
INTRODUCTION 
 

Understanding why people choose to move from one location to another and areas of 

greater or lesser traffic flow can suggest the social significance of a given space as well 

as how transport infrastructure is used for movement. The importance of transportation 

for land-use, human-to-human, and human-to-environmental interactions is clearly 

demonstrated for a variety of spatial settings (Rapoport 1990, Johnston and de la Barra 

2000, Stough 2004). Despite disparities in theoretical approaches, archaeologists and 

other social scientists generally agree that transport infrastructure often shapes and is 

shaped by significant social developments that affect how people perceive space and 

movement within that space (Snead et al. 2009, Wheatley and Gillings 2002, Lefebvre 

1991). Given transport infrastructure’s social significance, researchers need to understand 

both its arrangement and utility in various settings. For many cases dealing with past 

pedestrian transport, however, data needed in order to assess and understand what areas 

one may expect heavy traffic, preferences for specific routes, and decisions people make 

in order to move to given locations are missing. In perhaps a few historical cases, data are 

more easily recoverable, allowing researchers to create modeling approaches that can 

replicate, to a high degree of fidelity, relevant social and physical behaviors affecting 

human walking. Whether needed data are readily available or not, spatial approaches 

need to be applied by researchers in order to make assessments of traffic volume that 

directly affects wider social understanding.  

Modeling approaches within geographic information systems for transportation (GIS-

T) have been traditionally applied by analysts and researchers in order to assess 

transportation behavior and structure (Goetz et al. 2004). However, applying such tools 

can prove to be cumbersome in integrating different modeling techniques and expensive, 

limiting their potential for modifying assessments as new data and theoretical 

understanding arises. Models incorporated should allow assessments to be made by 

leveraging different and multiple approaches in order to provide the broadest analysis 

possible that is modifiable to a wide variety of circumstances and scenarios. By enabling 

an application to modify modeling approaches and available data, the tool becomes more 

feasible for analysts working with largely missing, emerging, or complete data as well as 

testing different theoretical assumptions. 

This paper introduces an object-oriented geosimulation environment for modeling 

pedestrian transportation. Our approach allows users to integrate both mathematical and 

agent-based models (ABMs) in order to address questions dealing with pedestrian 

transport. The main focus of this paper is to demonstrate how our modeling approach 

provides reasonable assessments of past pedestrian traffic volume and allows researchers 

to determine areas that warrant further archaeological investigation. The primary 

analytical benefit of our approach is that it allows researchers to integrate multiple 

modeling methods that enhance archaeological understanding. For the case study, we 

integrate a biophysical model that enables agents to determine physical costs of travel 

based on how much energy is consumed in order to walk to a location. In addition, an 

agent-based (or individual-based) approach is used in order to provide discrete event 

flexibility and allow different types of individuals to be modeled. The paper begins by 

providing details of our modeling methodology and specific models used in addressing 

our pedestrian case study. The case study is then presented, detailing why the models 



applied are appropriate. Applying the simulation method to the case study, results 

demonstrate our approach in addressing archaeologically relevant research questions. 

These results are then compared to fieldwork observations in order to help validate and 

show that the applied models provide useful insights. After this section, we discuss how 

modeling results and approaches are applicable to archaeological problems and research. 

We also present the general utility of our approach, discussing relevant modeling issues 

based on applying an object-oriented and multi-model method. 

 

SIMULATION METHODS 

 

Background of the Approach 

 
Quantitative and modeling approaches are increasingly being used to address such topics 

as assessing archaeological landscape transformations and site analysis (Barceló 2009). 

Included within this trend, ABMs (Bonabeau 2002) are being incorporated with GIS 

technologies in order to provide geospatial analysis capabilities and modeling flexibility 

that addresses bottom-up processes over continuous and discrete time (Rand et al. 2005, 

Brown et al. 2005, Branting et al. 2007, Robinson and Brown 2009). Applying ABMs to 

pedestrian transportation is nothing new, as the approach provides benefits by allowing 

researchers to incorporate human decision-making, heterogeneous agents, and movement 

within grids or street networks (Lake 2001, Batty et al. 2003, Batty 2003). The list of 

current tools and approaches is extensive; we refer to Zhou (2008) in order for readers to 

review recent applications of ABM-GIS tools for pedestrian transportation. Few tools, 

however, have been developed to allow varied types of models, in addition to ABMs, to 

be integrated into analysis and the incorporation of new models as needed through 

development frameworks.  

In our approach, we apply an object-oriented Java-based modeling application, called 

SHULGI and built using Repast Simphony (Repast 2010) as the underlying modeling 

structure, in order to assess areas where pedestrian traffic is expected (Branting et al. 

2007). The SHULGI tool only applies open source and free tools, making its methods 

easily accessible to others and requiring minimal financial costs to upgrade. SHULGI 

currently uses GeoTools as the main GIS framework (GeoTools 2010), which is directly 

coupled to the SHULGI application. Modeling and algorithm choices built within 

SHULGI relate to metabolism (McDonald 1961, Pandolf et al. 1977), velocity (Imhof 

1968), least-cost route selection (Dijkstra 1959, Hart et. al. 1968), elevation interpolation 

through triangulation or inverse distance weighting (de Berg et al. 2008), and ABMs 

(e.g., Standard Decision Model).  

Additional models and algorithms can be created and integrated within SHULGI 

using Repast Simphony’s development environment (North et al. 2007, Repast 2010). 

Figure 1 shows a GUI model creation tool, which allows models to be created in Java and 

then directly coupled to SHULGI. Users can apply mathematical notation or conditional 

statements (i.e., if-then-else statements) within the model creation process, potentially 

enabling those with limited programming experience to create and apply different types 

of models. Models can be created using discrete events or fixed time steps, giving greater 



temporal flexibility than traditional GIS modeling methods (Pawlaszcyk and Timm 

2007).  

 

 
Fig. 1. Model displayed using the Repast Simphony model GUI development 

environment within Eclipse (North et al. 2007). The model shown here is 

described and detailed in Section 3.1 (Standard Decision Model). 

 

Similar to other ABM efforts that address past land use dynamics, models are not 

integrated directly with agent objects in SHULGI; rather, they are represented by their 

own simulation objects which are used by agents as needed (Christiansen and Altaweel 

2006). The benefit of this approach is that it potentially allows multiple models to be 

concurrently applied, enabling efforts to leverage the strengths of each modeling 

approach for research problems. Data loaded are directly mapped by the user to specific 

agent and object parameters using XML or SHULGI’s GUI. Outputs produced by 

modeling are exported via shapefiles, with these data then brought into different GIS 

environments (e.g., ArcGIS) for further analysis.  

For the case study demonstration to be presented below, we apply models that 

specifically address metabolic expenditures and route decision-making. The metabolic 

model we use is the built-in McDonald model, which determines how much energy 

agents require in walking a specific street segment. We use an ABM route selection 

model, called the Standard Decision Model (SDM), that allows agents to determine 

locations to go to (see Figure 1). Our scenarios have focused on energy minimization, 

whereby agents choose routes that require the least amount of energy to walk. Although 

the selection of routes through minimal energy costs is not the only assumption one can 

make, it is a valid initial consideration to test in order to see if energy costs were a major 



determinant in decision-making. In other words, lacking social data on how people make 

decisions on selecting routes, we feel a reasonable approach is to begin with known and 

simple factors affecting walking, primarily physical energy expenditures and the 

transport infrastructure, in order to identify locations where one could expect different 

patterns of traffic to develop. The results of modeling assumptions should then be 

checked with archaeologically recovered data, which we will discuss in a later section. 

In scenarios, objects that are evolved by modeling include:  TransportAgents that 

represent agents modeled, Structures which contain data about urban structures, 

ShuligEdges which are edges in a road network, RoadNetworkNodes that comprise the 

ends of road edges, a RoadNetwork which contains the ShulgiEdges and allows network 

analysis, and DestinationNodes that represent locations agents travel to. We have also 

provided SHULGI as a supplementary file to this electronic article (see Additional Files). 

The file provides information on objects used and SHULGI’s Java code. 

 

Applied Agent-Based Model Detail 
 

We developed the SDM model in order to allow all modeled urban structures to be 

visited by each agent (i.e., TransportAgents) once; when all Structure objects have been 

visited then the simulation ends. Agents move from a starting center point location in a 

structure by selecting a route to another structure. Agents then go back to the initial start 

location. This process is repeated until all structures are visited. The model, in summary, 

attempts to find which routes become significant if one were to attempt to access all 

structures within the spatial setting. The intent of our modeling is to show the potential of 

the approach applied to realistic archaeological problems. To do this adequately, we have 

chosen to apply a model that addresses a reasonable research goal and that can be 

validated to some extent, showing the research approach’s utility. Other ABMs we have 

applied, in fact, have not produced results that we have been able to validate to any 

extent, as the results of these simulations did not match empirical data collected in the 

field. To keep this paper relatively short, we have chosen not to discuss in detail those 

other models applied. To summarize these attempts, however, the other models applied 

include those that allow agents to choose routes that are the shortest based on time or 

distance. In addition, SDM, using a non-agent-based variation, has been applied to 

modern urban settings and shown to correctly forecast pedestrian movements for 

different age and sex cohorts (Branting 2004). Steps involved in SDM are described in 

greater detail using mathematical notation.  

As the first step, prior to the simulation starting, edge weights are parameterized 

using the metabolic model, which uses agent velocity, based on average walking speed 

for the given agent type, and slope gradient of the walking surface. This is expressed as: 

 

    ∀( p∈N)wpt = M(v t ,gt ) (1) 

 

where wpt  is the edge weight of a ShulgiEdge p for agent type t, N is the RoadNetwork 

object, M is the McDonald model function (McDonald 1961), v is velocity, and g is the 

gradient of the given terrain. The agent type (t) encapsulates both the sex and age 

category (i.e., young, middle, and old) of the agent, which is used by the McDonald 

model in order to determine energy consumption for individuals. When each agent (i) 



traverses a specific road link, w is checked by that agent’s type. The weight function is 

used for an undirected RoadNetwork object, prompting the weight calculation to be 

determined for both directions of each ShulgiEdge object. This step is not repeated again, 

as edge weights stay constant throughout the duration of the simulation. In essence, the 

McDonald model determines how much energy is necessary for an agent to walk through 

a specific edge. 

After edge weights have been initialized, agents decide which node they should go to. 

This is determined by the following function: 

  
if (li ≠ hi )di← hi; 

                else { ),( ii lra δ← ; while(n∉Vi ∧ n ≠ null) di← min(n∈ ai)}         (2) 

 

where l is the current location for agent i, d is the desired DestinationNode i wants to go 

to, h is the start location of i, δ  is a function for finding the nearest DestinationNodes, r 

is the set of all DestinationNodes, a is a sorted set of possible locations to visit, n is a 

destination (i.e., a DestinationNode instance) i may want to go to, and V is the set of all 

DestinationNodes visited previously. This function, in summary, returns the agent to 

his/her start location if he/she is not there, but if the agent is at the start location then the 

next node that the agent will visit is the nearest (i.e., the minimum value of a) 

DestinationNode not previously visited. The function locating the nearest 

DestinationNodes is defined as: 

 

                     δ(r,li) := ∀(n∈ r)θ(| n − li |) (3)  

   

with (|n-1i|) representing a sort function that orders DestinationNodes n, from nearest to 

farthest, using a three-dimensional Euclidian distance calculation determining distance 

between each n instance and the current location (l) of i. To find the shortest path from 1i 

to the chosen destination di , the least-cost Dijkstra algorithm (alternative models applied 

include using A*) is called: 

  

               ),( iii dlDS =      (4) 

 

where S is the set of ShulgiEdges that is the least-cost path based on the Dijkstra 

algorithm (D) that takes the start location (l) and chosen destination (d). Rather than strict 

distance, the weight between the two locations, as determined by (1), is used to find S in 

the Dijkstra implementation. After this function, agents move along the chosen path 

based on their walking velocity. This is simply expressed as: 
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with each element s, or node location along the S path, reached based on the scheduling 

of time (T) by dividing the link distance between s and  li(i.e., s-li) by the velocity (v) in 

which i moves over a given terrain (see Table 1). In SHULGI, velocity can be determined 

through the Imhof model or loaded static values. In any case, the current location (l) of i 



is then only true at a specific time (x). Then, the agent simply checks to see if the desired 

node has been reached (i.e., li = di). The agent also checks: 

 

                    if (di ≠ hi) ⇒ di ∈Vi     (6) 

 

so that locations that are not the same as the initial home location (h) are added to the 

previously visited set (V). After this step, (2) is called again until all locations have been 

visited by the agent. The agent always returns to his/her initial location after going to a 

new destination. After all locations have been visited by all modeled agents, the 

simulation ends.  

 

SIMULATION RESULTS 
 

Case Study:  Kerkenes Dağ 

 
The example case study in which we apply our integrated modeling methodology is the 

archaeological site of Kerkenes Dağ, which is a large Iron Age site in Turkey dating to 

the 6th century B.C. (Summers 1997). Despite the age of this site, virtually the entire plan 

and street network is known through surface mapping, with structures and streets clearly 

visible in aerial photography. The site was occupied for a short period, perhaps less than 

100 years, which has enabled many of the visible structures to survive and the 

assumption can be made that many of the visible structures were contemporary. Elevation 

on the site varies up to approximately 100 m. Nevertheless, because this case study has 

no or little historical data associated with it, we cannot easily determine route selection 

decisions made by its past pedestrians. In this case, we want to know what the likely 

relative traffic volume was given the street layout. Specifically, the research goal is to 

determine which streets and neighborhoods may have had more traffic volume in contrast 

to other parts of the ancient city. Knowing traffic volume within the city may provide 

clues as to possible social functions and status for given neighborhoods. Given the 

limitations of our research budget, the entire site cannot be explored through excavations 

in order to determine areas of relatively greater or lesser traffic volume. This necessitates 

a research approach that provides a reasonable assessment of traffic volume and could be 

validated to some extent using a sampling excavation strategy that investigates soil 

properties. 

First, we define what factors and data we know. We divide the modeled population 

into six different agent cohorts that are derived based on age and gender. These agent 

types, as we refer to them, are referenced as: young men (aged 10–34), young women 

(aged 10–34), middle-aged men (aged 35–55), middle-aged women (aged 35–55), older 

men (aged 56–75), and older women (aged 56–75). Rather than modeling the exact 

population, we modeled each agent type, or expected age and sex cohorts for Kerkenes 

Dağ, that likely made up the majority of the pedestrian population. This is done because 

the past population is uncertain and the intent of the models applied is to determine route 

selection patterns and relative traffic volume based on varying types of agents that would 

have been found throughout the modeled city. Distributing the number of agents 

unevenly across the city landscape is a possibility, but this is speculative and only 

justifiable if modeling results suggest such distributions. In any case, each agent type is 



modeled in scenarios by creating one agent for each building structure, initially placing 

that agent at the center point of structures. For each scenario, there are 758 agents.  

Street edges in Kerkenes Dağ are divided based upon stride lengths of the different 

agent types modeled. In other words, for each agent type the street network is unique as 

average stride lengths vary for different agent categories. This approach allows one to 

factor elevation changes and energy expenditure by stride length for agents. In addition to 

stride lengths, average body weight and average walking velocity for the agent types are 

applied, with these data derived from multiple studies investigating age and sex cohorts 

(Fulwood 1981, Kawamura 1991, Sun et al. 1996). Age and sex cohorts in our model are 

defined as such because people within these groups have similar walking behaviors. 

Elevation data for Kerkenes Dağ’s streets, taken from GPS and derivable from Delaunay 

triangulation, are included in the street network and used in distance and slope 

calculations. Visible remains of building structures that were mapped are represented as 

shapefiles in the model; in total there are 758 structures in Kerkenes Dağ. Table 1 

summarizes the applied stride velocity, stride length, and weight values used for agent 

types modeled.  

 

Tab. 1. Average velocity (km/h) of agent types are indicated with the numbered values in 

the Category column indicating the nearest surface slope (in degrees) for street edges 

walked by agents. Average stride length (m) and weight (kg) are included for each agent 

type. 

Category 
Young 

Men 

Young 

Women 

Middle 

Men 

Middle 

Women 

Old 

Men 

Old 

Women 

12 7.01 6.16 6.84 5.35 4.97 4.75 

11 7.40 6.50 7.22 5.65 5.25 5.01 

10 7.40 6.50 7.22 5.65 5.25 5.01 

9 7.40 6.50 7.22 5.65 5.25 5.01 

8 7.56 6.65 6.89 6.60 6.28 5.36 

7 7.36 7.04 6.99 6.42 5.86 5.41 

6 7.31 7.30 7.27 6.62 6.18 5.57 

5 7.46 6.48 7.21 7.34 5.81 5.48 

4 7.65 6.84 7.21 6.74 6.02 5.65 

3 7.94 7.21 7.05 6.72 6.43 5.88 

0.5 7.77 7.58 7.47 7.03 6.65 6.08 

0 8.61 8.10 7.81 7.16 6.85 6.16 

-0.5 8.03 7.82 7.26 6.57 6.47 5.78 

-3 7.19 6.66 6.85 6.61 5.44 5.76 

-4 7.70 7.23 7.28 6.81 6.02 5.58 

-5 7.55 7.32 7.07 6.54 5.55 5.29 

-6 7.62 7.31 7.67 5.76 5.36 5.37 

-7 7.69 7.11 6.95 6.31 5.51 5.37 

-8 7.22 6.93 6.84 6.55 5.68 4.81 

-9 8.50 8.30 7.34 6.64 5.86 4.36 

-10 8.50 8.30 7.34 6.64 5.86 4.36 

-11 8.50 8.30 7.34 6.64 5.86 4.36 

-12 7.48 7.31 6.46 5.85 5.16 3.84 



Stride Length 0.68 0.63 0.65 0.58 0.57 0.51 

Weight 68.89 72.19 71.39 55.05 59.02 58.79 

 

Simulation Outputs 

 
Each scenario, in which there are six, consists of one agent type (e.g., young men) for all 

modeled TransportAgents. Although we are aware that among the benefits of agent-based 

modeling is its ability to integrate heterogeneous agent types into a given simulation 

environment, for the purpose of presenting results we have divided modeled groups. 

However, we also present the results of all the scenarios integrated together, which 

represent results of a heterogeneous mixture of cohorts. Overall, there are 758 agents per 

scenario, which is also the same number of structures in Kerkenes Dağ. Each scenario is 

modeled once since the applied models are deterministic. The outputs that our 

simulations have focused on include expected street traffic volume on road edges (i.e., 

ShulgiEdges) as well as expected traffic volume passing by specific urban structures. The 

second output is determined by aggregating the road edge traffic volume that surrounds a 

modeled structure; this is done for all structures. The results are then exported to 

shapefiles for statistical analysis. 

 

Scenarios 1-6 
 

From the six scenarios modeled, results can be summarized statistically, with information 

focusing on street traffic volume as measured by the number of times a street is walked 

on. Table 2 provides comparisons between the distributions of the number of times streets 

are traversed in each scenario as well as the mean and standard deviation of this measure 

for each agent type. We apply a Kolmogorov-Smirnov (K-S) two-sample test on traffic 

volume for all edges to indicate if there are significant (p-value < .05) street traffic 

volume differences between agent types. This essentially compares traffic volume for 

road links in all the scenarios. We also applied an Anderson-Darling test, but 

qualitatively the results produced by this test are comparable to the K-S test and are not 

presented here. As Table 2 shows, the scenarios with the greatest distribution differences 

are the young men and old women scenarios. In all scenarios, the distribution patterns for 

the number of times streets are traversed cannot be considered significantly different 

from each other. 

 

Tab. 2. Comparisons (p-value) between age and sex cohorts as well as the means and 

standard deviations of each cohort for the number of times street segments are traversed. 

A Kolmogorov-Smirnov test was applied to test for differences between the distributions. 

Category 
Young 
Men 

Young 
Women 

Middle 
Men 

Middle 
Women Old Men Old Women 

Young Men   0.47 1.00 0.72 1.00 0.08 

Young Women 0.47   0.27 1.00 0.80 0.23 

Middle Men 1.00 0.27   0.49 0.94 0.11 

Middle Women 0.72 1.00 0.49   0.97 0.36 

Old Men 1.00 0.80 0.94 0.96   0.27 

Old Women 0.08 0.23 0.11 0.36 0.27   



Mean 3835.71 3805.67 3844.75 3809.15 3830.92 3804.20 

S.D 8357.07 7923.92 8437.07 8015.06 8265.38 8017.25 

 

Figure 2 shows modeled spatial output for the young men scenario. Overall, streets 

indicated by the numbers 1-5 and the lettered structures are areas where the most traffic is 

discernible. The streets designated as 1-5 are ordered from the greatest to the least traffic 

volume among the top five traffic volume streets. Ordering the top five passing traffic 

volume structures, from greatest to least volume, yields the following result:  A, B, C, D, 

and E.  

 

 

  
Fig. 2. Modeling results from the young men scenario showing streets with the most 

traffic volume (numbered 1-5 with 1 having the most traffic) and structures with the most 

passing traffic volume (lettered). Street traffic and passing structure volumes, using 

standard deviation, are indicated by the thickness of lines and polygon shades 

respectively. 

 

Since both statistically and qualitatively most of the scenario results are similar to 

each other, we find it necessary to only show one other scenario, the old women scenario, 

as this case differed the most from the young men scenario (Figure 3). The other cases, 

however, are used as a part of the aggregate results that will be presented. In the old 

women scenario, some different patterns of traffic volume are observed. Nevertheless, 

even in this case the results are qualitatively similar to the young men scenario. The same 

five streets have the most traffic volume, with the order from greatest to least also being 

the same. Similar structures to the young men scenario (i.e., structures that are nearby to 

those in the young men scenario) are passed by the most in the old women scenario, but 



some differences are noticeable. The order in which structures are listed from greatest to 

least passing traffic volume in the scenario is:  A, C, D, B, and F.  

 

 
Fig. 3. Modeling results from the old women scenario showing streets with the most 

traffic volume (numbered streets 1-5 with 1 having the most traffic) and structures with 

the most passing traffic volume (lettered). 

 

If we assume that all agent types were present at any given moment during the history 

of Kerkenes Dağ, then all agents should be investigated together to determine the overall 

route selection pattern. In other words, aggregating the results from the different 

scenarios allows us to determine which streets enable the easiest access to different 

structures and the overall passing traffic volume for structures in all agent types. Figure 4 

provides the cumulative results for the six scenarios, showing streets we expect to have 

the most traffic and structures that have the most surrounding traffic volume. As in the 

other scenarios, the same five streets have the greatest expected traffic volume. The total 

passing volume results for structures are very similar to the young men scenario, with the 

same order, from greatest to least, for the five structures that have the greatest passing 

volume:  A, B, C, D, and E. 

 



 
Fig. 4. Aggregate simulation output for all agent types. As before, the five streets with 

the most traffic volume (1-5 with 1 being the most) and structures with the most 

surrounding traffic (lettered buildings) are shown. 

 

Comparing Modeling Results to Fieldwork 
 

Methods of validation are critical in order to demonstrate that an approach has at least 

some merit in addressing real-world phenomena. Although social models likely cannot be 

definitively proven for all possible cases, validation indicates if an approach is able to 

produce results that match empirical data to some extent (North and Macal 2007). For 

archaeological problems, validation is often difficult because models cannot be easily 

tested against empirical data due to difficulties in recovering various types of information 

and limited sample sizes. Nevertheless, we believe it is necessary to conduct modeling 

approaches on problems in which some level of validation is possible, as this helps to 

support arguments made via modeling.  

We present our approach to model validation by showing how fieldwork 

complements our simulation methods. As far as we know, our approach to validation has 

not been conducted in previous similar studies, particularly cases in which modeling is 

directly integrated with the type of fieldwork we apply, making our validation approach 

relatively novel. The intent of validation in this section is to show that our research 

methods produce outputs useful for addressing relevant scientific questions. In the current 

case, comparisons between simulation output and collected data indicate if results 

obtained from simulations correspond to evidence for greater or lesser street traffic 

volume as well as demonstrate that the case study applies appropriate models for the 

research topic. Recent sample excavations using small test trenches have focused on 

determining the size of soil particles from street networks. The size and compaction of 

soil particles indicates the relative amount of trampling that occurred on a given street. 



Soils with larger and less compact particles have been walked on less; soils with smaller 

and more compact particles have been walked on more (Burden and Randerson 1972).  

A total of sixteen separate street trenches have been sampled so far, with more 

currently being planned. These trenches are located in streets that have been modeled to 

show relatively greater or lesser traffic volume. From current results, average particle 

sizes, from all tests conducted on each trench sample, are the smallest for the street that 

had the most aggregated simulation traffic (i.e., Street 1 in Figure 4). This street (Trench 

TT25) averages roughly 450 µm soil particle size based on samples taken from different 

locations, including above, below, and from the street level (Figure 5). The street with the 

third greatest simulated traffic volume (i.e., Street 3; Trench TT24) averages roughly 800 

µm soil particle size. Other streets (e.g., Trench TT23), that in the simulations have 

relatively low traffic volume, range up to 1400 µm soil particle size. Although current 

fieldwork does not prove definitively that the streets with the greatest simulated traffic 

volume did have the most traffic in the past, what the field collected results indicate is 

that at least two of the simulated streets do appear to have evidence for greater relative 

traffic than other archaeologically sampled streets. This suggests that these two streets 

may have been more central or significant in connecting different parts of Kerkenes Dağ's 

street network. Further fieldwork will help to show if simulation results are consistently 

linked with archaeologically collected data. For now, because our modeling output 

appears to match relatively well with data collected in the field, the models applied are 

deemed appropriate in addressing how traffic volume may have been distributed. Because 

the goal of this paper is to demonstrate our methodology, current validation demonstrates 

that so far our methods produce reasonable outputs. We recognize that further data are 

needed to better validate our presented approach; however, if new data show that our 

modeling method is not valid then new models, representing different behavior than 

agents selecting street networks based on minimum energy expenditure, need to be built. 

In addition, with further data collected, more meaningful statistical comparisons can be 

done to investigate model output against empirical data.  

 

 
Fig. 5. Graph showing three of the sixteen trench samples (TT23-25) with soil particle 

sizes measured from different locations (Above, Surface, or Below) in the trenches. 



Trench TT25 (Street 1) has the smallest particle sizes. Trench TT23’s results are from a 

street with low simulated traffic volume. 

 

DISCUSSION 
 

Benefits for Archaeology 

 
Among the benefits of our approach to archaeology is that it enables different case 

studies, where traffic patterns are likely to be unknowable from data sources, to apply 

quantitative methods, including metabolic and agent-based modeling, that can then be 

validated through some level of fieldwork. Such benefits are extendable to a variety of 

case studies, where models are modifiable and applied as appropriate based on available 

field observations that best match applied model results. Archaeological investigations 

within a site are often limited by funding and time constraints. Techniques that can 

enable valid assessments of past traffic patterns and likely areas of movement are able to 

provide some understanding of transport infrastructure within archaeological sites even in 

cases where limited site investigation is possible. Such quantitative approaches 

potentially enable researchers to better understand the significance of social spaces by 

providing insights as to how areas within sites were accessed, used, or potentially 

culturally perceived by inhabitants (Myers 2000, Snead et al. 2009). In the case study 

presented, streets in the central and parts of the eastern areas of the site, as seen on 

Figures 2-4, appear to have the most simulated traffic volume. The results show that 

many structures closer to the central part of the site have the most simulated traffic 

passing by them. These high traffic volume areas could have been likely markets and 

important government or public buildings that required more general access. In contrast, 

structures on the periphery around the site could have been private residences, which may 

imply that privacy and/or less central habitation were important social constructs to 

inhabitants.   

Although quantitative techniques alone do not provide a full explanation of theory 

regarding movement, such modeling as discussed here does provide some clear 

presentation of social or physical behavior that can then be placed within a broader 

theoretical context. Pedestrian modeling provides a quantitative capability in explaining 

qualitative understanding of past walking behaviors or serves as a heuristic methodology 

testing theoretical constructs. Quantitative approaches are also measurable and should be 

compared to empirical data recovered from fieldwork. Based on this, the results show 

that archaeological investigations applying modeling approaches should attempt to 

closely couple their fieldwork with modeling. Results obtained in the field should assist 

in model creation and validation. This suggests that archaeologists should design their 

fieldwork, when models are used, that enables model testing and validation, while models 

applied to scenarios in which fieldwork does not support validation will likely produce 

simulation results that are more tenuous in supporting theoretical arguments made. 

The methods advocated here may also be applied to cases in which archaeologists    

seek to find new areas for further archaeological investigation. In other words, 

archaeologists can investigate, through excavations or other exploratory methods, areas 

that appear to be potentially significant based on simulation results of pedestrian traffic 

volume. This form of archaeology enables projects to better utilize project resources by 



determining which areas necessitate more focused investigations. This type of modeling, 

however, should only be applied after model validation. In other words, if a model is 

constructed and it appears to produce outputs that match data collected in the field, then 

this indicates that the model could be used to guide researchers to investigate unexplored 

locations where pedestrian traffic volume produced via simulation suggests new areas of 

interest.  

 

Broader Benefits 
 

We recognize that alternative modeling approaches could have been applied to the 

scenarios presented. However, this paper demonstrates why researchers may find it 

necessary to integrate a methodology that enables multiple modeling approaches and 

different tools in addressing scientific problems. One advantage is that we have only used 

open source tools in our coupled metabolic and agent-based modeling application. This 

demonstrates the cost effectiveness and accessibility of our method in contrast to more 

expensive and less accessible methodological tools such as proprietary GIS-T software. 

Proprietary software can be difficult to verify (i.e., determine that model algorithms 

perform according to desired requirements), hindering one’s ability to certify important 

modeling aspects such as numeric precision. 

The main methodological advantage advocated in this paper is that the applied 

technique provides software flexibility. An approach that can couple multiple modeling 

techniques is more flexible in integrating alternative models and behaviors, as models do 

not need to be directly coupled to agent or software objects. By integrating different 

modeling methodologies, the strengths of each approach can be utilized as needed. 

Agent-based models allow simple rules and operations to function from a bottom-up level 

incorporating heterogeneous agents, while the metabolic model applies a numeric method 

for determining route energy costs. In other words, agents operate using their simple rules 

by interpreting the results, in this case edge weights, from the numeric approach. In the 

approach presented, models can operate using a constant time step (i.e., equal time 

intervals) approach or discrete events that trigger model processes at potentially varied 

time scales. In the SDM model, agents arriving at specific locations trigger searches for 

new paths that agents select, making these search actions dependent on arrival events. By 

enabling constant time steps and discrete events, simulation techniques are able to 

incorporate a wider variety of models. Alternatively, traditional GIS software is generally 

not conducive for designing models that operate at variable temporal scales, limiting their 

utility in integrating multiple simulation methods.  

 

CONCLUSION 
 
In this paper, we apply an integrated approach that couples metabolic and agent-based 

modeling used for determining past pedestrian route selection. For the given scenarios, 

we feel this is a useful technique since lacking detailed social rules requires that we 

investigate route selection based on transportation costs as determined by physical energy 

expenditures for individuals. Although different models could be applied in our use case, 

the intent of this paper is to demonstrate an emerging technique that reveals the utility of 

applying multiple modeling methods, including ABMs, to geospatial problems in 



archaeology. This includes determining areas of past pedestrian traffic and areas that may 

warrant further archaeological investigation. We are not purporting that other techniques, 

such as GIS-T, should be discarded; rather, we take the position that integrating 

advantages described in this paper can enhance overall modeling approaches and help to 

address archaeologically relevant problems. We believe that the integration of multiple 

modeling approaches, such as described here, should be a major area of active 

development within GIS applied to past social systems.  

For our own efforts, if further data become available from fieldwork conducted, we 

will test and modify the current model as needed. For future studies, we seek to apply a 

valid model in guiding new and targeted archaeological investigations on past pedestrian 

transportation at Kerkenes Dağ and other sites. 
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