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Review

Endogenous Electric Signaling as a Blueprint
for Conductive Materials in Tissue Engineering

Alena Casella, BS,1 Alyssa Panitch, PhD,1,2 and J. Kent Leach, PhD1,3

Abstract

Bioelectricity plays an important role in cell behavior and tissue modulation, but is understudied in tissue
engineering research. Endogenous electrical signaling arises from the transmembrane potential inherent to all
cells and contributes to many cell behaviors, including migration, adhesion, proliferation, and differentiation.
Electrical signals are also involved in tissue development and repair. Synthetic and natural conductive materials
are under investigation for leveraging endogenous electrical signaling cues in tissue engineering applications
due to their ability to direct cell differentiation, aid in maturing electroactive cell types, and promote tissue
functionality. In this review, we provide a brief overview of bioelectricity and its impact on cell behavior, report
recent literature using conductive materials for tissue engineering, and discuss opportunities within the field to
improve experimental design when using conductive substrates.

Keywords: bioelectricity, conductive polymers, tissue engineering, endogenous electric field, electrical
stimulation

Introduction

B ioelectricity is a term that describes voltage-mediated
communication inherent to all cells and tissues. Bioe-

lectricity plays a major role in cell behavior during devel-
opment and tissue homeostasis, but is understudied within tissue
engineering. The development and application of biomaterials
for tissue engineering are broadly focused on providing me-
chanical and chemical cues in their scaffolds to influence cell
behavior (e.g., survival, migration, differentiation, etc.), yet few
seek to incorporate electrical cues.1

Bibliometric analysis using PubMed illustrated that, from
2000 to 2019, there were 10 times more publications in the
field of tissue engineering and regenerative medicine related
to the influence of mechanical (greater than 2 million publi-
cations) or chemical cues (more than 3 million publications)
than those related to electrical cues (200,000 publications).
By acknowledging and catering to the electrical aspects of
tissues and organs, the potential to improve communication
between engineered and endogenous tissue will be increased,
which could improve clinical translation.

Nerve cells and cardiomyocytes consistently exhibit im-
proved growth and differentiation when seeded on conduc-
tive substrates, even in the absence of electrical stimulation
(ES).2–14 While possible mechanisms for this phenomenon
are explained in later sections of this review, it grossly ap-
pears that these materials support the function of electroactive
cell types by capturing and disseminating electrical signals.

Synthetic polymers, including polypyrrole (PPy), polyani-
line (PANI), and poly(3,4-ethylenedioxythiophene) (PEDOT),
or carbon-based materials, such as carbon nanotubes (CNTs)
and graphene oxide (GO), are frequently used to increase
conductivity of biomaterials.15–20 Although these materials
provide at least physiologically relevant, and in some cases,
metallic like,21 conductivity to a system, they also face a
number of disadvantages. Most conductive polymers are
hydrophobic, which is beneficial for protein adsorption, but
leads to poor cell adhesion. Some materials (e.g., PANI)
trigger an immune response. Also, most synthetic con-
ductive materials are neither degradable nor resorbable,
and the effects of their permanent presence in the body is
damaging or unknown.3,22–24

The mechanism of conductivity of these synthetic ma-
terials comes from electron transfer, whereas in the body,
conductivity arises from the movement of ions. While this
has not impeded encouraging results, the gap in mechanistic
understanding surrounding these materials is a roadblock
for optimal design. Given these drawbacks, there is an im-
portant need for approaches that use natural biomaterials to
interact with endogenous tissues and confer physiological
conductive signals.

This review summarizes recent work using synthetic and
naturally derived conductive materials to aid in tissue re-
generation. It contextualizes the use of conductive materials
in tissue engineering and postulates the future direction of
the field.
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Origin and Endogenous Effects of Bioelectricity

Endogenous electric fields

Bioelectricity was first described in the late 1700s by Luigi
Galvani, while experimenting with frogs. Bioelectricity re-
mains a topic of great importance to biologists, as it is a key
player in regulating many cell and tissue behaviors.25 On the
cellular level, bioelectricity is derived from differences in the
endogenous membrane potential of each cell. The trans-
membrane potential is generated by the separation of charges
by transmembrane pumps, transporters, and ion channels and
results in a resting potential between -90 and -50 mV for
most cells.26 Membrane potentials give rise to endogenous
electric fields, which then guide cell behavior and may even
override chemical and topographical cues.26–28

Charge gradients (i.e., electric fields) are also created when
ions and other charged molecules pass from cell to cell
through gap junctions.26 On the cellular level, endogenous
electric fields are involved in orientation, migration, adhe-
sion, proliferation, and differentiation.29,30 On the tissue and
organismal level, electric fields play a major role in devel-
opment, wound healing, and healthy tissue function
(Fig. 1).28 Many literature reviews exist on bioelectricity and
provide further detail on its role in development and ho-
meostasis.1,26,27,31 Given the mounting evidence that elec-
trical signals can influence cell behavior, there is great
interest in developing techniques to electrically stimulate
injuries and repair tissue to improve healing.

Electrical stimulation

ES refers to an externally generated electric field ap-
plied by electrodes to influence cell or tissue response. In
tissue injuries, application of an external electric field has
enhanced anatomical and behavioral recovery.32,33 ES can
alter cell behaviors such as migration, adhesion, prolifera-
tion, and differentiation. However, the specific molecular
mechanisms of ES on cell behavior remain elusive, pre-
venting optimal design of materials for clinical use.33

While most ES protocols set key parameters, including field
strength (0.00048–6000 mV/mm), current density (0.015–
5 A/m2), and frequency (usually under 100 Hz),34 within
previously reported ranges, the variation in setup between
studies limits the ability to directly compare results and
draw conclusions about the effects of ES as a whole.33

Bioelectric signaling at the cellular level

Numerous reports describe the role of endogenous or applied
electric fields at physiological levels on cellular migration,
adhesion, proliferation, and differentiation during develop-
ment and wound healing.27,35,36 Generally, applied electric
fields affect cell surface receptors, enzyme activity, charge
distribution throughout the cell membrane, and membrane
protein conformation.28,37,38 It is believed to trigger similar
responses cells would have to other chemical or physical
stressors (e.g., fluid shear stress39) that also promote cell
survival.40–42 Upstream signal transduction pathways and

FIG. 1. Summary of the effects of bioelectricity on the cell, tissue, and organismal level, as well as its role in development
and wound healing. (A) Bioelectricity originates from the separation of charges across the cell membrane, generating a
voltage, and can influence cell behaviors, including proliferation, migration, and differentiation. Tissue development and
homeostasis are also dependent on bioelectric signaling, even if those tissues are outside of the nervous system. Many
tissues (e.g., cardiovascular and musculoskeletal) are highly dependent on electrical signals and are disrupted in their
absence. (B) During development, electric fields are critical for proper morphogenesis and spatial organization of organ
systems, as well as directing stem cell differentiation. (C) Endogenous electric fields arise from wounds and recruit cells to
accelerate healing.
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calcium ion flux mediate many of the cell behaviors listed,
but electric fields also affect cells by stimulating cytoskeletal
reorganization, surface receptor redistribution, ATP syn-
thesis, heat shock protein activation, and reactive oxygen
species and lipid raft formation.33 ES elevates the activity
of mitogen-activated protein kinase, which initiates multiple
signaling pathways, each associated with different cell be-
haviors related to migration, adhesion, proliferation, and
differentiation.33,37,43

ES can also influence cell migration by causing lipids to
accumulate into rafts.44 Lipid rafts are believed to be the
principal sensors of electric field within cells, and their for-
mation can activate integrins and other membrane proteins
involved in directional cell migration.45 During development,
endogenous electric fields are key players in initial cell po-
larization and provide cues to guide long-distance migration
of neurons and neural stem cells throughout the central and
peripheral nervous systems.27,46 When ES is applied, most
cell types preferentially travel toward the cathode and change
directions when the field direction is switched.36 Some cell
types exhibit accelerations in migration speed as a function
of field strength,35 whereas others do not.36 In the context of
wound healing, endogenous electric fields recruit stem cells to
wound sites and direct fibroblasts, keratinocytes, and other
cell types within the wound to promote healing.29,47–49 When
combined with topographical cues, ES caused a synergistic
directional migration of corneal epithelial cells mediated by
upregulated MMP-3 activity.50,51

Cell adhesion is a foundational event that is influenced by
electric signals and must be considered when developing new
materials for tissue engineering applications. When a cell is
triggered by an electric field, cells arrange their cytoskeletal
elements to shape to the trigger.33,52 For example, a2b1 in-
tegrins of ligament fibroblasts polarized and clustered after
the cells were electrically stimulated. Integrin clustering led
to intracellular RhoA polarization, which is directly involved

in cell membrane protrusion and migration.53 Conductive
materials can also affect cell adhesion, even in the absence of
an electric field.54 One possible explanation of this obser-
vation is that increased electrostatic interactions character-
istic of conductive substrates cause cells to strongly adhere
without forming focal adhesion complexes (FACs). Because
this adhesion is not derived from FACs, growth arrest oc-
curs, which ultimately leads to decreased cell proliferation
(Fig. 2A).55 Increases in seal resistance that arise between a
cell and a conductive substrate may also contribute to in-
creased cell adhesion (Fig. 2B).56 Seal resistance originates
from the collection of ionic solution in the cleft between the
cell membrane and the surface and can be physically con-
sidered as the adhesion strength between the cell and the
surface. ES may increase extracellular matrix protein ad-
sorption to substrates, providing additional sites for integrin-
ligand interactions (Fig. 2C).57 The variation within these
explanations and their conjectural nature highlight the need
for more mechanistic studies of how cells and conductive
substrates interact.

Proliferating cells are more depolarized than nonproliferat-
ing cells, indicating that electroactivity varies throughout the
cell cycle. Compared to that of quiescent cells, proliferating
cells have a membrane potential between -30 and -10 mV.26

Potassium and chloride channels are key regulators of ion flow
(i.e., endogenous electric fields) that can affect proliferation.
This relationship could be used to promote cell growth in tissue
engineering applications or leveraged to inhibit cell growth
(e.g., developing chemotherapeutics).27,55,58 As with other cell
behaviors, all cell types may not behave similarly, given the
same inputs. For example, cardiomyocytes grown on a con-
ductive surface without ES showed increased proliferation,
yet fibroblasts in the same system exhibited no proliferative
response.59

Electrical signaling can initiate differentiation in vivo and
influence cell fate during development and tissue homeostasis.60

FIG. 2. Cell interactions with conductive materials with and without electrical stimulation. (A) Conductive materials
present more electrostatic charge, which increases electrostatic interaction with cells. (B) Conductive materials promote
cellular attachment through increased Rseal. Rseal originates from the collection of ionic solution in the cleft between the cell
and the surface and can be considered as the adhesion strength between the cell and the substrate. (C) Protein adsorption is
enhanced by applying an electric current to a conductive substrate, facilitating cell adhesion. ECM, extracellular matrix; ES,
electrical stimulation; Rseal, seal resistance.
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Endogenous currents also arise from wounds and signal to begin
the differentiation process of depolarized, undifferentiated cells
toward a reparative phenotype.27,32 Altering the transmembrane
potential of a variety of stem cells with ES can influence their
differentiation fate and has been demonstrated in neural, hepatic,
and mesenchymal stromal cells (MSCs), as well as in cancer.27

Applied electric fields can increase cellular uptake of calcium
ions and generate reactive oxygen species,61 both of which are
linked to stem cell differentiation toward the neurogenic and
osteogenic lineage.61–64 For instance, ES caused bone marrow-
derived MSCs to express neural markers, including Nestin and
MAP2.65,66 Human neural progenitor cells undergoing ES on a
conductive substrate showed increased MMP-9 gene expression
and VEGF-A secretion, indicating increased capacity for an-
giogenesis and survival.67 ES also induced chondrogenesis of
human MSCs without exogenous growth factors68 and enhanced
calcium deposition by adipose-derived human MSCs.69

Bioelectric signaling at the tissue/organism level

In the developing embryo, endogenous electric fields play
an important role in orchestrating organ shape and in anterior/
posterior and left/right patterning, which is important for the
development of asymmetrically spaced organs such as the
heart, organs in the digestive tract, and liver. By depolarizing
or hyperpolarizing the membrane potential, electric fields
can induce the expression of signaling factors that influence
morphological patterns (e.g., folding, proliferation, and mi-
gration of cell groups).70 Transfer of bioelectric information
between cells in both the embryo and adult organism may
occur by gap junctions, tunneling nanotubes, nonsynaptic
neuronal (i.e., ephaptic) field effects, transepithelial poten-
tials, and transfer of ion channels through exosomes.26,28

Electric field patterns also precede and even pinpoint major
morphological events in development, such as limb bud
development26,28

Endogenous bioelectric signaling plays a key role in many
behaviors and functions at both the cell and tissue level. When
ES is combined with other inputs, whether mechanical or
chemical, synergistic effects are generally observed. However,
given conflicting reports about ES,71 the variation in applica-
tion parameters, and the overall mechanistic knowledge gaps,
more studies are necessary before ES becomes common clin-
ical practice.33 There is also great opportunity to use bioma-
terials as a means to magnify, leverage, or mimic the influence
of bioelectric signaling.

Conductive Materials for Tissue Engineering

Synthetic materials with enhanced electrical properties have
great potential for numerous biological applications. Com-
prehensive reviews72–76 and articles detailing the use of con-
ductive polymers,73,77–80 nanoparticles,81–83 and carbon-based84

and metal-based structures81,85,86 for use in nerve77,84,87–89

and cardiac85,90 tissue engineering have become increasingly
prevalent over the last decade. A variety of additives have
been used to tune the conductivity of biomaterials (Fig. 3),
and those used in the most recent reports are summarized in
Table 1. Conductive additives incorporated into hydrogels
(Table 2) result in scaffolds that better approximate endog-
enous tissue (Table 3). The following sections summarize
and provide critical analysis of the most up-to-date research
using these materials.

Synthetic conductive polymers

Electrically conductive synthetic polymers were first re-
ported in 1977 by Heeger, MacDiarmid, and Shirakawa using
polyacetylene. Their fabrication of a ‘‘conductive plastic’’
with metallic-like electroactivity was a major breakthrough
in the field and resulted in the 2000 Nobel Prize in Chem-
istry.91,92 Since then, over 25 types of conductive polymers
have been developed, the most common of which are illus-
trated in Figure 4A.93 The mode of conductivity for all of
these polymers arises from the freedom with which electrons
move within and between their polymer chains.94 Conductive
polymers contain moieties that consist of alternating single
and double bonds (i.e., conjugated double bonds). The double

FIG. 3. Electrical properties of biomaterials with conduc-
tive additives used in tissue engineering. Nondoped hydro-
gels have reduced conductivity, ranging from 10-16 S$cm-1,
observed in polyacrylamide, to 1 S cm-1, observed in algi-
nate. Other unmodified hydrogels within this electro-
conductive range include collagen type I, PEGDA, and
chitosan. Conductive additives, including polymers like PPy,
PANI, and PEDOT, CNTs, and AuNPs, have much higher
conductivity (*10-1–106 S$cm-1) and are used to enhance
the conductivity of hydrogels. AuNPs, gold nanoparticles;
CNTs, carbon nanotubes; PANI, polyaniline; PEDOT,
poly(3,4-ethylenedioxythiophene); PPy, polypyrrole.

Table 1. Electrical Properties of Synthetic

Conductive Materials

Material
Conductivity

(S$cm-1) Reference

PPy 0.02–7.5 · 103 21,94

PANI 0.11–105 22,158

PEDOT 0.494–50022 22,94

Pristine PEDOT:PSS 0.2–1159 159 and Sigma
Aldrich

Pure PEDOT:PSS hydrogel 20–40 111

CNTs 104–105 22,160

Single-layer graphene 2000–106 17,160

MOGS 675 – 22 17

CNTs, carbon nanotubes; MOGS, mildly oxidized graphene sheets;
PANI, polyaniline; PEDOT, poly(3,4-ethylenedioxythiophene); PPy,
polypyrrole; PSS, poly(styrene sulfonate).
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bonds within the polymer structure are made up of a r bond
and a p bond. Electrons are not as strongly bound to p bonds,
which allows them to delocalize. To activate electron move-
ment, the polymer chain must be disrupted by the introduction
of a dopant. Oxidation, or p-doping, removes electrons from
the system and reduction, or n-doping, inserts electrons into the
system.92 Charge delocalization can also occur when polymers
contain aromatic rings spaced such that their p-orbitals overlap
(i.e., p-p stacking). This phenomenon can result in organic
materials having metallic-like conductivity.95,96 Conjugated
double-bond structures are frequently seen in synthetic mate-
rials used for tissue engineering, but can also appear in natural
conductive materials. Understanding the origin of conductivity
can promote purposeful design of materials and aid in under-
standing material synthesis.

Polypyrrole. PPy is the most studied conductive polymer
for biomedical applications following its initial description by
Wong et al., who tested the stability of conductive polymers in

cell culture conditions.97 When oxidized, PPy exhibits con-
ductivity on the order of 103 S$cm-1, where S is siemens. Its
environmental stability, capacity to support adhesion and
growth of many cell types, and ease of synthesis make it an
attractive additive for biomedical applications.94

Because PPy is mechanically rigid and brittle after synthesis,
it is frequently combined with other polymers to achieve more
desirable mechanical properties for tissue engineering appli-
cations.76,98 Peripheral nerve conduits composed of electro-
spun poly(L-lactic acid-co-e-caprolactone) coated with PPy
were created to facilitate ES. When tested in vivo as a nerve
conduit, the stimulated conductive scaffolds performed simi-
larly to autograft.54 These findings not only imply that the
presence of a conductive material can influence cell response
but also raise questions about how conductivity and other
properties (e.g., topography) influence each other.11,51

PPy has also been used for musculoskeletal tissue engineer-
ing. For example, adipose-derived MSCs grown on PPy-PCL
composites achieved a 100% increase in calcium deposition

Table 2. Electrical Properties of Synthetic Conductive Composites

Composite Conductivity (S$cm-1) Reference

PPy in HA *1.2–7.3 · 10-3 10

PPy in alginate 3.3 · 10-5–1.1 · 10-4 161

PPy in PCL *10-5–10-1 69

PANI in PCL *2 · 10-4 162

Poly(glycerol sebacate)-co-aniline 1.4 · 10-6–8.5 · 10-5 114

PEDOT-HA nanoparticles in chitosan *10-4–10-2 109

PEDOT:PSS in PEG diglycidyl ether 5.22 · 102 110

CNTs in PCL + silk fibroin 6.5–8.1 · 10-7 163

MWCNT in PEG *10-3–10-2 116

CNTs + rGO sheets in PEG 5.75 · 10-5 15

Graphene in collagen 6.5 · 10-3 18

GO in polydopamine 8 · 10-2 164

AuNPs in chitosan 1.3 · 10-3 19

Collagen doped with iron oxide nanoparticles 3.7 · 10-5 81

GO, graphene oxide; HA, hyaluronic acid; MWCNT, multiwall carbon nanotube; PEG, poly(ethylene glycol); rGO, reduced GO.

Table 3. Electrical Properties of Native Tissues, Unmodified Biomaterials,

and Natural Conductive Materials

Material
Conductivity

(S$cm-1) Reference

Myocardium *10-5–10-3 3,144

Nerve/spinal cord *10-2–10-1 21

Skeletal muscle (feline, porcine) *2–8 · 10-3 144,165

Bone *9.1 · 10-5 166

Cartilage (porcine) *10-3 167

Skin *10-6–10-3 165,168

Collagen type I 2.98 · 10-10 81

*2.5 · 10-3 169

3 · 10-3 170

Alginate *0.1–2 171

8.2 · 10-6 161

PEGDA 7.6 · 10-11 103

Polyacrylamide *10-16 17

Chitosan 1.91 · 10-10 172

Wild-type Geobacter sulfurreducens Pil-A monomers 5 · 10-3–188 · 10-3 95,124

Modified G. sulfurreducens Pil-A monomers *10-1–102 129

Hemin-doped serum albumin *10-3 138

GelMA-Bio-IL *10-7–10-5 3

Bio-IL, bioionic liquids; GelMA, methacrylated gelatin.
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when electrically stimulated. The investigators interrogated the
role of voltage-gated ion channels to better understand the
mechanistic downstream effects of ES for bone tissue engi-
neering.69 Through inhibitory experiments, they determined
that voltage-gated Ca2+ channels play a more significant role in
regulating adipose-derived MSC functions than other ion
channels. In addition, de Castro et al. observed increased al-
kaline phosphatase (ALP) activity in osteoblasts grown on
electrospun scaffolds containing PPy and poly(butylene
adipate-co-terephthalate) (PBAT) after 21 days compared to
PBAT controls, indicating that substrate conductivity can en-
hance osteogenic potential.99

Polyaniline. PANI is another commonly used conjugated
polymer, owing to its low cost of production, environmental
stability, and greater range of conductive properties over
PPy.22,76,100 Despite these advantages, PANI is used less
frequently, given multiple conflicting reports of it stimulating
an elevated immune response or chronic inflammation.76,100–102

However, when combined with natural biomaterials such as
chitosan, some groups have shown promising scaffolds for
cardiac,90 nerve,103 and musculoskeletal tissue engineering.
Murine-derived C2C12 myoblasts exhibited increased pro-

liferation and myogenic differentiation markers when grown
on silk fibroin combined with a PANI-based material (poly
(aniline-co-N-(4-sulfophenyl)aniline).104 In a different study,
C2C12s were cultured on aligned, PANI-coated PCL fibers
and demonstrated greater capacity toward myotube forma-
tion than controls.105 Endothelial cells better adhered to and
proliferated on PANI-coated PCL fibers as well, and prolif-
eration was further improved by ES.106 Chen et al. combined
PANI and PCL to make conductive nanofibers, and the ad-
dition of PANI caused MSCs to undergo osteogenic differ-
entiation and deposit higher levels of calcium compared to
PCL-only controls, making it a relevant additive for bone
tissue engineering. It is important to note that these results
were achieved with the material containing an intermediate
amount of PANI, which should redirect strategies that are
focused on continuously increasing the conductivity of ma-
terials they intend to use for similar applications.107

Poly(3,4-ethylenedioxythiophene). PEDOT is frequently
used as a conductive additive for making electroactive mate-
rials, whether alone or in combination with poly(styrene sul-
fonate) (PSS). PEDOT alone has distinct advantages over other
conductive polymers, including higher conductivity and better
chemical stability.12 Wang et al. incorporated hyaluronic acid

FIG. 4. Chemical structure
of conductive materials used
for tissue engineering applica-
tions. (A) Synthetic polymers
and carbon-based materials
have conjugated (alternating
single and double bond)
structures that facilitate elec-
tron movement within and
between polymer chains.
(B) Conjugated structures
are present in aromatic ami-
no acids and can give rise to
metallic-like conductivity in
naturally derived proteins and
peptides. Chemical structures
recreated with ChemDraw
19.0. (C) Other natural con-
ductive materials have charge-
dense regions throughout their
structure, giving rise to ionic
conductivity. A molecular dy-
namics simulation applied to a
typical example of bioionic
liquid is reproduced from Feng
et al., in which cations and
anions are represented in red
and blue, respectively. There
are many formulations of ionic
liquids, but the molecular
structures of the cations (1-
butyl-3-methylimidazolium)
and anions (bis(trifluorome
thanesulfonyl)imide) com-
prising the ionic liquid used
by Feng et al.140 are pro-
vided as an example.
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(HA)-doped PEDOT nanoparticles into PLLA films, which
improved PC12 cell adhesion, spreading, and survival com-
pared to PLLA control films. Electrically stimulated PC12 cells
grown on the conductive films exhibited more advanced neurite
extension compared to unstimulated controls.108 When incor-
porated into chitosan/gelatin gels, these HA-doped PEDOT
nanoparticles promoted nerve regeneration.12,13,109

Despite the positive effects of PEDOT alone, PEDOT:PSS
has risen to the forefront in tissue engineering studies. By
doping hydrophobic PEDOT with hydrophilic PSS, the con-
ductive agent is easier to disperse and incorporate into hy-
drogels. Its structure also uniquely provides both electron
conduction through PEDOT and ionic conduction through
PSS, making it a more suitable material for bridging biological
and synthetic systems. PEDOT:PSS is associated with low
cytotoxicity, although like many other polymers, its stability in
biological applications can be greatly influenced by choice of
polymer crosslinker.110,111 PEDOT:PSS incorporated into
collagen-alginate hydrogels at low concentrations improved
cardiomyocyte coupling and maturation, even without ES.14

Multiple groups have used PEDOT:PSS to dope methacrylated
gelatin (GelMA) for bioprintable, electroactive materials for
tissue engineering.112,113

Although some novel polymer-based materials address
several physical disadvantages of more ubiquitous poly-
mers,5,114 all synthetic conjugated polymers thus far share the
limitations of being unable to be degraded or resorbed by the
body and having unknown long-term toxic effects, which
calls into question their use in tissue replacements.

Carbon-based materials. Carbon-based materials such
as graphene and CNTs receive attention for applications in
tissue engineering because of their versatility, high conduc-
tivity, and ease of synthesis.18 Many reports also indicate
carbon-based materials enhance nerve cell response.15 These
properties make carbon-based materials attractive for use in
other tissue engineering applications.

CNTs are perhaps best known for their unique mechanical
and thermal properties for applications in nonmedical fields,
but their high conductivity has resulted in greater attention in
recent years for use as electroactive substrates.75 CNTs also
have form and dimensions similar to biological structures
such as neurological processes or proteins of the extracellular
matrix that may aid in tissue organization.16,115 Functiona-
lized CNTs and reduced GO sheets were incorporated into a
poly(ethylene glycol) (PEG)-based hydrogel to create com-
posites providing both electrical conductivity and positive
surface charge to serve as a nerve conduit.15 Compared to
unmodified PEG hydrogels, the conductive substrate with
positive surface charge resulted in slightly less circular
PC12s and an increase in the number of cells bearing neurites,
both of which are indicative of neuronal-like behavior.

Multiwall carbon nanotubes (MWCNTs) embedded in PEG
gels were used to investigate the synergistic effects of con-
ductivity, mechanical properties, and ES on neuronal dif-
ferentiation and extension.116 Neuronal outputs were greatest
in groups with high PEG concentration (20%), MWCNTs,
and exposure to ES. With the removal of ES, this hydrogel
still outperformed gels with a lower concentration of PEG,
and ES further magnified those differences. These data have
two major implications. First, a material’s conductive prop-
erties alone can support significant improvements in cell

behavior. Second, desired effects can be significantly en-
hanced by tuning other material properties and applying ES.

Graphene is another class of carbon-based materials, but
tends to be easier and less expensive to synthesize com-
pared to CNTs.17 GO possesses high biocompatibility
and promotes cell adhesion in many applications, but has
restricted conductivity that can be mitigated by chemical
reduction, resulting in reduced GO (rGO)17,117 Pristine
graphene has the highest conductivity compared to GO and
rGO, but all three variants are frequently used as conductive
additives.22

Balikov et al. used a graphene-based material to investi-
gate how material type, ES, and physical patterns influence
human MSCs toward an osteogenic or neurogenic lineage.118

Physical cues were necessary for expression of late osteo-
genic markers (e.g., osteopontin), but were unable to influ-
ence neuronal markers (e.g., MAP2 and b3-tubulin), which
were only enhanced by ES. Pristine graphene and collagen
were combined to stimulate cardiomyocytes, resulting in
increased metabolic activity and sarcomeric structures.18 The
conductive material alone brought about significant changes,
but the observations were enhanced with the addition of ES.

Overall, carbon-based materials are commonly used in
tissue engineering applications to impart electroactivity and
are frequently touted for surpassing conductive polymers in
their ability to improve the mechanical properties of hydro-
gels. However, these improvements cannot overshadow the
reports that carbon-based materials still face similar draw-
backs as synthetic polymers, including cytotoxicity,119,120

hydrophobicity, and being nondegradable,121–123 which re-
inforces the need for natural conductive materials.

Metal-based materials. Metal-based materials, namely
nanoparticles, nanorods, and nanowires, are another class of
synthetic conductive materials that are under investigation
for tissue engineering. Gold is most often used due to its inert
behavior in the body, but iron oxide has also been used to
modify hydrogels, although for applications that have not yet
been tested in vivo.81 The use of less common silver, plati-
num, and zinc nanoparticles has been summarized else-
where.22 There is an established history of incorporating gold
nanoparticles (AuNPs) into a variety of hydrogel materials
and eliciting desired changes in cardiac applications, making
them a popular choice as a conductive additive.19

MSCs incorporated into AuNP-infused chitosan hydrogels
exhibited early cardiac markers and enhanced cardiac dif-
ferentiation compared to unmodified chitosan gels, even in
the absence of ES.19 Cardiomyocytes entrapped in gold-
infused GelMA substrates expressed cardiac-specific mark-
ers homogeneously throughout the hydrogel, and the gold
nanorod groups supported synchronous beating.20 When ES
was applied, a lower excitation threshold was observed for
the groups containing higher concentrations of gold nanor-
ods, indicating that the conductive substrates could better
promote electrical integration with endogenous tissue.

Although AuNPs are considered biocompatible, have
high conductivity, and are effective for stimulating cells
in vitro, gold cannot be resorbed by the body. Long-term
studies using well-characterized AuNPs confirm that both
acute and chronic exposure to AuNPs can alter the ex-
pression of genes related to cell cycle regulation and
oxidative stress.24
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Summary. The use of synthetic materials for conductive
substrates for tissue engineering is gaining popularity.
However, substantial hurdles and disadvantages remain.
Synthetic materials conduct electric signals through elec-
trons, which does not mimic the endogenous use of ionic
gradients for bioelectricity. Knowledge gaps about the
mechanism by which electrically conductive materials and
the body interact prevent optimal or significant improvement
in material performance. Furthermore, there are conflicting
reports about cellular and bodily response to synthetic ma-
terials. While most polymeric materials are reported to be
biocompatible, synthetic conjugated polymers are unable to
be degraded or resorbed by the body and there are numerous
reports of elevated immune response when PANI is used.
Other conductive polymers, such as PPy and PEDOT, have
only recently begun to appear in biomedical engineering
applications, which limits knowledge of the long-term toxic
effects of these materials on the body.

The long-term effects of carbon-based materials and
AuNPs have been explored and are linked to cytotoxicity,
permanent elevation of stress response in some cell types, and
particle accumulation in many organs. Although synthetic
conductive materials possess many attractive properties for
use in tissue engineering, there is a critical need for con-
ductive materials that can safely interact with the body’s
native tissues, either in a short-term manner or for permanent
implantation.

Natural conductive biomaterials

While the availability of synthetic conductive materials
is expansive, natural conductive biomaterials can be cat-
egorized into two types. The first is analogous to conju-
gated polymers, in that charge transport originates from p-
p stacking, and is most often seen in materials containing
aromatic amino acids (e.g., proteins and peptides)
(Fig. 4B). The other contains charge-dense regions
throughout its chemical structure and mainly derives its
conductive properties from the movement of ions rather
than electrons (Fig. 4C).

One of the most prominent models for naturally occurring
conjugated conductive ‘‘polymers’’ is the pili proteins of
Geobacter sulfurreducens.96,124–132 These short proteins
conduct electrons over lm to cm distances with conductivity
around 5 · 10-3 S$cm-1.95,124 The mechanism of electron
transfer is believed to be electron hopping, made possible by
the p-p interchain stacking, which occurs when the phenyl
rings of aromatic amino acids are in appropriate proximity
(d-spacing, the distance between atomic planes, of*3.5 Å).95

However, not all aromatic amino acids are equally con-
ductive. The conductivity of the wild-type PilA monomer
(the precursor to the G. sulfurreducens pili) was increased
2000-fold by genetically substituting one tyrosine and one
phenylalanine for tryptophan.129 Kalyoncu et al. synthesized
peptides and films based on Escherichia coli secretions with
added aromatic amino acids and observed increased con-
ductivity of those materials when compared to controls.
In agreement with previous observations, the materials
_containing tryptophan had higher conductivity compared
to those containing phenylalanine or tyrosine. This study
suggests that, in addition to conductive motifs, charged
amino acids within a peptide sequence are also critical to

conductivity133,134 Using peptides to make conductive ma-
terials is a recent development in the field,135–137 leaving
much room to explore how peptides can be designed to mimic
synthetic conductive polymers used for tissue engineering.

Beyond peptide structures, other natural conductive ma-
terials for tissue engineering have risen to the forefront.
Amdursky and Hsu doped materials with the iron-based he-
min for use in flexible bioelectronic interfaces138 and neural
tissue engineering,139 respectively. Hemin is a type of por-
phyrin, a class of compounds containing pyrrole subunits,
making it a natural corollary to the frequently used PPy.
Other groups have completely deviated from metallic mimics
and embraced the conductivity associated with ionic charges.

A new class of conductive hydrogels incorporates choline-
based ‘‘bioionic liquids’’ (Bio-ILs).3 Ionic liquids generally
possess high ionic conductivity along with other desirable
features for material synthesis (e.g., thermal and electro-
chemical stability), and biologically based ionic liquids have the
preferential property of being naturally derived, noncytotoxic,
and biodegradable. The conductivity of ionic liquids is believed
to originate from ions hopping from one ion-dense site in the
molecule to another, rather than through p-p stacking.140

When conjugated to GelMA, the addition of Bio-IL increased
conductivity of the hydrogels and supported the adhesion,
proliferation, and maturation of primary cardiomyocytes. These
hydrogels also provided sufficient conductive signaling to car-
diomyocytes without ES, as evidenced by the cells’ synchro-
nous beating and upregulated connexin 43 protein expression.2

When probing in vivo degradation, the results indicated that
cells were able to enzymatically degrade GelMA-Bio-IL hy-
drogels through hydrolysis.3 While these results are promising
for using natural and ionically conductive materials for tissue
engineering, additional research is warranted to establish whe-
ther ionically conducting materials can be incorporated into a
variety of biomaterials and have similar effects on different cell
and tissue types.

Progress in Conductive Materials
for Tissue Engineering

The following section briefly summarizes goals of engi-
neering specific tissues, describes how conductive materials
have improved tissue engineering, and proposes an out-
look for incorporating electroactive elements into tissue
engineering.

Conductive materials for nerve tissue engineering

Nervous tissue has limited ability, or in the case of the
central nervous system, no ability to regenerate on its own
upon injury. Therefore, the restoration of nervous tissue after
injury remains a significant medical challenge. One of the
major goals when using neuronal cells to regenerate tissue is
directing their differentiation down the neuronal line, rather
than supporting cell types such as astrocytes and oligoden-
drocytes. Electroactive materials have been repeatedly
shown to be supportive of neuronal differentiation.12,21,141

PPy, PEDOT:PSS, and carbon-based materials have been
used frequently. Mass ratios of PPy greater than 0.2 in
chitosan-alginate hydrogels led to substrates with conduc-
tivity on the order of 10-3 S$cm-1. When used as a nerve
conduit, this concentration resulted in tissues with similar
histological characteristics as autograft.6 Adding 0.1 w/v%
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MWCNTs to PEG resulted in conductivity around 10-2

S$cm-1 and greatest PC12 neurite outgrowth and mean
length.116 The addition of ES promotes the generation of action
potentials, which improves synaptic function and is linked to
increased secretion of neurotrophic factors, supporting func-
tional recovery in vivo.54 Conductive substrates have also been
associated with increased expression of genes associated with
Schwann cell myelination.114 In light of their capacity to sup-
port multiple nerve cell types and functions, electroactive
materials are promising tools for nerve regeneration.

Conductive substrates have been used as conduits for re-
generation in both nervous systems, but the biosafety of and
lack of biological mechanistic knowledge surrounding syn-
thetic materials remain important issues to be addressed in
future studies.142 Few recent studies have investigated the
action potential profile of neuronal cells grown on conductive
substrates to confirm that they behave similar to uninjured
cells.143 This information is important to consider, because
while conductive hydrogels can significantly improve func-
tional recovery, they are yet unable to recapitulate uninjured or
autograft tissue.

Conductive materials for cardiac tissue engineering

Because cardiac tissue is electroactive, conductive materials
are frequently used for cardiac tissue engineering and have
successfully recapitulated the conductivity of native myocar-
dium.144 Synthetic polymers, carbon-based materials, and
gold-based materials are most often used as conductive addi-
tives. Conductive substrates are also supportive of induced
pluripotent stem cell, endothelial stem cell, and embryoid
body differentiation toward cardiomyocytes. The number of
myotubes, myofibrils, and sarcomeres increases when car-
diomyocytes are grown on electroconductive surfaces.145

When seeded with cardiomyocytes, conductive materials
aid in cell maturation, alignment, communication (e.g., gap
junction formation), synchronous beating, and physiological
pacing.4 Hydrogel composites containing CNTs resulted in
more aligned cardiomyocyte organization, but it is unclear if
this result was due to the mechanical or electrical features of
CNTs.115,146 Navaei et al. observed a similar effect using their
hydrogel containing gold nanorods. Cardiomyocytes were
more organized into the microgrooves of constructs contain-
ing gold nanorods than those of the nondoped construct.147

These characteristics are critical for clinical translation, where
development of arrhythmias remains a risk in cardiac tissue
engineering. While conductive materials have improved
synchronous beating, it remains to be explored whether the
improved communication leads to phenotype changes related
to cellular growth.75

When fabricating cardiac patches, material elasticity and
durability are of critical importance for proper organ function
and longevity. Synthetic conductive substrates are rarely
characterized as highly elastic, nor have there been many re-
ports of patches being cyclically tested to mimic in vivo per-
formance. Elastic cardiac patches made from 10 w/v% GelMA
and 66 v/v% Bio-IL exhibited conductivity around 1.5 · 10-3

S$cm-1 and upregulated connexin 43 expression.2 Despite
promising preliminary results, the long-term performance of
conductive substrates after myocardial infarction and their
potential for developing comorbidities such as constrictive
pericarditis and arrhythmia remain to be evaluated.2

Conductive materials for muscle tissue engineering

Muscle tissue is efficient at regenerating small injuries, but
critically sized injuries (e.g., volumetric muscle loss) require
intervention. The main goals of muscle tissue engineering are
to promote differentiation of satellite cells or MSCs down the
myogenic lineage, create a tissue with anisotropy to allow
myoblasts to fuse into myotubes, and develop vascularized,
innervated constructs for functional and electrophysiological
recovery. Tissue elasticity is also critical to support muscle
contraction.

Conductive materials have been effective at differentiating
C2C12 myoblasts, upregulating myogenic genes and proteins,
and promoting cell fusion.145 Silk fibroin and a PANI-based
polymer were combined to make scaffolds with conductivity on
the order of 10-4 S$cm-1. When C2C12 myoblasts were seeded
on scaffolds with 2 w/v% polymer, myogenic genes such as
myogenic differentiation 1 (MyoD1), myogenin, and troponin
T1 (TNNT1) were upregulated, although the elasticity of these
materials was not tested.104 While elastic conductive materi-
als have been developed, their material choice (e.g., poly-
acrylamide) does not facilitate cell attachment or encapsulation,
a factor that can be addressed in future studies.17

In addition to supporting myogenic differentiation, the
future of conductive materials can also be used to support the
electroactivity of muscle tissue, at large, by encouraging in-
nervation and neuromuscular junction (NMJ) formation.148

Multiple studies have probed the cellular interplay between
muscle and nerve and have reported spontaneous NMJ de-
velopment. However, the majority of studies using conduc-
tive substrates for muscle tissue engineering do not explore
co-culture systems. While many studies investigate how ES
and physical exercise influence muscle repair after injury, the
possible synergy when using conductive substrates as a tissue
scaffold remains uninvestigated.149

Conductive materials for bone tissue engineering

The primary goal of bone tissue engineering is to replace
critically sized defects unable to spontaneously heal, whether
caused by trauma, bone-related diseases, or surgical exci-
sion. Strategies for bone tissue engineering focus on making
a mechanically stable, osteoinductive, and osteoconductive
material to promote bone formation. Although bone cells are
not electrically excitable like neuronal and cardiac cells, they
are piezoelectric, meaning they generate electric potentials as
they are mechanically loaded. Piezoelectric polymers, most
commonly polyvinylidene fluoride, have been used to for
bone tissue engineering.145,150

Dynamic mechanical loading of osteoblasts on piezoelectric
scaffolds improved growth and proliferation of osteoblasts151

and osteogenic differentiation of adipose-derived MSCs.152

Even in the absence of mechanical loading, the association of
cells with conductive substrates and ES enhances osteogenic
activity.153 PLA scaffolds with 10 wt% PANI possessed con-
ductivities around 9 · 10-3 S$cm-1 and promoted osteogenic
gene expression and ALP activity of bone marrow-derived
MSCs.107 Graphene outperformed nonconductive groups in
treating critically sized calvarial defects in vivo.154 These
findings indicate that substrate electroactivity is an important
contributor to the regenerative capacity of bone cells.

Many bone tissue engineering strategies to date have reca-
pitulated the mechanical environment of native bone and

ELECTRIC SIGNALS AS A BLUEPRINT FOR MATERIALS 35



demonstrated efficacy in vitro and in vivo. Because bone is pi-
ezoelectric, it is important to confirm electrical functional out-
comes in future studies.155 Conductive substrates have been used
as scaffold materials to improve osteogenic behavior. However,
few studies have evaluated critical mechanical properties (e.g.,
Young’s modulus) as a function of substrate modification with
electroactive polymers, which may lead to discrepancies in re-
producibility. Possible synergies between electroactivity, me-
chanical cues, and chemical signals for bone tissue engineering
are largely unexplored and provide great opportunity to expand
foundational knowledge of bone regeneration.

Conclusion

Cells rely on mechanical, chemical, and electrical informa-
tion to properly function during development and homeostasis.
The field of tissue engineering has focused on the composition
and mechanical properties of engineered substrates to instruct
cell fate. Evidence-based advances in bioelectricity motivate
the pursuit of novel strategies that cater to cells’ electrical
needs. Despite the promising reports that conductive synthetic
substrates influence cell behavior and promote engineered tis-
sue function, these materials have several drawbacks that may
be mitigated by the design of conductive natural biomateri-
als.156 In addition, the mismatch in conducting mechanism
between electrically conductive substrates and bioelectric tis-
sues has revealed gaps in understanding how to design mate-
rials for the most relevant and significant clinical outcomes.
Finally, variations across conductivity studies, whether in ES
parameters, methods to measure conductivity, and the lack of
positive control groups prevent reproducibility within the field
and hinder progress toward clinical translation.157

In particular, foundational experiments to understand the
effects of altering the many parameters of studies using
conductive materials (e.g., level of conductivity, seal resis-
tance, type of material or mechanism of conduction, or how
electrical properties interplay with other properties within
cell- and material-based therapies) will be important to pro-
pel the field forward. The results of such foundational studies
could then be used to design studies with more translational
outputs both in vitro and in vivo. They also establish general
fundamental understanding that allows for extension of using
conductive materials for a variety of biomedical applications
(e.g., improving in vitro modeling systems).

The field of tissue engineering has evolved far beyond
combining cells with materials and implanting in hopes of
growing neotissues or promoting repair. There are many ex-
amples of preimplantation characterization of cell adhesion,
proliferation, migration, and differentiation in response to
engineered materials. In contrast, the application of conductive
materials in tissue engineering is only now emerging. The use
of conductive materials for this purpose provides new oppor-
tunities to promote cellular organization in vitro before im-
plantation, enabling the introduction of more advanced,
functional tissues that possess greater therapeutic potential.
Thus, there is tremendous opportunity on the horizon for de-
veloping materials that better recapitulate endogenous elec-
trical signaling and support tissue engineering applications.
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