
UC Berkeley
UC Berkeley Previously Published Works

Title
Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms

Permalink
https://escholarship.org/uc/item/68b1429j

Authors
Gullberg, Grant T
Fuller, Michael
Shrestha, Uttam
et al.

Publication Date
2017-10-01

DOI
10.1109/nssmic.2017.8533088
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68b1429j
https://escholarship.org/uc/item/68b1429j#author
https://escholarship.org
http://www.cdlib.org/


Tensor Tomography of Dark Field Scatter using X-ray 
Interferometry with Bi-prisms

Grant T. Gullberg [Fellow, IEEE],
Department of Radiology and Biomedical Imaging, University of California San Francisco, 
94143-0946 USA (gtgullberg@lbl.gov)

Michael Fuller,
TF Instruments, Salinas, CA USA (michael.fuller@tfinstruments.com)

Uttam Shrestha, and
Department of Radiology and Biomedical Imaging, University of California San Francisco, 
94143-0946 USA (uttam.shrestha@ucsf.edu)

Youngho Seo [Senior Member, IEEE]
Department of Radiology and Biomedical Imaging, University of California San Francisco, 
94143-0946 USA (youngho.seo@ucsf.edu).

Abstract

X-ray grating-based differential phase-contrast imaging is able to obtain excellent soft-tissue 

contrast of phase, attenuation, and small angle scatter. In this work we model the performance of 

an X-ray interferometer wherein the phase gratings are replaced with a single Fresnel micro-bi-

prism. Our goal is to develop imaging systems based on bi-prism interferometry with improved 

polychromatic performance. In our investigation we obtain an analytical expression for the 

irradiance distribution of the bi-prism. The localized regions of fringe visibility within the 

irradiance distribution are non-periodic. Following the work of Pfeiffer et al., we then develop a 

method for reconstructing scattering directions that can be used to obtain a three-dimensional 

tensor field. This will eventually be used in modified bi-prism-based differential phase-contrast 

imaging to obtain tissue properties through mathematical reconstruction of tensor tomographic 

data.

I. INTRODUCTION

X-ray CT is the foundation of the medical imaging industry. However, medical imaging has 

not taken full advantage of its potential to measure tissue properties that are possible by 

measuring and modeling the full extent of the physics involved in the interaction of X-rays 

with soft tissue. To obtain measures of the full tissue properties, one needs to develop 

imaging systems that can provide highly resolved X-rays with spatially-modulated intensity. 

This can be accomplished using diffraction gratings and bi-prisms. This modulation is 

feasible even with a conventional X-ray tube by using a Talbot-Lau interferometer most 

often coupled with gratings for differential phase-contrast imaging (DPCI) [1]. The same 

could be achieved using bi-prisms in which there are no optics in the X-ray beam between 

the sample and the detector [2]. Such postexposure gratings cause loss of detected X-rays 

HHS Public Access
Author manuscript
IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2019 January 
07.

Published in final edited form as:
IEEE Nucl Sci Symp Conf Rec (1997). 2017 October ; 2017: . doi:10.1109/NSSMIC.2017.8533088.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



leading to higher radiation absorbed dose, and present optical alignment challenges. 

Interferometry-based X-ray imaging has provided excellent soft-tissue contrast [3] of phase, 

attenuation, and small angle scatter information of tissue properties.

In our investigation, it is proposed that the Fresnel bi-prism [4,5] be used to produce high-

contrast fringes with spatially incoherent X-ray illumination. The bi-prism array 

interferometer improves the signal-to-noise ratio of the original signal and provides a means 

to measure phase-shifts of introduced objects. In addition to developing imaging systems 

based on bi-prism-based interferometry, we propose to develop algorithms for tomographic 

reconstructions from projections of phase contrast data to retrieve images of absorption, 

differential phase, and dark field small-angle scatter. In this work, we focus on the 

reconstruction of small angle scatter.

We first develop an analytical expression for the irradiance distribution of the bi-prism. Then 

using the work of Pfeiffer et al. [6], [7], [8], [9], we develop analytical expressions for the 

projections of a finite set of fixed scattering directions at each voxel in space. Using the 

developed analytical expression of the irradiance distribution, we provide results for 17.5 

keV X-rays demonstrating irradiance distributions for different number of point sources, 

point source separations, and bi-prism angles.

II. METHODS

A. Grating Interferometry with a Bi-prism

In this paper, it is proposed that the Fresnel bi-prism be used to produce high-contrast 

fringes with spatially incoherent X-ray illumination (Fig. 1). X-rays refracting through each 

prism element overlap and form divergent (magnified) interference fringes on a distant 

detector. A further advantage when using polychromatic radiation is that the central fringe 

produced by a bi-prism is always a “white light” fringe. We propose a modified X-ray 

interferometer [1] wherein the phase grating (G1) is replaced with an array of Fresnel micro-

biprisms. Also, a novel design for the source grating (G0) is provided and the analyzer 

grating (G2) might be eliminated. our analysis in this paper is performed on a single set of 

two counter-positioned refractive prisms illuminated with multiple sources.

B. Analytical Expression for the Irradiance Distribution

Assuming an x-ray beam proceeding from a spatially incoherent planar source illuminates a 

thin bi-prism, we write the irradiance distribution on an arbitrary plane placed at a distance z 

beyond the bi-prism as [4]

I( x , z; η) = 1
MS

2 IS
x

MS
⊗2 I0( x , z; η), (1)

where η is the distance between the source and the bi-prism, z is the distance between the bi-

prism and the imaging plane, ⊗2 is the 2D convolution performed over the transverse 

coordinates x = (x, y), IS is the irradiance distribution of the planar source, I0 is the 
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irradiance distribution of the Fresnel biprism, I is the irradiance distribution at the 

observation plane, and MS = -z/η is the magnification factor between the source and the 

observation planes.

For a spherical wavefront proceeding from a point source illuminating a Fresnel bi-prism, 

the exiting wavefront produces an interference pattern beyond the Fresnel bi-prism whose 

irradiance distribution is

I0( x , z; η) = 1 + cos 2πx
p ,

where p = λ(η + z)/(2ηtanα) is the period of the interference pattern, α = δtanχ is the angle 

of the beam deflection [5], δ is the refraction index decrement, and χ is the angle of the 

biprism (Fig. 2). Here we differ from the development in [4] for light in changing p = λ(η + 

z)/(2(n − 1)ηθ), where n is the index of refraction and θ is the refringence angle of the bi-

prism given in [4], to p = λ(η + z)/(2ηtanα) where α = δtan(χ) is shown in Fig. 2.

For the case of special interest in which the quasi-monochromatic source is composed by an 

array of N mutually incoherent point sources with the same irradiance, IP, and arranged 

equidistant perpendicular to the bi-prism edge and distributed symmetrically to the optical 

axis, the irradiance distribution of the sources is

IS( x ) = Σ
i = 1

N
IPδ(x − xi, y),

xi = N + 1
2 − i x0, i = 1, … . . , N,

x0 being the separation between neighbor point sources. By using Eq. (1), the irradiance 

distribution is obtained to be as follows:

I( x , z; η) = IP ∑
i = 1

N
I0(x − MSxi, y, z:η) .

In a realistic experimental situation, the width Δ of the sources along the x direction would 

not be infinitesimal. In that case, the irradiance distribution of the source can be written as 

the convolution between IS( x ) and a rectangle of width Δ. Using Mathematica (Wolfram 

Research, Champaign, Illinois), we come up with the following analytical expression:

If N = 1 I(x, z) = IP Δ2 + 1
2πztanαλ Δ (z + η)cos 4πxηtanα

λ(z + η) sin 2π Δ ztanα
λ(z + η) ,

If N > 1 I(x, z) = IP N Δ2 + 1
2πztanαλ Δ (z + η)cos 4πxηtanα

λ(z + η) sin 2π Δ ztanα
λ(z + η) CSC

2πx0ztanα
λ(z + η) sin

2Nπx0ztanα
λ(z + η)

(2)
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C. Model of Scatter for Dark Field Projections

Here we develop a model of scatter presented in dark field projections. We assume an X-ray 

beam proceeds from a spatially incoherent planar source and illuminates a thin biprism 

emitting an irradiance distribution projected onto an object of interest. If we assume a fixed 

finite number of scattering directions ϵk = ζk(x)ϵk ∈ ℝ3, from the work in [6,7] we write the 

projections of the dark field image as,

d j = exp −∫
L j

Σk ∣ l j × ϵk ∣ ζk(x)ϵk, t j
2dx , (3)

where l j ∈ ℝ3 is the direction of the incoming beam, Lj is the line along this direction, and 

t j = ∣ t j ∣ t j ∈ ℝ3 is the sensitivity direction parallel to the detector surface. The ^ indicates a 

unit vector. One can show that this reduces to

d j = exp −∑
k

νk j∫L j
ηk(x)dx ,

where ηk(x) = ζk(x)2 and vkj = ∣ t j ∣2 ∣ l j × ϵk ∣2 ϵk, t j
2
. The ηk(x) at the position x are the 

square of the coefficients of the vector scattering directions ϵk.

Let’s parameterize the X-ray direction [8] so that we replace j with i,j,θq,ϕr,ωs, such that the 

capital letters I, J, Q, R, S are the dimensions for each coordinate. Defining the detector 

elements with coordinates (i,j) and the projection angles of the sample as θq,ϕr,ωs as shown 

in Fig. 3, then

D(i, j, θq, ϕr, ωs) = exp −∑
k

vkijqrs∫Lijqrs
ηk(x)dx .

We can form the reconstruction problem as the solution to a large system of linear equations

m = (mijqrs) = −ln(D(i, j, θq, ϕr, ωs) = Hη

where H = (D1A, D2A, …, DKA) is a J×IK matrix, and

Dk =

vk1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ vkIJQRS
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is a IJQRS×IJQRS diagonal matrix of weighting coefficients vkijqrs, IJQRS is the number of 

projection samples, NMP is the number of voxels in the 3D array, K is the number of 

scattering directions ϵk, and

ηT = (η11, η12, …, η1NMP, η21, η22, …, η2NMP, … …, ηK1, ηK2, …, ηKNMP)

is a NMPK×1 matrix of unknown coefficients to be determined. A is the system matrix of 

the tomographic projections formed by the integral in the above equations.

Writing the matrix formulation of the system of equations explicitly in terms of the unknown 

coefficients ηij, we have

m = Hη = (D1A, D2A, …DKA)
IJQRS × KNMP

η11
⋮

η1NMP

η21
η22
⋮

η2NMP

⋮
ηK1
ηK2
⋮

ηKNMP

KNMP × 1

. (4)

D. Processing Dark Field Projections

The projection of the bi-prism irradiance distribution onto the detector surface is a periodic 

pattern (Fig. 9). We can approximate the Fourier expansion as [9]

I(i, j, θq, ϕr, ωs, xg) ≈ a0(i, j, θq, ϕr, ωs) + a1(i, j, θq, ϕr, ωs

)cos 2π(i − (I + 1)/2)
xp

xs − Φ (i, j, θq, ϕr, ωs) ,

(5)

where (i,j) are coordinates of the detector pixel; xs is the spatial sampling; xp is the period in 

x; θq, ϕr, ωs is the rotation angle of the sample around the optical axis; and a0, a1, and Φ are 

the mean, amplitude, and phase of the sinusoidal curve, respectively. Defining the visibility 

of the scatter and reference signal as
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Vs/r(i, j, θq, ϕr, ωs) = a1
s/r(i, j, θq, ϕr, ωs)/a0

s/r(i, j, θq, ϕr, ωs) .

The dark field scatter signal is the following ratio of normalized visibilities

V(i, j, θq, ϕr, ωs) = Vs(i, j, θq, ϕr, ωs)/Vr(i, j, θq, ϕr, ωs) .

III. RESULTS

MathCad (Parametric Technology Corporation, Needham, Massachusetts) was used to 

numerically evaluate Eq. (2) to obtain fringe patterns behind the bi-prism for incoherent X-

ray point sources located at η = 0.4 m in front of the bi-prism (see Fig. 1). For the 

calculation we set λ = 7.1 × 10−11m, Ip = 1/Δ2, Δ= 7.00 × 10−7, and α = δtan (χ), where δ = 

1.57 × 10−6. Using these parameters a series of calculations was made for different number 

of point sources, point source separations, and bi-prism angles.

Fig. 4 shows the fringe pattern for one point source with a biprism angle of χ=82°. Fig. 5 

shows the fringe pattern for two point sources separated by x0 = 20 μm with a bi-prism angle 

of χ=82°. Note that for a scale of 0 to 2 for one point source the scale ranges from 0 to 4 for 

two point sources. Therefore, the scale increases in proportion to the number of point 

sources as is seen with a scale of 0 to 50 for 25 point sources in Figs. 6, 7, and 8.

Non-periodic visibility is seen in Fig. 6. This is characteristic of fringe visibility for a bi-

prism and differs from the periodic pattern of the well-known Talbot–Lau interferometer 

coupled with gratings. Figs. 6 and 7 demonstrate the sensitivity of reducing the distance 

from x0 = 36.7 μm to x0 = 3.67 μm between the point sources. Also notice in Figs. 7 and 8 

the sensitivity of increasing the bi-prism angle from χ=82° to χ=83.67°.

Finally using Eq. (2) we plotted in Fig. 9 the projection of the bi-prism irradiance 

distribution onto the detector surface at 0.9 m for 25 point sources separated by x0 = 3.67 μm 

and with a bi-prism angle of χ=83.67°. The full width at half maximum of the central beam 

at 0.9 meters is approximately 6 μm. Notice the periodicity of the amplitude of the central 

fringe which can be modeled by the Fourier expansion in Eq. (5).

IV. DISCUSSION

Here we present an approach for obtaining tomographic dark field images from projections 

of X-ray small angle scatter. Our presentation of the equations follows closely the work of 

the group of Pfeiffer [6], [7], [8], [9]. However our approach differs in that we propose to 

use bi-prisms instead of gratings. The possible benefits of this approach are 1) Greater optic-

to-detector distance allows placement of the sample/patient after the bi-prism array; 2) 
Divergent nature of the bi-prism’s fringes allows detection in a single exposure (Moiré 

pattern); 3) Setup is well suited to commercially available multi-spot X-ray sources; 4) 
Better use of a polychromatic X-ray spectrum by the naturally varied offset (wavelength 
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dependent) of the bi-prism’s virtual sources; and 5) Easier manufacturing, straight-forward 

alignment, and improved throughput.

Please note the geometry implied in Figs. 6 and 9. The overall distance of X-ray source-to-

X-ray detector of 1.3-meters corresponds to commercially available CT systems (large bore 

systems). This presumes possible retrofit of a bi-prism array to certain clinical imaging 

equipment. Another future possibility would be a highly modified cone-beam CT setup 

where the source grating and bi-prism array are simultaneously rotated around the beam-

axis, defined by the point source, gantry isocenter, and center of area detector. such a setup 

would provide multi-axis and multi-view vector scattering data, which would allow for 

analysis of tissue microstructure orientation, elastomeric properties, and perfusion bias – all 

known health indictors.

As with the work in [7], at every image voxel a fixed set of scatter vector directions is 

assumed for which the coefficients are estimated from the measured projections in Eq. (3). 

The tomographic projections in Eq. (3) are projections of the amplitudes of the scattering 

directions. solving the system of equations in Eq. (4), provides estimates of these 

coefficients. This is accomplished by forming a likelihood function assuming the detection 

of photons follows a Poisson distribution. The estimates of the coefficients are obtained by 

maximizing the likelihood function using the expectation maximization (EM) algorithm. A 

tensor at each voxel is obtain by fitting the weighted fixed set of vectors to ellipsoids [6], [7].

Heretofore, the X-ray beam in a CT system has been emitted from a single, relatively large 

spot origin and has not had spatial coherence per say. This has kept CT systems from 

recording sample features that cause phase-shift or small-angle forward-scatter in the 

transmitted x-rays. Such features are often related to tissue health but can only be observed 

with illuminating X-rays of high spatial resolution – that is, rays that are highly resolved in 

space. One method of breaking up the full field of X-radiation is by using a Talbot–Lau 

interferometer, using multiple gratings for differential phase-contrast imaging (DPCI) [1]. 

The same could be achieved using bi-prisms coupled only to a source grating with which 

there are no optics in the x-ray beam between the sample and the detector, a significant 

improvement over grating-based interferometers [2]. We feel that bi-prism-based 

interferometry has the potential to revolutionize phase-contrast and dark-field X-ray CT.
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Fig. 1. 
Schematic diagram of X-ray optical approach, showing overall setup (top), expanded view 

of bi-prism array (middle) with multiple X-ray origins each producing fringes in resonant 

position, and operation of a single bi-prism with one X-ray origin (bottom).
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Fig. 2. 
Schematic diagram of X-ray beam deflection by a prism, including the X-ray wave length λ, 

the angle of the bi-prism, the refraction index decrement δ, and the angle of the beam 

deflection α = δtanχ.
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Fig. 3. 
Bi-prism-based interferometry. Schematic of the imaging model showing the following unit 

vectors: ϵ1, ϵ2, ϵ3 ∈ ℝ3 are scattering directions (in practice this might be as many as K=17), 

l j ∈ ℝ3 is the direction of the incoming x-ray beam, and t j ∈ ℝ3 is the sensitivity direction 

parallel to the detector surface.
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Fig. 4. 
One point source with a bi-prism angle of χ=82°.
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Fig. 5. 
Two point sources separated by x0 = 20 μm with a bi-prism angle of χ=82°.
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Fig. 6. 
25 point sources separated by x0 = 36.7 μm with a bi-prism angle of χ=82°. Note: Non-

periodic fringe visibility.
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Fig. 7. 
25 point sources separated by x0 = 3.67 μm with a bi-prism angle of χ=82°. Note: Sensitive 

to reducing the distance between the point sources.
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Fig. 8. 
25 point sources separated by x0 = 3.67 ηm with a bi-prism angle of χ=83.67°. Note: 

Sensitive to small changes in the bi-prism angle.
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Fig. 9. 
Projection of the bi-prism irradiance distribution onto the detector surface at a distance z 

=0.9 m from the bi-prism that was irradiated by 25 X-ray point sources of wave length λ = 

7.1 × 10−11m (17.5 keV), which are placed at a distance η = 0.4 m in front of the bi-prism.
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