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Abstract

Large databases are routinely being collected in science,
business and medicine. A variety of techniques from statistics,
signal processing, pattern recognition, machine learning, and neural
networks have been proposed to understand the data by discovering
useful categories. However, to date research in data mining has not
paid attention to the cognitive factors that make learned categories
comprehensible. We show that one factor which influences the
comprehensibility of learned models is consistency with existing
knowledge and describe a learning algorithm that creates concepts
with this goal in mind.

Introduction

Knowledge-discovery in databases is a field whose goal is
to extract usable knowledge from a collection of data. It
draws upon methods in statistics, signal processing, pattern
recognition, information theory, machine learning, and
neural networks to produce models that provide insight into
data. Such models are expected to be accurate and are
further expected to be comprehensible to experts in the field.
For example, knowledge acquired through such methods on
a medical database might be published in scientific journals.
Knowledge acquired from analyzing a financial database
might be taught in a management school. While it is
important that such knowledge be an accurate summary of
the data, it is equally important that the knowledge be
comprehensible to experts in the domain. One factor that
influences comprehensibility is being integrated with other
knowledge in the domain.

In this paper, we concentrate on analyzing a database
collected by the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD). The particular problem of
interest is to identify patients with early signs of dementia.
Most demented patients do not see a physician for the
problem of memory loss until four years after symptom
onset (Ernst and Hay, 1994). Community physicians
commonly do not detect dementia or misidentify it in its
earliest stages when patients are seeing them for other
reasons (O'Connor, et al., 1989). A simple, unobtrusive
method for detecting dementia early in the disease's course
would encourage patients to seek early evaluation and
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treatment, resulting in preserved quality of life and reduced
financial burden to family and health care providers.

In previous research, we have shown that a variety of
machine learning and statistical methods can acquire models
that have accuracy, specificity and sensitivity that exceed the
average practitioner at screening for early stages of
dementia. However, it is unlikely that the description of
patients with early dementia created by any of the models so
far would be widely adopted in practice. The decision
procedure implied by some models (e.g., logistic regression)
is too complex to follow, while the decision criteria
explicitly stated in learned rules or decision trees make little
sense to the neurologist or the practitioner since it differs
drastically from the current practice.

In this paper, we concentrate on knowledge discovery
from an electronic patient database containing data on the
dementia status of each patient and the results of two
commonly used cognitive tests for dementia screening, the
Blessed Orientation, Memory and Concentration test
(BOMC- Fillenbaum et al., 1987) and the Mini-Mental
Status Exam (MMSE- Folstein et al., 1975). To understand
why the results of current knowledge-discovery algorithms
make little sense, it is necessary to describe how the tests are
currently used for screening. In each test, the patient answers
questions that assess orientation for time and place,
registration, attention, short-term recall, language skills, and
drawing ability. For example, the patient is first asked to
remember a name and address (“John Brown, 42 Market
Street, Chicago™) and later asked to recall these items. The
patient receives a score for each item in the test. For
example, the number of times that the test giver repeats the
name and address before the patient is able to repeat it
immediately is recorded. Similarly, the number of errors in
recalling the name and address several minutes later is
recorded.  An overall score is given to each patient by
summing the score on each question. The tests are used in
practice for screening for dementia by the use of a simple
threshold on the total score.

The score on each question of the test plus the patient’s
age, sex, and years of education were used in our earlier
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work to predict whether a patient was “normal™ or “muldly
impaired” by the knowledge-discovery in database methods.’
We suspected that such methods would be more effective
than a simple threshold on the aggregate score hecause some
questions seemed more important than others. All ol the
methods were tried, including decision trees, rules, logistic
regression, neural networks, and a simple Bayesian classifier
more accurate than the simple threshold and none of the
methods were substantially more accurate than the others.
In such a case, one might prefer to make decisions based
upon rules or decision trees since such representations are
easy to follow by a practitioner. Furthermore, following
guidelines similar to decision trees or rules is becoming
commonplace in health care management organizations
where a patient first sees a “gatekeeper” who determines
whether the patient should be seen by a specialist.

However, neither the trees produced by C4.5 (Quinlan,
1993) nor the rules produced by rule learners such as C4.5
rules or FOCL (Pazzani & Kibler, 1992) produced rules that
would be acceptable in practice. In particular, some items
which should be viewed as signs of being impaired are used
as signs of being normal and vice versa. This does not
match the original intent of BOMC and MMSE tests, does
not agree with the currently used procedure of totaling the
number of errors, and reduces the comprehensibility of the
rules to the layperson and the trained neurologist. Table 1
shows an example of one such rule that was produced by
FOCL when training on 300 patient records. Similar
problems occur with other rule learners such as C4.5 rules
and CN2 (Clark & Niblett, 1989).

If such violations of expectations were necessary to obtain
accurate results, they could be tolerated. Such violations
might even lead to new insights by focusing future research
on explaining them. However, we shall show that on this
problem, the same diagnostic performance can be achieved
without these violations.

In the remainder of this paper, we first describe rule
learning algorithms in detail using FOCL as an example to
describe one source of incomprehensible rules. We describe
a simple extension to FOCL that prevents it from learning
rules that violate the expectations of a domain expert and
show that this extension does not hurt the diagnostic value of
the concepts that are learned. We present preliminary
evidence that rules without these violations are preferred.
We conclude by describing related work and commenting on
directions for future research.

Background: Rule Learners

FOCL is derived from Quinlan’s (1991) FOIL system.
FOIL is designed to learn a set of clauses that distinguish
positive examples of a concept from negative examples.
Each clause consists of a conjunction of tests. For example,
in the dementia domain a test might check to see whether the

' There are no severely impaired patients in this sample of data
since it is easy to distinguish severely impaired patients from others
without the use of such tests.

Table 1: Sample rule with questionable tests underlined.
IF the years of education of the patient is > 5
AND the patient does not know the date
AND the patient does not know the name

of a nearby street
THEN The patient is NORMAL

OTHERWISE IF the number of repetitions before
correctly reciting the address is > 2

AND the age of the patient is > 86
THEN The patient is NORMAL

OTHERWISE IF the years of education of the
patient is > 9

AND the mistakes recalling the address is < 2

THEN The patient is NORMAL

OTHERWISE The patient is IMPAIRED

patient’s age is less than a certain value, or whether the
patient knows the day of the week.

FOIL operates by trying to find a clause that is true of as
many positive examples as possible and no (or few) negative
examples.” It then removes the positive examples explained
by that clause from consideration and finds another clause to
account for other positive examples. It repeats this clause
learning process until all (or nearly all) of the positive
examples are explained by some clause. Each clause can be
viewed as a description of some subgroup of examples.

To learn a clause, FOIL first considers all possible
clauses consisting of a single test. It selects the best of these
according to an information-gain heuristic which essentially
favors a test that is true of many positive examples and few
negative examples. Next, FOIL specializes the rule using
the same search procedure and information-based heuristic,
considering how conjoining a test to the current clause
would improve it by excluding many negative examples and
few positives. This specialization process continues until the
clause is not true of any negative examples, resulting in a
single clause that is a conjunction of tests.

FOCL follows the same procedure as FOIL to learn a set
of clauses. However, it learns a set of clauses for each class
(such as normal and impaired) enabling it to also deal with
problems that have more than two classes. The clause
learning algorithm 1s run once for each class, treating the
examples of that class as positive examples and the
examples of all other classes as negative examples. This
results in a set of clauses for each class.

FOCL has two methods for converting a set of clauses
for each class into a single decision list such as that shown in
Table 1. The first method simply orders the learned clauses
by an estimate of accuracy and uses the most frequent class

* FOIL uses the minimum description length principle to trade-
off the complexity of a rule with the number of examples covered
and excluded. This is intended to prevent it from learning an overly
complex rule to explain just a few exceptions
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as a default to be used if no clause applies. Using the same
examples to learn the initial set of clauses and to create the
ordered decision list can cause a problem since the learned
rules rarely make errors on the data used to learn the rules.
In our experiments, we always divide the training data into a
learning set consisting of 2/3 of the training data for learning
clauses and an ordering set consisting of the remaining 1/3
of the training data for creating the decision list.

The second method for creating a decision list is an
optimization procedure that selects an ordered subset of the
original clauses. The algorithm initializes the decision list to
a default clause that predicts the most frequent class. Next,
it iteratively tries to improve upon the current decision list
with an operator that replaces the default rule with a learned
clause and a new default clause. The impact is calculated of
adding each remaining clause to the end of the current
decision list and assigning the examples that match no clause
to the most frequent class of the unmatched examples. The
change that yields the highest impact in accuracy is made
and the process is repeated until no change results in an
improvement. Typically, only a few clauses are selected by
this process resulting in a relatively short decision
procedure.

One further detail is needed to understand how FOCL
arrives at a decision list using rule optimization. When
adding clauses to the decision list, FOCL also has the option
to choose a prefix of a learned clause. That is, if a clause
such as X & Y & Z was learned, FOCL considers using X or
X&Y in addition 1o X&Y&Z as a clause in the decision list.’
This can result in shorter, more general clauses. Such a
clause optimization step has been shown to significantly
simplify the learned concepts (e.g., Cohen, 1995). The
decision list shown in Table | was learned using this
optimization procedure.

Table 2 shows the accuracy of C4.5, C4.5 rules, FOCL
with rules ordered by accuracy, and FOCL with optimized
rules on the CERAD data. The accuracy is averaged over 50
trials of dividing the data into a training set of size 210 and a
test set of size 105. The test set does not contain any
examples from the training set.

Table 2: Accuracy at identifying impaired patients.

| Algorithm Accuracy
C4.5 86.7
C4.5 rules 82.6
FOCL (Accuracy order) 86.0
FOCL (Optimized order) | 90.6

* Prefixes of learned clauses are selected rather than subsets for
efficiency reasons, There are only N prefixes of a clause of length
N, while there are 2" subsets. The tests at the end of a clause are
more likely to cause problems since they are learned after more
examples have been excluded, increasing the chances of
“coincidental” regularities.
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The results show that FOCL's optimized rule orde
substantially more accurate than the other learr
algorithms. This result is significant at least at the 01 I
using two-tailed t-tests, ~ We now turn our attentior
improving the comprehensibility of FOCL's output.

Monotonicity Relationships

Some clauses in the learned category descriptions vio
the intent of the BOMC and MMSE examinations.
particular, getling some questions right is used as evide
that one is impaired and getting some questions wrony
used as evidence that one is not impaired. A relatiy
simple change to FOCL climinates such tests fi
consideration. For variables with numeric relationships,
user declares whether the variable has a known monotc
relationships with each class." A monotonic relationshi|
one in which increasing the value of the variable alw
increases or decreases the likelihood category members|
When considering tests to add to a clause, the tests
violate these relationships are removed from considerat
For example, when learning a description of the norn
patients, FOCL with monotonicity constraints only check
see if the number of errors recalling the address is less t
some number. When learning clauses describing
impaired category, it only tests to see if this variable
above some threshold.

These constraints on tests may also be used on Bool
and nominal variables. In this case, the user specifies wk
values are possibly indicative of membership in a class.
example, a value of true for the variable “knows the d:
may be used as a sign for normal, while the value false r
be used as a sign for impaired.

For the CERAD data, and for many medical data s
the data is coded such that an increase in a variables valu
an incorrect response to a question increases the chance
one has a particular disease or syndrome. We encoded
knowledge as monotonicity relationships to FOCL. We :
added constraints indicating that the likelihood that on
impaired increases with age and decreases with educatic
level. Table 3 shows an example of a rule learned with th
constraints,

‘ Some variables may be left unconstrained, in which case
tests with that variable are considered.



We ran 50 tnals of FOCL using rule optimization with
and without monotonicity constraints. There is not a
substantial or significant difference in accuracy using the
constraints.  FOCL is 90.7% accurate when using
monotonicity constraint  and  90.6% accurale  when
unconstrained.” On average, a decision list formed without
constraints contains a total of 4.65 tests and 2.13 violations
of the monotonicity constraints. With the constraints, an
average of 4.30 tests are used in a decision list, none of
which violate the constraints. This raises two questions that
we will address below:

1. Why does a learning algorithm create tests that
violate these constraints?

2. Are rules that do not violate monotonicity
constraints to be preferred in practice?

If we assume that the constraints are correct, then there
are two factors which contribute to a test that violate these
constraints being used in a rule. First, while the test
appeared best according to an information-based selection
procedure, this procedure detected a “spurious correlation”
in the data due to sampling biases, noise in category label
(i.e., a patient may be misdiagnosed) or noise in a variable's
value (i.e., a question may have been recorded or scored
improperly or a patient may have guessed the correct answer
to a question such as guessing the day of the week). Such
problems are more likely to occur near the end of a clause or
the leaves of a decision tree. In these cases, the sample of
data used by the information-based heuristic i1s reduced to
those examples that are true of the conditions in the initial
portion of the clause. A smaller sample is more likely to
have a test that is uninformative appear to be informative.
Pruning algorithms such as the FOIL’s MDL method,
FOCL’s rule optimization procedure, and various decision
tree pruning algorithms mitigate this problem. However,
they are only a partial solution at best. For example, the
rules produced by accuracy ordering in unconstrained FOCL
contain an average of 18.63 tests and 12.13 monotonicity
constraint violations. The rule optimization procedure
reduces this to 4.65 tests and 2.13 violations.

The second factor that accounts for the selection of tests
that violate the monotonicity constraints is that the selection
procedure selects a single best test. It is often the case that
several tests are equally or statistically indistinguishably
informative. Under these circumstances, a decision
procedure could be found that is both accurate and
comprehensible to an expert by eliminating from
consideration tests that violate these constraints.

Note that the goal of knowledge-discovery in databases is
sometimes viewed as finding “the model” of the data, while
in reality there are often many possible models of the data
that are not significantly different according to any statistical
procedure on the training example. For example, Murphy
and Pazzani (1994) used a massively parallel computer to

' We also inverted all of the monotonicity constraints (e.g., by
stating that increasing age decreases the likelihood of dementia)
and this significantly decreased the accuracy of FOCL to 88.1%.

Table 3: A rule learned with monotonicity constraints.

IF the years of education of the patient is > 5
AND the mistakes recalling the address is < 2
THEN The patient is NORMAL

OTHERWISE

IF the years of education of the patient is > 11

AND the errors made saying the months backward
is <. 2

THEN The patient is NORMAL

OTHERWISE

IF the years of education of the patient is > 17

THEN The patient is NORMAL

OTHERWISE The patient is IMPAIRED

find all decision trees consistent with a set of 20 training
examples. A total of over 25,000 trees were found. Many
of these trees were very complex. However, on average
there were 20 trees with 5 or fewer tests. We advocate
imposing other constraints, such as monotonicity constraints
on the model selection process so that accurate and
comprehensible models are produced.

Monotonicity Constraints
and the Adoption of Clinical Guidelines

We have conducted surveys of two neurologists to
determine whether monotonicity constraints influence the
willingness to follow guidelines. We generated 16 decision
lists such as that shown in Table 1 by using unconstrained
FOCL and 16 decision lists such as that shown in Table 3 by
using FOCL with monotonicity constraints on 16 randomly
selected subsets containing 200 examples from the CERAD
database. In both cases, the rule optimization procedure of
FOCL was used to ensure that concise descriptions were
learned. Each rule was printed on a separate sheet of paper
and presented in a random order to each neurologist. We
asked each neurologist to rate on a scale of 0-10 “How
willing would you be to follow the decision rule in screening
for cognitively impaired patients”. We hypothesized that the
neurologists would be more willing to use rules that were
generated by FOCL when it used monotonicity constraints.

Neurologist 1 has been involved in this project for
approximately one year and is aware that the focus of the
research is to create comprehensible rules. Neurologist 2 is
not affiliated with this project and is unaware of its goals.
For Neurologist 1, the average score of rules generated by
FOCL without the monotonicity constraints was 3.25, while
the average score of rules generated with the monotonicity
constraints was significantly higher 5.56 t(15) = 6.60, p <
.001. For Neurologist 2, these scores were 0.25 and 2.38
(15) = 5.09, p < .001. Although it is clear that the
neurologists were using different scales, in each case higher
average ratings were given to the category descriptions
generated with these constraints in mind, We also show the
correlation between the number of monotonicity constraint
violations and the willingness to follow the rule., Table 4
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shows the correlation between these variables for each
neurologist. For comparison purposes, we also show the
correlation between the willingness to follow a rule and the
number of tests and number of clauses in the rule, two
commonly used measures of rule complexity. We did not
attempt to balance for the size of the rules in the two
conditions, but the average number of tests and clauses was
within 10% between the two conditions.

Table 4: Correlations between properties of learned
models and neurologists’ willingness to use the models.
Correlation Neurologist 1| Neurologist 2
Violations 433 623
Number of tests .208 .020
Number of clauses | .278 011

These results show that both neurologists were sensitive to
the violations of monotonicity constraints and these
violations affect the willingness to follow the rule. The size
of the rules did affect the judgment of one of the
neurologists but to a lesser extent than the number of
constraint violations.

Related Work

Most work in producing understandable rules has focused
on syntactic properties of the rules, particularly the size of
rules. Such work simply equates size with
comprehensibility and seeks to minimize the size of learned
relationships.  For example, Karalic's (1996) paper,
“Producing more comprehensible models while retaining
their performance™ might just as well be entitled “Producing
smaller models while retaining their performance™ since it
describes the use of the minimum decription length
principle to learn shorter rules. Craven's (1996) research on
extracting comprehensible models from neural networks has
focused on creating concise representations such as short
rules. In contrast, we have focused on how the relationship
between learned knowledge and existing knowledge affects
comprehensibility and have shown that there are differences
other than size that affect the willingness of experis to use
rules.

Pazzani (1991) introduced the notion of influence theories
that affect the causal induction process. This earlier research
focused on the direct causes of a state change, showing that
some aspects of the causal induction process could be
explained by the fact that people have knowledge of
potential causes but must learn which combinations of these
causes are necessary and sufficient (cf. Kelley, 1971). While
the current work differs in that the factors of interest are
effects rather than causes of the phenomenon of interest, the
general idea is similar in that the learning algorithm is
constrained by knowledge of potential influences.

Clark and Matwin (1993) show how learning may be
constrained by a qualitative model of a physical
phenomenon. Although it would be difficult to represent
knowledge of the causes of dementia as a qualitative model,
Clark and Matwin’s work does show that rule learning can
be constrained to be consistent with prior knowledge.

A variety of techniques to constrain the coefficients of
linear regression are summarized in Leblanc and Tibshirani
(1993). Although the focus of the research on methods to
regularize weights is to increase the predictive inference
capabilities of the models, they may also make the models
easier to interpret. For example, constraining the coefficients
of each variable to be positive or negative could simulate the
effect of declaring there to be a monotonic relationship
between a variable and a class.

Future Directions

Our future plans include collecting feedback from
additional practitioners who use the MMSE and BOMC on
the comprehensibility of learned category descriptions in this
domain and further psychological investigation on the
factors that influence the willingness of experts to use
learned models.

In the current implementation, there is no way to add a
condition that violates a monotonicity constraint to a
category description regardless of the amount of statistical
support for that condition. In the future we plan on
softening such constraints by preferring conditions that do
not violate constraints but permitting a condition with a
violation if there are no sufficiently informative conditions
that do not violate constraints. We will also investigate
methods for learning monotonicity constraints so that the
knowledge required by this system may automatically be
acquired from the data.

Conclusions

We have argued that to be truly useful, the knowledge
discovered in databases must both be accurate and
comprehensible. We have further argued that one factor that
influences the comprehensibility of learned knowledge is the
use of conditions as evidence for belonging to some category
when prior knowledge indicates that these conditions are
evidence that an example does not belong to that category.
We have shown that existing knowledge discovery systems
learn rules with such conditions and created an enhancement
to one algorithm that prevents these conditions from being
added to learned models. Finally, we have presented
preliminary evidence that experts prefer rules that do not
contain violations of prior knowledge.
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