, p < .001, and numerals 

versus dots, t(180) = 9.32, p < .0001, Bonferroni two-tailed, but no significant stimulus 

differences in the Which is more? task.

The Age × Stimulus interaction was due to older children (first and second graders) 

performing significantly better in the numerals condition than in both blocks and dots-

numerals vs. blocks: first grade Mnumerals = .91, SD = .10; Mblocks = .77, SD = .10), t(48) = 

4.72, p < .001, and second grade (Mnumerals = .97, SD = .04; Mblocks = .86, SD = .10), t(68) = 

6.05, p < .001; numerals vs. dots: first grade (Mdots = .74, SD = .08), t(48) = 6.32, p < .001, 

and second grade (Mdots = .80, SD = .06), t(68) = 13.66, p < .001, Bon-ferroni two-tailed–

but only a marginally significant condition difference between numerals and blocks for 

kindergarten students (Mnumerals = .70, SD = .19; Mblocks = .62, SD = .13), t(60) = 1.87, p < .

067, Bon-ferroni, two-tailed. Children in second grade also performed better in the blocks 

condition (vs. dots), t(68) = 2.90, p = .005, but this difference was not obtained in the other 

two grades (both ps > .32).

Certain aspects of these results are not surprising in light of previous research. First, there is 

reason to think children would perform quite well in the Which is more? dots and blocks 

conditions based on studies showing that infants and young children can discriminate large 
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quantities presented in visual arrays (e.g., Cantlon, Platt, & Brannon, 2009; Halberda & 

Feigenson, 2008; Lipton & Spelke, 2003). Also, we did not prevent children from using 

continuous perceptual variables, such as density or area, to discriminate these displays so 

some degree of success was anticipated. Also, it is not surprising that Which is more? 

performance would be higher than the performance in Which is x? task given that this task 

requires a less precise grasp of the quantities being compared. Children only need to identify 

which quantity is greater. The fact that second-grade students performed better for blocks 

than dots likely reflects greater familiarity with these materials after exposure to them in 

school. Most kindergarten and first-grade students would have had far less, if any, 

experience with base-10 blocks.

What is surprising is that (a) children of all ages performed significantly better in the 

numerals version of both tasks than they did with either of the visual arrays (i.e., blocks or 

dots) and (b) children of all ages performed above chance on the Which is x? version of the 

blocks and dots conditions even though this task required them to interpret verbal number 

names. This evidence of strong performance in the conditions and tasks that involve 

numerals and number names suggests that children understand these symbols well enough to 

support accurate and precise comparisons.

We next examined children’s performance on the numerals tasks more closely, to determine 

which particular items were relatively accessible. The 20 Which is x? items are presented in 

Table 2, rank ordered for difficulty based on the kindergarten children’s mean performance. 

Recall that there was a 50% probability of being correct by guessing in this forced-choice 

task. When we compared each age group’s performance to chance, item by item, we found 

that kindergarteners performed randomly on the first 6 items in the table, but performed 

significantly above chance on the rest.

We can infer the strategies children used by examining the demands and affordances of 

various items. Several of the easiest items could be solved correctly by recognizing 

individual written digits (e.g., 2 vs. 8; 4,279 vs. 6,358). That is, if a child knew what the 

numeral 2 looked like, it would be possible to identify even a four-digit number with 2 in it 

versus one without. However, other items required at least partial knowledge of the place 

value system. For example, to identify 670 (vs. 67), children could not simply choose the 

written number that had 6 and 7 in it. They would also have to know that the word hundred 

in the number name signaled more digits. Indeed, kindergarten children performed quite 

well on a number of items with this requirement (e.g., 850 vs. 85, 402 vs. 42, etc.). Another 

heuristic children might use in this task would be mapping the first number name to the 

leftmost digit (as for 807 vs. 78). However, for most items requiring this inference, children 

performed at chance (e.g., 356 vs. 536) so it is not clear they applied a leftmost digit 

strategy. Items that required accurate mapping, place by place, and could not be solved using 

any of the partial knowledge heuristics (e.g., 350 vs. 305; 2,843 vs. 2,483) were among the 

most difficult for kindergarten students. These items remained the most challenging in first 

grade, but by second grade, children responded to even these items at ceiling.

The rank ordering of performance on Which is more? items is presented in Table 3. On this 

task, children saw two written numerals and chose the one that represented a larger quantity. 
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Here again, children performed mostly at ceiling by first grade. Kindergarten children 

performed at chance on the first three items, but were significantly above chance beyond 

that, albeit not close to ceiling. Thus, at least some kindergarten children had enough 

knowledge of place value and number meanings to make educated guesses.

Some of the easiest items could be solved by recognizing individual digits (e.g., 6 vs. 8). For 

a few items, children could answer correctly if they knew that two-digit numbers represent 

smaller quantities than three-digit numbers (e.g., 101 vs. 99). Others had the same number of 

digits but one digit differed (e.g., 525 vs. 585; 4,520 vs. 4,620). Although the differences in 

these pairs was relatively subtle, children performed quite well, perhaps because they tend to 

choose quantities with more large numbers in them—for example, choosing the number with 

8 in it for 525 vs. 585. The more challenging items had the same digits in different orders. It 

is possible for children with partial knowledge of place value to choose the larger quantity if 

they understand that the leftmost digit carries more weight. In some cases, they appeared to 

use this heuristic (e.g., 27 vs. 72, 123 vs. 321, 6,892 vs. 2,986); however, this was not 

completely consistent as several such items were also among the most difficult (e.g., 614 vs. 

461, 5,687 vs. 8,657). Several of this type also remained the most difficult items in first 

grade.

Overall, the results of Experiment 1 are unexpected given the well-documented difficulties 

children have grasping multidigit numerals in previous research. This is not to say children 

have mastered place value at this age, but rather that they know more than previous research 

might lead one to believe. Even kindergarten students who are unlikely to have received 

direct instruction in place value can accurately identify and compare written numerals— 

better, in fact, than they can identify and compare pictorial representations of the same 

quantities. This indicates that children are actively making sense of multidigit numerals they 

encounter in everyday life. Direct instruction likely enhances this ability. Children in first 

and second grades had likely been taught to read and write multidigit numerals (Common 

Core State Standards Initiative, 2010; National Council of Teachers of Mathematics, 2000) 

and they reached ceiling on both numerals tasks. Still, children bring a stronger experiential 

foundation to place value instruction than educators may realize.

The strong performance of kindergarten students in Experiment 1 raises the question of 

whether even younger children also exhibit understanding of multidigit numerals and large 

quantities. Perhaps children begin to make certain inferences even earlier. We investigated 

this possibility in Experiment 2.

Experiment 2

Method

Participants—The total sample of 92 children was divided into three age groups (3½-year-

olds: M = 45 months, range = 31–51 months, n = 26; 4½-year-olds: M = 56 months, range = 

52–60 months, n = 32, 5-year-olds: M = 65 months, range = 60–72 months, n = 34). 

Roughly half the participants (n = 44) were boys, and they were evenly divided among the 

three age groups (3½-year-olds: n = 11; 4½-year-olds: n = 17; 5-year-olds: n = 16). An a 

priori power analysis, using the statistical program G*Power 3.1 (Faul et al., 2009), 
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indicated that a sample size of 21 participants per age group (or n = 63 total) would be 

adequate to achieve 80% power with a medium effect size. All children came from an 

ethnically diverse, middle-SES population similar to that sampled in Experiment 1 but from 

another state. According to the 2010 U.S. Census, this community was 83.0% European 

American, 8.0% Asian, 4.6% African American, 1.6% from other ethnicities, and 3.0% from 

two or more ethnicities. Within these groups, 3.5% reported being of Hispanic or Latino 

descent. The median family income was $50,054. Participants were recruited from 12 

different day cares with diverse programs but with an overall focus on social and play 

activities. Many of the 5-year-olds were in some form of half-day kindergarten (at their day 

care); kindergarten is not required by the state of Indiana and the curriculum varies 

considerably across different schools.

Materials and Procedures—The materials and procedures were the same as in 

Experiment 1, except that children were tested individually and the tests had fewer items. 

Specifically, instead of 20 items per test (Which is x? vs. Which is more?), there were 8 

items per test in Experiment 2. Also, children were tested only on the numerals version of 

both tasks, and not the other conditions (blocks and dots). Thus, children completed 16 items 

total (vs. 120 in Experiment 1). The number of items was limited because pilot testing 

indicated that 3-year-olds were unable to complete 120 items. Also, because we were 

probing the very earliest emergence of competence, we did not include items we knew were 

more difficult for kindergarten students. Finally, because our main goal was to measure 

children’s ability to interpret written numerals, we tested only numerals items. The 8 items 

on each test were drawn from a pool of 16 items and counterbalanced across children. To 

maximize comparability across experiments, the 16-item pool comprised a subset of the 20 

items from Experiment 1.

Results and Discussion

Children’s proportion correct on the two tasks, by condition and age group, is presented in 

Table 4. As before, there was significant improvement with age. A repeated measures 

ANOVA with task (Which is x? vs. Which is more?) and age (3½, 4½, and 5 years old) as a 

between-subjects factor revealed a significant main effect of age, F(1, 89) = 13.59, MSE = .

04, p < .001, . Post hoc tests with Bonferroni correction showed that the 5-year-olds 

performed better than either 3½-year-olds (p < .001) or 4½-year-olds (p = .004) but 4½-

year-olds did not outperform 3½-year-olds (p = .19). Still, all three age groups performed 

significantly above chance (see Table 4). Neither the main effect of task, nor task and age 

interaction reached significance.

The rank order performance of children on both tasks is presented in Tables 5 and 6. As in 

Experiment 1, children demonstrated some competence interpreting multidigit numerals 

from a much earlier age than previous research would suggest. They began to correctly 

identify and compare two- and three-digit numerals starting at 3½ years of age. Although 

there was steady improvement from 3½ to 5 years and children were not at ceiling on most 

items even at age 5, they nonetheless performed significantly above chance on both tasks by 

3½ years of age and on most items within each task by 4½ years of age. This is most likely 

attributable to exposure to multidigit numerals without formal instruction as not all children 
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in this study attended preschool and even for those who did, place value instruction probably 

was not offered. Thus, as in other areas of language development, it appears children infer 

the meanings of these numbers using whatever experiences they can access. If we focus on 

only the Which is x? items for which 3½-year-olds performed above chance, it appears they 

used two strategies. One strategy was simply recognizing familiar written digits, like 2, 8, 

and 12. The other strategy was knowing that the word hundred in a number name signals 

more digits (e.g., 201 vs. 21). This was not consistent, however, and most items that could 

be answered correctly that way were missed by 3½-year-olds (e.g., 670 vs. 67). Among 4½-

year-olds, this pattern was more consistent albeit far from ceiling.

Indeed, looking across Experiments 1 and 2, children did not reach ceiling until second 

grade, by which time they had almost certainly received place value instruction in school. 

Now that we know more specifically where younger children’s difficulties lie (i.e., which 

particular items were most difficult for them as evident in Tables 2, 3, 5, and 6), it is 

interesting to ask whether place value instruction can improve learning on these items. 

Previous research suggests two main approaches to place value instruction. One focuses on 

written symbols (Kamii, 1986) whereas the other incorporates concrete models, such as 

base-10 blocks (Fuson & Briars, 1990). In Experiment 3, we provided both types of 

instruction to a group of kindergarten students to see whether either approach would lead to 

improvement.

Experiment 3

Method

Participants—A sample of 24 kindergarten students (M = 57 months, range = 45–69 

months) was recruited from the same, ethnically diverse, middle-SES population sampled in 

Experiment 1. Roughly half the participants (n = 13) were boys. Children were evenly 

divided into two training groups: base-10 blocks (n = 12) and symbols-only (n = 12). An a 

priori power analysis, using the statistical program G*Power 3.1 (Faul et al., 2009), 

indicated that a sample size of 21 participants would be adequate to achieve 80% power with 

a medium effect size.

Materials and Procedure—Children’s knowledge of multidigit numerals was assessed 

using the two tasks from Experiment 1 (i.e., Which is x? and Which is more?). All three 

conditions (numerals, dots, and blocks) were tested within each task. There were 20 items 

from each condition, resulting in 60 items per task or 120 items total. Children completed 

both tasks prior to training and then again within 2 days of the final training session.

The two training groups completed five lessons on topics that included sorting and matching 

block types or number cards, copying block patterns or numerals, mapping numerals to 

blocks, mapping blocks to numerals, and block and number comparisons. The content and 

instructional approaches were modeled on those commonly used in schools and typical 

mathematics curricula (e.g., Everyday Mathematics). The two training conditions were 

based on different theoretical notions about the emergence of symbolic meaning and symbol 

grounding. One idea is that symbols are grounded in concrete experience (Barsalou, 2008; 

Lakoff & Nunez, 2000) and these experiences may be especially critical for young children 
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(e.g., Bruner, Olver, & Greenfield, 1966; Cuisenaire & Gattegno, 1953; Dienes, 1961). In 

support of this, studies have shown improved mathematical performance for children taught 

using concrete models or manipulatives (e.g., Fuson & Briars, 1990; see Sowell, 1989, for a 

review). An alternative view is that children construct an understanding of complex symbols 

via experiences with symbols themselves via logico-mathematical processes (e.g., Chandler 

& Kamii, 2009; Kamii, 1986). Even theories of grounded cognition admit a role for chaining 

from one symbolic representation to another (e.g., Lakoff & Nunez, 2000). That is, once the 

building blocks of a symbol system have been grounded in direct experience (e.g., the 

meaning of single digits), more complex symbolic forms can be understood with reference 

to these building blocks, rather than grounding every instance in a concrete experience. In 

line with this view, some researchers have claimed concrete models are either ineffective or 

detrimental (Ball, 1992; Kaminski, Sloutsky, & Heckler, 2008; McNeil, Uttal, Jarvin, & 

Sternberg, 2009). If early knowledge is based on intuitive awareness of the statistical 

regularities across written and spoken number names, then training that amplifies the 

regularities in these symbol systems could be the best approach to improving explicit 

understanding of place value. Alternatively, training that connects children’s early and not 

completely correct knowledge of place value to its conceptual underpinnings might be more 

effective, and such training could benefit from bridging via concrete representations, such as 

base-10 blocks. Accordingly, our training compared both kinds of approaches.

The lessons were presented by a highly trained experimenter over a period of 2 weeks, for 

225 min of instruction in total. Children worked in groups of four students but each had his 

or her own set of materials. The lesson content was identical for both groups except that 

children in the base-10 blocks group worked out the problems using individual sets of 

base-10 blocks (15-ones, 15-tens, 15-hundreds, and 2-thousands blocks). They also received 

vinyl mats (World Class Learning Materials, Chandler, NC) that were divided into four 

sections by place (thousands, hundreds, tens, and ones). The sections were arranged 

horizontally, from thousands on the left to ones on the right, thereby mirroring the order of 

written multidigit numerals. Also, each section was illustrated with a line drawing of the 

corresponding base-10 block. Children in the symbols-only condition were given plain white 

note cards with a single hand-written numeral ranging from zero to nine to complete parallel 

activities. For example, if children in the base-10 blocks group were asked to represent a 

multidigit numeral using blocks, children in the symbols-only group did so using their digit 

cards.

Results and Discussion

Children’s combined pretest scores were equivalent across conditions (Msymbols-only = .68, 

Mblocks = .69), t(70) = .03, p = .98, two-tailed, so children entered the study at the same level 

of place value knowledge. At pretest, children in both groups performed significantly above 

chance on the numerals items, but not on blocks or dots, on the Which is x? task and the 

opposite was true for the Which is more? task. (see Table 7). Both groups performed 

significantly above chance on average following training: symbols-only (M = 0.62, SD = .

10), t(35) = 7.29, p < .001, and blocks (M = 0.54, SD = .10), t(35) = 2.36, p = .02, and within 

some tasks and conditions, (see Table 7). However, pair-wise comparisons indicated that the 

gains from pre-to posttest were not significant for any task in either condition (all ps > .05). 
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Indeed, for blocks children, scores in the numerals condition actually dropped from pretest 

(M = 0.58, SD = .07) to post-test (M = 0.50, SD = .06), t(11) = 4.28, p = .001.

To further examine the differential effects of training, we submitted children’s posttest 

scores to a repeated measures ANOVA with task (Which is x? vs. Which is more?) and 

condition (numerals, dots, and blocks) as within-subject variables and training condition 

(blocks vs. symbols-only) as the between-subjects factor. There was a significant main 

effect of task, F(1, 70) = 212.37, p < .001, , such that Which is more? posttest scores 

were higher (Mwhich-is-x? = .51, SD = .13; Mwhich-is-more? = .57, SD = .09), t(23) = 1.80, p = .

04, one-tailed; however, there were no other main effects or interactions. Thus, it appeared 

that neither training condition led to improved scores.

If we focus on only the items that were particularly challenging, a different pattern emerged. 

We carried out a second ANOVA focusing on the numerals items for which children 

originally performed at chance because we wanted to determine whether training addressed 

the particular limitations children exhibited on school entry. The resulting 27 items (13 

Which is more? and 14 Which is x?) were submitted to a repeated measures ANOVA with 

test type (pre vs. post) as the within-subject variable and training condition (blocks vs. 

symbols-only) as the between-subjects variable. First, there was a significant main effect of 

test, F(1, 22) = 7.62, MSE = .008, p = .01, , that reflected overall improvement after 

training (Mpretest = .49, SD = .11; Mposttest = .56, SD = .12), t(23) = 2.55, p = .009, Bon-

ferroni, one-tailed. But there also was a Test × Condition interaction, F(1, 22) = 5.03, MSE 

= .04, p = .01, , in favor of the symbols-only training group (Mpretest = .48, SD = .14; 

Mposttest = .61, SD = .09). In short, there was a significant increase from pre- to posttest for 

the symbols-only group, t(11) = 4.24, p = .001, but not for those who received training with 

blocks (Mpretest = .50, SD = .10; Mposttest = .51, SD = .13), t(11) = .32, p = .75. Thus, there 

was evidence that symbols-only training led to improvement on certain items, but no 

evidence that training with base-10 blocks was helpful.

One could argue that these training effects are due to improvement that would have occurred 

over the period of the study even without training. It seems unlikely that the degree of 

improvement we observed could naturally occur over a 3-week period, given that it took 

children roughly 3 years to progress from emergent competence to mastery in Experiment 1. 

Also, if the results were due to maturation or incidental learning, we should not obtain 

different patterns of improvement for the two training conditions. Still, without a no-training 

comparison group, it is impossible to rule out this interpretation entirely.

General Discussion

Both research and the observations of teachers indicate that place-value notation is difficult 

for school age children to learn. Yet the present results indicate that preschool children know 

enough about how large numbers are written to map them to their spoken names and to 

judge relative magnitudes. To do this, they must know—at the very least—that place 

matters: The same digit represents more when it is to the left then to when it to the right in a 

string of digits (e.g., Which is more: 123 vs. 321?), numbers are read left to right (e.g., 
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Which is two-hundred-sixty-seven? 267 vs. 627?), and the number of digits is related to both 

magnitude (e.g., Which is more: 101 vs. 99?) and identity (e.g., Which is four-hundred-two: 

402 vs. 42?). Children’s ability to distinguish pairs such as 64 versus 604 and 21 versus 201 

also suggests they know something about zeros as place holders. This is certainly a much 

more extensive conceptual foundation than previously believed.

Because most children in the study had not received formal schooling with multidigit 

numbers, it seems likely they developed this knowledge from being in a literate world with 

written numbers. Their encounters with written multidigit numerals, coupled with 

knowledge of single-digit number meanings, exposure to spoken multidigit number names, 

and experience with a rough ordering of multidigit numerals (e.g., as one could observe in 

street addresses), could reveal several statistically regular patterns in this representational 

system— regularities children could use to make inferences and educated guesses about the 

meanings of multidigit numerals. We know children glean such regularities from the broad 

stream of language input and use these regularities to discern word boundaries (Saffran, 

Aslin, & Newport, 1996), word meaning (Smith & Yu, 2008), grammatical categories 

(Mintz, Newport, & Bever, 2002), and letter–sound associations (Treiman & Kessler, 2006). 

For example, Mintz et al. (2002) discovered that the co-occurrence patterns of words in 

speech to children supplied enough regularity to support discrimination of nouns and verbs. 

As these studies demonstrate children are sensitive to regularities in written words and 

speech, we should not be surprised if they also are aware of the regularities in written 

numerals.

This early competence, however, is far from a deep understanding of multidigit number 

meaning. There is clearly still much for children to learn about place value in school, and 

concrete models may play a role in this learning. However, the present results indicate that 

the potential correspondence between the different sized blocks and place value as realized 

in spoken number names is not obvious to young preschool children, because they 

performed relatively poorly in the blocks conditions. Moreover, children consistently 

performed best in the numerals conditions and tasks that required numeral-to-array mapping. 

This suggests the intriguing possibility that understanding physical place value blocks 

requires some prior (albeit incomplete) understanding of the written place value system. 

Manipulatives thus might not be the entry point for instruction, but better used to augment 

early understanding, perhaps as a way of making the knowledge latent in the writing system 

explicit. In contrast, the symbolic representations to which children have been exposed—and 

about which they have acquired some knowledge—may be the better starting point for 

explicit instruction.

Consistent with this idea, in Experiment 3, we found that instruction with written symbols 

led to gains, but not so with base-10 blocks. This adds to the evidence that base-10 blocks 

are not particularly transparent to children and also lends support to the view that experience 

with symbols themselves is an important, if not sole inroad to understanding place value 

(Kamii, 1986). Moreover, whereas blocks training did lead to improvement on blocks 

outcome measures, it is remarkable that symbols-only instruction also led to significant 

improvement on these tasks. This suggests that symbols may be an inroad for understanding 
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base-10 blocks as much or more than base-10 blocks are an inroad to understanding written 

symbols.

Vygotsky argued that conceptual development is supported and transformed by the 

internalization of cultural tools, such as language. Experiments 1 and 2 suggest that this 

process begins early, before formal training as preschool children appear to have developed 

an understanding of the symbols for multidigit numerals via everyday experiences with the 

symbols themselves. These experiences with written numbers may also affect their 

understanding of meanings of large numbers and their ability to interpret other 

representational systems such as base-10 blocks and dots, as measured in the Which is x? 

task. Although this notion may seem antithetical to theories of embodied cognition, which 

hold that symbols are understood via grounding in perceptual experience, cultural tools have 

factored prominently in these theories as well (Clark, 1997; Lakoff & Nunez, 2000). For 

example, Clark (1997) argued that cultural tools, such as numerals, provide scaffolding that 

offloads task demands and preserves cognitive resources (e.g., attention, working memory, 

etc.), thereby allowing learners to function at a higher level and, perhaps, achieve new 

insights. On this view, one could say young children use partial knowledge of multidigit 

numerals to discover the meaning of large quantities and, thus, bootstrap their way into 

competence with this symbol system. Experiences with concrete models may depend on this 

prior knowledge but also feedback on and support a deeper understanding of the conceptual 

underpinnings of place value. We see this as a critical question for future research.

Regarding subsequent development of place value, one problem with the existing evidence 

is that place value is often confounded with other concepts and skills. For example, 

children’s accuracy in multidigit calculation undergoes major improvement from 7 to 11 

years of age. The fact that children have difficulty with carrying, borrowing, zeroes, and so 

forth has been taken as evidence that they lack place value concepts (Jesson, 1983). This 

may be true because these operations require place value knowledge, but they also require 

knowledge of algorithms themselves, careful execution of these algorithms, accurate 

retrieval of number facts, and much more. Thus, when children fail to solve multidigit 

calculation problems, it is not correct to conclude that they lack place value concepts as 

there are many potential sources of this failure. Indeed, research on addition difficulty has 

demonstrated that problem size (i.e., magnitude of numbers to be added) accounts for more 

variance than whether or not carrying is required. (Klein et al., 2010). Similarly, children’s 

inability to represent quantities using base-10 blocks could have more to do with their 

inability to understand these blocks than it does with their understanding of the way written 

numerals represent place value.

This study tells us only that young children are developing knowledge about multidigit 

numbers. It does not provide fine-grained information about the precise nature of that 

knowledge and its limitations. It also does not identify the origins of this knowledge and the 

kinds of experiences on which it depends. We have speculated about the streams of input 

that may be most informative, but these hypotheses are important topics for future research. 

In addition to providing insight into the development of symbolic ability, this study also 

informs educational practice. The starting point for the design of any instructional system 

requires knowing not just the outcome desired but also what children already know, what 
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they will bring—right or wrong—to the instructional experience. The present experiments 

show young children, prior to formal instruction, have ideas about both spoken number 

names and written multidigit numbers. The findings point to a critical need to study this 

knowledge in greater depth, to understand its strengths and weaknesses, and to determine the 

best way for formal instruction to make contact with and advance that knowledge.
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Table 2

Proportion Correct by Item and Grade for Which Is x? Numerals (Experiment 1)

Grade

Items Kdg First Second

206 vs. 260 0.39 0.96 0.94

356 vs. 536 0.52 0.96 0.94

350 vs. 305 0.58 0.76 0.89

36 vs. 306 0.58 0.92 0.97

2,843 vs. 2,483 0.61 0.80 0.94

267 vs. 627 0.61 0.92 0.97

201 vs. 21 0.65 0.96 0.97

670 vs. 67 0.65 1.00 0.91

85 vs. 850 0.68 0.92 1.00

64 vs. 604 0.68 0.96 0.91

1,002 vs. 1,020 0.68 0.80 0.94

402 vs. 42 0.71 0.88 1.00

1,000 vs. 100 0.74 1.00 0.94

105 vs. 125 0.74 0.96 0.97

11 vs. 24 0.77 1.00 1.00

12 vs. 22 0.77 0.88 1.00

807 vs. 78 0.77 0.92 0.97

4,279 vs. 6,358 0.81 0.92 1.00

15 vs. 5 0.81 1.00 1.00

2 vs. 8 0.84 1.00 1.00

Note. Kdg = kindergarten.
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Table 3

Proportion Correct by Item and Grade for Which Is More? Numerals (Experiment 1)

Grade

Items Kdg First Second

614 vs. 461 0.55 0.64 0.91

5,687 vs. 8,657 0.55 0.76 0.94

14 vs. 41 0.55 0.84 0.94

16 vs. 62 0.65 0.92 0.94

30 vs. 60 0.65 0.92 0.97

11 vs. 19 0.65 0.96 1.00

123 vs. 321 0.68 0.72 0.97

458 vs. 845 0.68 0.72 0.97

6,892 vs. 2,986 0.68 0.88 0.97

670 vs. 270 0.68 0.96 1.00

26 vs. 73 0.71 0.96 0.97

3 vs. 7 0.71 1.00 1.00

4,620 vs. 4,520 0.74 0.92 0.94

6 vs. 8 0.74 0.96 1.00

101 vs. 99 0.81 1.00 0.94

100 vs. 10 0.81 1.00 0.97

223 vs. 220 0.84 0.92 1.00

72 vs. 27 0.87 0.84 1.00

585 vs. 525 0.87 0.96 0.97

Note. Kdg = kindergarten.
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Table 4

Proportion Correct by Task and Grade (Experiment 2)

Age in
years

Which is x?
task t test

Which is
more? task t test

3½ .61 (.19) 3.15** .57 (.14) 2.79**

4½ .69 (.20) 5.37*** .64 (.16) 4.80***

5 .79 (.22) 7.69*** .75 (.15) 9.61***

Note. One-tailed t tests compared to chance level of .50. These data include numerals performance only as blocks and dots were not included in 
Experiment 2.

**
p < .01

***
p < .001.
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Table 5

Proportion Correct by Item and Age in Years for Which is x? Numerals (Experiment 2)

Age in years

Items 3½ 4½ 5

206 vs. 260 0.42 0.50 0.59

1,000 vs. 100 0.46 0.38 0.68

807 vs. 78 0.50 0.72 0.74

670 vs. 67 0.42 0.69 0.76

1,002 vs. 1,020 0.62 0.75 0.76

201 vs. 21 0.73 0.66 0.79

64 vs. 604 0.69 0.69 0.79

105 vs. 125 0.46 0.75 0.79

350 vs. 305 0.54 0.75 0.79

85 vs. 850 0.50 0.78 0.79

402 vs. 42 0.54 0.66 0.85

36 vs. 306 0.54 0.69 0.85

15 vs. 5 0.58 0.97 0.88

11 vs. 24 0.62 0.81 0.88

12 vs. 22 0.73 1.00 0.91

2 vs. 8 0.73 1.00 0.91
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Table 6

Proportion Correct by Item and Age in Years for Which is More? Numerals (Experiment 2)

Age in years

Items 3½ 4½ 5

670 vs. 270 0.50 0.47 0.56

4,620 vs. 4,520 0.50 0.53 0.65

26 vs. 73 0.62 0.56 0.65

14 vs. 41 0.62 0.59 0.68

72 vs. 27 0.42 0.47 0.71

123 vs. 321 0.46 0.59 0.71

223 vs. 220 0.69 0.72 0.71

101 vs. 99 0.62 0.53 0.74

16 vs. 62 0.42 0.66 0.74

585 vs. 525 0.46 0.63 0.76

30 vs. 60 0.58 0.69 0.76

6 vs. 8 0.58 0.81 0.85

11 vs. 19 0.73 0.66 0.91

3 vs. 7 0.69 0.91 0.94

100 vs. 10 0.73 0.72 0.94
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