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The Gut–Brain Axis and the Microbiome: Mechanisms and 
Clinical Implications

Vadim Osadchiy, Clair R. Martin, Emeran A. Mayer
G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian 
Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California

Abstract

BACKGROUND & AIMS: Based largely on results from preclinical studies, the concept of a 

brain gut microbiome axis has been established, mediating bidirectional communication between 

the gut, its microbiome, and the nervous system. Limited data obtained in human beings suggest 

that alterations in these interactions may play a role in several brain gut disorders.

METHODS: We reviewed the preclinical and clinical literature related to the topic of brain gut 

microbiome interactions.

RESULTS: Well-characterized bidirectional communication channels, involving neural, 

endocrine, and inflammatory mechanisms, exist between the gut and the brain. Communication 

through these channels may be modulated by variations in the permeability of the intestinal wall 

and the blood-brain barrier. Brain gut microbiome interactions are programmed during the first 3 

years of life, including the prenatal period, but can be modulated by diet, medications, and stress 

throughout life. Based on correlational studies, alterations in these interactions have been 

implicated in the regulation of food intake, obesity, and in irritable bowel syndrome, even though 

causality remains to be established.

CONCLUSIONS: Targets within the brain gut microbiome axis have the potential to become 

targets for novel drug development for brain gut disorders.
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Based largely on studies with experimental animals, significant progress has been made in 

the past decade in illuminating the role of bidirectional interactions between the nervous 

system, the gastroin-testinal tract, and the gut microbiome. Studies performed using 

experimental animal models have confirmed the role of the gut microbiome in modulating 

affective, social, nociceptive, and ingestive behaviors. However, causality and translation of 
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these findings into healthy human beings and patients with gastrointestinal or psychiatric 

disorders has been limited, and the effectiveness of specific gut microbiome-targeted 

treatments remains to be established. Despite these limitations, the new brain gut 

microbiome (BGM) science has spawned a considerable effort in academia and industry to 

determine if prebiotic, probiotic, and postbiotic interventions may be beneficial either as 

primary or adjuvant therapy in disorders such as irritable bowel syndrome (IBS) or obesity. 

Such therapies could be in the form of special diets, dietary supplements (prebiotics and 

probiotics), or novel molecules targeting or mimicking gut microbial signals (postbiotics). 

Here, we review key findings that show the existence of bidirectional signaling between the 

brain and gut microbiota, explore early life influences on brain and microbiota development, 

and then briefly discuss the potential role of BGM communication channels in 2 common 

gastrointestinal disorders.

Gut Microbiota to Brain Signaling

Communication from the gut microbiome to the central nervous system (CNS) primarily 

occurs through microbial-derived intermediates, with the best described examples including 

short-chain fatty acids (SCFAs), secondary bile acids (2BAs), and tryptophan metabolites.
1–3 Although some of these intermediates interact directly with enteroendocrine cells, 

enterochromaffin cells, and the mucosal immune system to propagate bottom-up signaling, 

other intermediates are able to cross the intestinal barrier to enter systemic circulation, and 

may even cross the blood-brain barrier.3–5 It remains unclear whether these microbial-

derived intermediates reach brain sites directly in sufficient regional concentrations to 

modify distinct brain circuits. Alternatively, microbial signals may communicate via neural 

pathways involving vagal and/or spinal afferents.6,7 Table 13,8–18 outlines some of the best-

characterized signaling channels driving bottom-up communication.

Microbiota Neuroimmune Interactions During Brain Development

A growing body of evidence has shown an important role for the gut microbiota in 

neuroimmune signaling. Preclinical models involving germ-free (GF) mice or mice exposed 

to broad-spectrum antibiotics consistently show deleterious effects on neurodevelopment 

and neurode-generative disease processes, often secondary to disrupted neuromodulatory 

signaling involving the gut microbiota.19,20

Perhaps the best-characterized example of the interaction between the microbiota and CNS 

involves microglial development. Comprising 10% to 15% of all glial cells, microglia are 

tissue macrophages of the brain, representing the most abundant resident innate immune cell 

of the CNS. These cells take on a diverse role because they are involved with CNS 

development early on, and with antigen presentation, phagocytosis, and modulating 

inflammation throughout life.21 Microglia also maintain homeostatic function by 

continuously scanning the environment of the CNS and directly communicating with 

neurons, astrocytes, and blood vessels through processes extending from the cell body.21,22

Microbial-derived SCFAs have been shown to have an integral role in promoting microglial 

maturity and proper functioning.23 GF and antibiotic-treated mice show an increased 

proportion of immature microglia, characterized by longer processes with more branching, 
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in addition to molecular markers associated with an immature phenotype.23 Although an 

important role for SCFAs certainly has been implicated in modulation of microglial 

development and function, the exact mechanisms driving these changes, and the roles of 

potentially other microbial mediators, still are unclear. This is exemplified by a failure of 

microglial abnormalities to correct in response to GF colonization with a limited microbial 

community known to produce SCFAs.23,24 Studies of microglial development also 

underscore the importance of the gut microbiome in developmental timing. Although GF 

mice show decreases in both microglial maturity and number, antibiotic-treated mice show 

decreased microglial maturity only.23 These findings align with research showing 

differences in gene expression profiles of microglia between adult and newborn GF mice 

compared with controls.25

Another well-characterized interaction between the microbiota and CNS involves astrocytes. 

Astrocytes represent a functionally diverse group of glial cells, whose roles include ion 

homeostasis, neurotransmitter clearance, glycogen storage, maintenance of the blood brain 

barrier (BBB), and support of neuronal signaling, in addition to their prominent role in 

neuroinflammation.26 Microbial metabolites can activate aryl hydrocarbon receptors (AhRs) 

to attenuate inflammation via regulation of type I interferon signaling in astrocytes.27 

Although many diverse mediators function as AhR modulators, including xenobiotics, 

indoles represent an important group of microbial-derived AhR agonists.28,29 Most 

undigested dietary tryptophan in the gut lumen is converted to indole by the exclusively 

microbial enzyme tryptophanase.30 Indoles then can be metabolized or modified further by 

microbial and hepatic enzymes, producing indole derivatives of varying affinities for AhR.
30–32

Barriers to Bottom-Up Signaling

Signaling within the BGM axis is regulated by 2 dynamic barriers: first, the intestinal 

barrier, consisting of a basal monolayer of epithelial cells interconnected by tight junctions 

and a dynamic mucus layer containing secretory IgA and antimicrobial peptides33; and, 

second, the BBB consisting of cerebral endothelial cells interconnected by tight junctions.34

Intestinal Barrier

In response to specific microbial products, pattern recognition receptors in the 

gastrointestinal (GI) mucosa can activate enhanced antimicrobial defense, intestinal 

inflammation, and immunologic tolerance.35,36 The intestinal epithelial barrier also plays an 

important role during healthy homeostatic conditions because micro-organisms and 

macromolecules are able to gain entry through microfold cells of the gut-and mucosa-

associated lymphoid tissue, allowing for constant sampling of the gut luminal environment 

by immune cells.37 The mucus layer, the outer layer of which is inhabited by commensal 

microorganisms, represents a dynamic barrier that maintains a glycoprotein-rich biofilm.38 

This protective biofilm can be degraded by microbes during periods of low dietary fiber, 

thereby increasing pathogen susceptibility.39 The permeability of the intestinal barrier also 

can be influenced by inflammatory mediators and by sympathetic nervous system activity.
40,41
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Blood-Brain Barrier

The BBB represents a diffusion barrier between the circulatory system and the cerebrospinal 

fluid of the CNS. The gut microbiota can influence the permeability of this barrier by 

modulating expression of tight junction proteins.34 Preclinical evidence suggests that SCFAs 

may act as a key signaling metabolite, regulating microbiota-influenced BBB development 

and maintenance through epigenetic modification.42,43 Lipopolysaccharides also may play a 

role, although likely a more limited one, in disrupting the BBB through systemic immune 

activation.44

Brain to Gut Signaling

The CNS can influence the gut microbiota directly, through luminal secretion of endocrine 

mediators that interact with microbial receptors, and indirectly through modulation of the 

gut environment. Direct signaling often involves catecholamines, whose concentrations can 

be influenced by physical and psychological stress, whereas indirect signaling involves both 

branches of the autonomic nervous system (ANS).45–47 The ANS can induce changes in gut 

physiology, thereby affecting microbial composition and function. As an example of this, 

changes in intestinal transit times influence water content, nutrient availability, and even 

bacterial clearance rates. Impaired migrating motor complex regularity can result in bacterial 

overgrowth, whereas increased intestinal transit times strongly correlate with stool microbial 

richness and composition.48,49The ANS also regulates the integrity of the intestinal mucus 

layer by modulating goblet cell function, as well as intercellular epithelial permeability. In a 

mouse model of brain injury, increased norepinephrine release contributed to decreased 

goblet cell abundance and mucoprotein production.50 This resulted in changes to the gut 

microbiota, which correlated with the extent of injury.50

Because the majority of brain and brain gut disorders are characterized by enhanced stress 

responsiveness and altered ANS function, top-down modulation of the gut microbiome by 

the brain is likely to be an important contributor to the observed gut microbial signatures.

Early Programming of Gut Microbiome Brain Interactions

The first 3 years of life represent a particularly important developmental period for the CNS, 

with extensive synaptogenesis and myelination taking place.51 In parallel, early life, 

including the prenatal period, also represents an important developmental period for the gut 

microbiota, and it has been suggested that calories harvested by microbes play an important 

part in brain development.52 During this time, exposure to different microbes, diets, 

stressors, antibiotics, and other factors shape microbiota architecture and function, in 

addition to influencing communication with the developing CNS (Figures 1 and 2). In this 

way, multiple influences during early life events play a pivotal role in programing the gut 

microbiota and the brain, and may contribute to the etiology of several neurodevelopmental 

disorders.

Mode of Delivery

The infant microbiota is highly dependent on the mode of delivery because this represents 

the initial colonization of the gut.53 During vaginal delivery, the neonate is colonized by 
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bacteria closely resembling the maternal vaginal microbiome (enriched in Lactobacillus and 

Prevotella species), as well as some fecal microbes.53 The vaginal microbiome is dynamic 

and changes in response to maternal stress, which has been shown to influence the newborn 

gut microbiome and, more importantly, gut metabolome.54 Maternal stress (infections, 

psychosocial stress) also has been shown to increase the risk for schizophrenia, autism, and 

attention deficit hyper-activity disorder in the newborn.55,56 The neonate delivered by 

Cesarean section (C-section) instead is colonized by microbes enriched in Staphylococcus 
and Corynebacterium.53,57 Remarkably, differences in skin, gut, and naso-pharyngeal 

microbiome composition between vaginally delivered and C-section born infants exists up 

until the age of 2 years, during a period of intense brain development.58,59 In a study of 2 

million Danish term children, delivery by C-section was associated with an increased risk 

for the development of asthma, inflammatory bowel disease, immune deficiencies, and other 

chronic immune disorders.60

Early Nutrition

The gut microbiota also is influenced by whether the infant is breastfed or formula-fed, with 

breastfed infants showing better neurodevelopmental outcomes and a more complex 

Bifidobacterium microbiota relative to formula-fed infants.61–63 A crucial factor in the 

development of the gut microbial architecture are the group of complex carbohydrates called 

human milk oligosaccharides.64,65 These molecules are too large to be absorbed by the 

infant small intestine, and exclusively target the developing gut microbiome. Other factors 

shown to influence the development of the infant microbiota include genetics and gestational 

age.66,67

Early Brain Development

During the first 3 years of life,68 extensive changes in brain architecture occur in parallel 

with the programming of the gut microbiome, with the end of the second year marking the 

establishment of an adult pattern of myelination51 (Figure 2). A preclinical model of myeli-

nation suggests that early life commensal microbes are important in regulating proper 

myelination of the pre-frontal cortex. In this model, GF mice showed up- regulation of genes 

coding for structural components of myelin, contributing to the hypermyelination seen in 

these animals, relative to controls.69 In addition, a study of 89 infants found that the gut 

microbial composition at 1 year of age was associated with cognitive performance a year 

later, further underscoring the importance of this early period in the interaction of the gut 

microbiome and the developing brain.70

Modulation of Brain Gut Microbiome Interactions in the Adult

Over time, the mature gut microbial architecture becomes more stable and relatively 

resistant to long-term perturbations.71,72 Similarly, the basic architecture of neural networks 

also stabilizes, although continuous synaptic pruning and myelination continue throughout 

adulthood.73 Despite the increased stability of the gut microbial community structure, the 

functional output to the CNS, via metabolites and signaling molecules, can be altered 

significantly throughout adult life by antibiotics, diet, prebiotics and probiotics, and by 

chronic stress.
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Antibiotics

In adult rodents, long-term, broad-spectrum anti-biotic treatment was associated with 

changes in brain chemistry and behavior, in addition to the structure of the microbiome.74 

Antibiotic-treated mice showed decreases in serum concentrations of tryptophan and 

kynurenine, brain concentrations of serotonin metabolites, and hypothalamic concentrations 

of vasopressin and oxytocin.74 These changes in signaling molecules likely contributed to 

the observed changes in anxiety, memory, and neurocognitive function in these animals.74 

Of note, a series of case-control studies from a large UK database found an association 

between recurrent anti-biotic exposure and an increased risk of depression and anxiety.75 

This may be related to an inability of the human gut microbiome, in some individuals, to 

completely recover after repeated antibiotic perturbation.76

Diet

Several human studies have shown transient diet-induced changes in the gut microbiome and 

gene expression patterns in adult subjects, whereas evidence has suggested that long-term 

changes are not observed.77 It recently was shown in the Hadza hunter-gatherers of East 

Africa that seasonal variations in dietary patterns were associated with changes in the 

diversity, structure, and function of the gut microbiome.78 These diet-associated changes in 

the gut microbiome also may be related to changes in brain structure. A preclinical study 

using machine learning classifiers found that diet-dependent changes in the gut microbiome 

were associated with changes in white matter architecture.79 Long-term consumption of a 

low-fiber diet can have deleterious consequences on microbiota diversity and abundance, 

which is transferred over several generations, and cannot be reversed by a high-fiber diet.80 

Similarly, the lower-gut microbial diversity and SCFA production observed in North 

American infants can be reversed only partially by an increased fiber intake as an adult.81

Prebiotics and Probiotics

Several studies, mostly preclinical or a limited group of small clinical studies, have shown 

that prebiotic and probiotic ingestion in adults can modulate brain function and behavior, an 

observation that has led to the term psychobiotics. Table 282–95 highlights the increasing 

literature related to the effects of these psychobiotics, and underscores the sometimes 

conflicting data associated with these agents. These findings also are reflected in the 

similarly conflicting results of recent meta-analyses on the use of these agents in clinical 

trials for depression, anxiety, and stress.96,97

In summary, the basic gut microbial composition (including diversity and abundance of 

certain taxa), as well as BGM interactions, are established early in life, and once established 

are fairly stable, even in the presence of perturbations by antibiotics, gastrointestinal 

infections, or dietary changes. However, diet can influence both relative abundances as well 

as gut microbial functions in the adult within a certain bandwidth. When interpreting studies 

that explore perturbations in gut microbial structure, it is important to appreciate that the 

same protective (or deleterious) functional profiles can be generated by different microbial 

architectures.98
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Clinical Implications and Brain Gut Disorders

Although preclinical studies clearly implicate the gut microbiome as a factor in modulating 

brain development, structure, function, and behavior in rodents, the demonstration of causal 

relationships in human beings remains challenging. Although no population-based studies 

have been reported on this topic, antibiotic treatment or total colectomies in the clinic are not 

known to be associated with significant changes in mood and affect. In addition, the 

effectiveness of prebi- otic and probiotic intake in the treatment of anxiety and depression 

remains to be determined by large, well-designed, randomized controlled trials. Largely 

unexplored is the role of early life influences on the evolving gut microbiome-brain 

communication network and its impact on gastrointestinal disorders with a strong 

developmental component. Based predominantly on preclinical studies, alterations in BGM 

interactions have been proposed as possible disease mechanisms in autism spectrum 

disorders,19,99 attention-deficit hyperactivity disorder,100 Parkinson’s disease,101 

Alzheimer’s disease,102–104 stroke,105,106 and epilepsy.107 In addition, recent translational 

studies have shown that fecal microbiota transplantation from human donors with anxiety 

and depression can transmit some features of these conditions to recipient GF mice.108–110

BGM interactions likely also play an important role in healthy individuals, with 1 study 

identifying bacterial genus-based clusters in healthy females that were associated with 

functional brain profiles related to emotional regulation regions of the brain.111 In the 

current review, we focus on 2 brain gut disorders with relevance to gastroenterology.

Irritable Bowel Syndrome

A large number of studies (n = 22 in a total of 827 subjects) have reported significant 

microbial shifts in fecal microbial community composition between healthy controls and 

IBS patients, based on disease subtypes (diarrhea-predominant IBS, constipation-

predominant IBS, and IBS mixed subtype), age (pediatric vs adult), and compartment 

(mucosa vs stool).112 Recent studies investigating gut microbial community structure have 

identified at least 2 subgroups of patients who meet Rome criteria for IBS. One subgroup, a 

eubiotic group, did not differ from healthy controls despite similar GI symptoms.113,114 The 

dysbiotic IBS subgroup differed in regional brain volumes from the eubiotic group,113 

suggesting a relationship between microbial community structure and brain structure. 

Another recent study did not find a group difference in microbial composition between 

healthy controls and IBS, even though IBS symptom severity was correlated with dysbiosis.
115 Based on an analysis of fecal samples, regardless of analytical methodology used, a 

number of studies reported decreased relative abundance of the genera Bifidobacterium and 

Lactobacillus, and increased firmi-cutes:bacteroidetes ratios at the phylum level.116,117 

Because stress has been associated with a reduction in Lactobacilli in preclinical and clinical 

studies,118–120 the reported IBS-related changes in community structure and resulting 

metabolism may represent alterations of ANS modulation of the gut, as described earlier.

Obesity

A dysregulation of feeding behavior (referred to as food addiction or hedonic eating 

behavior) plays a significant role in the current obesity epidemic.121 By interacting with 
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enteroendocrine cells in the distal gut, the gut microbiota and its metabolites modulate 

satiety signals (see earlier) and eating behaviors.1,122–124 In preclinical studies, fecal 

transplantation from hyperphagic obese mice to GF mice successfully induced hyperphagic 

behavior and weight gain in the recipients.125,126 The gut microbiome also has been 

associated with changes in brain microstructure in obesity, with distinct microbial brain 

signatures capable of differentiating obese and lean subjects.127 A handful of studies have 

pointed to a dramatic change in gut microbial composition after bariatric surgery.128–132 

Remarkably, fecal transplantation from subjects after bariatric surgery was able to transmit 

the weight loss effects of bariatric surgery to a GF nonoperated recipient, inducing weight 

loss and reduced food intake.133,134

Conclusions

Based on available, largely preclinical data, the emerging BGM science has the potential to 

improve conventional therapies for several brain gut disorders, including IBS and obesity. 

Although experimental animal studies have suggested a possible therapeutic role for certain 

probiotics (psychobiotics), well-controlled clinical trials in human beings are needed to 

confirm the therapeutic value of currently available microbiome-targeted therapies in brain 

gut disorders. Efforts are underway to identify unique gut microbial fingerprints in several 

GI disorders that may lead to personalized therapies, including diet, as well as prebiotics and 

probiotics based on individual patterns of dysbiosis. Similarly, there is a search to identify 

the role of individual gut microbial signaling molecules (postbiotics), which may be targeted 

for therapeutic benefits. Based on these efforts, novel personalized interventions may 

become useful as prophylactic or adjuvant therapies for common brain gut disorders. Finally, 

interventions during early life such as colonization with certain microbes or fecal microbial 

transplants may become a therapeutic strategy to reduce the risk for the development of 

disorders such as IBS, anxiety, and even autism spectrum disorders.
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Figure 1. 
Early life events and the development of the infant gut microbiota. Early life represents a 

particularly vulnerable period for the infant gut microbiome because it is highly responsive 

to numerous factors. In addition to genetics, prenatal influences (maternal nutrition, stress, 

overall health), mode of delivery, early life nutrition (breastfeeding, formula feeding), 

physical and psychological environment, and antibiotic use all influence the infant gut 

microbiome. Modified from Borre et al.135
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Figure 2. 
The developing gut microbiome and brain. Gut microbiota and brain development begins 

during the prenatal period and continues throughout adulthood, with the first 3 years of life 

representing a particularly important developmental period. Disruptions in development can 

influence communication between these 2 systems and may contribute to the pathogenesis of 

neurodevelopmental disorders such as IBS, autism, anxiety, attention-deficit hyperactivity 

disorder (ADHD), and obesity. Modified from Borre et al.135
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