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Abstract How is the information-processing architecture of the human brain organised, and how 
does its organisation support consciousness? Here, we combine network science and a rigorous 
information-theoretic notion of synergy to delineate a ‘synergistic global workspace’, comprising 
gateway regions that gather synergistic information from specialised modules across the human 
brain. This information is then integrated within the workspace and widely distributed via broad-
caster regions. Through functional MRI analysis, we show that gateway regions of the synergistic 
workspace correspond to the human brain’s default mode network, whereas broadcasters coincide 
with the executive control network. We find that loss of consciousness due to general anaesthesia 
or disorders of consciousness corresponds to diminished ability of the synergistic workspace to 
integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with 
a breakdown of information integration within the synergistic workspace of the human brain. This 
work contributes to conceptual and empirical reconciliation between two prominent scientific theo-
ries of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also 
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advancing our understanding of how the human brain supports consciousness through the syner-
gistic integration of information.

eLife assessment
This article presents important results describing how the gathering, integration, and broadcasting 
of information in the brain changes when consciousness is lost either through anesthesia or injury. 
They provide convincing evidence to support their conclusions, although the paper relies on a 
single analysis tool (partial information decomposition) and could benefit from a clearer explication 
of its conceptual basis, methodology, and results. The work will be of interest to both neuroscientists 
and clinicians interested in basic and clinical aspects of consciousness.

Introduction
Humans and other vertebrates rely on a centralised nervous system to process information from 
the environment, obtained from a wide array of sensory sources. Information from different sensory 
sources must eventually be combined - and integrated - with the organism’s memories and goals, in 
order to guide adaptive behaviour effectively (Varela et al., 2001). However, understanding how the 
brain’s information-processing architecture enables the integration of information remains a key open 
challenge in neuroscience (Petersen and Sporns, 2015; Shine, 2019). Theoretical and empirical work 
in cognitive neuroscience indicates that information processed in parallel by domain-specific sensory 
modules needs to be integrated within a multimodal ‘central executive’ (Fodor, 1985). Indeed, recent 
work has identified subsets of regions that are consistently recruited across a variety of tasks (Deco 
et  al., 2021b; Assem et  al., 2020; Shine et  al., 2019), situated at the convergence of multiple 
anatomical, functional, and neurochemical hierarchies in the brain (Hagmann et al., 2008; Felleman 
and Van Essen, 1991; Goulas et al., 2021; Sydnor et al., 2021; Baum et al., 2020; Bertolero et al., 
2017; Vázquez-Rodríguez et al., 2019; Margulies et al., 2016; Burt et al., 2018; Demirtaş et al., 
2019; Deco et al., 2021a; Hansen et al., 2021; Hansen et al., 2022).

Prominent theories in cognitive and computational neuroscience have also proposed that global 
integration of information from diverse sources plays a fundamental role in relation to human 
consciousness (Tononi et al., 2016; Seth and Bayne, 2022). The influential Global Neuronal Work-
space Theory (GNWT) focuses on the process by which specific neural information becomes available 
for conscious access, as occurring through the global integration induced by a ‘global workspace’ 
(Dehaene and Changeux, 2011a; Mashour et  al., 2020; Dehaene et  al., 2011b; Baars, 2005). 
Within the workspace, relevant information from different sources is integrated and subsequently 
broadcasted back to the entire brain, in order to inform further processing and achieve ‘experiential 
integration’ of distributed cortical modules into a coherent whole (Mashour et al., 2020; Dehaene 
et al., 2011b; Dehaene and Naccache, 2001). Thus, the global workspace is attributed both the role 
of integrator, and the role of orchestrator of cognitive function. Also highlighting the importance of 
integration, the prominent Integrated Information Theory (IIT; Tononi et  al., 2016; Tononi, 2008; 
Tononi, 2004) posits that the degree of consciousness in a system is determined by its ‘integrated 
information’: the amount of intrinsic information generated by the dynamics of the system considered 
as a whole, over and above the information generated by the dynamics of its individual constituent 
parts (Tononi et al., 2016; Tononi, 2008; Tononi, 2004; Tononi et al., 1998). Thus, this notion of 
integrated information corresponds to the extent to which ‘the whole is greater than the sum of its 
parts’ (Balduzzi and Tononi, 2008).

Therefore, leading theoretical accounts of consciousness converge on this point: consciousness 
critically depends on the capability for global integration across a network of differentiated modules. 
Despite agreeing on the fundamental importance of information integration (Cavanna et al., 2018), 
these theories differ on its specific role and corresponding neural mechanisms. In contrast to GNWT’s 
account, whereby integration is viewed as a necessary – but not sufficient – prerequisite step on the 
way to broadcasting and consciousness, IIT proposes a more fundamental identity between conscious-
ness and the integration of information, but without specifying a formal architecture for this process: 
that is, according to IIT any system that integrates information will thereby be conscious, regardless of 
its specific organisation (Balduzzi and Tononi, 2008). Seen under this light, it becomes apparent that 

https://doi.org/10.7554/eLife.88173
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IIT and GNWT are actually addressing different aspects of consciousness, and their views of integra-
tion are different but potentially complementary.

Crucially, our ability to make sense of any information-processing architecture is limited by our 
understanding of the information that is being processed. An elegant formal account of information 
in distributed systems – such as the human brain – is provided by the framework of Partial Information 
Decomposition (PID; Williams and Beer, 2010) which extends the formalism of Shannon mutual infor-
mation by demonstrating that not all information is equal. Mutual information quantifies the reduction 
in uncertainty about one variable, when another variable is taken into account. In the case when more 
than one source of information is present, PID demonstrates that two sources can possess information 
about a given target that is unique (each source provides independent information), redundant (the 
same information is provided by both sources) or synergistic (complementary information, a higher 
order kind of information that is available only when both sources are considered together). As an 
example, humans have two sources of visual information about the world: two eyes. The information 
that is lost when one eye is closed is called the ‘unique information’ of that source – information that 
cannot be obtained from the remaining eye. The information that one still has when one eye is closed 
is called ‘redundant information’ – because it is information that is carried equally by both sources. 
This provides robustness: you can still see even after losing one eye. However, losing one eye also 
deprives you of stereoscopic information about depth. This information does not come from either 
eye alone: you need both, in order to perceive the third dimension. Therefore, this is called the 
‘synergistic information’ between the sources – the extra advantage that is derived from combining 
them. Synergistic information therefore reflects the meaning of integration-as-cooperation, whereby 
elements are distinct from each other, but complementary (Luppi et al., 2024a).

Adding to the rich literature that addresses neural information from the perspective of encoding 
and decoding of task variables (Quian Quiroga and Panzeri, 2009,) there is growing appreciation 
that distinct types of information – as identified by information decomposition – may play a key 
role in the distributed information-processing architecture of the brain (Luppi et al., 2024a; Timme 
et al., 2014; Sherrill et al., 2021; Faber et al., 2019; Sherrill et al., 2020; Newman et al., 2022; 
Celotto et al., 2023; Varley, 2023; Varley et al., 2023a). Information decomposition can be applied 
to neural data from different scales, from electrophysiology to functional MRI, with or without refer-
ence to behaviour (Luppi et al., 2024a). When behavioural data are taken into account, information 

eLife digest The human brain consists of billions of neurons which process sensory inputs, such 
as sight and sound, and combines them with information already stored in the brain. This integration 
of information guides our decisions, thoughts, and movements, and is hypothesized to be integral to 
consciousness. However, it is poorly understood how the brain regions responsible for processing this 
integration are organized in the brain.

To investigate this question, Luppi et al. employed a mathematical framework called Partial Infor-
mation Decomposition (PID) which can distinguish different types of information: redundancy (avail-
able from many regions) and synergy (which reflects genuine integration). The team applied the PID 
framework to the brain scans of 100 individuals. This allowed them to identify which brain regions 
combine information from across the brain (known as gateways), and which ones transmit it back to 
the rest of the brain (known as broadcasters).

Next, Luppi et al. set out to find how these regions compared in unconscious and conscious indi-
viduals. To do this, they studied 15 healthy volunteers whose brains were scanned (using a technique 
called functional MRI) before, during, and after anaesthesia. This revealed that the brain integrated 
less information when unconscious, and that this reduction happens predominantly in gateway rather 
than broadcaster regions. The same effect was also observed in the brains of individuals who were 
permanently unconscious due to brain injuries.

These findings provide a way of understanding how information is organised in the brain. They also 
suggest that loss of consciousness due to brain injuries and anaesthesia involve similar brain circuits. 
This means it may be possible to gain insights about disorders of consciousness from studying how 
people emerge from anaesthesia.

https://doi.org/10.7554/eLife.88173
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decomposition can shed light on the processing of ‘extrinsic’ information, understood as the trans-
lation of sensory signals into behavioural choices across neurons or regions (Celotto et al., 2023; 
Varley et al., 2023a; Delis et al., 2022; Francis et al., 2022). However, information decomposition 
can also be applied to investigate the ‘intrinsic’ information that is present in the brain’s spontaneous 
dynamics in the absence of any tasks, in the same vein as resting-state ‘functional connectivity’ 
and methods from statistical causal inference such as Granger causality (Barnett et al., 2009). In 
this context, information processing should be understood in terms of the dynamics of information: 
where and how information is stored, transferred, and modified (Luppi et al., 2024a). Specifically, 
since the future state of the brain is at least in part determined by its previous state, it is possible 
to view the future state of neural units (be they regions or neurons) as the target, and ask how it is 
determined by the same units’ previous state, and the previous state of other units, which become 
the sources of information. Then, redundancy between two units occurs when their future sponta-
neous evolution is predicted equally well by the past of either unit. Synergy instead occurs when 
considering the two units together increases the mutual information between the units’ past and 
their future – suggesting that the future of each is shaped by its interactions with the other. At the 
microscale (e.g. for spiking neurons) this phenomenon has been suggested as reflecting ‘information 
modification’ (Timme et al., 2014; Newman et al., 2022; Wibral et al., 2014). Synergy can also be 
viewed as reflecting the joint contribution of parts of the system to the whole, that is not driven by 
common input (Mediano et al., 2018).

By applying a recent generalisation of PID for timeseries data – known as Integrated Information 
Decomposition (Varley, 2023; ; Mediano et al., 2021) – we developed an information-resolved 
approach to decompose the information carried by brain dynamics and their intrinsic fluctu-
ations (Luppi et  al., 2022b). Traditional measures of statistical association (‘functional connec-
tivity’) cannot disentangle synergy and redundancy; in fact, recent work has demonstrated that 
functional connectivity predominantly reflects redundant interactions (Luppi et al., 2024a; Luppi 
et  al., 2022b; Varley et  al., 2023b). In contrast, applying our information-resolved framework 
to functional MRI recordings of the human brain revealed that different regions of the human 
brain predominantly rely on different kinds of information for their interactions with other regions. 
Through this approach, we identified a ‘synergistic core’ of brain regions supporting higher level 
cognitive functions in the human brain through the synergistic integration of information (Luppi 
et al., 2022b). Similar results of a synergistic architecture were recently and independently obtained 
using a different decomposition (based on entropy rather than mutual information) (Varley et al., 
2023b).

We also observed that a synergy-based measure of emergent dynamics in functional MRI record-
ings is disrupted in patients suffering from chronic disorders of consciousness (Luppi et al., 2023a). 
Building on these findings, it is natural to ask whether this synergistic core could correspond to the 
brain’s global workspace. Furthermore, given that the views on information integration put forward 
by GNWT and IIT are potentially complementary, an important challenge to move the field forward is 
to leverage both accounts into a unified architecture that could explain empirical effects observed in 
neuroimaging data.

Therefore, this work sets out to address two fundamental questions of contemporary neuroscience:

1.	 How is the cognitive architecture of the human brain functionally organised, from an information-
theoretic standpoint? Specifically, what brain regions does it involve, and what are the roles of 
the two kinds of information integration proposed by GNWT and IIT within this architecture?

2.	 How are different types of information in the brain related to human consciousness?

To address these questions, and provide an information-resolved view of human consciousness, 
here we study three resting-state fMRI datasets: (i) N=100 subjects from the Human Connectome 
Project; (ii) N=15 healthy volunteers who were scanned before and after general anaesthesia with the 
intravenous propofol as well as during post-anaesthetic recovery (Luppi et al., 2019) (iii) N=22 patients 
suffering from chronic disorders of consciousness (DOC) as a result of severe brain injury (Luppi et al., 
2019). By comparing functional brain scans from transient anaesthetic-induced unconsciousness and 
from the persistent unconsciousness of DOC patients, which arises from brain injury, we can search 
for common brain changes associated with loss of consciousness – thereby disambiguating what is 
specific to loss of consciousness.

https://doi.org/10.7554/eLife.88173
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Results
Adopting an information-resolved view, we propose to divide the information-processing stream 
within the human brain in three key stages: (i) gathering of information from multiple distinct modules 
into a workspace; (ii) integration of the gathered information within the workspace; and (iii) global 
information broadcasting to the rest of the brain. Furthermore, we propose that while all workspace 
regions are involved in stage (ii), they are differentially involved in stages (i) and (iii).

The existence of a synergistic workspace and these three processing stages can be seen as emerging 
from a trade-off between performance and robustness that is inherent to distributed systems. Theo-
retical work in cognitive science (Baars, 2005) and the field of distributed signal processing (Tsitsiklis, 
1989; Veeravalli and Varshney, 2012) has long recognised the computational benefits of combining 
multiple distinct processing streams. However, having a single source of inputs to and outputs from 
the workspace introduces what is known as a ‘single point of failure,’ which can lead to catastrophic 
failure in case of damage or malfunction (Lever et al., 2013). Therefore, a natural solution is to have 
not a single but multiple units dedicated to gathering and broadcasting information, respectively, 
thereby forming a workspace that can be in charge of synthesising the results of peripheral processing 
(Rosas et al., 2017).

Pertaining to Stage (ii), we previously identified which regions of the human brain predominantly 
entertain synergistic interactions, and thus are most reliant on combining information from other 
brain regions (Luppi et al., 2022b; Figure 2—figure supplement 1). The key signature of workspace 

Figure 1. Schematic of the proposed SAPHIRE neurocognitive architecture. Below, specialised modules 
characterised by robust redundant functional interactions process information about the environment. Information 
is then collected by workspace gateways through synergistic interactions [Stage (i)]; synergistic interactions 
integrate information within the synergistic global workspace [Stage (ii)]; workspace broadcasters spread the 
integrated information back to the specialised modules, through redundant interactions [Stage (iii)], for further 
processing and to guide behaviour. Orange links represent redundant interactions, and violet links represent 
synergistic interactions. Grey arrows represent interactions between the system and its environment.

https://doi.org/10.7554/eLife.88173
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regions is to have a high prevalence of synergistic (compared to redundant) functional interactions, 
and therefore the synergy-rich regions that we discovered are ideally poised as GNW candidates. 
Here, we consider the architecture of the global workspace more broadly, and combine Integrated 
Information Decomposition with graph-theoretical principles to bring insights about processing stages 
(i) and (iii) (Figure 1). We term this proposal the ‘Synergy-Φ-Redundancy’ neurocognitive architecture 
(SAPHIRE) (Figure 1).

We note that brain regions through which information gains access to the workspace should exhibit 
synergistic functional interactions that are widely distributed across the brain, as – by definition – the 
workspace gathers and synthesises information from a multiplicity of diverse brain modules. Thus, 
we postulate that regions that mediate the access to the synergistic workspace are functionally 
connected with multiple modules within networks of synergistic interactions, synthesising incoming 
inputs from diverse sources (Sneve et al., 2019; Shanahan, 2012). We refer to such regions as gate-
ways (Figure 1, violet nodes). In contrast, the process of broadcasting information corresponds to 
disseminating multiple copies of the same information from the workspace to many functionally 
adjacent brain regions. Therefore, broadcaster regions also have functional interactions with many 
different modules, but of non-synergistic, redundant interactions: ‘redundancy’ accounts for the fact 
that multiple copies of the same information are being distributed. These regions are designated as 
broadcasters (Figure 1, orange nodes).

One approach to operationalise these ideas is by leveraging well-established graph-theoretical 
tools. Here, we propose to assess the diversity of intermodular functional connections using the 
participation coefficient (Rubinov and Sporns, 2010) which captures to what extent a given node 
connects to many modules beyond its own (Materials and methods). Note that this is different from 
the node strength, which captures a region’s total amount of connectivity, and which we used to 
identify which regions belong to the synergistic workspace (see Materials and methods and Luppi 
et al., 2022b); the participation coefficient instead quantifies the diversity of modules that a region 
is connected to. Therefore, gateways are identified from rs-fMRI data as brain regions that (a) belong 
to the workspace (i.e. have high total synergy), and (b) have a highly ranked participation coefficient 
in terms of synergistic functional interactions. Conversely, broadcasters are global workspace regions 
(i.e. also having high synergy) that have a highly ranked participation coefficient rank for redundant 
interactions.

In other words, we identify the synergistic workspace as regions where synergy predominates, 
which as our previous research has shown, are also involved with high-level cognitive functions and 
anatomically coincide with transmodal association cortices at the confluence of multiple information 
streams (Luppi et al., 2022b). This is what we should expect of a global workspace. Subsequently, 
to discern broadcasters from gateways within the synergistic workspace, we seek to encapsulate the 
meaning of a ‘broadcaster’ in information terms. We argue that this corresponds with making the same 
information available to multiple modules. Sameness of information corresponds to redundancy, and 
connection with multiple modules can be reflected in the network-theoretic notion of participation 
coefficient. Thus, a broadcaster is a region in the synergistic workspace (i.e. a region with strong syner-
gistic interactions) that in addition has a high participation coefficient for its redundant interactions.

To explore these hypotheses, we quantified synergistic and redundant interactions between 454 
cortical and subcortical brain regions (Luppi and Stamatakis, 2021; Schaefer et al., 2018) based on 
resting-state functional MRI data from 100 subjects of the Human Connectome Project (Luppi et al., 
2022b). Specifically, we systematically applied Integrated Information Decomposition to groups of 
four variables: the past and future of region X, and the past and future of region Y, for all combina-
tions of X and Y. This provided us with a full decomposition of how information is jointly conveyed 
by X and Y (redundantly, uniquely, or synergistically) across time. In particular, following our previous 
work (Luppi et al., 2022b) we focused on the persistent synergy (henceforth simply synergy) and 
persistent redundancy (henceforth simply redundancy), which correspond to the information that is 
always carried synergistically (respectively, redundantly) by X and Y.

We then subdivided the brain into the well-established resting-state networks identified by Yeo 
and colleagues (Yeo et al., 2011) plus an additional subcortical module (Tian et al., 2020). Based on 
this partition into modules, we identified gateways and broadcasters by comparing the participation 
coefficients of synergistic versus redundant interactions, for brain regions belonging to the syner-
gistic workspace previously identified we show a significant correlation for participation coefficient 

https://doi.org/10.7554/eLife.88173
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obtained from modules defined a priori as the well-known resting-state networks, or defined in 
a data-driven fashion from Louvain community detection (Blondel et al., 2008; Figure 2—figure 
supplement 2).

Intriguingly, our results reveal that gateways reside primarily in the brain’s default mode network 
(Figure  2B, violet). In contrast, broadcasters are mainly located in the executive control network, 
especially lateral prefrontal cortex (Figure 2B, orange). Remarkably, the latter results are in line with 
Global Neuronal Workspace Theory, which consistently identifies lateral prefrontal cortex as a major 
broadcaster of information (Mashour et al., 2020; Bor and Seth, 2012).

Figure 2. Gateways and broadcaster regions identified by their network connectivity profiles. (A) Group-average 
matrix of synergistic interactions between regions of the 454-ROI augmented Schaefer atlas. (B) Group-average 
matrix of redundant interactions. For ease of visualization, the colorscale in (B) pertains to log-transformed 
values. We highlighted modular allegiance to the canonical resting-state networks by using the colour scheme 
shown in between A and B. (C) Regions are identified as gateways (violet) or broadcasters (orange) based on the 
difference between rank of participation coefficient for synergy and redundancy, (only shown for brain regions 
identified as belonging to the synergistic global workspace, as per Luppi et al., 2022b). Violet indicates synergy 
rank >redundancy rank, corresponding to workspace regions that combine information of many brain modules 
(gateways); orange indicates the opposite, identifying workspace regions that broadcast information to many 
modules. Inset: illustration of the synergistic workspace. Legend: DMN, default mode network. Som, somatomotor 
network. Vis, visual network. VAN, ventral attention network. DAN, dorsal attention network. FPN, fronto-parietal 
control network. Lim, limbic network. Sub, subcortical network (comprised of 54 regions of the atlas of Tian et al., 
2020). These results were also replicated using an alternative parcellation with 232 cortical and subcortical nodes 
(Figure 2—figure supplement 3).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data associated with Figure 2.

Figure supplement 1. Identification of the synergistic workspace.

Figure supplement 2. Identification of workspace gateways and broadcasters is robust to node definition.

Figure supplement 3. Significant correlation between regional participation coefficient computed with modules 
defined as resting-state networks (X-axis), and with modules defined from Louvain modularity detection (Y-axis).

https://doi.org/10.7554/eLife.88173
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Information decomposition 
identifies a synergistic core 
supporting human consciousness
Having introduced a taxonomy within the syner-
gistic global workspace based on the distinct 
informational roles of different brain regions, we 
then sought to investigate their role in supporting 
human consciousness. Given the importance 
attributed to integration of information by both 
GNWT and IIT, we expected to observe reduc-
tions in integrated information within the areas 
of the synergistic workspace associated with loss 
of consciousness. Furthermore, we also reasoned 
that any brain regions that are specifically involved 
in supporting consciousness should ‘track’ the 
presence of consciousness: the reductions should 
occur regardless of how loss of consciousness 
came about, and they should be restored when 
consciousness is regained.

We tested these hypotheses with resting-
state fMRI from 15 healthy volunteers who were 
scanned before, during, and after anaesthesia 
with the intravenous agent propofol, as well as 
22  patients with chronic disorders of conscious-
ness (DOC) (Luppi et  al., 2019). Resting-state 
fMRI data were parcellated into 400 cortical 
regions from the Schaefer atlas, and 54 subcor-
tical brain regions from the Tian atlas (same 
parcellation as for the previous analysis). Building 

on the IIT literature, which provides a formal definition of integrated information, we assessed integra-
tion corresponding to conscious activity via two alternative metrics: the well-known whole-minus-sum 
Φ measure introduced by Balduzzi and Tononi, 2008, and the ‘revised Φ’ (ΦR) measure recently 
introduced by Mediano, Rosas and colleagues (Mediano et al., 2021) (Materials and methods and 
Figure 3). Being demonstrably non-negative, this revised measure overcomes a major conceptual 
limitation of the original formulation of integrated information (Mediano et al., 2021).

For each subject, we computed the integrated information between each pair of BOLD signal 
timeseries, resulting in a 454-by-454 matrix of integrated information between brain regions. Treating 
this matrix as an (undirected) network enabled us to study consciousness-related changes in inte-
grated information across conditions, which were analysed using the Network Based Statistic correc-
tion for multiple comparisons (Zalesky et al., 2010). Importantly, since we are interested in changes 
that are shared between the DOC and propofol datasets, we computed edge-level statistics using a 
composite null hypothesis test designed to detect such shared effects (Materials and methods).

Analysis based on ΦR revealed a widespread reorganisation of integrated information throughout 
the brain when comparing awake volunteers against DOC patients, with both increases and decreases 
being observed (p<0.001; Figure  4A). Likewise, propofol anaesthesia was also characterised by 
significant changes in integrated information between brain regions, both when compared with pre-
anaesthetic wakefulness (p<0.001; Figure 4B) and post-anaesthetic recovery (p<0.001; Figure 4C).

Our analysis identified a number of the ΦR connections that were reduced when consciousness was 
lost due to both anaesthesia and brain injury, and were restored during post-anaesthetic recovery – 
as we had hypothesised (Figure 4D). Remarkably, almost all regions showing consistent decreases in 
ΦR when consciousness was lost were members of the global synergistic workspace, and specifically 
located in the default mode network (bilateral precuneus and medial prefrontal cortex) – and bilateral 
inferior parietal cortex – although left temporal cortices were also involved (Figure 4D). Addition-
ally, some connections exhibited increases in ΦR during loss of consciousness, and were restored 
upon recovery (Figure  4D), including areas in frontal cortex – especially lateral prefrontal cortex. 

Figure 3. Integrated Information Decomposition. 
Integrated Information Decomposition identifies how 
two sources X and Y jointly convey information across 
time, corresponding to all possible 4x4 combinations 
of redundancy, unique information (of X and of Y), and 
synergistic information. This decomposition highlights 
why the original whole-minus-sum Φ measure 
introduced by Balduzzi and Tononi can be negative: 
because it involves the subtraction of the persistent 
redundancy that is present in the system, leading 
to negative values in systems that are redundancy-
dominated. This shortcoming can be corrected with the 
revised measure of Φ, termed ΦR.

https://doi.org/10.7554/eLife.88173
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Nevertheless, the overall balance was in favour of reduced integrated information: sum of F-scores 
associated with significant edges = –25.37 (Figure 4—figure supplement 1).

These results were in contrast with the analysis based on the original formulation of Φ introduced 
by Balduzzi and Tononi, 2008, which did not identify any reductions in integrated information that 
were common across anaesthesia and disorders of consciousness, instead only identifying common 
increases (Figure 4—figure supplement 2).

Having identified the subset of brain regions that are reliably associated with supporting human 
consciousness in terms of their integrated information, the last step of our analysis was to leverage 
the architecture proposed above to understand their role in our information-based view of the global 
workspace. Since IIT predicts that loss of consciousness corresponds to reductions in integrated infor-
mation, we focused on regions exhibiting reliable reductions in ΦR when consciousness is lost (whether 
due to anaesthesia or DOC), which were restored upon recovery (shown in blue in Figure 4D).

Figure 4. Loss of consciousness induces similar reorganisation of cortical integrated information across anaesthesia and disorders of consciousness. 
Top: Brain regions exhibiting overall NBS-corrected increases (red) and decreases (blue) in integrated information exchange when consciousness is lost. 
(A) DOC patients minus awake healthy volunteers; (B), propofol anaesthesia minus pre-induction wakefulness; (C) propofol-anaesthesia minus post-
anaesthetic recovery. (D) Overlaps between the three contrasts in (A–C), showing increases and decreases that are common across anaesthesia and 
disorders of consciousness.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data associated with Figure 4 and Figure 4—figure supplement 2.

Figure supplement 1. Histogram of significant connectivity changes.

Figure supplement 2. Results of alternative analysis choices.

https://doi.org/10.7554/eLife.88173
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Remarkably, our whole-brain results show that ΦR disconnections induced by loss of consciousness 
play the role of gateway nodes (Figure 5A, violet) rather than broadcaster nodes (Figure 5A, orange) 
according to our previous identification of gateways and broadcasters from the Human Connectome 
Project dataset (see Figure 2B, violet regions). Indeed, all reductions occur specifically within the 
default mode network (Figure 5B). Thus, these results suggest that loss of consciousness across anaes-
thesia and disorders of consciousness would correspond to anterior-posterior disconnection – in terms 
of integrated information – between DMN nodes that act as gateways into the synergistic workspace.

Robustness and sensitivity analysis
To ensure the robustness of our results to analytic choices, we also replicated them using an alterna-
tive cortical parcellation of lower dimensionality: we used the Schaefer scale-200 cortical parcellation 
(Schaefer et al., 2018) complemented with the scale-32 subcortical ROIs from the Tian subcortical 
atlas (Tian et al., 2020Figure 4—figure supplement 2). Additionally, we also show that our results 
are not dependent on the choice of parameters in the NBS analysis, and are replicated using an 
alternative threshold definition for the connected component (extent rather than intensity) or a more 
stringent value for the cluster threshold (F>12; Figure 4—figure supplement 2). Importantly, whereas 
the increases in ΦR are not the same across different analytic approaches, reductions of ΦR in medial 
prefrontal and posterior cingulate/precuneus are reliably observed, attesting to their robustness.

Figure 5. Synergistic core of human consciousness. (A) Surface representations of medial and lateral views of the brain (L indicates left, R indicates 
right). Colours indicate brain regions that belong to the synergistic workspace, as identified from HCP data. Orange indicates broadcasters, and violet 
indicates gateways. Blue indicates regions that exhibit an overall significant reduction in integrated information across anaesthesia and disorders of 
consciousness. All blue regions overlap with violet ones. The network representation indicates edges with significantly reduced integrated information 
(ΦR) during both propofol anaesthesia and disorders of consciousness. The color of the nodes (violet or orange) indicates whether the corresponding 
regions are workspace gateways (violet) or broadcasters (orange); all regions are gateways (violet). (B) Circular graph representation of significant 
reductions in integrated information (ΦR) between brain regions, observed in all three contrasts, indicating membership of canonical resting-state 
networks. Connections indicate pairs of regions with a significant decrease of integrated information. Colour of the circle border indicates the RSN 
affiliation of the corresponding regions. Legend: DMN, default mode network. Som, somatomotor network. Vis, visual network. VAN, ventral attention 
network. DAN, dorsal attention network. FPN, fronto-parietal control network. Lim, limbic network. Sub, subcortical network (comprised of 54 regions of 
the Tian et al., 2020 atlas).

The online version of this article includes the following source data for figure 5:

Source data 1. Source data associated with Figure 5.

https://doi.org/10.7554/eLife.88173
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Discussion
Architecture of the synergistic global workspace
This paper proposes an informational perspective on the brain’s functional architecture at the 
macroscale, which leverages insights from network science and a refined understanding of neural 
information exchange. The synergy-Φ-redundancy (SAPHIRE) architecture posits the existence of 
a ‘synergistic workspace’ of brain regions characterised by highly synergistic global interactions, 
which we previously showed to be composed by prefrontal and parietal cortices that are critical for 
higher cognitive functions (Luppi et al., 2022b). This workspace is further functionally decomposed 
by distinguishing gateways, which bring information from localised modules into the workspace, 
and broadcasters, which disseminate multiple copies of workspace information back to low-level 
regions.

Remarkably, our results on the HCP dataset show that the proposed operationalisation of gate-
ways and broadcasters corresponds to the distinction between the brain’s default mode network 
and executive control network, respectively. This data-driven identification of workspace gateways 
and broadcasters with the DMN and FPN provides a new framework to explain well-known func-
tional differences between DMN and FPN, based on their distinct and complementary roles within the 
brain’s synergistic global workspace, which is discussed below.

The fronto-parietal executive control network (FPN) mainly comprises lateral prefrontal and parietal 
cortices, and it is associated with performance of a variety of complex, cognitively demanding tasks 
(Fedorenko et al., 2013; Duncan and Owen, 2000; Barbey, 2018). A key component of this network 
is lateral prefrontal cortex (LPFC). Based on theoretical and empirical evidence, as summarised in a 
recent review of GNWT (Mashour et al., 2020), this region is posited to play a major role in the global 
workspace, as a global broadcaster of information. Remarkably, this is precisely the role that our 
results assigned to LPFC, based on its combined information-theoretic and network properties. These 
results are also consistent with recent insights from network neuroscience, which indicate that the FPN 
is ideally poised to steer whole-brain dynamics through novel trajectories, in response to complex 
task demands (Barbey, 2018; Gu et al., 2015). Specifically, by broadcasting to the rest of the brain 
information that has been integrated within the workspace, the FPN may act as global coordinator of 
subsequent whole-brain dynamics.

On the other hand, the default mode network comprises posterior cingulate and precuneus, 
medial prefrontal cortex, and inferior parietal cortices (Fox et al., 2005; Raichle et al., 2001; Raichle, 
2015). This network, whose constituent regions have undergone substantial developments in the 
course of human evolution (Wei et al., 2019; Xu et al., 2020), was found to occupy a crucial posi-
tion at the convergence of functional gradients of macroscale cortical organization (Margulies et al., 
2016; Huntenburg et al., 2018; Smallwood et al., 2021), forming a structural and functional core 
of the human brain (Deco et al., 2017; Kabbara et al., 2017; de Pasquale et al., 2012), in line with 
its recently observed involvement in cognitive tasks (Vatansever et  al., 2015; Vatansever et  al., 
2017; Chiou et al., 2020). In particular, the DMN is prominently involved in self-referential processing 
(Cavanna and Trimble, 2006; Qin and Northoff, 2011), and ‘mental-time-travel’ (Karapanagiotidis 
et al., 2017) or episodic memory and future-oriented cognition (Buckner et al., 2008; Buckner and 
DiNicola, 2019; Schacter et al., 2007; Szpunar et al., 2014). Its posterior regions in particular, act as 
relays between the neocortex and the hippocampal memory system (Buckner and DiNicola, 2019). 
Thus, in terms of both neuroanatomical connectivity and functional engagement, the DMN is uniquely 
positioned to integrate and contextualise information coming into the synergistic global workspace 
(e.g. from sensory streams) by combining it with rich information pertaining to one’s past experiences 
and high-level mental models about ‘self’ and world (Smallwood et al., 2021; Hassabis and Maguire, 
2009; Wen et al., 2020; Wang et al., 2020; Dohmatob et al., 2020; Yeshurun et al., 2021) – coin-
ciding with the results of the present analysis, which identify DMN nodes as gateways of inputs to the 
synergistic global workspace.

It is worth noting that the role of the FPN-DMN tandem in supporting consciousness has been 
suggested by Shanahan’s hypothesis of a ‘connective core’ along the brain’s medial axis (Shanahan, 
2010). While Shanahan’s hypotheses were primarily based on structure, in this work we combine novel 
information-theoretic tools to confirm and expand the connective core hypothesis from a functional, 
information-centric perspective, in a way that differentiates the multiple roles played by the different 
regions that together comprise this connective core (Figures 2 and 5).

https://doi.org/10.7554/eLife.88173
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Integrated information decomposition of human consciousness
After identifying the neuroanatomical-functional mapping of the synergistic workspace in terms of 
gateways and broadcasters, we sought to identify their role in supporting human consciousness. 
Considering integrated information as a marker of consciousness (without necessarily assuming the 
two to be identical), we focused on identifying regions where information integration is reduced when 
consciousness is lost (regardless of its cause, be it propofol anaesthesia or severe brain injury), and 
restored upon its recovery. Our results indicate that brain regions exhibiting consciousness-specific 
reductions in integrated information coincide with major nodes of the synergistic global workspace.

Intriguingly, we found that the main disruptions of information integration were localised in 
gateway nodes, rather than broadcasters. Thus, loss of consciousness in both anaesthesia and disor-
ders of consciousness could be understood as a breakdown of the entry points to the ‘synergistic 
core’ (Figure 5), which becomes unable to properly integrate inputs for the workspace. Importantly, 
the original ‘whole-minus-sum’ Φ introduced by Balduzzi and Tononi, 2008 did not show consistent 
reductions during loss of consciousness. Thus, the present results demonstrate the empirical validity of 
the ‘revised’ measure, ΦR, in addition to its theoretical soundness (Mediano et al., 2021). Since work-
space gateway regions coincide with the brain’s default mode network, these results are also in line 
with recent evidence that information content and integrative capacity of the DMN are compromised 
during loss of consciousness induced by both anaesthesia and severe brain injury (Luppi et al., 2019; 
MacDonald et al., 2015; Hannawi et al., 2015; Vanhaudenhuyse et al., 2010; Di Perri et al., 2018; 
Demertzi et al., 2015; Boveroux et al., 2010; Bodien et al., 2019; Spindler et al., 2021; Huang 
et al., 2020), and even COVID-19 (Fischer et al., 2022). Due to its prominent role in self-referential 
processing (Qin and Northoff, 2011), breakdown of DMN connectivity within the synergistic work-
space may be seen as a failure to integrate one’s self-narrative into the ‘stream of consciousness’, in 
the words of William James.

This notion is further supported by focusing on reductions of integrated information during anaes-
thesia compared with wakefulness. In addition to the synergistic core, overall reductions are also 
observed in a set of thalamic, auditory and somatomotor regions, largely resembling the brain regions 
that stop responding to sensory (auditory and noxious) stimuli once the brain reaches propofol-
induced saturation of EEG slow-wave activity (SWAS Ní Mhuircheartaigh et  al., 2013). Although 
there was no EEG data available to confirm this, the doses of propofol employed in the present 
study are compatible with the doses of propofol at which SWAS has been shown to arise (Warnaby 
et al., 2017), and therefore it is plausible that our participants also reached SWAS and the loss of 
brain responsiveness it indicates. Thus, both resting-state integration of information between brain 
regions, as well as stimulus-evoked responses within each region (Ní Mhuircheartaigh et al., 2013), 
converge to indicate that propofol disrupts further processing of thalamocortical sensory information 
– a phenomenon termed ‘thalamocortical isolation’ (Ní Mhuircheartaigh et al., 2013). We propose 
that as the thalamus and sensory cortices lose their ability to respond to stimuli, they cease to provide 
information to the synergistic core of the global workspace, resulting in a disconnection from the 
external world and presumably loss of consciousness.

These results testify to the power of the Integrated Information Decomposition framework: by 
identifying the information-theoretic components of integrated information, we have been able to 
obtain insights about human consciousness that remained elusive with alternative formulations, and 
could not be captured via standard functional connectivity or related methods. Thus, our findings are 
consistent with the notion that the global workspace is relevant for supporting consciousness in the 
human brain, in line with the proposal that ‘[...] unconsciousness is not necessarily a complete suppres-
sion of information processing but rather a network dysfunction that could create inhospitable condi-
tions for global information exchange and broadcasting’ (Mashour et al., 2020). GNWT postulates a 
key role for the global workspace in supporting consciousness: consistent with this theory, we find that 
several nodes of the synergistic global workspace become disconnected from each other in terms of 
integrated information when consciousness is lost, especially between anterior and posterior regions 
(Figure 4, brain networks). Thus, these are brain regions that (i) belong to the synergistic global work-
space; (ii) exhibit overall reductions of integrated information when consciousness is lost; and (iii) are 
disconnected from other regions of the synergistic workspace when consciousness is lost. The brain 
regions satisfying these three conditions therefore meet the criteria for constituting an interconnected 
‘synergistic core’ of workspace regions supporting human consciousness.

https://doi.org/10.7554/eLife.88173
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Limitations and future directions
In order to obtain high spatial resolution for our identification of workspace regions, here we relied on 
the BOLD signal from functional MRI, which is an indirect proxy of underlying neuronal activity, with 
limited temporal resolution. However, we sought to alleviate potential confounds by deconvolving the 
hemodynamic response function from our data with a dedicated toolbox (Wu et al., 2013; Materials 
and methods), which has been previously applied both in the context of information decomposition 
(Luppi et al., 2022b), as well as anaesthetic-induced loss of consciousness (Wu et al., 2019), and 
disorders of consciousness (Luppi et al., 2023a). Additionally, the present results of an overall ΦR 
reduction are also broadly in line with those of a previous study (Faes et al., 2022), whose measure of 
synergy-redundancy balance showed, in ECoG recordings of non-human primates, a broadband shift 
away from synergy during anaesthesia.

It is also worth bearing in mind that our measure of integrated information between pairs of 
regions does not amount to measuring the integrated information of the brain as a whole, as formally 
specified in the context of Integrated Information Theory (Balduzzi and Tononi, 2008) - although we 
do show that the average integrated information between pairs of regions is overall reduced across 
the whole brain. We also note that our revised measure of integrated information is based on IIT 2.0 
(Balduzzi and Tononi, 2008), due to its computational tractability; as a result, it relies on a concep-
tually distinct understanding of integrated information from the more recent IIT 3.0 (Oizumi et al., 
2014) and IIT 4.0 (Albantakis et al., 2023) versions. Thus, these limitations should be borne in mind 
when seeking to interpret the present results in the context of IIT. Indeed, future work may benefit 
from seeking convergence with recent advances in the characterization of emergence, which is related 
to integrated information (Hoel et al., 2013; Hoel et al., 2016; Klein and Hoel, 2020; Varley and 
Hoel, 2022).

Likewise, it is not our intention to claim that ΦR and synergy, as measured at the level of regional 
BOLD signals, represent a direct cause of consciousness, or are identical to it. Rather, our work is 
intended to use these measures similarly to the use of sample entropy and Lempel-Ziv complexity 
for BOLD signals (Luppi et al., 2019; Varley et al., 2020b): as theoretically grounded macroscale 
indicators, whose empirical relationship to consciousness may point towards the relevant underlying 
neural phenomena. In other words, while our results do show that BOLD-derived ΦR tracks the loss 
and recovery of consciousness, we do not claim that they are the cause of it: only that an empirical 
relationship exists, which is in line with what we might expect on theoretical grounds. Future work will 
be required to identify whether this empirical relationship also holds at the microscale, and whether 
the causal mechanisms that induce loss of consciousness are also causally responsible for loss of inte-
grated information.

Intriguingly, although we have focused on anaesthetic-induced decreases in integrated informa-
tion, due to IIT’s prediction that this is what should occur during loss of consciousness, our results 
also indicate concomitant increases of integrated information – possibly reflecting compensatory 
attempts, although we refrain from further speculation (Figure  4). Interestingly, increases appear 
to coincide with broadcaster nodes of the synergistic workspace. In particular, even though lateral 
prefrontal cortices are among the regions most closely associated with the global neuronal workspace 
in the literature (Mashour et al., 2020; Bor and Seth, 2012), our results indicate a paradoxical net 
increase in lateral prefrontal integrated information during anaesthesia and DOC. We interpret this 
qualitatively different behaviour as indicating that different subsets of the global workspace may be 
differentially involved in supporting consciousness.

However, we note that, whereas the decreases in integrated information were robust to the use 
of different analytic approaches (e.g., use of a different parcellation or different NBS threshold), the 
increases that we observed were less robust, with no region consistently showing increases in inte-
grated information (Figure 4—figure supplement 2). Nevertheless, both this phenomenon and the 
meaning of increased integrated information between brain regions deserve further investigation. 
Indeed, dreaming during anaesthesia has been reported to occur in up to 27% of cases (Leslie et al., 
2007), and behaviourally unresponsive participants have been shown to perform mental imagery 
tasks during anaesthesia, both of which constitute cases of disconnected consciousness (Huang et al., 
2018). Thus, although our doses of propofol were consistent with the presence of SWAS, we cannot 
exclude that some of our participants may have been merely disconnected but still conscious, possibly 
driving the increases we observed.

https://doi.org/10.7554/eLife.88173
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More broadly, future research may also benefit from characterising the role of the synergistic work-
space in the states of altered consciousness induced e.g. by psychedelics (Luppi et al., 2023c; Huang 
et al., 2023; Timmermann et al., 2023), especially since prominent involvement of the DMN has 
already been identified (Carhart-Harris, 2018; Carhart-Harris et al., 2016). Likewise, the use of para-
digms different from resting-state, such as measuring the brain’s spontaneous responses to engaging 
stimuli (e.g. suspenseful narratives Naci et al., 2017) or engaging movies (Naci et al., 2014) may 
provide evidence for a more comprehensive understanding of brain changes during unconsciousness. 
Likewise, it will be of great interest to investigate whether and how reorganization of the synergistic 
global workspace is reflected in other indicators of consciousness (Lee et  al., 2022), such as the 
brain’s response to external perturbations – such as the EEG response to brief magnetic pulses used 
to compute the Perturbational Complexity Index, one of the most discriminative indices of conscious-
ness available to date (Ferrarelli et al., 2010; Bodart et al., 2017; Casali et al., 2013; Casarotto 
et al., 2016; Sarasso et al., 2015).

The PCI is used as a means of assessing the brain’s current state, but stimulation protocols can 
also be adopted to directly induce transitions between states of consciousness. In rodents, carbachol 
administration to frontal cortex awakens rats from sevoflurane anaesthesia (Pal et  al., 2018), and 
optogenetic stimulation was used to identify a role of central thalamus neurons in controlling tran-
sitions between states of responsiveness (Liu et al., 2015; Gent et al., 2018). Additionally, several 
studies in non-human primates have now shown that electrical stimulation of the central thalamus can 
reliably induce awakening from anaesthesia, accompanied by the reversal of electrophysiological and 
fMRI markers of anaesthesia (Bastos et al., 2021; Redinbaugh et al., 2020; Tasserie et al., 2022; 
Luppi et al., 2024b; Redinbaugh et al., 2022; Afrasiabi et al., 2021). Finally, in human patients 
suffering from disorders of consciousness, stimulation of intra-lami9nar central thalamic nuclei was 
reported to induce behavioural improvement (Schiff, 2008), and ultrasonic stimulation (Cain et al., 
2021; Cain et al., 2022) and deep-brain stimulation are among potential therapies being considered 
for DOC patients (Edlow et al., 2021a; Edlow et al., 2021b). It will be of considerable interest to 
determine whether our corrected measure of integrated information and topography of the syner-
gistic workspace also restored by these causal interventions.

Additionally, the reliance here on ‘resting-state’ data without external stimuli may have resulted in 
an overestimation of the DMN’s role in consciousness, and an under-estimation of the FPN (including 
lateral PFC), given their known different recruitment during no-task conditions (Fox et al., 2005). 
Indeed, recent efforts have been carried out to obtain a data-driven characterisation of the brain’s 
global workspace based on regions’ involvement across multiple different tasks (Deco et al., 2021b). 
This work is complementary to ours in two aspects: first, the focus of Deco et al., 2021b is on the role 
of the workspace related to cognition, whereas here we focus primarily on consciousness. Second, 
by using transfer entropy (Schreiber, 2000; Massey, 1990) as a measure of functional connectivity, 
Deco and colleagues (Deco et  al., 2021b) assessed the directionality of information exchange – 
whereas our measure of integrated information is undirected, but are able to distinguish between 
different kinds of information being exchanged and integrated. Thus, different ways of defining and 
characterising a global workspace in the human brain are possible, and can provide complementary 
insights about distinct aspects of the human neurocognitive architecture. Indeed, transfer entropy can 
itself be decomposed into information-dynamic atoms through Partial Information Decomposition 
and Integrated Information Decomposition (Williams and Beer, 2010; Luppi et al., 2024a; Mediano 
et al., 2021; Williams and Beer, 2011); ΦID can further decompose the Normalised Directed Transfer 
Entropy measure used by Deco et al., 2021b, as recently demonstrated (Luppi et al., 2023b). We 
look forward to a more refined conceptualization of the synergistic workspace architecture that takes 
into account both information types and the directionality of information flow – especially in datasets 
with higher temporal resolution.

Looking forward, growing evidence indicates an important role for brain dynamics and time-
resolved brain states in supporting cognition (Shine et al., 2019; Deco et al., 2021a; Shine et al., 
2016; Zamani Esfahlani et al., 2020; Faskowitz et al., 2020; Lurie et al., 2020; Cabral et al., 2023; 
Raut et al., 2021; Vidaurre et al., 2017; Atasoy et al., 2018) and consciousness (Luppi et al., 2019; 
Huang et al., 2020; Demertzi et al., 2019; Gutierrez-Barragan et al., 2022; Luppi et al., 2021a; 
Luppi et al., 2021b; Lord et al., 2019; Barttfeld et al., 2015; Uhrig et al., 2018; Stevner et al., 
2019). Therefore, time-resolved extensions of our framework, such as developed by Varley, 2023, 
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may shed further light on the dynamics of the synergistic workspace, especially if combined with 
neuroimaging modalities offering higher temporal resolution, such as magneto- or electroencepha-
lography. More broadly, a key strength of our proposed cognitive architecture is its generality: being 
entirely grounded in the combination of information theory and network science, it could be applied 
to shed light on cognition in humans and other organisms (Bayne et al., 2020), but also to inspire 
further development of artificial cognitive systems (Luppi et al., 2024a; Connor and Shanahan, 2007; 
Shanahan, 2006; Langdon et al., 2022; VanRullen and Kanai, 2021; Proca et al., 2024).

Conclusion
Overall, we have shown that powerful insights about human consciousness and neurocognitive archi-
tecture can be obtained through the information-resolved approach, afforded by the framework 
of Integrated Information Decomposition. Importantly, the proposed criteria to identify gateways, 
broadcasters, and the synergistic workspace itself, are based on practical network and information-
theoretic tools, which are applicable to a broad range of neuroimaging datasets and neuroscientific 
questions. These findings bring us closer to a unified theoretical understanding of consciousness and 
its neuronal underpinnings - how mind arises from matter.

Materials and methods
Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm
Java Information Dynamics 
Toolbox Lizier, 2014 https://github.com/jlizier/jidt v1.5

Software, algorithm CONN toolbox
Whitfield-Gabrieli and Nieto-
Castanon, 2012 http://www.nitrc.org/projects/conn version 17 f

Software, algorithm Brain Connectivity Toolbox Rubinov and Sporns, 2010
https://sites.google.com/site/​
bctnet/

Software, algorithm HRF deconvolution toolbox Wu et al., 2013
https://www.nitrc.org/projects/​
rshrf v2.2

Software, algorithm Spin-test Alexander-Bloch et al., 2018
https://github.com/frantisekvasa/​
rotate_parcellation

Software, algorithm
Integrated Information 
Decomposition code Luppi et al., 2024a

https://github.com/Imperial-​
MIND-lab/integrated-info-​
decomp

The propofol and DOC patient functional data employed in this study have been published before 
(Luppi et al., 2019; Varley et al., 2020b; Luppi et al., 2023c; Luppi et al., 2022a; Naci et al., 2018; 
Kandeepan et al., 2020; Varley et al., 2020a). For clarity and consistency of reporting, where appli-
cable we use the same wording as our previous work (Luppi et al., 2019; Luppi et al., 2023c; Luppi 
et al., 2022a).

Anaesthesia data: Recruitment
The propofol data were collected between May and November 2014 at the Robarts Research Institute 
in London, Ontario (Canada); (Luppi et al., 2019). The study received ethical approval from the Health 
Sciences Research Ethics Board and Psychology Research Ethics Board of Western University (Ontario, 
Canada). Healthy volunteers (n=19) were recruited (18–40 years; 13 males). Volunteers were right-
handed, native English speakers, and had no history of neurological disorders. In accordance with 
relevant ethical guidelines, each volunteer provided written informed consent, and received monetary 
compensation for their time. Due to equipment malfunction or physiological impediments to anaes-
thesia in the scanner, data from n=3 participants (1 male) were excluded from analyses, leaving a total 
n=16 for analysis (Luppi et al., 2019; Luppi et al., 2023c; Luppi et al., 2022a).

Anaesthesia data: Procedure
Resting-state fMRI data were acquired at different propofol levels: no sedation (Awake), and Deep 
anaesthesia (corresponding to Ramsay score of 5). As previously reported (Luppi et al., 2019; Luppi 
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et al., 2023c; Luppi et al., 2022a), for each condition fMRI acquisition began after two anaesthesi-
ologists and one anaesthesia nurse independently assessed Ramsay level in the scanning room. The 
anaesthesiologists and the anaesthesia nurse could not be blinded to experimental condition, since 
part of their role involved determining the participants' level of anaesthesia. Note that the Ramsay 
score is designed for critical care patients, and therefore participants did not receive a score during 
the Awake condition before propofol administration: rather, they were required to be fully awake, 
alert and communicating appropriately. To provide a further, independent evaluation of participants’ 
level of responsiveness, they were asked to perform two tasks: a test of verbal memory recall, and 
a computer-based auditory target-detection task. Wakefulness was also monitored using an infrared 
camera placed inside the scanner.

Propofol was administered intravenously using an AS50 auto syringe infusion pump (Baxter Health-
care, Singapore); an effect-site/plasma steering algorithm combined with the computer-controlled 
infusion pump was used to achieve step-wise sedation increments, followed by manual adjustments 
as required to reach the desired target concentrations of propofol according to the TIVA Trainer (Euro-
pean Society for Intravenous Aneaesthesia, ​eurosiva.​eu) pharmacokinetic simulation program. This 
software also specified the blood concentrations of propofol, following the Marsh 3-compartment 
model, which were used as targets for the pharmacokinetic model providing target-controlled infu-
sion. After an initial propofol target effect-site concentration of 0.6 µg mL–1, concentration was grad-
ually increased by increments of 0.3 µg mL1, and Ramsay score was assessed after each increment: a 
further increment occurred if the Ramsay score was lower than 5. The mean estimated effect-site and 
plasma propofol concentrations were kept stable by the pharmacokinetic model delivered via the 
TIVA Trainer infusion pump. Ramsay level 5 was achieved when participants stopped responding to 
verbal commands, were unable to engage in conversation, and were rousable only to physical stimula-
tion. Once both anaesthesiologists and the anaesthesia nurse all agreed that Ramsay sedation level 5 
had been reached, and participants stopped responding to both tasks, data acquisition was initiated. 
The mean estimated effect-site propofol concentration was 2.48 (1.82–3.14) µg mL–1, and the mean 
estimated plasma propofol concentration was 2.68 (1.92–3.44) µg mL–1. Mean total mass of propofol 
administered was 486.58 (373.30–599.86) mg. These values of variability are typical for the pharma-
cokinetics and pharmacodynamics of propofol. Oxygen was titrated to maintain SpO2 above 96%.

At Ramsay 5 level, participants remained capable of spontaneous cardiovascular function and 
ventilation. However, the sedation procedure did not take place in a hospital setting; therefore, intu-
bation during scanning could not be used to ensure airway security during scanning. Consequently, 
although two anaesthesiologists closely monitored each participant, scanner time was minimised to 
ensure return to normal breathing following deep sedation. No state changes or movement were 
noted during the deep sedation scanning for any of the participants included in the study (Luppi 
et  al., 2019; Luppi et  al., 2023c; Luppi et  al., 2022a). Propofol was discontinued following the 
deep anaesthesia scan, and participants reached level 2 of the Ramsey scale approximately 11 min 
afterwards, as indicated by clear and rapid responses to verbal commands. This corresponds to the 
‘recovery’ period (Naci et al., 2018).

Anaesthesia data: Design
As previously reported (Luppi et al., 2019; Luppi et al., 2023c; Luppi et al., 2022a), once in the 
scanner participants were instructed to relax with closed eyes, without falling asleep. Resting-state 
functional MRI in the absence of any tasks was acquired for 8 min for each participant, in each condi-
tion. A further scan was also acquired during auditory presentation of a plot-driven story through 
headphones (5 min long). Participants were instructed to listen while keeping their eyes closed. The 
present analysis focuses on the resting-state data only; the story scan data have been published sepa-
rately, and will not be discussed further here.

Anaesthesia data: FMRI data acquisition
As previously reported (Luppi et al., 2019; Luppi et al., 2023c; Luppi et al., 2022a), MRI scanning 
was performed using a 3-Tesla Siemens Tim Trio scanner (32-channel coil), and 256 functional volumes 
(echo-planar images, EPI) were collected from each participant, with the following parameters: slices 
= 33, with 25% inter-slice gap; resolution = 3 mm isotropic; TR = 2000ms; TE = 30ms; flip angle = 
75 degrees; matrix size = 64×64. The order of acquisition was interleaved, bottom-up. Anatomical 
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scanning was also performed, acquiring a high-resolution T1- weighted volume (32-channel coil, 1 mm 
isotropic voxel size) with a 3D MPRAGE sequence, using the following parameters: TA = 5 min, TE 
= 4.25ms, 240x256 matrix size, 9 degrees flip angle (Luppi et al., 2019; Luppi et al., 2023c; Luppi 
et al., 2022a).

Disorders of consciousness patient data: Recruitment
A total of 71 DOC patients were recruited from specialised long-term care centres from January 2010 
to December 2015 (Luppi et al., 2019; Luppi et al., 2023c; Luppi et al., 2022a). Ethical approval for 
this study was provided by the National Research Ethics Service (National Health Service, UK; LREC 
reference 99/391). Patients were eligible to be recruited in the study if they had a diagnosis of chronic 
disorder of consciousness, provided that written informed consent to participation was provided by 
their legal representative, and provided that the patients could be transported to Addenbrooke’s 
Hospital (Cambridge, UK). The exclusion criteria included any medical condition that made it unsafe 
for the patient to participate, according to clinical personnel blinded to the specific aims of the study; 
or any reason that made a patient unsuitable to enter the MRI scanner environment (e.g. non-MRI-
safe implants). Patients were also excluded based on substantial pre-existing mental health problems, 
or insufficient fluency in the English language prior to their injury. After admission to Addenbrooke’s 
Hospital, each patient underwent clinical and neuroimaging testing, spending a total of five days in 
the hospital (including arrival and departure days). Neuroimaging scanning took place at the Wolfson 
Brain Imaging Centre (Addenbrooke’s Hospital, Cambridge, UK), and medication prescribed to each 
patient was maintained during scanning.

For each day of admission, Coma Recovery Scale-Revised (CRS-R) assessments were recorded at 
least daily. Patients whose behavioural responses were not indicative of awareness at any time, were 
classified as UWS. In contrast, patients were classified as being in a minimally conscious state (MCS) 
if they provided behavioural evidence of simple automatic motor reactions (e.g. scratching, pulling 
the bed sheet), visual fixation and pursuit, or localisation to noxious stimulation. Since this study 
focused on whole-brain properties, coverage of most of the brain was required, and we followed the 
same criteria as in our previous studies (Luppi et al., 2019; Luppi et al., 2023c; Luppi et al., 2022a); 
before analysis took place, patients were systematically excluded if an expert neuroanatomist blinded 
to diagnosis judged that they displayed excessive focal brain damage (over one third of one hemi-
sphere), or if brain damage led to suboptimal segmentation and normalisation, or due to excessive 
head motion in the MRI scanner (exceeding 3 mm translation or 3 degrees rotation). Of the initial 
sample of 71 patients who had been recruited, a total of 22 adults (14 males; 17–70 years; mean time 
post injury: 13 months) meeting diagnostic criteria for Unresponsive Wakefulness Syndrome/Vege-
tative State or Minimally Conscious State due to brain injury were included in this study. In addition 
to the researcher and radiographer, a research nurse was also present during scanning. Since the 
patients' status as DOC patients was evident, no researcher blinding was possible.

Disorders of consciousness patient data: FMRI data acquisition
As previously reported (Luppi et al., 2019; Luppi et al., 2023c; Luppi et al., 2022a), resting-state 
fMRI was acquired for 10 min (300 volumes, TR = 2000ms) using a Siemens Trio 3T scanner (Erlangen, 
Germany). Functional images (32 slices) were acquired using an echo planar sequence, with the 
following parameters: 3x3 x 3.75mm resolution, TR = 2000ms, TE = 30ms, 78 degrees FA. Anatom-
ical scanning was also performed, acquiring high-resolution T1-weighted images with an MPRAGE 
sequence, using the following parameters: TR = 2300ms, TE = 2.47ms, 150 slices, resolution 1x1x1mm.

Functional MRI preprocessing and denoising
The functional imaging data were preprocessed using a standard pipeline, implemented within the 
SPM12-based (http://www.fil.ion.ucl.ac.uk/spm) toolbox CONN (http://www.nitrc.org/projects/conn), 
version 17 f (Whitfield-Gabrieli and Nieto-Castanon, 2012). The pipeline comprised the following 
steps: removal of the first five scans, to allow magnetisation to reach steady state; functional realign-
ment and motion correction; slice-timing correction to account for differences in time of acquisition 
between slices; identification of outlier scans for subsequent regression by means of the quality assur-
ance/artifact rejection software art (http://www.nitrc.org/projects/artifact_detect); structure-function 
coregistration using each volunteer’s high-resolution T1-weighted image; spatial normalisation to 
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Montreal Neurological Institute (MNI-152) standard space with 2 mm isotropic resampling resolution, 
using the segmented grey matter image, together with an a priori grey matter template.

To reduce noise due to cardiac, breathing, and motion artifacts, which are known to impact func-
tional connectivity and network analyses (Van Dijk et al., 2012; Power et al., 2012), we applied the 
anatomical CompCor method of denoising the functional data (Behzadi et al., 2007), also imple-
mented within the CONN toolbox. As for preprocessing, we followed the same denoising described 
in previous work (Luppi et  al., 2019; Luppi et  al., 2023c; Luppi et  al., 2022a). The anatomical 
CompCor method involves regressing out of the functional data the following confounding effects: 
the first five principal components attributable to each individual’s white matter signal, and the first 
five components attributable to individual cerebrospinal fluid (CSF) signal; six subject-specific realign-
ment parameters (three translations and three rotations) as well as their first- order temporal deriva-
tives; the artefacts identified by art; and main effect of scanning condition Behzadi et al., 2007. Linear 
detrending was also applied, and the subject-specific denoised BOLD signal timeseries were band-
pass filtered to eliminate both low-frequency drift effects and high-frequency noise, thus retaining 
temporal frequencies between 0.008 and 0.09 Hz.

The step of global signal regression (GSR) has received substantial attention in the fMRI literature, 
as a potential denoising step (Power et al., 2014; Lydon-Staley et al., 2019; Andellini et al., 2015; 
Murphy and Fox, 2017). However, GSR mathematically mandates that approximately 50% of correla-
tions between regions will be negative (Murphy and Fox, 2017), thereby removing potentially mean-
ingful differences in the proportion of anticorrelations; additionally, it has been shown across species 
and states of consciousness that the global signal contains information relevant for consciousness 
(Tanabe et al., 2020). Therefore, here we chose to avoid GSR in favour of the aCompCor denoising 
procedure, in line with previous work (Luppi et al., 2019; Luppi et al., 2023c; Luppi et al., 2022a).

Due to the presence of deformations caused by brain injury, rather than relying on automated pipe-
lines, DOC patients’ brains were individually preprocessed using SPM12, with visual inspections after 
each step. Additionally, to further reduce potential movement artefacts, data underwent despiking 
with a hyperbolic tangent squashing function, also implemented from the CONN toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012). The remaining preprocessing and denoising steps were the 
same as described above.

Brain parcellation
Brains were parcellated into 454 cortical and subcortical regions of interest (ROIs). The 400 cortical 
ROIs were obtained from the scale-400 version of the recent Schaefer local-global functional parcel-
lation (Schaefer et al., 2018). Since this parcellation only includes cortical regions, it was augmented 
with 54 subcortical ROIs from the highest resolution of the recent Tian parcellation (Tian et al., 2020). 
We refer to this 454-ROI parcellation as the ‘augmented Schaefer’ (Luppi and Stamatakis, 2021). To 
ensure the robustness of our results to the choice of atlas, we also replicated them using an alternative 
cortical parcellation of different dimensionality: we used the Schaefer scale-200 cortical parcellation, 
complemented with the scale-32 subcortical ROIs from the Tian subcortical atlas (Luppi and Stamat-
akis, 2021). The timecourses of denoised BOLD signals were averaged between all voxels belonging 
to a given atlas-derived ROI, using the CONN toolbox. The resulting region-specific timecourses of 
each subject were then extracted for further analysis in MATLAB.

HRF deconvolution
In accordance with our previous work (Luppi et al., 2022b; Luppi et al., 2023a) and previous studies 
using of information-theoretic measures in the context of functional MRI data, we used a dedicated 
toolbox (Wu et al., 2013) to deconvolve the hemodynamic response function from our regional BOLD 
signal timeseries prior to analysis.

Measuring integrated information
The framework of integrated information decomposition (ΦID) unifies integrated information theory 
(IIT) and partial information decomposition (PID) to decompose information flow into interpretable, 
disjoint parts. In this section we provide a brief description of ΦID and formulae required to compute 
the results. For further details, see Mediano et al., 2021; Luppi et al., 2022b.
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Partial information decomposition
We begin with Shannon’s Mutual information (MI), which quantifies the interdependence between two 
random variables X and Y. It is calculated as,

	﻿‍ I(X; Y) = H(X)H(X|Y) = H(X) + H(Y)H(X, Y)‍� (1)

where H(X) stands for the Shannon entropy of a variable X. Above, the first equality states that the 
mutual information is equal to the reduction in entropy (i.e. uncertainty) about X after Y is known. Put 
simply, the mutual information quantifies the information that one variable provides about another 
(Cover and Thomas, 2005).

Crucially, Williams and Beer, 2010 observed that the information that two source variables X and 
Y give about a third target variable Z, I(X,Y; Z), should be decomposable in terms of different types 
of information: information provided by one source but not the other (unique information), by both 
sources separately (redundant information), or jointly by their combination (synergistic information). 
Following this intuition, they developed the Partial Information Decomposition (PID; Williams and 
Beer, 2010) framework, which leads to the following fundamental decomposition:

	﻿‍ I(X, Y; Z) = Red(X, Y; Z) + Un(X; Z\Y) + Un(Y; Z\X) + Syn(X, Y; Z)‍� (2)

Above, Un corresponds to the unique information that one source provides but the other doesn’t, 
Red is the redundancy between both sources, and Syn is their synergy: information that neither X nor 
Y alone can provide, but that can be obtained by considering X and Y together.

The simplest example of a purely synergistic system is one in which X and Y are independent fair 
coins, and Z is determined by the exclusive-OR function Z=XOR(X,Y): that is, Z=0 whenever X and Y 
have the same value, and Z=1 otherwise. It can be shown that X and Y are both statistically indepen-
dent of Z, which implies that neither of them provide – by themselves – information about Z. However, 
X and Y together fully determine Z, hence the relationship between Z with X and Y is purely synergistic.

As another example for the case of Gaussian variables (as employed here), consider a 2-node 
coupled autoregressive process with two parameters: a noise correlation c and a coupling parameter 
a. As c increases, the system is flooded by ‘common noise’, making the system increasingly redun-
dant because the common noise ‘swamps’ the signal of each node. As a increases, each node has a 
stronger influence both on the other and on the system as a whole, and we expect synergy to increase. 
Therefore, synergy reflects the joint contribution of parts of the system to the whole that is not driven 
by common noise. This has been demonstrated through computational modelling (Mediano et al., 
2018).

Recently, Mediano et al., 2021 formulated an extension of PID able to decompose the informa-
tion that multiple source variables have about multiple target variables. This makes PID applicable to 
the dynamical systems setting, and yields a decomposition with redundant, unique, and synergistic 
components in the past and future that can be used as a principled method to analyse information 
flow in neural activity (Figure 3).

Synergy and redundancy calculation
While there is ongoing research on the advantages of different information decompositions for discrete 
data, most decompositions converge into the same simple form for the case of continuous Gaussian 
variables (Barrett, 2015). Known as minimum mutual information PID (MMI-PID), this decomposition 
quantifies redundancy in terms of the minimum mutual information of each individual source with the 
target; synergy, then, becomes identified with the additional information provided by the weaker 
source once the stronger source is known. Since linear-Gaussian models are sufficiently good descrip-
tors of functional MRI timeseries and more complex, non-linear models offer no advantage (Schulz 
et al., 2020; Nozari et al., 2024), here we adopt the MMI-PID decomposition, following our own and 
others’ previous applications of PID to neuroscientific data (Luppi et al., 2022b).

In a dynamical system such as the brain, one can calculate the amount of information flowing from 
the system’s past to its future, known as time-delayed mutual information (TDMI). Specifically, by 
denoting the past of variables as Xt-τ and Yt-τ and treating them as sources, and their joint future state 
(Xt, Yt), as target, one can apply the PID framework and decompose the information flowing from past 
to future as
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)
‍�

(3)

Applying ΦID to this quantity allows us to distinguish between redundant, unique, and syner-
gistic information shared with respect to the future variables Xt, Yt (Mediano et  al., 2021; Luppi 
et  al., 2022b). Importantly, this framework, has identified ‍Syn

(
Xt−τ , Yt−τ ; Xt, Yt

)
‍ with the capacity 

of the system to exhibit emergent behaviour (Mediano et al., 2022) as well as a stronger notion of 
redundancy, in which information is shared by X and Y in both past and future. Accordingly, using the 
MMI-ΦID decomposition for Gaussian variables, we use

	﻿‍ Red(X, Y) = min
{

I(Xt−τ ; Xt), I(Xt−τ ; Yt), I(Yt−τ ; Xt), I(Yt−τ ; Yt)
}
‍� (4)

	﻿‍ syn(X, Y) = I(Xt−τ , Yt−τ ; Xt, Yt) − max
{

I(Xt−τ ; Xt, Yt), I(Yt−τ ; Xt, Yt)
}
‍� (5)

Here, we used the Gaussian solver implemented in the JIDT toolbox (Lizier, 2014) to obtain TDMI, 
synergy and redundancy between each pair of brain regions, based on their HRF-deconvolved BOLD 
signal timeseries (Mediano et al., 2021; Luppi et al., 2022b).

Revised measure of integrated information from Integrated 
Information Decomposition
Through the framework of Integrated Information Decomposition, we can decompose the constituent 
elements of Φ, the formal measure of integrated information proposed by Integrated Information 
Theory to quantify consciousness (Balduzzi and Tononi, 2008). Note that several variants of Φ have 
been proposed over the years, including the original formulation of Tononi, 2004, other formulations 
based on causal perturbation (Oizumi et al., 2014; Albantakis, 2022) and others (see Mediano et al., 
2018; Tegmark, 2016 for comparative reviews). Here, we focus on the ‘empirical Φ’ measure of Seth 
and Barrett (Barrett and Seth, 2011), based on the measures by Balduzzi and Tononi, 2008 and 
adapted to applications to experimental data. It is computed as

	﻿‍ Φ = I
(
Xt−τ , Yt−τ ; Xt, Yt

)
− I

(
Xt−τ ; Xt

)
− I

(
Yt−τ ; Yt

)
‍� (6)

and it quantifies how much temporal information is contained in the system over and above the 
information in its past. This measure is easy to compute (compared with other Φ measures) (Oizumi 
et al., 2016) and represents a noteworthy attempt to formalise the powerful intuitions underlying IIT. 
However, once the original formulation from Balduzzi and Tononi is rendered suitable for practical 
empirical application (Barrett and Seth, 2011; Barrett and Mediano, 2019) the resulting mathe-
matical formulation has known shortcomings, including the fact that it can yield negative values in 
some cases – which are hard to interpret and seemingly paradoxical, as it does not seem plausible for 
a system to be ‘negatively integrated’ or an organism to have negative consciousness (Barrett and 
Seth, 2011; Barrett and Mediano, 2019).

Interestingly, with ΦID it can be formally demonstrated (Mediano et al., 2021) that Φ is composed 
of different information atoms: it contains all the synergistic information in the system, the unique 
information transferred from X to Y and vice versa, and, importantly, the subtraction of redundancy – 
which explains why Φ can be negative in redundancy-dominated systems.

To address this fundamental shortcoming, Mediano et al., 2021 introduced a revised measure of 
integrated information, ΦR, which consists of the original Φ with the redundancy added back in:

	﻿‍ ΦR = Φ + Red(X, Y)‍� (7)

where Red(X, Y) is defined in Equation (4). This measure is computationally tractable and preserves 
the original intuition of integrated information as measuring the extent to which ‘the whole is greater 
than the sum of its parts’, since it captures only synergistic and transferred information. Crucially, 
thanks to Integrated Information Decomposition, it can be proved that the improved formulation of 
integrated information that we adopt here is guaranteed to be non-negative (Mediano et al., 2021) 
– thereby avoiding a major conceptual limitation of the original formulation of Φ.

Note that the formula for ΦWMS above stems from what is known as IIT 2.0, but TDMI is by no means 
the only way of quantifying the dynamical structure of a system: indeed, subsequent developments 
in IIT 3.0 used alternative metrics with a more explicit focus on causal interpretations (Oizumi et al., 
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2014), which were in turn replaced in the latest iteration known as IIT 4.0 (Albantakis, 2022; Barbosa 
et al., 2021). We do not consider the alternative measure of integrated information proposed in IIT 
3.0 because it is computationally intractable for systems bigger than a small set of logic gates, and it 
is not universally well-defined (Barrett and Mediano, 2019).

Gradient of redundancy-to-synergy relative importance to identify the 
synergistic workspace
After building networks of synergistic and redundant interactions between each pair of regions of 
interest (ROIs), we determined the role of each ROI in terms of its relative engagement in synergistic 
or redundant interactions. Following the procedure previously described (Luppi et al., 2022b), we 
first calculated the nodal strength of each brain region as the sum of all its interactions in the group-
averaged matrix (Figure 2—figure supplement 1). Then, we ranked all 454 regions based on their 
nodal strength (with higher strength regions having higher ranks). This procedure was done separately 
for networks of synergy and redundancy. Subtracting each region’s redundancy rank from its synergy 
rank yielded a gradient from negative (i.e. ranking higher in terms of redundancy than synergy) to 
positive (i.e. having a synergy rank higher than the corresponding redundancy rank; note that the sign 
is arbitrary).

It is important to note that the gradient is based on relative – rather than absolute – differences 
between regional synergy and redundancy; consequently, a positive rank difference does not neces-
sarily mean that the region’s synergy is greater than its redundancy; rather, it indicates that the balance 
between its synergy and redundancy relative to the rest of the brain is in favour of synergy – and vice 
versa for a negative gradient.

Subdivision of workspace nodes into gateways and broadcasters
To identify which regions within the workspace play the role of gateways or broadcasters postulated 
in our proposed architecture, we followed a procedure analogous to the one adopted to identify 
the gradient of redundancy-synergy relative importance, but replacing the node strength with the 
node participation coefficient. The participation coefficient Pi quantifies the degree of connection 
that a node entertains with nodes belonging to other modules: the more of a node’s connections are 
towards other modules, the higher its participation coefficient will be (Rubinov and Sporns, 2010; 
Rubinov and Sporns, 2011). Conversely, the participation coefficient of a node will be zero if its 
connections are all with nodes belonging to its own module.

	﻿‍
Pi = 1 −

M∑
s=1

(
κis
ki

)2

‍�
(8)

Here, κis is the strength of positive connections between node i and other nodes in module s, ki 
is the strength of all its positive connections, and M is the number of modules in the network. The 
participation coefficient ranges between zero (no connections with other modules) and one (equal 
connections to all other modules; Rubinov and Sporns, 2010; Rubinov and Sporns, 2011).

Here, modules were set to be the seven canonical resting-state networks identified by Yeo and 
colleagues (Yeo et al., 2011), into which the Schaefer parcellation is already divided (Schaefer et al., 
2018), with the addition of an eighth subcortical network comprising all ROIs of the Tian subcor-
tical network (Tian et al., 2020). The brain’s RSNs were chosen as modules because of their distinct 
and well-established functional roles, which fit well with the notion of modules as segregated and 
specialised processing systems interfacing with the global workspace. Additionally, having the same 
definition of modules (i.e. RSNs) for synergy and redundancy allowed us to compute their respective 
participation coefficients in an unbiased way.

Separately for connectivity matrices of synergy and redundancy, the participation coefficient of 
each brain region was calculated. Then, regions belonging to the synergistic workspace were ranked, 
so that higher ranks indicated higher participation coefficient. Finally, the redundancy-based participa-
tion coefficient rank of each workspace region was subtracted from its corresponding synergy-based 
participation coefficient rank, to quantify – within the workspace – whether regions have relatively 
more diverse connectivity in terms of synergy, or in terms of redundancy.
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This procedure yielded a gradient over workspace regions, from negative (i.e. having a more highly 
ranked participation coefficient based on redundancy than synergy) to positive (i.e. having a more 
highly ranked participation coefficient based on synergy than redundancy). Note that as before, the 
sign of this gradient is arbitrary, and it is based on relative rather than absolute difference. Workspace 
regions with a positive gradient value were classified as ‘gateways’, since they have synergistic inter-
actions with many brain modules. In contrast, workspace regions with a negative value of the gradient 
– that is those whose redundancy rank is higher than their synergy rank, in terms of participation coef-
ficient – were labelled as workspace ‘broadcasters’, since they possess information that is duplicated 
across multiple modules in the brain.

Statistical Analysis
Network-based statistic
The network-based statistic approach (Zalesky et al., 2010) was used to investigate the statistical 
significance of propofol-induced or DOC-induced alterations. This nonparametric statistical method 
is designed to control the family-wise error due to multiple comparisons, for application to graph 
data. Connected components of the graph are identified from edges that survive an a-priori statis-
tical threshold (F-contrast; here we set the threshold to an F-value of 9, two-sided, with an alpha 
level of 0.05). In turn, the statistical significance of such connected components is estimated by 
comparing their topology against a null distribution of the size of connected components obtained 
from non-parametric permutation testing. This approach rejects the null hypothesis on a component-
by-component level, and therefore achieves superior power compared to mass-univariate approaches 
(Zalesky et al., 2010).

Testing for shared effects across datasets
We sought to detect changes that are common across datasets, to rule out possible propofol- or 
DOC-specific effects that are not related to consciousness per se (Luppi et al., 2019). To this end, 
we employed a null hypothesis significance test under the composite null hypothesis that at least 
one dataset among those considered here has no effect. In other words, for the null hypothesis to 
be rejected we demand that all comparisons exhibit non-zero effects. As usual, the test proceeds by 
comparing an observed test statistic with a null distribution. The test statistic is the minimum of the 
three F-scores obtained in the comparisons of interest (DOC vs awake; anaesthesia vs awake; and 
anaesthesia vs recovery), and the null distribution is sampled by randomly reshuffling exactly one 
dataset (picked at random) at a time and recalculating the F-scores. By shuffling exactly one dataset 
(instead of all of them), we are comparing the observed data against the ‘least altered’ version of the 
data that is still compatible with the null hypothesis. This is a type of least favourable configuration 
test (Lehmann and Romano, 2005), which is guaranteed to control the false positive rate below a 
set threshold (here, 0.05). The details of this test will be described in a future publication. Common 
changes across the three states of consciousness were then identified as edges (defined in terms of 
ΦR) that were either (i) increased in DOC compared with control; (ii) increased during anaesthesia 
compared with wakefulness; and (iii) increased during anaesthesia compared with post-anaesthetic 
recovery; or (i) decreased in DOC compared with control; (ii) decreased during anaesthesia compared 
with wakefulness; and (iii) decreased during anaesthesia compared with post-anaesthetic recovery.

Spatial autocorrelation-preserving null model for correlation
The significance of correlation between nodes’ participation coefficient based on different definitions 
of modules (a-priori as resting-state networks or in a data-driven fashion from Louvain community 
detection) was assessed using a spatial permutation test which generates a null distribution of 10,000 
randomly rotated brain maps with preserved spatial covariance (‘spin test’), to ensure robustness to 
the potential confounding effects of spatial autocorrelation (Markello and Misic, 2021; Váša and 
Mišić, 2022; Alexander-Bloch et al., 2018).

Code availability
The Java Information Dynamics Toolbox v1.5 is freely available online: (https://github.com/jlizier/​
jidt; Lizier et al., 2018). The CONN toolbox version 17 f is freely available online (http://www.nitrc.​
org/projects/conn). The Brain Connectivity Toolbox code used for graph-theoretical analyses is freely 
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available online (https://sites.google.com/site/bctnet/). The HRF deconvolution toolbox v2.2 is freely 
available online: (https://www.nitrc.org/projects/rshrf). The code for spin-based permutation testing of 
cortical correlations is freely available at https://github.com/frantisekvasa/rotate_parcellation (Váša, 
2023). We have made freely available MATLAB/Octave and Python code to compute measures of 
Integrated Information Decomposition of timeseries with the Gaussian MMI solver, at https://github.​
com/Imperial-MIND-lab/integrated-info-decomp (Liu and Luppi, 2023).
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