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Abstract

Better known as “ecstasy,” 3,4-methylenedioxymethamphetamine (MDMA) is a small molecule 

that has played a prominent role in defining the ethos of today’s teenagers and young adults, much 

like lysergic acid diethylamide (LSD) did in the 1960s. Though MDMA possesses structural 

similarities to compounds like amphetamine and mescaline, it produces subjective effects that are 

unlike any of the classical psychostimulants or hallucinogens and is one of the few compounds 

capable of reliably producing prosocial behavioral states. As a result, MDMA has captured the 

attention of recreational users, the media, artists, psychiatrists, and neuropharmacologists alike. 

Here, we detail the synthesis of MDMA as well as its pharmacology, metabolism, adverse effects, 

and potential use in medicine. Finally, we discuss its history and why it is perhaps the most 

important compound for the future of psychedelic science—having the potential to either facilitate 

new psychedelic research initiatives, or to usher in a second Dark Age for the field.
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INTRODUCTION

The psychoactive compound MDMA is better known by one of its numerous street names, 

which include ecstasy, XTC, E, X, MDM, Adam, and EA-1475.1 Additionally, the term 

“molly” is often used to refer to MDMA in the United States.2 Structurally, MDMA 

possesses a single stereocenter, and due to its small size (freebase MW = 193.24 g/mol) and 

hydrophobic nature (logP = 2.050),3 MDMA readily crosses the blood-brain barrier (BBB).4 

Chemically, MDMA is related to amphetamine (2), and contains the phenethylamine core 

structure common to this class of psychostimulants, which also includes methamphetamine 

(3), and methylphenidate (4) (Figure 1). The hallucinogens 2,5-dimethoxy-4-

iodoamphetamine (DOI, 5), 2,5-dimethoxy-4-bromophenethylamine (2C-B, 6), and 

mescaline (7) are also structurally related to MDMA. As such, it is not surprising that 

MDMA produces effects reminiscent of both psychostimulants and hallucinogens. However, 

the interoceptive effects of MDMA (i.e., sense of the body’s internal state) are distinct from 

those produced by either of these well-known classes of psychoactive compounds.

In rodent drug discrimination studies, MDMA only partially substitutes for the stimulant S-

(+)-amphetamine,5 or the ergoline hallucinogen lysergic acid diethylamide (LSD),6 and is 

unable to substitute for the phenethylamine hallucinogen 2,5-dimethoxy-4-

methylamphetamine (DOM).7 Furthermore, when rats are trained to discriminate racemic 

MDMA from saline, incomplete generalization is observed using S-(+)-amphetamine, LSD, 

or DOM.5 The discriminative stimulus produced by MDMA seems to be modulated by 5-

HT1A,8 5-HT2A,8 and oxytocin receptors,9 with less involvement from D1 receptors.10 The 

two enantiomers of MDMA produce relatively similar discriminative stimuli.11 It should be 

noted that while MDMA only partially substitutes for S-(+)-amphetamine in rats, it 

completely substitutes for S-(+)-amphetamine in rhesus monkeys.12

In humans, 75–150 mg of MDMA produces subjective effects that last for several hours.
13,14,15,16,17,18,19 These include context-dependent feelings of closeness with others, reduced 

social inhibition, positive mood, and increased alertness.19,20,21,22,23,24 Regarding 

hallucinations, MDMA is considered to be weakly hallucinogenic.25 Ingestion of MDMA 

does not cause auditory hallucinations and only 20% of recreational users have reported 

experiencing visual hallucinations.15 The visual hallucinations induced by MDMA do not 

tend to be well-formed, and instead, are often described as flashes of light in the peripheral 

visual field.15 This is in stark contrast to the profound visual disturbances experienced by 

most people following the administration of classical hallucinogenic agents such as LSD.
26,27 In humans, the weak hallucinogenic effects of MDMA are blocked by ketanserin, a 

selective 5-HT2A antagonist.25 The role of 5-HT1A receptors in the subjective effects of 

MDMA appears to be negligible.28,29,30 In addition to directly binding to 5-HT2A receptors, 

albeit with low affinity (vide infra), MDMA can produce subjective effects by increasing the 

release of monoamines such as serotonin and norepinephrine.17,31,32,33,34,35 The perceptual 
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effects of MDMA are more intense in females than in males,36,37 and have been shown in 

recent placebo-controlled studies to be clearly distinct from those produced by other 

psychostimulants.38,39

The unique subjective effects of MDMA and related molecules such as 3,4-methylenedioxy-

N-methyl-α-ethylphenylethylamine (MBDB, 8) and 5,6-methylenedioxy-2-aminoindane 

(MDAI, 9) led to their classification as a separate family of psychoactive compounds, 

distinct from both stimulants and hallucinogens (Figure 1). Due to their strong propensity to 

induce empathy and feelings of connectedness, these drugs were originally dubbed 

“empathogens” in the 1980s—a term favored by Ralph Metzner.40 David Nichols later 

highlighted the ambiguous nature of the term empathogen. To avoid any negative 

connotations associated with “pathos” (i.e., suffering), “pathogen” (i.e., a disease producing 

agent), or “pathogenesis” (i.e., the development of a disease), Nichols coined the new term 

“entactogen,” which roughly translates from the Greek to mean that which “produces a 

touching within” (en = within, tactus = touch, gen = to produce).41 These terms are often 

used interchangeably. We will use the latter term as it more adequately captures the unique 

ability of these drugs to promote introspective states—a property that has been proposed to 

be useful in the context of psychotherapy (vide infra). Though the subjective effects of 

MDMA appear to be unique compared to those of LSD, both compounds tend to increase 

openness, promote trust, and enhance emotional empathy.42,43

A major point of contention among psychopharmacologists is whether or not MDMA should 

be classified as a “psychedelic.” Because that term can be translated as “mind-manifesting,” 

we propose that MDMA, as well as more potent 5-HT2A agonists like psilocybin, are 

appropriately placed in this category. Using this classification, psychedelics broadly defined 

can be subdivided into classical hallucinogens (e.g., psilocybin, LSD, mescaline) and 

entactogens (e.g., MDMA) on the basis of their distinct subjective effects

The prosocial and stimulant effects of MDMA led to its widespread recreational use and 

cemented its place in rave (dance party) culture.44 It is estimated that MDMA has been used 

by 7% of the population over the age of 12.45 This is in stark contrast to heroin, which is 

abused by only 2% of the population.45 The predominant users of MDMA are teenagers and 

young adults, with females being more likely to use MDMA than males.46 In people 12–25 

years of age, MDMA accounts for more than 50% of all psychedelic drug use.45 In recent 

years, the recreational use of MDMA by people with college degrees has been increasing.47

Despite its popularity, MDMA is a controlled substance in the United States and many other 

countries making its production and sale illegal. The U.S. Drug Enforcement Administration 

(DEA) has classified MDMA as a Schedule I compound—the most restricted class of 

chemicals. Schedule I drugs are those deemed to have high abuse potential, do not have an 

accepted medical use, and lack accepted safety for use under medical supervision. Drugs 

such as heroin, LSD, gamma hydroxybutyric acid (GHB), and tetrahydrocannabinol (THC) 

are also classified in Schedule I. Unfortunately, the legal, financial, and political hurdles that 

accompany Schedule I classification significantly hinder scientific research into the effects 

of MDMA. As it is one of the few compounds known to reliably produce a prosocial state, 

MDMA may possess potential as a neurochemical tool for elucidating the mechanisms of 
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social behaviors and the neural underpinnings of empathy and social bonding.48 

Furthermore, MDMA may possess therapeutic potential for treating disorders associated 

with disruptions in social interactions such as autism spectrum disorders, social anxiety 

disorder, schizophrenia, and post-traumatic stress disorder (PTSD).48

Despite its relatively simple structure, MDMA elicits robust behavioral responses by binding 

with high affinity to a number of neuroreceptors and transporters. Below, we discuss the 

synthesis of MDMA and its pharmacology, metabolism, and adverse effects. Additionally, 

we review the prosocial and psychoplastogenic (plasticity-promoting) properties of MDMA, 

the differences between its enantiomers, and its potential use in medicine. Finally, we 

provide brief historical context for the development of MDMA and conclude by 

emphasizing the important role that MDMA is expected to play in determining the trajectory 

of future psychedelic research.

SYNTHESIS

Racemic MDMA—the form used recreationally and in clinical trials—is typically 

synthesized from safrole (10) or piperonal (13). The German chemist Anton Köllisch was 

the first to synthesize MDMA in 1912.49 His synthetic route began with the 

hydrobromination of 10 to produce 11. Displacement of the bromide with methylamine 

produces MDMA.50 A similar route was described in the peer-reviewed literature for the 

first time by Polish chemists Biniecki and Krajewski.51 Alternatively, MDMA can be 

synthesized from 10 by Wacker oxidation followed by reductive amination of 12 with 

methylamine and sodium cyanoborohydride. 52,53 Compound 12 can also be accessed from 

10, following olefin isomerization to produce isosafrole, peracid oxidation to the epoxide, 

and acid-catalyzed epoxide isomerization to the ketone.54

The synthesis of MDMA from piperonal (13) is also common, and begins with a Henry 

reaction between 13 and nitroethane. The key nitrostyrene intermediate formed can then be 

partially reduced and hydrolyzed to produce ketone 12, or fully reduced using lithium 

aluminum hydride to afford 3,4-methylenedioxyamphetamine (MDA, 14).55 Conversion of 

MDA into the carbamate or formamide followed by lithium aluminum hydride reduction 

yields MDMA. Purification of MDMA is typically achieved following vacuum distillation of 

the freebase and/or crystallization of the hydrochloride salt.16 The hydrochloride salt can 

exist as one of several different hydrated forms.1

While the racemate is the most commonly administered form of MDMA, recent research 

suggests that there are distinct differences in the pharmacology of the two enantiomers. 

Hence, the development of efficient asymmetric strategies for producing enantiopure 

MDMA is incredibly important. Traditional resolution via selective crystallization of 

diastereomeric salt forms has not proven the most effective route for synthesizing MDMA in 

high enantiomeric excess.56 Instead, a more successful strategy has relied on the use of 

removable chiral auxiliaries. The first asymmetric synthesis of MDMA was reported by 

Nichols and co-workers (Figure 3A).6 Reductive amination of ketone 12 with (S)-α-

methylbenzylamine (15) produced the (S,S) intermediate 16 following crystallization. The 

use of Raney nickel at 50 psi appears to be crucial for the selectivity of this reaction. In our 
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hands, Raney nickel catalyzed hydrogenation did not proceed under atmospheric conditions, 

and the use of hydride reducing agents such as NaBH3CN yielded an inseparable 1:1 

mixture of diastereomers (unpublished results). Palladium-catalyzed hydrogenolysis 

afforded MDA (14), which was converted to MDMA after reduction of the formamide. In 

2014, Escubedo and co-workers reported a similar approach using Ellman’s sulfonamide as 

the chiral auxiliary (Figure 3B).57

The chiral pool has also been exploited to produce enantiopure MDMA. Using a method 

developed by Nenajdenko and co-workers,58 (S)-alaninol (23) can be protected and 

converted to the aziridine 24. Ring opening in the presence of copper(I) iodide using 

Grignard reagent 25 affords Ts-protected MDA (26). Methylation of 26 followed by 

deprotection yields (S)-MDMA.59 The enantiomeric excess of (S)-mDmA produced by Huot 

and co-workers was not reported, but based on the stereospecific nature of the reactions 

employed and the fact that the stereocenter is unlikely to epimerize under these conditions, it 

is assumed that MDMA can be produced as a single enantiomer using this strategy. 

Nenajdenko and co-workers reported that this is indeed the case for related β-

arylalkylamines.58

PHARMACODYNAMICS

Effects on Monoamines.

The most well characterized effect of MDMA is its ability to increase brain levels of 

monoamines such as serotonin, dopamine, and norepinephrine, which is accomplished via 

complex mechanisms. First, MDMA binds to and inhibits the serotonin transporter (SERT), 

dopamine transporter (DAT), and norepinephrine transporter (NET), inhibiting monoamine 

reuptake and leading to increased extracellular levels of these amines.35,60,61,62,63 

Electrophysiology experiments suggest that this inhibition results from MDMA serving as a 

substrate, rather than a blocker, of these transporters.64 In contrast to (S)-amphetamine, 

racemic MDMA is a more potent inhibitor of SERT than either DAT or NET (Tables 1 and 

2).65 In addition to inhibiting the uptake of extracellular monoamines, MDMA also prevents 

transport of monoamines into vesicles. While, MDMA has been shown to inhibit the uptake 

of serotonin and dopamine into both synaptosomes and vesicles, it does not affect the 

cellular uptake and/or vesicular packaging of either γ-aminobutyric acid (GABA) or 

glutamate.66

In addition to being a monoamine uptake inhibitor, MDMA is a potent releaser of these 

neurochemicals, and again, MDMA accomplishes this via several mechanisms. At the 

cellular membrane, MDMA reverses the flux of monoamines through their transporters, 

expelling intracellular serotonin, dopamine, and norepinephrine into the extracellular space. 

Inhibitors of SERT, DAT, and NET completely prevent MDMA-induced monoamine efflux 

in rat brain slices,67 and from monoamine transporter-expressing HEK293 cells pre-loaded 

with radiolabeled monoamines.35 However, for monoamines to reach sufficiently high 

cytosolic levels to be reverse transported by membrane transporters, they must first be 

released from synaptic vesicles into the intracellular space. By directly binding to vesicular 

amine transporters (VMAT), MDMA reverses the transport of molecules like serotonin.68,69 

Additionally, as a weak base, MDMA passively diffuses across vesicular membranes to 

Dunlap et al. Page 5

ACS Chem Neurosci. Author manuscript; available in PMC 2018 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



collapse the pH gradient established by VMAT, which is necessary for maintaining high 

concentrations of monoamines in vesicles.70,71 Monoamines released from vesicles might be 

partially protected from degradation due to the ability of MDMA to inhibit both isoforms of 

monoamine oxidase.72 Moreover, MDMA may cause SERT internalization,73 which 

presumably contributes to increased extracellular serotonin levels. The releasing effects of 

MDMA are greater for serotonin and norepinephrine, and slightly weaker for dopamine 

(Tables 2 and 3).65

While much of the work elucidating the monoamine-releasing properties of MDMA have 

employed in vitro and ex vivo models, recently, the DA and 5-HT releasing effects of 

MDMA have been observed in vivo using microdialysis in the striatum and frontal cortex of 

rats.74 There is a general consensus that MDMA increases the release of monoamines, 

however, there is at least one study using fast-scan cyclic voltammetry (FSCV) in brain 

slices that suggests that increases in monoamine concentrations following MDMA treatment 

might be due to inhibition of monoamine reuptake and not release per se.75

Direct Effects on Receptors.

In addition to directly interacting with monoamine transporters, MDMA has been shown to 

bind with modest affinities to a variety of neuroreceptors including adrenergic, serotonergic, 

histaminergic, and muscarinic receptors.76,77,62 The binding profile of MDMA across 

much of the recepterome is shown in Table 5. The low micromolar affinities observed 

support the notion that MDMA induces most of its effects indirectly by modulating 

monoamine levels. The 5-HT2B receptor is one of the few receptors that MDMA binds to 

with submicromolar affinity (Ki = 500 nM), though the role of this receptor in the effects of 

MDMA is unclear. For example, MDMA failed to produce a response in a 5-HT2B 

functional assay using HEK293 cells.78 However, it is believed that 5-HT2B agonism is at 

least partly responsible for the 5-HT releasing effects of MDMA, as pharmacological 

inhibition or genetic deletion of 5-HT2B receptors block MDMA-induced release of 5-HT.79 

Binding of MDMA to 5-HT2B receptors was studied using a radiolabeled agonist, while 

many of the other receptor binding assays (e.g., 5-HT2A ad 5-HT2C) utilized radiolabeled 

antagonists. Therefore, it is possible that the binding affinity of MDMA for many receptors 

has been underestimated. For example, it is now well established that MDMA binds directly 

to 5-HT2A receptors, albeit with micromolar affinity, though binding assays performed with 
3H-ketanserin do not capture this interaction. Furthermore, MDMA is unable to displace 

radiolabeled monoamine transporter inhibitors despite exhibiting nM potency in functional 

assays (Tables 1–4), which is consistent with its proposed role as a monoamine releaser 

rather than a competitive uptake inhibitor.

Trace Amine-Associated Receptor 1 (TAAR1).

The trace-amine associated receptor (TAAR1) has also been suggested as a key target 

mediating the effects of MDMA. Bunzow and co-workers demonstrated that MDMA acts as 

an agonist at rat TAAR1 receptors to increase cAMP production in a TAAR1-expressing 

HEK293 cell line.80 Like MDMA, several other hallucinogens and psychostimulants have 

been shown to bind to and activate TAAR1 to a greater extent than neurotransmitters such as 

serotonin, dopamine or norepinephrine.80,81,82 Due to the known modulatory influence of 
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TAAR1 on monoamine transporter function,83 it is likely that TAAR1 activation contributes 

to the effects of MDMA on extracellular monoamine levels. Interestingly, 4-

hydroxyamphetamine proved to be a particularly potent agonist of TAAR1 (EC50 = 51 nM). 

As MdMa is metabolized into 4-hydroxy-substituted compounds, there is the distinct 

possibility that metabolites of MDMA may potently activate TAAR1. However, to the best 

of our knowledge, this hypothesis has not been directly tested. Finally, it is unclear if 

TAAR1 plays any role in the effects of MDMA in humans, as MDMA does not activate 

human TAAR1 in cellular assays like it does mouse and rat TAAR1.84

Sigma-1 Receptor.

Radioligand binding studies have shown that MDMA binds to both sigma-1 and sigma-2 

receptors with Ki values in the low micromolar range, which are comparable to the affinities 

of MDMA for monoamine transporters.85 Moreover, treatment with BD1063, a selective 

sigma-1 antagonist, blocked the effects of MDMA on rodent locomotion.85 The sigma-1 

receptor has been proposed to be a novel target for the treatment of depression and anxiety,
86,87,88,89,90 and it is reasonable to hypothesize that this receptor plays some role in the 

behavioral and clinical effects of MDMA.

Hormonal Effects.

Administration of MDMA to humans leads to robust increases in plasma levels of cortisol, 

prolactin, dehydroepiandrosterone (DHEA), vasopressin, and oxytocin.18,38,91,92,93,94,95,96 It 

is possible that some of these hormonal changes are the result of serotonergic activity,97,98,99 

and it is likely that they modulate some of the effects of MDMA.100 For example, the rise in 

plasma DHEA levels was significantly correlated with feelings of euphoria.18 Furthermore, 

the effects of MDMA on oxytocin levels are often invoked to explain the drug’s prosocial 

effects. Dumont and co-workers were the first to demonstrate in a controlled laboratory 

setting that MDMA increases oxytocin levels.93 They also found that increases in blood 

oxytocin levels were correlated with the subjective prosocial feelings induced by MDMA 

more so than blood levels of the drug itself. While numerous other studies have replicated 

the finding that MDMA elevates oxytocin levels, they have all failed to reproduce a 

correlation between oxytocin levels and prosocial feelings, calling into question the 

relevance of this hormone for the prosocial effects of MDMA.100,101 As such, the role of 

oxytocin in the effects of MDMA is currently controversial.

Behavioral Effects in Rodents.

Like other serotonergic psychedelics, MDMA produces behavioral effects consistent with 

serotonin syndrome such as flat body posture, hind limb abduction, and forepaw treading.102 

At lower doses, MDMA produces “amphetamine-like” hyperactivity in the open field. Both 

of these effects are enhanced following repeated administration of MDMA, demonstrating 

that MDMA is capable of producing behavioral sensitization.103 Behavioral sensitization is 

correlated with the enhanced ability of MDMA to increase monoamine levels (measured via 

microdialysis) following repeated dosing. 104 The locomotor effects of MDMA are perhaps 

the best-studied behavioral responses in rodents, and they are modulated by a variety of 

neuroreceptors including 5-HT1B,105 5-HT2A,106 D1,107 and D2107 receptors. Unlike 

amphetamine, selective serotonin reuptake inhibitors block MDMA-induced increases in 
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locomotion.108 Furthermore, MDMA does not produce this behavioral effect in mice 

genetically lacking SERT, further implicating this monoamine transporter in the 

hyperlocomotive effects of MDMA.109

In rodent models of anxiety, MDMA produces complex effects. At low acute and subchronic 

doses, MDMA tends to be anxiogenic in the elevated plus maze (EPM).110,111,112 However, 

at higher acute and subchronic doses, MDMA produces anxiolytic effects in the EPM. When 

tested in the light-dark box paradigm, MDMA does not alter preferences of mice for the two 

compartments.113

Some of the rodent behaviors most relevant to potential therapeutic uses of MDMA are 

related to social behaviors. A 5 mg/kg dose of MDMA decreased aggressive behaviors in 

rats and increased the time spent engaging in social behaviors such as sniffing, following, 

crawling under, crawling over, mutual grooming, and adjacent lying.114 Additionally, 

MDMA has been shown to induce a social conditioned place preference.115 Adjacent lying

—a behavior in rats where two unfamiliar animals lie passively next to each other—is 

perhaps one of the more robust prosocial behaviors induced by MDMA in rodents.

In terms of mechanism, systemic MDMA increases plasma levels of oxytocin in rats and 

activates oxytocinergic neurons in the hypothalamus, as measured by Fos 

immunohistochemistry.99 Increases in oxytocin levels and adjacent lying behavior induced 

by MDMA were abolished by treatment with a 5-HT1A antagonist, while 8-OH-DPAT (a 5-

HT1A agonist) produced effects similar to MDMA.99 This led McGregor and co-workers to 

propose that MDMA induces oxytocin release via stimulation of 5-HT1A receptors, and that 

increased adjacent lying resulted from activation of oxytocin receptors. This hypothesis was 

supported by the fact that intracerebroventricular administration of tocinoic acid, an 

oxytocin receptor antagonist, blocked MDMA-induced adjacent lying.99 However, in a 

follow-up study, McGregor and co-workers could not prevent MDMA-induced adjacent 

lying using C25,116 a systemically administered non-peptidic antagonist of oxytocin 

receptors. In contrast, they were able to prevent this behavior using an antagonist of the 

vasopressin receptor 1A.117 There are two possibilities that might explain these 

contradictory results. First, tocinoic acid could have non-selective antagonistic effects at the 

vasopressin receptor 1A. Alternatively, C25 might not have been able to cross the blood-

brain barrier.

In addition to its prosocial effects, MDMA has been shown by Howell and co-workers to 

promote fear extinction learning in mice.118 This seminal study potentially provides a 

mechanistic explanation for the therapeutic efficacy of MDMA in patients suffering from 

treatment-resistant PTSD (vide infra). Similar findings have been described for other 

psychedelics such as psilocybin in mice119 and N,N-dimethyltryptamine (DMT) in rats.120 

The facilitation of fear extinction memory by MDMA appears to be dependent on SeRt.121

Plasticity-Promoting Effects.

Like most psychostimulants, MDMA causes robust changes in gene expression and protein 

levels associated with neural plasticity.122 Acute treatment with MDMA (10 mg/kg) causes 

differential gene expression of BDNF in the frontal cortex and hippocampus of rats, with 
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BDNF levels increasing in the former brain region and decreasing in the latter.123 The 

administration of 4 doses over a period of 6 h to rats led to robust increases in BDNF 
transcript levels in several cortical regions both 1 h and 7 h following dosing.124 The largest 

effects were seen in the prefrontal cortex with increases in TrkB expression observed in that 

region 24 h after dosing.124 Here, MDMA produced weaker effects on NT3 and TrkC gene 

expression.124 Chronic treatment with MDMA in mice125 and subchronic administration of 

large doses (20 mg/kg) in rats126 led to increases in BDNF transcription and translation in 

the hippocampus. The latter study also observed a reduced number of dendritic spines in the 

hippocampus of rats. Finally, MDMA was observed to inhibit neurite outgrowth in PC12 

cells,127 though the relevance of this cell line to studies on neural plasticity is debatable.

To date, most studies assessing the psychoplastogenic (plasticity-promoting) effects of 

MDMA have observed a reduction in dendritic branching and/or dendritic spine numbers. 

However, these studies are often conducted using extremely high doses of MDMA 

administered over extended periods of time, and probably more accurately reflect 

neurotoxicity resulting from overstimulation of psychoplastogenic receptors. More modest 

doses would likely yield increases, as opposed to decreases, in dendritic branching and spine 

density. Recently, we reported that MDMA, and several other psychedelic compounds, 

significantly increased the complexity of dendritic arbors in cultured cortical neurons128 

Moreover, this phenotype is not produced by all psychostimulants and drugs of abuse, as S-

(+)-amphetamine had no effect.128 Future studies should assess the in vivo effects of a single 

moderate dose of MDMA on dendritic branching and spine density.

METABOLISM AND PHARMACOKINETICS

The primary routes for metabolism of MDMA are N-demethylation and loss of the 

methylene bridge connecting the catechol (Figure 4), both of which are mediated by various 

cytochrome P450s.129 The common metabolites of MDMA (1) include MDA (14), 3,4-

dihydroxymethamphetamine (HHMA, 28), 3,4-dihydroxyamphetamine (HHA, 29), 4-

hydroxy-3-methoxy-methamphetamine (HMMA, 30), and 4-hydroxy-3-methoxy-

amphetamine (HMA, 31). The major metabolite of MDMA in humans is HMMA, which is 

mainly excreted as the glucuronic acid conjugate.130

Recent genetic findings suggests that a variety of cytrochrome P450s, including CYP2C19, 

CYP2B6, and CYP1A2, play a role in the demethylation of MDMA.131,132 Mutations in the 

CYP2C19 or CYP2B6 genes that reduce enzyme function have been shown to increase the 

ratio of MDMA/MDA but do not alter HMMA concentrations.131,132 Subjects with 

decreased CYP2C19 function also showed greater cardiovascular responses with faster onset 

times. Mutations in the CYP2B6 gene resulting in decreased enzyme function only 

influenced metabolism at later time points (i.e., 3–4 h) suggesting that it is a secondary 

metabolizer of MDMA.131

When MDMA is administered to humans at a dose of 100 mg, it has a half-life of 

approximately 8–9 h and yields plasma Cmax and tmax values of 222.5 ng/ml and 2.3 h, 

respectively.133 However, MDMA is known to exhibit nonlinear pharmacokinetics in both 

humans131,134,135 and squirrel monkeys.136 This means that increasing doses of MDMA 
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prolong its half-life, potentially exacerbating the risk for adverse effects and neurotoxicity. 

The nonlinear pharmacokinetics observed following administration of MDMA is likely the 

result of cytochrome P450 inhibition by MDMA and its metabolites.131,137,138 Additionally, 

the enantiomers of MDMA are metabolized at different rates, with the R-enantiomer having 

a longer half-life than the S-enantiomer.139,140, 141

ADVERSE EFFECTS

Similar to other amphetamines, MDMA produces a number of adverse effects including 

trismus, tachycardia, bruxism, dry mouth, palpitations, diaphoresis, and insomnia.15,19,36,142 

Rhabdomyolysis, cardiac arrhythmias, hyperthermia, hyponatremia, and acute renal failure 

are the more severe side-effects and are common causes of death following MDMA 

intoxication.143,144 The more severe adverse effects of MDMA are potentially exacerbated 

by the intense exercise and hot environment characteristic of raves. In Long-Evans rats, 

slight increases in ambient temperature resulted in excessive brain hyperthermia leading to 

death at an MDMA dose that is significantly lower than the LD50 in rats at room 

temperature.145 Similarly, Fantegrossi and co-workers found that MDMA lethality was 

increased when NIH Swiss mice were housed at high densities (>6 mice per cage), which 

reduces the ability to dissipate body heat.146 Risk for serotonin syndrome—a collection of 

symptoms that include high body temperature, sweating, and tremor (among others)—

increases with higher doses of MDMA.147

The effects of MDMA on heart function are also significant, with norepinephrine mediating 

a significant portion of the cardiostimulant effects observed following MDMA 

administration.34,35,148,149 In addition to increasing systolic blood pressure,19,36,92 the drug 

can induce cardiac arrhythmias and myocarditis.150 Myocardial infarction can also occur 

following MDMA use, though this tends to happen less frequently than after cocaine or 

amphetamine administration.151,152 In the long-term, MDMA use can result in valvular 

heart disease,153 which could be due to oxidative stress154 or the activation of 5-HT2B 

receptors by MDMA.77

In terms of the addictive potential of MDMA, the data are mixed. Several people have 

argued that MDMA has lower abuse potential because recreational users have reported that 

its pleasurable effects diminish with repeated use, but its side effects increase.15 However, in 

animal models, MDMA does produce some of the same behavioral effects characteristic of 

addictive drugs like cocaine and opioids, albeit to a lesser extent. For instance, MDMA is 

known to produce conditioned place preference in rats155 and mice,156,157 and MDMA is 

self-administered by a variety of species (e.g., rats, mice, non-human primates).158 

Interpretation of self-administration studies using MDMA are complicated by a variety of 

factors such as dose, timing, and prior exposure of the test animals to other drugs of abuse. 

For an overview of these issues, we refer the reader to an excellent review by Susan Schenk.
158 Taken together, MDMA does seem to have reinforcing properties, but these appear to be 

significantly weaker than those of cocaine.

Determining the adverse effects of MDMA in people who consume it recreationally is 

complicated by the fact that some “MDMA” sold on the street does not contain any MDMA 
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at all,159 while other batches of illegally produced “MDMA” are adulterated.160 

Contaminating drugs include, but are not limited to, amphetamine, methamphetamine, 

MDA, pseudoephedrine, butylone, and caffeine.161,162 Many recreational MDMA users 

prefer “molly” as it is believed to be of high purity, however, a recent study employing hair 

follicle testing revealed that 48% of molly users tested positive for synthetic cathinones 

despite having reported that they had never used cathinones before.163 Consuming MDMA 

as a part of a drug mixture can be extremely dangerous due to drug-drug interactions,164 and 

has important implications for evaluating the neurotoxic potential of MDMA in humans.

Certainly, the most controversial aspect of MDMA pharmacology is its potential to induce 

neurotoxicity. The neurotoxic effects of MDMA have been extensively reviewed by others,
165,166,167,168,169,170,171 and thus, we will focus only on the key studies. Additionally, we 

will attempt to highlight why this is such a contentious area and why the controversy is not 

likely to be resolved soon.

People who consume MDMA (particularly those who do so regularly, and in high doses) 

perform poorly on various tests related to attention, learning, and memory (e.g., working and 

declarative memory) when compared to MDMA-naïve controls.172,173,174,175 Those with a 

history of only moderate MDMA use do not seem to exhibit memory impairments.176 

However, acute MDMA intoxication produces memory deficits.176 Heavy MDMA users 

tend to have lower cerebral spinal fluid levels of 5-hydroxyindoleacetic acid (5-HIAA)—the 

principle metabolite of serotonin—and thus, serotonergic toxicity has been presumed.177 In 

general, neuroimaging studies used to assess the effects of MDMA in humans have 

produced mixed findings, with no clear evidence that MDMA is safe or neurotoxic.178,179 

Finally, when compared with MDMA-naïve controls, MDMA users are more likely to be 

afflicted with mental illnesses including depression, psychotic disorders, eating disorders, 

and anxiety disorders.180

While retrospective studies on MDMA-using populations are certainly important, there are 

several confounding factors that limit the interpretability of these data. First, MDMA 

produced by clandestine laboratories is often contaminated with other drugs of abuse and 

neurotoxic compounds such as methamphetamine. Second, recreational MDMA users are 

typically polydrug users.181 Third, recreational MDMA is often consumed at crowded dance 

parties (i.e., raves), where excessive activity, high temperatures, and dehydration could 

exacerbate any inherently neurotoxic effects of the drug. Together, these facts make it 

difficult, if not impossible, to distinguish the neurotoxic effects induced by MDMA itself 

versus those caused by impurities, drug-drug interactions, or drug-environment interactions. 

Furthermore, due to the retrospective nature of many human studies regarding the effects of 

MDMA, it is unclear if the cognitive impairments and neuropsychiatric disorders observed 

in groups who have used MDMA reflect a cause or consequence of MDMA use. Prospective 

studies are incredibly important for answering these questions. One prospective study from 

The Netherlands found that sensation-seeking, impulsivity, and depression did not predict 

future MDMA use.182 However, a much larger study from Germany concluded that MDMA 

users had significantly higher risk for nearly all DSM-IV mental disorders, and moreover, 

that the onset of these disorders typically preceded the first use of MDMA.183
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Because of the many factors that can confound human studies, researchers have turned to 

well controlled model systems in the laboratory to investigate MDMA neurotoxicity. 

However, the relevance of these models to human neurotoxicity is often questioned. Capela 

and co-workers found that MDMA can induce apoptotic cell death in embryonic rat cortical 

neurons via a 5-HT2A-dependent mechanism.184 Furthermore, they discovered that the 

metabolites of MDMA are more potent neurotoxins.185 Similarly, Stumm and co-workers 

reported that MDMA and related amphetamines kill cultured rat cortical neurons at 

comparable concentrations.186 It is important to note that the concentration of MDMA 

required to produce substantial neurotoxic effects in these studies is >200 μM, while the 

maximal brain concentration of MDMA in rats following a 20 mg/kg subcutaneous dose 

(10x the behaviorally relevant dose) is only circa 100–200 μM.187 At a more modest 

concentration (10 μM), our group determined that MDMA produced robust 

psychoplastogenic effects in embryonic rat cortical cultures without cell death.128 For 

comparison, we have observed that several SSRIs and triptans—commonly prescribed 

medications—are cytotoxic to cultured rat cortical neurons in the range of 10–100 μM 

(unpublished results).

In addition to studies using cultured neurons, in vivo animal models are frequently used to 

test the neurotoxic potential of MDMA. While findings dating back to 1987 suggest that 

MDMA has neurotoxic effects in animals,188 the relevance of these models to human 

neurotoxicity is highly debated. Some of the contentious questions the field has to grapple 

with include, 1) what dosing paradigm most effectively models human use, 2) what species 

is most relevant, 3) is allometric scaling appropriate, 4) how should the nonlinear human 

pharmacokinetics of MDMA be factored in, 5) what route of administration should be 

utilized, and 6) how should “neurotoxicity” be defined/measured (e.g., monoamine levels, 

neurite degeneration, cell body loss).

In mice, MDMA tends to produce dopaminergic, but not serotonergic, neurotoxicity.
189,190,191 This is in sharp contrast to rats, for which the opposite seems to be true. Two 

weeks following systemic administration of MDMA to rats (20 mg/kg, subcutaneous, twice 

daily for 4 d) loss of 5-HT axons (but not catecholamine axons) projecting to the forebrain 

was observed.192 Interestingly, axonal degeneration was not accompanied by loss of raphe 

cell bodies.192 As a result, serotonergic axons regenerate in rats administered MDMA, 

however, it is unknown how well these newly sprouted axons function.193 Additionally, large 

doses of MDMA produce reductions in levels of 5-HT, 5-HIAA, and SERT.194,195,196 Levels 

of 5-HT reuptake sites in rats partially recovered 6 months following MDMA exposure and 

were fully recovered after 1 year.194,197 Similarly, 8 doses of MDMA given to rats over 4 

days decreased brain 5-HT2 receptor levels by 80% when measured 6 h after the last dose.
198 Receptor levels recovered to 62% after 24 h and were completely normalized after 21 

days.198 The MDMA-induced serotonergic neurotoxicity in rats is exacerbated by increased 

ambient temperature199 and can be prevented by blocking SERT with fluoxetine.200 It 

should be noted that the doses of MDMA used in rats and mice to induce neurotoxicity are 

much higher than those often used by humans. Some researchers have justified these large 

rodent doses on the basis of allometric scaling201 and the fact that experienced recreational 

users of MDMA often develop tolerance, leading them to ingest multiple doses in a short 

period of time to achieve the desired subjective effects of the drug.202 Others have argued 
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that MDMA doses used in animals are too high, as MDMA produces behavioral effects at 

approximately the same dose (1–2 mg/kg) in humans and rats.167 Finally, it has been posited 

that species differences in metabolism and neurotoxicity (e.g., dopaminergic toxicity in mice 

vs. serotonergic toxicity in rats) suggest that the metabolites of MDMA, and not necessarily 

MDMA itself, are responsible for the neurotoxic effects of MDMA.168 Therefore, using 

model systems that more closely recapitulate the pharmacokinetics of MDMA in humans 

may be more useful.

Like rats, non-human primates experience serotonergic neurotoxicity following 

administration of large doses of MDMA.203,204 Unlike rats, these changes seem to be 

relatively long-lasting in most primate brain regions.205,206 Abnormal serotonergic 

innervation patterns were observed 7 years following MDMA exposure in squirrel monkeys,
207 and these patterns seemed to result from axotomy as raphe cell bodies remained intact.
207 In rhesus monkeys, persistent decreases in cerebrospinal fluid levels of 5-HIAA were 

accompanied by functional changes as measured by electrophysiology.208 Most of the 

studies assessing the neurotoxic effects of MDMA in primates administered multiple 

subcutaneous doses. However, humans typically consume a single oral dose of MDMA 

either recreationally or during MDMA-assisted psychotherapy (vide infra). To address this 

discrepancy, Ricaurte and co-workers compared both dose frequency and route of 

administration in squirrel monkeys. They found that repeated dosing and subcutaneous 

administration produces greater neurotoxic effects than oral dosing.209 Importantly, they 

found that a single, modest (5 mg/kg), oral dose of MDMA still produced serotonin 

depletion in the thalamus and hypothalamus two weeks after administration.209

The mechanism of MDMA-induced neurotoxicity probably involves a combination of 

mechanisms including glutamate-induced excitotoxicity,210 increased oxidative stress,211 

hyperthermia,212 mitochondrial damage, and increased inflammation.169,171 While the 

results of the numerous studies investigating MDMA-induced neurotoxicity still leave 

questions unanswered about the safety of MDMA administered to humans, it is reasonable 

to conclude that use of MDMA under common recreational conditions (e.g., high doses, 

multiple doses, polydrug use, high temperatures, prolonged physical activity, dehydration, 

etc.) is likely to cause adverse effects. However, in controlled studies in the clinic using low 

doses to assist psychotherapy, MDMA may be safe and well tolerated, as discussed below. 

When a variety of factors were considered, including physical, social, and economic factors, 

MDMA consistently ranked as being less harmful than illegal drugs such as heroin, cocaine, 

and methamphetamine, as well as legal drugs such as alcohol and nicotine.213,214

POTENTIAL USE IN MEDICINE

In recent years there has been renewed interest in using psychedelic compounds like 

psilocybin and MDMA to treat neuropsychiatric disorders.215,216,217 This should not be 

surprising because before MDMA was placed on the Schedule I list, it was widely used by 

some psychiatrists to assist in treating a variety of disorders including anxiety disorders and 

depression. The benefits of MDMA were believed to result from increased introspection, a 

decrease in fear response upon accessing painful memories, and the promotion of trust 

between patients and their therapists.218,219 However, most of the work conducted during 
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this period yielded only anecdotal reports, and there were no placebo-controlled clinical 

trials conducted that adhered to current rigorous standards.

In contrast, recent clinical studies assessing the therapeutic potential of MDMA for treating 

PTSD are carefully controlled and well documented.220,221,222 First, patients are screened 

for medical conditions, including various neuropsychiatric disorders, that might exclude 

them from the study. Next, they are assessed at baseline using the Clinician-Administered 

PTSD Scale (CAPS). Patients then receive training sessions to establish rapport with an 

experienced clinician. The environment is carefully controlled so that it is aesthetically 

pleasing and resembles a living space rather than a medical facility. Music is often used to 

facilitate relaxation and/or evoke emotions. Both a male and a female therapist are present 

for the duration of the treatment session. After the drug is administered, there is limited 

verbal communication between the therapists and the patient. Instead, the patient is 

encouraged to explore any feelings that the experience might evoke. The therapists provide 

nurturing physical contact whenever necessary to help ease tension or distress. After the 

MDMA-session, the patient receives additional non-drug psychotherapy sessions.

An effective dosing paradigm was established by Oehen and co-workers utilizing low dose 

MDMA as an active placebo.221 The use of an active placebo is an important part of the 

experimental design implemented by Oehen and co-workers. Inactive placebos, such as 

lactose, fail to produce physiological and psychological responses noticeable to trained 

clinicians or experienced MDMA users. This raises the question as to whether or not studies 

utilizing inactive placebos can truly be considered double-blind experiments. Patients in the 

experimental treatment group received an initial dose of 125 mg of MDMA followed by an 

additional 62.5 mg after 2.5 h. The active placebo group received an initial dose of 25 mg of 

MDMA followed by an additional 12.5 mg 2.5 h later. The dose of MDMA used for the 

active placebo group was chosen to stimulant mild but detectable psychological effects.

The most common use for MDMA in medicine is as an adjunct to psychotherapy for treating 

anxiety disorders.223 Of particular note is recent clinical work demonstrating that MDMA 

can produce beneficial effects in treatment-resistant PTSD patients when it is paired with 

psychotherapy.220,221,224, The beneficial effects of this treatment paradigm seemed to be 

relatively long-lasting, as demonstrated by follow-up studies conducted several years later.
225 A recent meta-analysis determined that MDMA-assisted psychotherapy produced larger 

effect sizes in both clinician-observed outcomes and patient self-reports when compared to 

prolonged exposure therapy.226 Furthermore, fewer patients in the MDMA-assisted 

psychotherapy group dropped out of the study.226 These studies and others have indicated 

that MDMA was well tolerated when administered in a clinical setting as a single dose in the 

range of 75–125 mg.19 Recently, MDMA was granted “breakthrough therapy” status by the 

FDA for the treatment of PTSD. The phase III clinical trials are estimated to be completed 

within the next five years, and if the results are positive, it is anticipated that a New Drug 

Application for MDMA will be submitted to the FDA around 2021.227

Recent clinical work to understand the mechanism of MDMA’s therapeutic effects has 

revealed that this drug impacts the processing of emotionally salient information. Using 

functional magnetic resonance imaging (fMRI), de Wit and co-workers found that MDMA 
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attenuated the blood-oxygen-level dependent (BOLD) response to angry faces in the 

amygdala, while also enhancing the activation of the ventral striatum in response to happy 

faces.228 In this study, MDMA also impacted the performance of people during the Reading 

the Mind in the Eyes Test—a test that has participants attempt to predict what a person is 

thinking/feeling based on a picture of their face. Specifically, MDMA improved scores when 

the stimulus had a positive emotional valence. However, when the face had a negative 

emotional valence, MDMA-treated individuals performed poorly.229 Moreover, Carhart-

Harris and co-workers found that while under the influence of MDMA, participants rated 

their best and worst memories as being significantly more positive and less negative, 

respectively.230 Related to its subjective effects, MDMA increased bilateral blood flow in 

the ventromedial prefrontal cortex and reduced blood flow in the left amygdala231—two 

brain regions that play important roles in the processing of emotional stimuli and memories. 

Due to its general tendencies to reduce responses to threatening stimuli while enhancing 

responses to positive social cues, MDMA is being investigated for treating social anxiety in 

autistic adults,232 and it has been suggested that MDMA may prove useful in other 

conditions with a significant social component.48

Finally, MDMA may hold some promise for treating substance use disorders (SUDs).233,234 

Initial reports suggest that MDMA might decrease substance use,235 and a pilot study 

conducted by Howell and co-workers demonstrated that R-(−)-MDMA decreased response 

rates during a cocaine self-administration paradigm in squirrel monkeys.236 Though very 

few animals were used in the latter study, the results are encouraging. While other 

psychedelic compounds such as LSD, psilocybin, and ibogaine have been more extensively 

studied than MDMA with respect to their abilities to treat SUDs, the minimal perceptual 

disturbances caused by MDMA may offer a distinct advantage over the classical 

hallucinogens.

S-(+)-MDMA VS R-(−)-MDMA

While racemic MDMA is the form used both recreationally and in clinical trials, preclinical 

work and some human data suggest that there are distinct differences between the R- and S-

enantiomers of MDMA—the non-superposable mirror images of each other.237 The R- and 

S-enantiomers are sometimes referred to as the l- and d-enantiomers, respectively. An 

excellent review on this subject was published recently by Howell and coworkers,236 so we 

will only cover the highlights here.

Regarding the monoamine releasing and reuptake inhibiting properties of MDMA, there is a 

general consensus that the S-enantiomer is the more potent compound.
59,77,238,239,240,241,242,243,244,245,246 This is consistent with what is known about the effects 

of S-(+)-amphetamine on monoamine levels. However, R-(−)-MDMA appears to be a more 

potent direct binder of 5-HT2A receptors (Table 6),247,248 which perhaps explains why it has 

a greater propensity for causing perceptual disturbances. Neither enantiomer is particularly 

effective at stimulating phosphatidyl inositol turnover in either 5-HT2A or 5-HT2C 

expressing cells.249 When rats were trained to discriminate S-(+)-amphetamine, LSD, and 

saline from each other in a 3-lever drug discrimination paradigm, R-(−)-MDMA and S-(+)-

MDMA produced more hallucinogen-like and amphetamine-like discriminative stimuli, 
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respectively.250 Furthermore, experiments using mice trained to discriminate either S-(+)-

MDMA or R-(−)-MDMA from vehicle demonstrated that the S-enantiomer produced more 

psychostimulant-like effects while the R-enantiomer was more hallucinogen-like.251

In terms of their influences on hormone levels, the enantiomers of MDMA also have 

differential effects. Ex vivo studies utilizing rat hypothalamus tissue demonstrated that S-

(+)-MDMA is a more potent inducer of oxytocin release than the racemate, while R-(−)-

MDMA has no effect.252 However, R-(−)-MDMA was more effective at increasing the 

activation of hypothalamic oxytocinergic neurons, as measured by the number of c-fos 

positive neurons.236 Both enantiomers appear to increase vasopressin secretion comparably 

from the hypothalamus ex vivo.252 R-(−)-MDMA more potently increased plasma prolactin 

levels in rhesus macaques.245 Pretreatment with fluoxetine attenuated this effect, but did not 

block it completely. The selective 5-HT2A antagonist M100907 was required to completely 

inhibit R-(−)-MDMA-induced increases in prolactin, suggesting that indirect effects on 5-

HT levels, as well as direct binding to 5-HT2A receptors contribute to the ability of R-(−)-

MDMA to increase prolactin levels.246

Behaviorally, both enantiomers increase affiliative social behaviors in squirrel monkeys, and 

this effect seems to be dependent on activation of 5-HT2A receptors.253 In mice, R-(−)-

MDMA and the racamate (but not S-(+)-MDMA) increased social interaction and facilitated 

fear extinction learning, effects that could be relevant to using MDMA as a therapeutic.254 

Furthermore, the R-enantiomer did not increase locomotor activity, a behavioral effect 

commonly produced by psychostimulants.254

As discussed, the primary concern for using MDMA in the clinic is its potential 

neurotoxicity. Most neurotoxicity studies were performed using the racemate, however, there 

is some evidence to suggest that the neurotoxic effects of MDMA stem from the S-

enantiomer, with the R-enantiomer being relatively benign. Unlike R-(−)-MDMA, S-(+)-

MDMA increased body temperature and promoted the activation of microglia and astroglia.
255 However, this study employed a relatively low dose of R-(−)-MDMA. To more definitely 

establish a lack of neurotoxicity following R-(−)-MDMA administration, Howell and co-

workers administered high doses of R-(−)-MDMA (four injections of 50 mg/kg given over 

two days) to mice and compared effects to those produced by the racemic mixture (four 

injections of 20 mg/kg given over two days).254 These authors assessed body temperature, 

mortality, and markers of neurotoxicity. Unlike the racemate, high dose R-(−)-MDMA did 

not influence body temperature or survival. Furthermore, the R-enantiomer had no effect on 

glial fibrillary acidic protein (GFAP) immunoreactivity, DA content, or DAT expression. The 

racemate significantly increased astrogliosis while decreasing both DA content and DAT 

expression. This study provides compelling evidence that at least in mice, the R-enantiomer 

of MDMA lacks many of the negative effects associated with the racemate, while still 

maintaining the ability to promote social interaction and to facilitate fear extinction learning.

Thus, R-(−)-MDMA may be an effective pharmaceutical with an acceptable therapeutic 

index. However, neurotoxicity and other negative effects associated with S-(+)-MDMA and 

racemic MDMA will always be associated with the acryonym “MDMA,” having the 

potential to bias regulatory bodies, doctors, and patients. Therefore, to identify a term 
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suitable for common parlance, but devoid of negative connotations, we suggest the use of the 

alternate terms “armdma,” “esmdma,” and “racmdma” to refer to R-(−)-MDMA, S-(+)-

MDMA, and (±)-MDMA, respectively. These terms are analogous to “arketamine” and 

“esketamine,” which refer to the R- and S-enantiomers of the fast-acting antidepressant 

ketamine, respectively. If armdma proves to be an effective and safe therapeutic in humans, 

we hope this new terminology will eliminate any potential stigma associated with using a 

perceived “party-drug” as a medicine.

HISTORY AND IMPORTANCE IN NEUROSCIENCE

Urban legend, rumor, and myth have clouded the true history of MDMA. Several excellent 

historical accounts of the discovery and development of MDMA have been reported 

previously,44,49,256,257 and thus, we only discuss the highlights here (Figure 5). First, it is a 

common misconception that MDMA was originally designed to be an appetite suppressor or 

a weight loss drug. Instead, MDMA originated from a campaign by Merck to sidestep a 

patent on the hemostatic drug hydrastinine held by Bayer, one of Merck’s top rivals. In fact, 

MDMA was first synthesized in 1912 and subsequently patented, but as it was only intended 

to be an intermediate en route to the desired compound, its biological activity was not 

assessed. It was not until 15 years after its initial synthesis that MDMA was actually tested 

in animal models. Merck was interested in identifying compounds that mimicked the effects 

of epinephrine,49 and MDMA was one candidate tested owing to its structural similarities. 

Unfortunately, the results of these tests could not be found in the Merck archive.256

Research on MDMA appeared to stagnate until the 1950s. At that time the US military 

began using mescalinelike compounds, including MDMA, as part of pharmacologically-

assisted interrogation programs.258 In essence, they were trying to identify so-called “truth 

drugs”—compounds capable of lowering inhibitions making people more likely to reveal 

secret information. The chemical warfare code of MDMA was EA-1475.44 The 

methylenedioxy-containing entactogens, such as MDA and MDMA, were of particular 

interest to the military because these compounds tended to encourage people to speak more 

openly without causing overwhelming perceptual disturbances. The characteristic 

hallucinations produced by compounds like LSD and mescaline typically disrupted 

interrogation sessions. In the early 1950s, the military began testing several of these 

compounds on patients at the New York State Psychiatric Institute. In 1952, a patient named 

Harold Blauer was administered several compounds over the course of a month before 

succumbing to a fatal dose of MDA (450 mg).258 Realizing that safety data on these 

compounds were woefully lacking, the military contracted a group at the University of 

Michigan to conduct pharmacokinetic and safety studies in mice, rats, guinea pigs, dogs, and 

monkeys.259 After declassification, these data were published in 1973 and revealed that the 

methylenedioxy compounds were more toxic than their methoxy counterparts.259

The first report of the synthesis of MDMA in the peer-reviewed literature was in 1960.260 

Afterwards, MDMA remained relatively unexplored until Alexander Shulgin learned of the 

unique effects of the compound and tested MDMA on himself in 1976.261 Thereafter, 

Shulgin distributed it to friends and psychotherapists in northern California, who began 

using MDMA to facilitate psychotherapy. Shulgin and Nichols were the first to publish on 
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the effects of MDMA in humans in 1978.13,14 Though Shulgin is often credited with the 

rediscovery of MDMA,261 the role of David Nichols should also be emphasized as Nichols 

was a co-author on these first reports of the effects of MDMA in humans. Furthermore, he 

was largely responsible for reclassifying MDMA and related compounds as entactogens, due 

to their unique qualities relative to hallucinogens and psychostimulants.41

During the period from 1978 to 1985, it is estimated that thousands of patients were treated 

with MDMA.216 However, these initial studies did not adhere to the same rigorous standards 

that we demand of clinical trials today. As a result, the true therapeutic potential of MDMA 

was not captured in the scientific literature. Furthermore, the properties of MDMA that 

made it an effective aid to psychotherapy also led to its widespread use in social situations. 

During this period of time, recreational use of MDMA increased dramatically, and mounting 

evidence suggested that MDA, a structurally related compound, was neurotoxic. At the time, 

there was little data on the safety of MDMA, and thus, the DEA decided to place it on the 

Schedule I list in 1985 largely based on its structural similarity to MDA.262 This decision 

was protested by a large number of scientists and therapists, and challenged in court, but 

ultimately, MDMA was permanently placed on the Schedule I list in 1988.

In a 2002 paper published in Science, Ricaurte and co-workers described experiments 

performed in nonhuman primates demonstrating severe dopaminergic (and to a lesser extent 

serotonergic) neurotoxicity of MDMA.263 These authors suggested that MDMA might put 

users at risk for developing Parkinson’s disease. The results of the study were rapidly 

disseminated by the popular media, leading to the widespread public belief that 

administration of “recreational doses” of MDMA (3 doses of 2 mg/kg spaced over 6 hours) 

could have major health consequences. When Ricaurte and co-workers could not reproduce 

their results, they retracted their Science paper a year later.264 Further analysis revealed that 

animals used in the original study were likely dosed with methamphetamine, a known 

dopamine neurotoxin, instead of MDMA, due to a mix-up in the labeling of sample vials.

Despite its retraction, the Ricaurte study had dealt a serious blow to the credibility of 

MDMA as a safe therapeutic. Heated public debate ensued about the potential dangers of the 

drug and its government regulation. In 2009, David Nutt published an editorial where he 

compared the dangers of using ecstasy (1 serious adverse event in 10,000) to those of 

horseback riding or “equasy” (1 serious adverse event in 350).265 This editorial highlighted 

the fact that people in the scientific community felt that government agencies were not using 

objective criteria for assessing risk when establishing regulations for psychoactive 

compounds like MDMA. Since the retraction of the Ricaurte study, there have been multiple 

clinical trials investigating the effects of MDMA, and thus far, all data suggest that MDMA 

can be administered safely under these conditions.

In 2011, the first completed clinical trial evaluating the potential of MDMA-assisted 

psychotherapy for alleviating treatment-resistant PTSD was published.220 The results were 

positive, and in 2017, MDMA was granted “breakthrough therapy” status by the FDA. This 

designation helps to expedite the review and potential approval process for promising 

therapeutics. Phase III clinical trials are currently being planned, and if the results of those 

trials warrant approval by the FDA, a bona fide accepted medical use for MDMA will have 
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been established. This would necessitate the removal of MDMA from the Schedule I list, a 

regulatory change that could have profound implications for the field of psychedelic 

medicine. Schedule I status has severely hampered access to psychedelics for research 

purposes. In sum, this trajectory is perhaps why MDMA is the most influential compound 

for the future of psychedelic research. However, MDMA is also a highly divisive compound 

having the potential to swing public opinion against general use of psychedelics in medicine.

Since 2012, there has been an upswing in the numbers of songs and pop culture references to 

“molly,” a trend that parallels that seen for LSD in the 1960s and 1970s. Extensive 

proselytizing about the non-medical uses of LSD contributed to the creation of the 

Controlled Substance Act of 1970. This legislation has been a huge barrier to legitimate 

scientific research on the effects of these drugs and led to the first “Dark Age” for the field

—the period of time from roughly 1970 to 1994 when relatively little psychedelic research 

was conducted. If public discourse on MDMA takes a similar course to that of LSD, we may 

be doomed to repeat the mistakes of the past. This would be unfortunate as MDMA is an 

important neurochemical tool for elucidating the neural mechanisms of social behaviors and 

empathy, and it has the potential to offer real relief to people suffering from PTSD and other 

anxiety disorders. However, because of its history and neurotoxic potential, MDMA may 

never achieve clinical and/or societal acceptance. Perhaps the true potential of MDMA lies 

in its use as a lead structure for the development of safer and more efficacious alternatives.
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Figure 1. 
Structural relationships between MDMA and other psychoactive compounds. The common 

phenethylamine core is highlighted in red. Compounds are classified as psychostimulants, 

hallucinogens, or entactogens based on the behavioral responses they produce in 

experimental animals and their subjective effects in humans.
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Figure 2. 
Common synthetic strategies used to produce racemic MDMA.
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Figure 3. 
Synthetic strategies used to synthesize enantiopure MDMA. (A) Reductive amination using 

(S)-α-methylbenzylamine (B) Reductive amination using Ellman’s sulfinamide (C) Ring 

opening of an (S)-alanine-derived-aziridine.
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Figure 4. 
Common metabolites of MDMA. CYP = cytochrome P450; COMT = catechol-O-

methyltransferase.
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Figure 5. 
Timeline of important events related to research on MDMA and classical psychedelics. Note 

the different peaks for research on MDMA and LSD. The data were obtained from a 

PubMed search for papers having titles that contained the search terms “3,4-

methylenedioxymethamphetamine or MDMA” and “lysergic acid diethylamide or LSD” 

conducted on March 20, 2018.
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Table 1.

Effects of MDMA on monoamine reuptake using synaptosomes prepared from rat brains. Values for Ki (nM) 

are reported ± standard deviations.65 NE = norepinephrine; DA = dopamine; 5-HT = serotonin.

Compound NE Uptake DA Uptake 5-HT Uptake

S-(+)-Amph 38.9 ± 1.8 34 ± 6 3,830 ± 170

(±)-MDMA 462 ± 18 1,572 ± 59 238 ± 13
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Table 2.

Effects of MDMA on monoamine transport inhibtion using HEK293 cells stably expressing human 

monoamine transporters. Values for IC50 (μM) are reported with 95% confidence intervals in parentheses.62 

NE = norepinephrine; DA = dopamine; 5-HT = serotonin.

Compound NE Uptake DA Uptake 5-HT Uptake

S-(+)-Amph 0.094 (0.06–0.14) 1.30 (0.83–2.0) >10

(±)-MDMA 0.447 (0.33–0.60) 17 (12–24) 1.36 (1.0–2.0)
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Table 3.

Effects of MDMA on monoamine release using synaptosomes prepared from rat brains. Values for EC50 (nM) 

are reported ± standard deviations.65 NE = norepinephrine; DA = dopamine; 5-HT = serotonin.

Compound NE Release DA Release 5-HT Release

S-(+)-Amph 7.07 ± 0.95 24.8 ± 3.5 1,765 ± 94

(±)-MDMA 77.4 ± 3.4 376 ± 16 56.6 ± 2.1

ACS Chem Neurosci. Author manuscript; available in PMC 2018 October 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dunlap et al. Page 43

Table 4.

Effects of MDMA on monoamine release using monoamine-preloaded HEK293 cells stably expressing human 

monoamine transporters. Values for EC50 (μM) are reported with 95% confidence intervals in parentheses.62 

NE = norepinephrine; DA = dopamine; 5-HT = serotonin.

Compound DA Release 5-HT Release

S-(+)-Amph 1.76 (1.1–2.9) >33

(±)-MDMA 22 (8.9–53) 5.63 (3.5–9.2)
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Table 5.

Binding affinity profile for (±)-MDMA with values for Ki reported in nM. Radioligand binding assays were 

performed using stably or transiently expressing cell lines (HEK, HEKT, or CHO) unless noted otherwise.

Receptor Radiolabeled
Ligand

Ligand
Classification Species Ki (nM) Reference

5-HT1A 3H-8-OH-DPAT Agonist Human >10,000 77

5-HT1A 3H-8-OH-DPAT Agonist Human 12,200 62

5-HT 1B 3H-GR-125743 Antagonist Human >10,000 77

5-HT 1D 3H-GR-125743 Antagonist Human >10,000 77

5-HT 1E 3H-5-HT Agonist Human >10,000 77

5-HT2A 3H-Ketanserin Antagonist Rat >10,000 77

5-HT2A 3H-Ketanserin Antagonist Human 7,800 62

5-HT2B 3H-LSD Agonist Human 500 77

5-HT2C 3H-Mesulergine Antagonist Rat >10,000 77

5-HT2C 3H-Mesulergine Antagonist Human >13,000 62

5-HT3 3H-Zacopride Antagonist Human >10,000 77

5-HT5 3H-LSD Agonist Human >10,000 77

5-HT6 3H-LSD Agonist Human >10,000 77

5-HT7 3H-LSD Agonist Human >10,000 77

Alpha1A 125I-HEAT Antagonist Human >10,000 77

Alpha1A 3H-Prazosin Inverse Agonist Human >6,000 62

Alpha1B 125I-HEAT Antagonist Human >10,000 77

Alpha2A 3H-Clonidine Agonist Human 2,532 77

Alpha2A 3H- Rauwolscine Antagonist Human 15,000 62

Alpha2B 3H-Clonidine Agonist Human 1,785 77

Alpha2C 3H-Clonidine Agonist Human 1,123 77

Beta1 125I-Pindolol Partial Agonist Rat >10,000 77

Beta2 125I-Pindolol Partial Agonist Rat >10,000 77

CB1 3H-CP-55940 Agonist Rat (brain) >10,000 77

M1 3H-QNB Antagonist Human >10,000 77

M2 3H-QNB Antagonist Human >10,000 77

M3 3H-QNB Antagonist Human 1,851 77

M4 3H-QNB Antagonist Human 8,245 77

M5 3H-QNB Antagonist Human 6,339 77

Nicotinic
Alpha1Beta2

3H-Epibatidine Agonist Human >10,000 77

Nicotinic
Alpha2Beta2

3H-Epibatidine Agonist Human >10,000 77

Nicotinic
Alpha2Beta4

3H-Epibatidine Agonist Human >10,000 77
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Receptor Radiolabeled
Ligand

Ligand
Classification Species Ki (nM) Reference

Nicotinic
Alpha3Beta2

3H-Epibatidine Agonist Human >10,000 77

Nicotinic
Alpha3Beta4

3H-Epibatidine Agonist Human >10,000 77

Nicotinic Alpha7 3H-Epibatidine Agonist Human >10,000 77

D1 3H-SCH23390 Antagonist Human >10,000 77

D1 3H-SCH23390 Antagonist Human >13,600 62

D2 3H-NMSP Antagonist Human >10,000 77

D2 3H-Spiperone Antagonist Human 25,200 62

D3 3H-NMSP Antagonist Human >10,000 77

D3 3H-Spiperone Antagonist Human >17,700 62

D4 3H-NMSP Antagonist Rat >10,000 77

D5 3H-SCH23390 Antagonist Human >10,000 77

GABA A 3H-Muscimol Agonist Rat (forebrain) >10,000 77

GABA B 3H-Baclofen Agonist Rat (forebrain) >10,000 77

NMDA 3H-MK-801 Antagonist Rat (forebrain) >10,000 77

H1 3H-Pyrilamine Antagonist Human 2,138 77

H1 3H-Pyrilamine Antagonist Human >14,400 62

H2 3H-Pyrilamine Antagonist Human >10,000 77

Prostaglandin EP3 3H-PGE2 Agonist Human >10,000 77

Prostaglandin EP4 3H-PGE2 Agonist Human >10,000 77

NET 3H-Nisoxetine Inhibitor Human >10,000 77

NET 3H-Nisoxetine Inhibitor Human 30,500 62

DAT 3H-GBR 12935 Inhibitor Human >10,000 77

DAT 3H-WIN35,428 Inhibitor Human 6,500 62

SERT 3H-Citalopram Inhibitor Human >10,000 77

SERT 3H-Citalopram Inhibitor Human 13,300 62

TAAR1 3H-RO5166017 Agonist Rat 370 62

TAAR1 3H-RO5166017 Agonist Mouse 2,400 62
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Table 6.

Binding affinity profile for (±)-MDMA, R-(−)-MDMA, and S-(+)-MDMA with values for Ki reported in nM ± 

SEM.247

Receptor Hot Ligand Hot Ligand Activity (±)-MDMA R-(−)-MDMA S-(+)-MDMA

5-HT 1 3H-5-HT Agonist 6,850 ± 1,300 4,200 ± 500 >10,000

5-HT2 3H-Ketanserin Antagonist 8,300 ± 1,100 3,310 ± 140 >10,000

D2 3H-NMSP Antagonist >10,000 >10,000 >10,000
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