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Abstract: Given an (optimal) dynamic treatment rule, it may be of interest to evaluate that rule – that is, to
ask the causal question: what is the expected outcome had every subject received treatment according to that
rule? In this paper, we study the performance of estimators that approximate the true value of: (1) an a priori
knowndynamic treatment rule (2) the true, unknownoptimaldynamic treatment rule (ODTR); (3) anestimated
ODTR, a so-called “data-adaptive parameter,” whose true value depends on the sample. Using simulations
of point-treatment data, we specifically investigate: (1) the impact of increasingly data-adaptive estimation of
nuisance parameters and/or of the ODTR on performance; (2) the potential for improved efficiency and bias
reduction through the use of semiparametric efficient estimators; and, (3) the importance of sample splitting
based on the cross-validated targeted maximum likelihood estimator (CV-TMLE) for accurate inference. In
the simulations considered, there was very little cost and many benefits to using CV-TMLE to estimate the
value of the true and estimated ODTR; importantly, and in contrast to non cross-validated estimators, the
performance of CV-TMLE was maintained even when highly data-adaptive algorithms were used to estimate
both nuisance parameters and the ODTR. In addition, we apply these estimators for the value of the rule to
the “Interventions” study, an ongoing randomized controlled trial, to identify whether assigning cognitive
behavioral therapy (CBT) to criminal justice-involved adults with mental illness using an ODTR significantly
reduces the probability of recidivism, compared to assigning CBT in a non-individualized way.

Keywords: causal roadmap; heterogeneous treatment effects; optimal dynamic treatment rule; precision
health; value of rule.

1 Introduction
There is an interest across disciplines in using both experimental and observational data to uncover treatment
effect heterogeneity and quantify the benefits of responding to this heterogeneity when assigning treatments
(for example, [1, 2]). Various methods aimed at estimating heterogenous treatment effects (HTEs) aim to
answer the question, “who benefits fromwhich treatment?” Oneway to uncover HTEs is by using the dynamic
treatment rule framework. A dynamic treatment rule is any rule that assigns treatment based on covariates
[3–7].Anoptimaldynamic treatment rule (ODTR) is thedynamic treatment rule thatyields thehighestexpected
outcome (if higher outcomes are better) [8–10]. In recent years, there has been an increase in literature
describingmethods to estimate the ODTR, from regression-based techniques to direct-search techniques; see,
for example, [11, 12] and [13] for recent overviews of the ODTR literature. One example of a data-adaptive
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method for estimating the ODTR is the SuperLearner algorithm, an ensemblemachine learning approach that
aims to best combine a library of candidate treatment rule estimators to work in tandem to yield the ODTR
[14–16]. In a companion paper, we review this approach, and highlight and investigate the consequences of
key choices when implementing this method [17].

Once one knows or estimates a rule, it may be of interest to evaluate it, which translates to asking the
causal question:what is the expected outcomehad every person received the treatment assigned to himor her
by the (optimal) rule? The causal parameter that answers this question is sometimes referred to as the value of
the rule. It may be of relevance to learn this quantity in order to determine the benefit of assigning treatment
in a more complex way compared to, for example, simply giving everyone treatment (an intervention that
is straightforward to implement without the cost or complexity of measuring covariates and personalizing
treatment assignment).

In this paper, we examine the following causal parameters, which we identify as statistical estimands,
corresponding to the value of an (optimal) rule: (1) the true expected outcome of a given a priori known
dynamic treatment rule; (2) the true expected outcome under the true, unknown ODTR – a particularly
challenging target parameter to estimate; and (3) the true expected outcome under the estimated ODTR, a
so-called “data-adaptive parameter”. The latter parameter can be further split into the true expected outcome
under (a) an ODTR estimated on the entire data at hand, or (b) a sample-split-specific ODTR, in which, under
a cross-validation scheme, the ODTR is estimated on each training set and evaluated, under the true data-
generating distribution, on the complementary validation set, with the data-adaptive parameter defined as
an average across sample splits.

We discuss several estimators for these estimands. Specifically, we consider the following estimators
suited for estimating a treatment-specific mean: the simple substitution estimator of the G-computation
formula [6], the inverse probability of treatment weighted (IPTW) estimator [18, 19], the double-robust IPTW
estimator (IPTW-DR) [20–22], the targeted maximum likelihood estimator (TMLE) [3, 23–25], and the cross-
validated TMLE (CV-TMLE) [25–27].

First, we review the conditions under which asymptotic linearity is achieved for these estimators in
the scenario where one wants to evaluate an a priori known rule. This provides insight into the common
scenario in which onewishes to evaluate the value of a dynamic treatment rule that is pre-specified (based on
investigator knowledge or external data sources), rather than learned from the data at hand. Estimators for
this parameter require fast enough convergence rates and smoothness assumptions on nuisance parameters,
though smoothness assumptions can be relaxed when employing CV-TMLE.

Second, we examine the more ambitious goal of estimating the expected outcome under the true,
unknown ODTR, which additionally requires fast enough convergence of the estimate of the ODTR to the
true ODTR, and for non cross-validated estimators, smoothness assumptions on ODTR estimators. Obtaining
inference for the mean outcome under the ODTR has been shown to be difficult due to its lack of smoothness
[4, 10, 28]; however, several methods have been proposed for constructing valid confidence intervals for this
parameter, such as re-sampling techniques [4, 29, 30]. One approach to inference is to rely on algorithms
based on parametric models; however, misspecification of these models can bias results. CV-TMLE relaxes
the smoothness assumptions needed for inference, allowing one to use a single data set to safely estimate
relevant parts of the data distribution (e.g., estimate nuisance parameters and/or the ODTR) and retain valid
inference for the target parameter itself (e.g., the mean outcome under the ODTR) [25]. Such internal sample
splitting is particularly important if the nuisance parameters orODTRdependonahighdimensional covariate
set or make use of data-adaptive methods [25].

Finally, it may instead be of interest to estimate the true outcome under an estimated ODTR (a data-
adaptiveparameter) because, inpractice, it is the estimated rule thatwill likely be employed in thepopulation,
not the true rule, which is likely unknown [25, 31]. This relaxes the need for the estimate of the ODTR to
converge to the true rule at a fast enough rate. Non-cross-validated estimators of this data-adaptive parameter
still require smoothness assumptions on the estimate of the ODTR (and nuisance parameters) for asymptotic
linearity. TheuseofCV-TMLEeliminates these requirements. Thismeans that, at the cost of targetingadistinct,
sample-split-specific target parameter, in a randomized experiment, achievement of asymptotic linearity for



L. Montoya et al.: Estimators for the value of the optimal dynamic treatment rule | 241

CV-TMLE with respect to the sample-split-specific data-adaptive parameter only requires that the estimated
ODTR converges to a fixed rule [25].

Previous simulation experiments have studied the performance of different estimators for the aforemen-
tioned statistical estimands in the setting in which a binary treatment is randomly assigned at a single time
point. van der Laan and Luedtke [25] demonstrated the importance of using an estimator of the value of the
rule that uses a targeted bias reduction, such as TMLE and CV-TMLE, in order to improve performance. Of
note, when evaluating the estimated rule, the authors used the true treatment mechanism and, as an initial
estimate of the outcome regression, either the true outcome regression or a constant value (i.e., an incorrectly
specified outcome regression) when employing the (CV-)TMLE. Coyle [14] extended these results by “fully”
estimating the value of the optimal rule, meaning the nuisance parameters were additionally estimated for
both the optimal rule and the value of the rule, using the ensemble machine learning approach SuperLearner
[16]. Both [25] and [14] found that, indeed, there exists a positive finite sample bias when using TMLE versus
CV-TMLE when estimating the value of the ODTR; in other words, with the rule learned and evaluated on the
same data, estimates of the value of the rule may be optimistic, and CV-TMLE corrects this bias. Additionally,
recently, [30] showed that cross-validation techniques for estimating the value of the rule, and in particular
CV-TMLE, yielded a smaller difference between the true expected value under the true rule and its estimate,
versus, for example, bootstrap techniques for evaluating a rule.

The current paper builds on previous work by illustrating, through a simulation study, how the degree
of overfitting when estimating the optimal rule and/or nuisance parameters affects the performance of the
estimators used for evaluating a rule. We also explore the potential for efficiency improvement and bias
reduction through the use of semiparametric efficient estimators, with and without targeting. Finally, we
show the importance of sample splitting using CV-TMLE when estimating the aforementioned statistical
parameters.

We apply these estimators of the value of the rule to the Correctional Intervention for People with Mental
Illness, or “Interventions” trial, an ongoing study inwhich criminal justice-involved adultswithmental illness
– a heterogeneous group with diverse symptoms, risk factors, and other treatment-relevant characteristics
[32, 33] – are either randomized to cognitive behavioral therapy (CBT) or treatment as usual (TAU). Re-arrest,
the outcome, is collected one year after randomization occurs, as a measure of recidivism. In our companion
paper, we estimated the ODTR using the ODTR SuperLearner algorithm [17] to identify which patients should
receive CBT versus TAU. In the current paper, we use CV-TMLE to determine whether administering CBT using
the estimated ODTR is more effective in reducing recidivism than assigning CBT in a non-individualized way
(for example, giving CBT to all offenders).

This article steps through the roadmap for answering causal questions [34], and is organized as follows.
In the first section, we define the data and causal model, define the causal parameters as functions of
counterfactual distributions contained in the causalmodel, and identify the statistical estimands as functions
of the observed data distribution. In Section 2 we discuss estimation, and in Section 3 we discuss inference
procedures and conditions for asymptotic linearity. In Section 4we present a simulation study illustrating the
performance of these estimators. In Section 5 we evaluate the ODTR SuperLearner algorithm that was applied
to the “Interventions” study. Finally, we close with a discussion and future directions. In the Appendix,
we provide a Notation Table with terms frequently used throughout this manuscript and our companion
manuscript, in addition to definitions of each of the terms, as a reference to reader.

2 Causal roadmap
In this section, we follow the first steps of the roadmap for answering the causal questions: what would have
been the expected outcome had everyone been given treatment according to: (1) any given rule; (2) the true
ODTR; and (3) an estimate of the ODTR, which could either be (a) a sample-specific estimate of the ODTR (i.e.,
an ODTR estimated on the entire sample), or (b) a sample-split-specific estimate of the ODTR?
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2.1 Data and models
Structural causal models (SCM, denoted MF) will be used to describe the process that gives rise to variables
that are observed (endogenous) and not observed (exogenous). The random variables in the SCM follow the
joint distribution PU,X; the SCM describes the set of possible distributions for PU,X. The endogenous variables
are the covariatesW ∈ W , binary treatment A ∈ A = {0, 1}, and outcome Y ∈ ℝ. Exogenous variables are
denoted U = (UW ,UA,UY ). The following structural equations illustrate dependency between the variables:

W = fW (UW ),

A = fA(UA,A),

Y = fY (UY ,A,W).

Because we will be focusing on data where treatment is randomly assigned (as in the “Interventions” trial),
the above model can be modified by letting UA ∼ Bernoulli(p = 0.5) and A = UA.

We assume the observed data Oi ≡ (Wi,Ai,Yi) ∼ P0 ∈ M , i = 1,… , n were generated by sampling n
independent and identically distributed (i.i.d.) times from a data-generating system contained in the SCM
MF above. Here, P0 is the observed data distribution, an element of M , the statistical model.

The density ofO can be factorized as p0(O) = pW,0(W)g0(A|W)pY,0(Y|A,W), where pW,0 is the true density
ofW, g0(A|W) is the true conditional probability of the treatment A, and pY,0 is the true conditional density
of Y.

The empirical distribution Pn gives each observation weight 1
n . Estimates from this empirical distribution

are denoted with a subscript n. If V-fold cross-validation is employed, the empirical data are uniformly and
at random split into V mutually exclusive sets which we can index with 𝑣 = 1,… ,V. For each sample split
𝑣 = 1,… ,V, this 𝑣th data set represents the validation set while the complement is its training set. Let
Pn,𝑣 be the empirical distribution of the validation sample 𝑣, and Pn,−𝑣 be the empirical distribution of the
complementary training set.

2.1.1 Data and models – application to ‘‘Interventions’’ study

The “Interventions” study is a randomized controlled trial (RCT) consisting of 441 i.i.d. observations of the
following data generated by a process described by the causal model described above: covariatesW, which
includes intervention site, sex, ethnicity, age, Colorado Symptom Index (CSI) score (a measure of psychiatric
symptoms), level of substance use, Level of Service Inventory (LSI) score (a measure of risk for future re-
offending), number of prior adult convictions, most serious offense, Treatment Motivation Questionnaire
(TMQ) score (a measure of internal motivation for undergoing treatment), and substance use level; the
randomized treatment A, which is either a manualized Cognitive Behavioral Intervention for people criminal
justice system (abbreviatedCBT;A = 1) or treatment asusual (TAU),which ismostlypsychiatric or correctional
services (A = 0); and a binary outcome Y of recidivism, an indicator that the person was not re-arrested over
a minimum period of one year. Table 1 shows the distribution of the data.

2.2 Causal estimands
In this point treatment setting, a dynamic treatment rule in the set of rulesD is a function d that takes as input
some function V of the measured baseline covariates W and outputs a treatment decision: d(V) ∈ {0, 1}.
It could be the case that V = W, in other words, dynamic treatment rules that potentially respond to all
measured baseline covariates; in the remainder of this paper we focus on this case.

A counterfactual outcome under an arbitrary treatment rule d – an individual’s outcome if, possibly
contrary to fact, the individual received the treatment that would have been assigned by the treatment rule d
(denoted Yd) – is derived under an intervention on the above SCM. Specifically, we consider counterfactual
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Table 1: Distribution of baseline covariates in the ‘‘Interventions’’ data set, stratified by randomized treatment assignment (TAU
denotes Treatment as Usual, CBT denotes Cognitive Behavioral Therapy).

TAU (A= 0) CBT (A= 1)

N 211 230
No re-arrest (Y = 1) (%) 128 (60.7) 143 (62.2)
Site = San Francisco (%) 87 (41.2) 104 (45.2)
Gender = Female (%) 38 (18.0) 37 (16.1)
Ethnicity = Hispanic (%) 50 (23.7) 42 (18.3)
Age (mean (SD)) 38.08 (11.05) 37.01 (11.22)
CSI (mean (SD)) 32.35 (11.13) 33.46 (11.27)
LSI (mean (SD)) 5.59 (1.33) 5.50 (1.48)
SES (mean (SD)) 3.81 (1.89) 3.81 (2.12)
Prior adult convictions (%)
Zero to two times 74 (35.1) 93 (40.4)
Three or more times 134 (63.5) 129 (56.1)
Missing 3 (1.4) 8 (3.5)
Most serious offense (mean (SD)) 5.29 (2.54) 5.09 (2.52)
Motivation (mean (SD)) 3.22 (1.36) 3.27 (1.37)
Substance use (%)
0 53 (25.1) 76 (33.0)
1 47 (22.3) 55 (23.9)
2 109 (51.7) 98 (42.6)
Missing 2 (0.9) 1 (0.4)

outcomes generated by settingA equal to the following treatment rules: (1) the trueODTR; and, (2) an estimate
of the ODTR, either: (a) the sample-specific estimate of the ODTR; or (b) the training sample-specific estimate
of the ODTR.

The expectation of each of these counterfactual outcomes under the distribution PU,X are the causal
parameters of interest in this paper. Each causal estimand is a mapping MF → ℝ.

The target causal parameter corresponding to the value of a given treatment rule d (from the set of
rules D) is:

ΨF
d(PU,X) ≡ 𝔼PU,X [Yd].

The true ODTR d∗0 is defined as the rule that maximizes the expected counterfactual outcome:

d∗0 ∈ argmax
d∈D

ΨF
d(PU,X).

Here, the target causal parameter of interest is the expected outcome under the true ODTR d∗0:

ΨF
d∗0
(PU,X) ≡ 𝔼PU,X

[
Yd∗0

]
.

Let d∗n:M → D be an ODTR estimated on the entire sample, and d∗n,𝑣 = d∗(Pn,−𝑣):M → D be an ODTR
estimated on the 𝑣th training set. The data-adaptive causal parameters are: (a) the expected outcome under
a sample-specific estimate of the ODTR:

ΨF
d∗n
(PU,X) ≡ 𝔼PU,X

[
Yd∗n

]
,

noting that the expectation here is not over d∗n, i.e., this is 𝔼PU,X [Yd], evaluated at d = d∗n; and, (b) the average
of the expected validation set outcomes under training-set specific estimates of the ODTR:

ΨF
d∗n,𝑣

(PU,X) ≡
1
V

V∑
𝑣=1

𝔼PU,X

[
Yd∗n,𝑣

]
,
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where, the true value of this target parameter further depends on the random sample split (noting, again,
that the expectation is not over d∗n,𝑣).

One might also be interested in comparing the above causal quantities to, for example, the expected
outcome had everyone been assigned the treatment 𝔼PU,X [Y1] or had no one been assigned the treatment
𝔼PU,X [Y0].

2.2.1 Causal estimands – application to ‘‘Interventions’’ study

Analagous to the above causal questions, for the “Interventions” study, we are interested in asking: what
would have been the probability of no re-arrest had everyone been given CBT according to: (1) some pre-
specified rule d (for example, the simple dynamic treatment rule that gives CBT to those with a high baseline
risk score of re-offending and TAU to those with a low baseline risk score of re-offending), where the causal
parameter is ΨF

d(PU,X); (2) the true ODTR d∗0 (the unknown dynamic treatment rule for assigning CBT that
yields the highest probability of no re-arrest), where the causal parameter is ΨF

d∗0
(PU,X); and (3) an estimate

of the ODTR specific to the 441 participants in the trial, which could either be (a) a sample-specific estimate
d∗n (e.g., the ODTR estimated in [17]) or (b) a sample-split-specific estimate of the ODTR d∗n,𝑣? The causal
parameters for (a) and (b) areΨF

d∗n
(PU,X) andΨF

d∗n,𝑣
(PU,X), respectively.

2.3 Identification
Two assumptions are necessary for identification; that is, for determining that the causal estimands (a
function of our counterfactual distribution) coincidewith the statistical estimands (a function of our observed
data distribution): the (1) randomization assumption, Ya⊥ A|W, a ∈ {0, 1}; and (2) positivity assumption:
P(mina∈{0,1}g0(a|W) > 0) = 1. Both hold if, for example, data are generated from an experiment in which
treatment is randomized (as in the “Interventions” trial); for data generated in an observational setting,
the randomization assumption requires measurement of all unmeasured confounders, and the positivity
assumption should be examined [35].

2.4 Statistical estimands
We describe statistical estimands corresponding to each of the causal parameters outlined above – each is
identified via the G-computation formula.

The statistical estimand of the mean outcome under any rule d ∈ D is

𝜓0,d ≡ Ψd(P0) = 𝔼0[Q0(d(W),W)],

where the function Q(A,W) = 𝔼[Y|A,W] is the outcome regression.
The true optimal rule, as a function of the observed data distribution, is then

d∗0 ∈ argmax
d∈D

Ψd(P0).

Note that the RHS of this equation is a set because there may be more than one optimal rule for a certain
kind of individual (e.g., if certain kinds of individuals neither benefit from nor are harmed by a treatment)
[36]. Here, we will assume that when there is no treatment effect, assigning treatment 0 is better than no
treatment. Then, the optimal rule can be written as a function of the so-called “blip function”, where the true
blip function under P0 is defined as B0(W) = Q0(1,W)− Q0(0,W):

d∗0(W) = 𝕀[B0(W) > 0].
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The true mean outcome under the true optimal rule d∗0 is then identified by

𝜓0,d∗0
≡ Ψd∗0

(P0) = 𝔼0
[
Q0(d∗0(W),W)

]
.

Thefirst data-adaptive parameterwe consider, as a function of the observeddata, is the true expected outcome
under an ODTR estimate based on the entire sample d∗n:

𝜓0,d∗n ≡ Ψd∗n (P0) = 𝔼0
[
Q0(d∗n(W),W)

]
.

The second data-adaptive parameter is the average of the validation-set true mean outcomes under the
training-set estimated ODTRs d∗n,𝑣:

𝜓0,d∗n,𝑣 ≡ Ψd∗n,𝑣 (P0) =
1
V

V∑
𝑣=1

𝔼0

[
Q0(d∗n,𝑣(W),W)

]
.

3 Estimation
We describe estimators for each of the statistical parameters above: a simple substitution estimator based on
the G-computation formula, an IPTW estimator, a double-robust IPTW estimator (IPTW-DR), a TMLE, and a
CV-TMLE. Each of these estimators can be used for estimating 𝜓0,d and𝜓0,d∗0

. We use the non-cross-validated
estimators (G-computation, IPTW, IPTW-DR, and TMLE) to estimate 𝜓0,d∗n ; we estimate 𝜓0,d∗n,𝑣 with CV-TMLE.

Let Qn be an estimator of the outcome regression, which could be estimated with, for example, Super-
Learner [16]. In a randomized experiment, the treatment mechanism g0 is known; thus, one could use this
known g0, or gn could be a maximum likelihood estimator (MLE) based on a correctly specified model.

3.1 Non-cross-validated estimators for estimating𝝍0,d,𝝍0,d∗0 , and𝝍0,d∗n
We first illustrate each of the non-cross-validated estimators suited for estimating a treatment-specific mean
at an arbitrary d ∈ D, which, for example, could be an a priori known rule or an optimal rule estimated on the
entire sample (see [15, 17] for a description on how to estimate the optimal rule using, for example, the ODTR
SuperLearner). Here, Ψ̂d(Pn) ≡ �̂�d is an estimate of the true parameter value 𝜓0,d, based on applying the
estimator Ψ̂d to an empirical distribution based on sampling from P0. We further subscript by each estimator
name.

One can use a(n):
– Simple substitution estimator based on the above G-computation formula,

�̂�gcomp, d =
1
n

n∑
i=1

Qn(d(Wi),Wi);

– IPTW estimator,

�̂� IPTW,d =
1
n

n∑
i=1

𝕀[Ai = d(Wi)]
gn(Ai|Wi)

Yi;

– Double-robust IPTW estimator,

�̂� IPTW−DR,d =
1
n

n∑
i=1

[
𝕀[Ai = d(Wi)]
gn(Ai|Wi)

(Yi − Qn(Ai,Wi))+ Qn(d(Wi),Wi)
]
;

– or TMLE. We briefly describe one possible TMLE procedure. First, estimate the i-specific so-called clever
covariate:

Hn,i =
𝕀[Ai = d(Wi)]
gn(Ai|Wi)

.
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Then, update the initial fit of Qn by running a logistic regression of Y (which should be transformed
between 0 and 1 if the outcome is continuous [37]) using the logit of Qn(d(W),W) as offset and weights
Hn, withmaximum likelihood estimation used to estimate the intercept. Denote the predictions from this
logistic regression as Q∗

n(d(W),W), from the updated fit. Then, the TMLE estimator is:

�̂�TMLE,d =
1
n

n∑
i=1

Q∗
n(d(Wi),Wi).

3.2 CV-TMLE for estimating𝝍0,d,𝝍0,d∗0 , and𝝍0,d∗n,𝒗
As previously mentioned, the CV-TMLE can estimate 𝜓0,d, 𝜓0,d∗0

, and 𝜓0,d∗n,𝑣 . Instead of illustrating the CV-
TMLE at d as in the above estimators, we illustrate one type of CV-TMLE procedure for evaluating the mean
outcome under sample-split-specific estimates of the ODTR d∗n,𝑣 to show on which parts of the data one needs
to estimate or predict the ODTR, if estimating𝜓0,d∗0

or𝜓0,d∗n,𝑣 . The same procedure holds for a d that is known,
except that the rule need not be estimated on each of the training samples and is simply applied to the
validation sets:
1. Split the data into V folds. Let each fold be the validation set and the complement data be the training

set, providing us with 𝑣-specific sample splits in the validation and training set.
2. For 𝑣 = 1,… ,V, carry out the following steps:

(a) Estimate the treatment mechanism, ODTR, and outcome regression on the training set.
(b) Using the fits from the previous step, generate predictions of the observed treatment assign-

ment, optimal treatment assignment, and outcome under the optimal treatment assignment for
observations in the validation set. Denote the corresponding estimates as gn,𝑣(A|W), d∗n,𝑣(W), and
Qn,𝑣(d∗n,𝑣(W),W).

(c) Update Qn,𝑣 generated in the previous step by fitting an intercept model (as described in the TMLE
updating procedure in the previous subsection) on persons in the validation set. Call the updated
fit Q∗

n,𝑣.
(d) Generate validation set-specific targeted estimates of the mean outcome under the sample-split-

specific estimated rule d∗n,𝑣 by evaluating Q∗
n,𝑣 on data in the validation set. Call the updated

estimates Q∗
n,𝑣(d∗n,𝑣(W),W).

(e) Define the 𝑣th validation set-specific estimate of the mean outcome under the estimate rule as:

�̂�d∗n,𝑣 =
1
n𝑣

∑
i∈Val(𝑣)

Q∗
n,𝑣(d

∗
n,𝑣(Wi),Wi),

where n𝑣 denotes the number of individuals in the validation set 𝑣 and Val(𝑣) is the indices i for
which Oi is in the validation set.

3. Average over all validation folds to obtain the CV-TMLE, i.e., the estimated mean outcome under the
sample-split-specific estimates of ODTR:

�̂�CV−TMLE,d∗n,𝑣 =
1
V

V∑
𝑣=1
�̂�d∗n,𝑣 .

4 Inference
We first discuss the conditions necessary for each the above estimators to be asymptotically linear for
𝜓0,d, 𝜓0,d∗n , and 𝜓0,d∗n,𝑣 in a randomized experiment. Under these conditions, using influence-curve based
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inference, we describe how to construct 95% confidence intervals with nominal to conservative coverage for
the aforementioned statistical estimands of interest.

We do not discuss inference on the G-computation estimator, because in order for it to be asymptotically
linear, Qn must either be equal to Q0 or be an estimator that converges fast enough to Q0, neither of which we
assume here.

For more details and proofs, we refer the reader to [24, 25, 38].

4.1 Asymptotic linearity conditions for estimators
We give a brief overview of the conditions needed for asymptotic linearity for each of the estimators with
respect to each statistical estimand in the randomized trial setting, and provide an informal summary of these
conditions in Table 2.

An estimator Ψ̂ is asymptotically linear for its true value 𝜓0 if it can be written in the following form:

�̂� − 𝜓0 =
1
n

n∑
i=1

IC(Oi)+ Rn,

where �̂� is the estimate of 𝜓0, IC is the estimator’s influence curve (that is centered to have mean 0, by
definition) and Rn is a remainder term that is oP(1∕

√
n). An asymptotically linear estimator Ψ̂ thus generally

has the following properties: (1) its bias converges to 0 in sample size at a rate faster than 1√
n ; (2) for

large n, its distribution is approximately normal, n1∕2(�̂� − 𝜓0)
d
←←←←←←←←←←→N

(
0, 𝜎20

)
, allowing an estimate of 𝜎20 to be

used to construct a Wald-type confidence intervals; and, (3) the asymptotic variance of n1∕2(�̂� − 𝜓0) (i.e.,
𝜎20) can be well-approximated by the sample variance of its estimated influence curve ICn (or equivalently,
𝜎2n =

1
n
∑n

i=1IC
2
n(Oi), since the mean of an influence curve is 0).

4.1.1 Conditions for value of a known rule

Our randomized experiment scenario guarantees that g0 is known, and thus gn can be amaximum likelihood
estimate (MLE) of g0 based on a correctly specified parametric model. As a result, for an estimand defined as
the value of an a priori specified rule d, the IPTW estimator is guaranteed to be asymptotically linear for𝜓0,d;
however, this estimator will not be asymptotically efficient.

Let Pt = 𝔼P[t(O)] for a distribution P and function t, and let IC∗ be the efficient influence curve.
If P0

{
IC∗(Qn, gn)− IC∗(Q, g0)

}2 converges to zero in probability for a limit Q, possibly misspecified, and{
IC∗(Q, g0):Q

}
is a P0 Donsker class, such as the class of d variate cadlag functions with a universal bound on

the sectional variation norm, then the TMLE and IPTW-DR are asymptotically linear with an influence curve
equal to IC∗(Q, g0) minus its projection onto the tangent space of the parametric model used for the MLE
gn. As a consequence, its asymptotic variance is smaller than or equal to the variance of IC∗(Q, g0), and, in
particular, if gn is replaced by g0, then IC∗(Q, g0) is the actual influence curve. Further, if Qn is consistent for
Q0 in the sense that P0{IC(Qn, g0)− IC(Q0, g0)}2 converges to zero in probability, then the TMLE and IPTW-DR
estimators are also asymptotically efficient.

The above is also true for CV-TMLE, except Donsker class conditions can now be removed (in effect
allowing for an overfit in the initial estimate of Q0).

4.1.2 Conditions for value of true ODTR

Construction of nominal to conservative confidence intervals around each of the non-cross-validated estima-
tors with respect to the true expected outcome under the true, unknown d∗0 requires additional assumptions.
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Table 3: Performance metrics (bias, variance, MSE, confidence interval coverage) of each estimator �̂�d=d∗0 (G-computation,
Inverse Probability of Treatment Weighting [IPTW], Double-robust IPTW [IPTW-DR], Targeted Maximum Likelihood Estimation
[TMLE], Cross-Validated TMLE [CV-TMLE]) of the true expected outcome under a given, known dynamic treatment rule

(
𝜓0,d∗0

)
,

for each library configuration used to estimate the outcome regression (Qn).

Library Estimator Bias Variance MSE Coverage

GLMs – least data adaptive G-comp. −0.0935 0.0002 0.0090 –
IPTW −0.0004 0.0008 0.0008 95.80%
IPTW-DR 0.0002 0.0004 0.0004 95.80%
TMLE 0.0004 0.0004 0.0004 95.80%
CV-TMLE 0.0007 0.0005 0.0005 95.30%

ML + GLMs – moderately data adaptive G-comp. −0.1313 0.0006 0.0179 –
IPTW −0.0009 0.0007 0.0007 96.30%
IPTW-DR −0.0009 0.0005 0.0005 95.00%
TMLE −0.0008 0.0005 0.0005 94.80%
CV-TMLE −0.0004 0.0005 0.0005 94.90%

ML + GLMs – most data adaptive G-comp. −0.1165 0.0006 0.0142 –
IPTW 0.0007 0.0008 0.0008 95.20%
IPTW-DR −0.0074 0.0005 0.0006 90.50%
TMLE −0.0067 0.0005 0.0006 91.00%
CV-TMLE 0.0007 0.0005 0.0005 94.70%

Table 4: Performance metrics (bias, variance, MSE, confidence interval coverage) of each estimator �̂�d∗n (G-computation,
Inverse Probability of Treatment Weighting [IPTW], Double-robust IPTW [IPTW-DR], Targeted Maximum Likelihood Estimation
[TMLE]) or �̂�d∗n,𝑣 (Cross-validated-TMLE [CV-TMLE]) of the true expected outcome under the true optimal dynamic treatment rule
(ODTR; 𝜓0,d∗0 ), for each library configuration used to estimate the outcome regression (Qn) and the ODTR

(
d∗n

)
.

Library Estimator Bias Variance MSE Coverage

GLMs – least data adaptive G-comp. −0.0765 0.0003 0.0062 –
IPTW −0.0569 0.0008 0.0041 45.70%
IPTW-DR −0.0565 0.0007 0.0038 29.80%
TMLE −0.0563 0.0007 0.0038 29.40%
CV-TMLE −0.0752 0.0009 0.0066 14.00%

ML + GLMs – moderately data adaptive G-comp. −0.1325 0.0007 0.0182 –
IPTW 0.0300 0.0010 0.0019 79.50%
IPTW-DR 0.0295 0.0008 0.0016 69.90%
TMLE 0.0268 0.0007 0.0014 72.20%
CV-TMLE −0.0310 0.0007 0.0017 70.30%

ML + GLMs – most data adaptive G-comp. −0.1152 0.0007 0.0140 –
IPTW 0.1131 0.0114 0.0242 38.30%
IPTW-DR 0.0925 0.0096 0.0181 38.90%
TMLE 0.0963 0.0118 0.0211 38.50%
CV-TMLE −0.0281 0.0007 0.0015 71.90%

For these estimators, statistical inference for 𝜓0,d∗0
relies on a second-order difference in Rn between 𝜓0,d∗n

and 𝜓0,d∗0
going to 0 at a rate faster 1∕

√
n. In practice, how hard it is to make this condition hold depends on

the extent to which the blip function as a random variable (function of W) has density at zero. If the value
of the blip is always larger than 𝛿 > 0 for some 𝛿 > 0, then consistency of Qn is sufficient; however, if the
treatment effect is zero for some covariate values that have positive probability of occurring, then stronger
assumptions are required [15, 25]. The non-cross-validated estimators additionally require Donsker class con-
ditions on ICd∗n (Qn, gn), thereby also restricting the adaptivity of d∗n (informally, that d∗n not be an overfit of d∗0).
In practice, these conditions on the data-adaptivity of d∗n hold if, for example, the optimal rule is a function
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Table 5: Performance metrics (bias, variance, MSE, confidence interval coverage) of each estimator �̂�d∗n (G-computation, Inverse
Probability of Treatment Weighting [IPTW], Double-robust IPTW [IPTW-DR], Targeted Maximum Likelihood Estimation [TMLE]) of
the true expected outcome under the sample-specific estimate of the optimal dynamic treatment rule (ODTR; 𝜓0,d∗n ) or �̂�d∗n,𝑣
(Cross-validated-TMLE [CV-TMLE]) of the true expected outcome under the sample-split-specific estimate of the ODTR

(
𝜓0,d∗n,𝑣

)
,

for each library configuration used to estimate the outcome regression (Qn) and the ODTR
(
d∗n

)
.

Library Estimator Bias Variance MSE Coverage

GLMs – least data adaptive G-comp. −0.0035 0.0003 0.0004 –
IPTW 0.0162 0.0008 0.0011 94.90%
IPTW-DR 0.0166 0.0007 0.0009 90.60%
TMLE 0.0167 0.0007 0.0009 90.50%
CV-TMLE 0.0002 0.0009 0.0009 93.90%

ML + GLMs – moderately data adaptive G-comp. −0.1048 0.0007 0.0117 –
IPTW 0.0577 0.001 0.0043 48.00%
IPTW-DR 0.0572 0.0008 0.0041 33.00%
TMLE 0.0545 0.0007 0.0037 33.90%
CV-TMLE −0.0008 0.0007 0.0007 93.90%

ML + GLMs – most data adaptive G-comp. −0.0842 0.0007 0.0078 –
IPTW 0.1442 0.0114 0.0322 25.00%
IPTW-DR 0.1236 0.0096 0.0248 22.60%
TMLE 0.1274 0.0118 0.0280 22.50%
CV-TMLE 0.0013 0.0007 0.0007 93.90%

of one covariate, or, if a higher-dimensional covariate set is used, one is willing to make strong smoothness
assumptions, for example, on the blip function.

CV-TMLEalso relaxes these additionalDonsker conditionsond∗n. Thus, in a randomized trial, if employing
CV-TMLE for 𝜓0,d∗0

, the only condition needed is that 𝜓0,d∗n,𝑣 − 𝜓0,d∗0
= oP(n−1∕2). This condition is carefully

addressed in [15] and can be expressed in terms of a condition on P(|B0(W)| < x) to converge to zero at a fast
enough rate in x as x approaches 0 (a so-called margin assumption).

4.1.3 Conditions for value of sample-(split)-specific ODTR estimate

For the data-adaptive parameters, the asymptotic study of the non-cross-validated estimators no longer
requires the strong assumption that d∗n converges to d∗0 at a fast enough rate; rather, they only require that d∗n
converges to some fixed rule d ∈ D at any rate.

Similarly, CV-TMLE only requires the weak consistency condition that d∗n,𝑣 converges to some fixed
rule d ∈ D at any rate. This means that, for randomized trial data, and under the above analogue L2(P0)
consistency conditions, the CV-TMLE estimator for the data adaptive parameter𝜓0,d∗n,𝑣 is asymptotically linear
under essentially no conditions.

4.2 Construction of confidence intervals
Below,we list conservativeworking influencecurves for eachestimator atPn andd ∈ D. Theactual estimators’
influence curves when an MLE of gn based on a correctly specified parametric model is used (as can be
guaranteed when treatment is randomized) are the working influence curves presented below minus a
tangent space projection term. Thus, under the conditions stated above, the sample variance of the following
working influence curves at a correctly specified gn yield conservative estimates of the asymptotic variance of
the estimators, which yields conservative confidence interval coverage.
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The IPTW estimator’s working influence curve estimate is:

ÎCIPTW,d(O) =
𝕀[A = d]
gn(A|W)Y − �̂� IPTW,d.

The influence curve of the TMLE and double-robust IPTW estimator is the efficient influence curve for the
treatment-specific mean (39, 40); the corresponding working influence curve estimates are:

ÎCIPTW−DR,d(O) =
𝕀[A = d]
gn(A|W) (Y − Qn(A,W))+ Qn(d(W),W)− �̂� IPTW−DR,d,

ÎCTMLE,d(O) =
𝕀[A = d]
gn(A|W) (Y − Q∗

n(A,W))+ Q∗
n(d(W),W)− �̂�TMLE,d.

As stated above, for these non-cross-validated estimators, the asymptotic variance can be conservatively
estimated with the sample variance of the estimated influence curve: 𝜎2n =

1
n
∑n

i ÎC
2(Oi).

For the IPTW-DR and TMLE estimators, one can underestimate the estimator’s variance ifQ0 is estimated
data-adaptively on the same data onwhich the sample variance of the estimated influence curve is evaluated.
Through sample splitting, CV-TMLE confidence intervals protect against overfitting incurred by using the data
twice – for both estimation and evaluation. Then the fold-specific estimate of the working influence curve for
CV-TMLE is based on estimating d∗0, Q0, and g0 on the 𝑣th training sample, evaluated on the complementary
validation sample:

ÎC𝑣,d∗n,𝑣 (O) =
𝕀
[
A = d∗n,𝑣(W)

]
gn,𝑣(A|W) (Y − Q∗

n,𝑣(A,W))+ Q∗
n,𝑣(d

∗
n,𝑣(W),W)− �̂�d∗n,𝑣 ,

and the fold-specific estimate of the variance of the fold-specific estimator is:

𝜎2n,𝑣 =
1
n𝑣

∑
i∈𝑣

ÎC2
𝑣,d∗n,𝑣

(Oi),

where, as before, n𝑣 denotes the number of individuals in validation set 𝑣; thus, the asymptotic variance of
the CV-TMLE �̂�CV−TMLE,d∗n,𝑣 can be conservatively estimated with:

𝜎2n,CV−TMLE =
1
V

V∑
𝑣=1
𝜎2n,𝑣.

In sum, for each estimator Ψ̂ and its corresponding working influence curve estimate ICn, we obtain
conservative inference on the value of the rule by constructing confidence intervals in the following way:

�̂� ±Φ−1(0.975) 𝜎n√
n
.

5 Simulation study
Using simulations, we evaluate the performance of various estimators of the value of the rule in finite
samples. In particular, we investigate: (1) the impact of increasingly data-adaptive estimation of nuisance
parameters and (where applicable) the ODTR; (2) the potential for efficiency and bias improvement through
the use of semiparametric efficient estimators; and, (3) the importance of sample splitting, in particular via a
cross-validated-targeted maximum likelihood estimator (CV-TMLE).
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5.1 Data generating process
All simulations were implemented in R [41], and the code, simulated data, and results can be found at
https://github.com/lmmontoya/SL.ODTR. In the future, we plan to integrate the SL.ODTR software to the
Targeted Learning software ecosystem, tlverse [42]. We examine these comparisons using the following data
generating process (DGPs) (also used in [15, 17, 25]). Each simulation consists of 1000 iterations of n = 1000
observations. Mimicking a randomized experiment, the (independent) covariates, treatment and outcome are
generated as follows:

W1,W2,W3,W4 ∼Normal(𝜇 = 0, 𝜎2 = 1),

A ∼Bernoulli(p = 0.5),

Y ∼Bernoulli(p = Q0(A,W)),

whereQ0(A,W) =0.5 expit
(
1−W2

1 + 3W2 + 5W2
3A− 4.45A

)
+ 0.5 expit(−0.5−W3 + 2W1W2 + 3|W2|A− 1.5A),

then the true blip function is:

B0(W) = 0.5
[
expit

(
1−W2

1 + 3W2 + 5W2
3 − 4.45

)
+ expit(−0.5−W3 + 2W1W2 + 3|W2|− 1.5)

− expit
(
1−W2

1 + 3W2
)
− expit(−0.5−W3 + 2W1W2)

]
.

Here, the true expected outcome under the true ODTR ΨF
d∗0
(PU,X) ≈ 0.5626 and the true optimal propor-

tion treated 𝔼PU,X
[
d∗0

]
≈ 55.0%. The mean outcome had everyone and no one been treated are, respectively,

𝔼PU,X [Y1] ≈ 0.4638 and 𝔼PU,X [Y0] ≈ 0.4643.
In the Appendix, we illustrate results on the same simulation procedure, but with dependent covariates.

5.2 Estimator configurations
We estimate each of the statistical estimands using the IPTW, IPTW-DR, TMLE, and CV-TMLE estimators, with
inference based on the conservative working influence curves describe above. The G-computation estimator
is also employed, but confidence intervals are not generated.

A correctly specified logistic regression is used to estimate the nuisance parameter g0, reflecting the RCT
setting. SuperLearner is used to estimateQ0 and d∗0. The ODTR is estimated using a “blip-only” library, using a
blip-based metalearner (i.e., an approach to creating an ensemble of candidate ODTR algorithms), and using
the value of the candidate rule as the risk function [17]. Three libraries are considered that correspond to
varying levels of data-adaptiveness, or potential for overfitting.
1. “GLMs – least data adaptive”

– Q library: four logistic regressions, each with a main terms Wj and A, and with an interaction Wj
times A, for j ∈ {1,… , 4}

– d∗ library: univariate linear regressions with each covariate
2. “ML + GLMs – moderately data adaptive”

– Q and d∗ library: all algorithms in the “GLMs – least data adaptive” Q and d∗ libraries, respec-
tively, in addition to the algorithms SL.glm (generalized linear models), SL.mean (the average),
SL.glm.interaction (generalized linear models with interactions between all pairs of variables),
SL.earth (multivariate adaptive regression splines [43]), SL.nnet (neural networks [44]), SL.svm
(support vectormachines [45]), and SL.rpart (recursive partitioning and regression trees [46]) from
the SuperLearner package [47]

3. “ML + GLMs – most data adaptive”
– Q and d∗ library: all algorithms in the “ML+ GLMs – moderately data adaptive” Q and d∗ libraries,

respectively, in addition to SL.randomForest [48]

https://github.com/lmmontoya/SL.ODTR
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5.3 Performance metrics
Using measures of bias, variance, mean squared error (MSE) and 95% confidence interval coverage, we
evaluate the ability of each of the estimators to approximate: (1) the true expected outcome under an a priori
known rule d:𝜓0,d; (2) the true expected outcome under the true, unknownODTR:𝜓0,d∗0

; (3) the true expected
outcome under an ODTR: (a) estimated on the entire sample and evaluated on the entire sample:𝜓0,d∗n ; or (b)
estimated on each of the training sets, evaluated on the corresponding validation sets, and averaged: 𝜓0,d∗n,𝑣 .

First, we estimate the target parameter 𝜓0,d. This illustrates the performance of these estimators of the
value of a rule when the rule is known a priori, either because the rule is known to be of interest or it was
estimated on other data not included in the current sample. In this case, we choose d to be the true ODTR, that
is, d = d∗0, as if the true optimal rule were known.We note that it is highly unlikely that in practice d∗0 is known
apriori, and stress that theonly reasonweexamine theperformanceof estimators �̂�d=d∗0

with respect to𝜓0,d∗0
is

to illustrate howwell these estimators evaluate a given pre-specified rule. However, illustrating this using the
true rule d∗0 in a simulation facilitates comparison of estimator performance across the presented estimands,
showing, for example, the price in performance one pays for targeting the more ambitious parameter that
seeks to estimate both the optimal rule itself and its true value. Said another way, if we see that estimator
performance for �̂�d=d∗0

with respect to𝜓0,d∗0
is good, then the only issue left with estimating𝜓0,d∗0

is estimating
d∗0 well.

Next, we estimate the same target parameter 𝜓0,d∗0
in the more realistic scenario where the true ODTR d∗0

is unknown. We therefore first estimate the ODTR and then apply each of the estimators of the value of the
rule under the estimated ODTR (where the rule is either estimated on the entire sample �̂�d∗n or, for CV-TMLE,
estimated on each sample split �̂�d∗n,𝑣 ). Performance of the estimators with respect to 𝜓0,d∗0

reflects how well
both the rule and its value are estimated.

Finally, we treat as target parameter the true expected outcome under the estimated optimal rule, i.e.,
the data-adaptive parameters 𝜓0,d∗n , or, for CV-TMLE, 𝜓0,d∗n,𝑣 . This illustrates estimator performance for data-
adaptive parameters whose true values depend on the sample, and for which it is of interest to estimate
their value using the same sample on which the rule was learned. Note that the target parameter value in
this case is specific to the sample at hand (the “truth” will vary from sample to sample); thus, performance
calculations are with respect to the true sample-specific or sample-split-specificmean outcome. For example,
for confidence interval coverage, across the 1000 simulations, we calculated the proportion of times the
confidence interval around the estimated value of the estimated rule covered the true value of the estimated
rule – where both the confidence interval around the estimate and the true value of the estimated rule are
specific to each sample. Furthermore, the data-adaptive parameter will vary between the non-cross-validated
estimators (whose data-adaptive parameter is the sample-specific parameter 𝜓0,d∗n ) and CV-TMLE (whose
data-adaptive parameter is the sample-split-specific parameter 𝜓0,d∗n,𝑣 ), and as such, is not only a function of
the sample, but also of the split.

5.4 Simulation results
Simulation results are displayed in Figure 1 and in Table 3, 4 and 5. In the next section, we describe the
performance of each estimator under each library configuration for the estimands of interest.

5.4.1 Results – value of a known dynamic treatment regime

Bias, variance, MSE, and confidence interval coverage metrics for estimating 𝜓0,d in the scenario where d
is known a priori illustrate the performance of each of the estimators for estimating the value of a given
pre-specified rule. For illustration, we use the true optimal rule d∗0. Thus, only estimation of nuisance param-
eters g and/or Q were needed for this parameter. We used V = 10 folds when generating cross-validated
estimates. See Table 3 and Figure 1 for detailed results.
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The untargeted G-computation formula exhibited considerable bias if either misspecified parametric
models or a SuperLearning approach was used to estimate the outcome regression – regardless of the degree
of data-adaptiveness in estimating this nuisance parameter Q. For example, when the Qn library consisted
of only parametric regressions, the mean difference between the G-computation estimate and the truth
was −9.35% (i.e., 133.57–467.50 times that of the bias of alternative estimators). We note that this result is in
contrast to that of estimating the treatment specificmean for any static regime (inwhich treatment assignment
is not a function of covariates, for example,𝔼0[Q0(1,W)]) fromdata generated froma randomized experiment.
In the latter, the G-computation estimator under certain misspecified parametric models is a TMLE, and is
therefore unbiased [49].

As expected, the IPTW estimator, although unbiased, was less efficient than alternative estimators
– specifically, the IPTW estimator’s variance was 1.40–2.00 times that of the variance of double-robust
estimators. Additionally, the IPTW-DR and TMLEwere unbiased (as expected, given the double-robustness of
these estimators) if the outcome regression was estimated using either a regression based on a misspecified
parametric model or a SuperLearner with a less data-adaptive library. However, both estimators were biased
(i.e.,−0.74% and−0.67% bias for IPTW-DR and TMLE, respectively) with less than nominal confidence inter-
val coverage (i.e., 90.5% and 91.0% coverage for IPTW-DR and TMLE, respectively) when amore data-adaptive
library was used to estimate the outcome regression – a result likely due to overfitting Qn.

Sample-splittingviaCV-TMLEremoved thenon-cross-validatedestimators’ bias (−0.07%, or0.006–0.100
times the bias relative to alternative double-robust estimators) and generated better confidence interval
coverage (94.7%) under the presence of overfitting for Qn, at no cost to variance.

5.4.2 Results – value of the true, unknown ODTR

No estimator performed well when both the ODTR itself and its value were estimated using the same sample
(i.e., estimators �̂�d∗n or �̂�d∗n,𝑣 for𝜓0,d∗0

); see Table 4 and Figure 1 for more results. This was evident particularly
in terms of increased bias when a less data-adaptive library was used to estimate Q0 and d∗0, and in terms of
both increased bias and variance when a more aggressive library was used to estimate Q0 and d∗0. Notably,
however, CV-TMLE performed the best with respect to all performance metrics under the most data-adaptive
approaches. A large component of the bias in this case was due to the rate of convergence from d∗n to d∗0 for
any SuperLearner library. As a result, confidence interval coverage of the true value under the true ODTR
around any estimated value of the estimated rule did not approach 95% (confidence interval coverage under
the least, moderately, and most data adaptive libraries ranged from 14.00%–45.70%, 69.90%–79.50%, and
38.30%–71.90%, respectively).

Although the focus of these simulations was not optimizing estimation of the ODTR, we note that,
consistent with results from [17], the least biased estimators of the true value of the true ODTR are ones
that use a combination of regressions based on parametric models and machine learning algorithms in the
estimation of Q0 and d0.

5.4.3 Results – value of an estimated ODTR

We evaluated the performance of the non-cross-validated estimators (IPTW, IPTW-DR, and TMLE,
i.e., �̂�d∗n ) of the data-adaptive parameter (i.e., 𝜓0,d∗n ) – a parameter that depends on the opti-
mal rule specific to the sample at hand (see Table 5 and Figure 1 for detailed results). All non-
cross-validated estimators overestimated the value of the rule (i.e., positive bias), regardless of the
SuperLearner library. In addition, the bias increased as the library for estimating the ODTR became
more data-adaptive. For example, for the most data-adaptive SuperLearner library configuration, TMLE
exhibited a bias of 12.74%, variance of 0.0118, MSE of 0.0280, and 22.50% confidence interval
coverage.
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The CV-TMLE (i.e., �̂�CV−TMLE,d∗n,𝑣 ) with respect to the data-adaptive parameter 𝜓0,d∗n,𝑣 removed the bias
incurred by estimating and evaluating the ODTR on the same sample, at little cost to no cost to variance.
For example, for the most data-adaptive SuperLearner library configuration, CV-TMLE had a bias of 0.13%
(0.0090–0.0154 times that of alternative estimators), variance of 0.0007 (0.06–1.00 times that of alternative
estimators), MSE of 0.0007 (0.02–0.09 times that of alternative estimators), and 93.9% confidence interval
coverage.

6 Evaluating the estimated ODTR for the ‘‘Interventions’’ study
In our companion paper, we estimated the ODTR on the “Interventions” data (n = 441) using the ODTR
SuperLearner. The library for d∗n consisted of a combination of algorithms based on simple parametric models
and machine learning (SL.glm, SL.mean, SL.glm.interaction, SL.earth, and SL.rpart), and we used the
same library forQn. The ODTR algorithm allocated all coefficient weight on a simple GLMwith only substance
use; this means that the estimated ODTR can be interpreted as: give CBT to those with low substance use
scores and TAU to those with high substance use scores.

In this paper, we evaluate this estimated ODTR using CV-TMLE. Specifically, we aim to determine if
administering CBT under this individualized rule is better than administering CBT in a non-individualized
way – i.e., simply giving all participants CBT or no participants CBT.

The CV-TMLE estimate of the probability of no re-arrest under the ODTR SuperLearner is 61.37%
(CI: [54.82%, 67.93%]). However, this probability is not significantly different than the CV-TMLE estimate
of the static rule in which everyone receives CBT (difference: −0.35%, CI: [−6.40%, 5.71%]) and no one
receives CBT (difference:−0.18%, CI: [−7.06%, 6.68%]). Estimates and confidence intervals of these CV-TMLE
estimates are illustrated in Figure 2. Thus, there is insufficient evidence to conclude that assigning CBT using
the ODTR SuperLearner is better than assigning CBT in a non-individualized way.
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Figure 2: Analysis of the ‘‘Interventions’’ study. CV-TMLE
estimates of the probability of no re-arrest under the fol-
lowing treatment rules: give cognitive behavioral therapy
(CBT) to all, give CBT to none, give CBT according to the
ODTR SuperLearner algorithm. The squares are the point
estimatesand theerrorbarsare95%confidence intervals
on these point estimates. There is no significant differ-
ence in the estimated probability of no re-arrest under
a treatment regime in which all are given CBT, none are
given CBT, and CBT is given using this ODTR.

7 Conclusions
The aim of this paper was to illustrate the performance of different estimators that can be used to evaluate
dynamic treatment rules, and in particular, the ODTR. At sample size 1,000, we saw a small price and many
benefits to using CV-TMLE in order to estimate the following parameters: (1) the true value of a given a priori
known rule; (2) the true value of the true, unknown ODTR; and, (3) the true value of an estimated ODTR
(a data-adaptive parameter). Of note, we see similar results when there is dependence between covariates in
the DGP, as shown in the Appendix. In addition, we illustrated how to implement the CV-TMLE estimator to
evaluate the ODTR using the “Interventions” data as an applied example.

When evaluating estimators’ performance for the value of a known rule, CV-TMLE performed well,
irrespective of how data-adaptive the algorithms used for estimating nuisance parameters were. Although no
estimator under an estimated ODTR yielded satisfactory performance for a target parameter corresponding
to the true value of the true ODTR, when nuisance parameters and ODTRs were estimated using the most
data-adaptive algorithms, CV-TMLE performed the best among the candidate estimators, while non-cross-
validatedestimatorsyieldedoverlyoptimisticandhighlyvariable results.Finally,noestimatorexceptCV-TMLE
performed well when estimating a data-adaptive parameter – a parameter that may be of interest if: (1) one
believes one’s estimate of the ODTR will not converge appropriately to its truth (as was the case for these
estimators of theODTRunder the currentDGP); and (2) one caresmore about the performance of the estimated
ODTR that is generated by the sample at hand (as opposed to the true, but unknown, ODTR). That said, the
superior performance of CV-TMLE does come at the cost of estimating a distinct, data-adaptive parameter that
depends not only on the sample at hand, but also the sample split.

Future directions for simulations should evaluate results under varying sample sizes. In particular, for
small sample sizes and thus less support in the data, it may be that case that we pay a price in performance by
sample splitting. Additionally, future work could extend these simulations to the multiple time-point setting
to evaluate the sequentialODTR that could be generated from, for example, a SMARTdesign [12, 50, 51] instead
of an single time-point experiment.

As an illustration of how to apply the ODTR SuperLearner to real data, we estimated the ODTR using the
“Interventions” Study to determinewhich types of criminal justice-involved adults withmental illness should
be assigned CBT versus TAU, to yield the highest probability of no re-arrest. In our applied example using
the “Interventions” data, preliminary results suggest the probability of recidivism if treatment were assigned
using the ODTR algorithm (i.e., in an individualized way) is not significantly different from probability of
recidivism if all had been assigned treatment or no treatment (i.e., in a non-individualized way). This may
indicate an absence of strong heterogeneous treatment effects by the measured variables, or it may reflect
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limitations in power to detect such effects due to preliminary sample sizes. In future work, we will apply the
ODTR SuperLearner and evaluate it on the full sample size (n = 720).

This work contributes to statistical methods for understanding treatment effect heterogeneity, and in
particular, howmuch improvement wemight make in outcomes if interventions are assigned according to an
ODTR. It is of great practical relevance to study estimators of these parameters, which allow us to determine
the benefit of assigning treatment in a more individualized way compared to, for example, simply giving all
participants treatment.
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