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ABSTRACT OF THE DISSERTATION

Efficient Program Analyses that Scale to Large Codebases

By

Min-Yih Hsu

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Professor Michael Franz, Chair

Program analysis extracts software properties that are helpful to developers and provides

invaluable insights into a program; it is essential to many computer science areas such as

compiler optimizations, cybersecurity, and performance engineering, to name a few. In the

past few decades, however, researchers and practitioners have found difficulties in scaling up

program analyses of all kinds, both static or dynamic ones, with modern software whose size

and complexity have rapidly increased. In this dissertation, we focus on two of the most

important program analysis areas, dataflow and throughput analysis, and create two frame-

works – DFI and MCAD, respectively – with the principle of combining several optimizations

in a novel way to overcome the scalability issues in their areas.

Our contributions in DFI augments IFDS, an efficient dataflow analysis framework for dis-

tributive dataflow problems, with a more efficient algorithm and a sparse program repre-

sentation. Our key insight is an entirely new way of looking at IFDS problems and the

realization that doing things in the reverse direction of the graph reachability algorithm

leads to much better performance; scaling to programs that were previously out of reach due

to physical memory constraints.

MCAD is a novel way of predicting the performance characteristics (e.g. total cycle counts

and instructions per cycle) of a program, based on combining the best ideas from both

x



static and dynamic throughput analysis. It uses dynamic traces and run time information

to drive a static throughput analysis engine. Such combination avoids poor accuracy across

branch boundaries traditionally suffered by static approach and more importantly, has much

better scalability than dynamic methods like cycle-accurate emulators. MCAD also shows

comparable accuracy in differential throughput analysis.

Together with other works in the fields, this dissertation provides building blocks and novel

ideas of combining different techniques for program analyses to scale up with the ever-growing

size, complexity, and challenges of future software codebases.
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Chapter 1

Introduction

1.1 Overview

Program analysis has been the stepping stone of computer science since its dawn. It consti-

tutes a huge family of techniques that inspect, comprehend, or dissect programs, in pursue of

key properties that further enable an even larger body of applications; playing crucial roles

in areas like compiler optimization, bug detection, security enhancement, and performance

engineering, to name a few. However, program analysis faces great challenges to modern

software projects as it struggles to scaling up with the size and complexity of their gigantic

code bases. Imposing great overhead on both analysis performance and space (e.g. memory

and storage) consumption. Such complication forces many users to make compromise on the

coverage and effectiveness brought by program analysis, or even hinders the willingness to

perform any analysis at all.

A program analysis can be described in two broad categories: static and dynamic. Static

analysis processes the program, normally ahead of time, without any concrete execution.

Since the exact program paths are unknown during the analysis, approximations are required
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to yield a safe result that satisfies all possible program states. Analyses fall into this category

are usually used to provide estimations on the target programs with a holistic view. But

they come with a cost of inferior precision due to their over-approximating and conservative

nature.

A typical example of static analysis is dataflow analysis. Dataflow analysis is designed to

extract key program properties for usages in compiler optimization, security analysis, and

bug finding, to name a few. It models program properties as abstract facts and program

statements as transfer functions over these facts. Traditionally, a dataflow analysis iteratively

applies these transfer functions along the control flow until the result reaches a fixed point.

However, such model is inefficient because it easily produces lots of unnecessary information

that is never used [38]; scaling to inter-procedural code is more challenging, too.

Trading off precision for performance is one of the most common ways to solve the aforemen-

tioned problem. For instance, in a context-insensitive analysis, function calls are generally

ignored; a field-insensitive analysis might not be able to distinguish field accesses on the

same object. In addition to operating with a reduced precision, limiting the capability of a

dataflow analysis to a specific class of problem is also commonly used. For example, Reps

et al. [51] pioneered an efficient way to solve dataflow problems that can be modeled with a

powerset of atomic dataflow facts and distributive transfer function, also know as the IFDS

problems. Specifically, IFDS problems can be precisely solved with a graph reachability algo-

rithm. This convenient property can also be leveraged in an inter-procedural analysis with

summary-based approach. Summary-based approach abstracts functions into summaries

that can be plugged into their respective call sites to be co-analyzed in the caller’s context.

Despite being extremely efficient, such solving technique reduces precision in most classes

of problems – except those using distributive transfer function, which will not suffer any

precision degradation.

In recent years, people have also been exploring different kinds of sparse dataflow analysis.
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The idea of sparse analysis is using an efficient program representation to capture only the

necessary part of the program and potential dataflow facts. For instance, for a points-to

analysis, modeling pointers and their flow among memory operations is usually sufficient.

These type of program representations are usually organized as a graph: Single-Assignment

(SSA) graph, Value-Flow Graph (VFG), or Sparse Expression Graph (SEG) are some of

the most commonly used formats. As opposed to following the control flow, sparse analyses

traverse along the vertices and edges in such graphs, in order to reduce the number of

redundant traversals during the analysis.

In Chapter 3, we propose a new value-flow analysis framework, combining the aforementioned

scalability improvements, called DFI, which solves IFDS problems on SSA form programs

in several novel ways. Key to our approach is a novel interval-based graph reachability

algorithm that performs depth-first traversal in a reverse direction, yielding a low tree width

version of the same SSA graph, which is already a sparse graph representation for value flows.

This gives us the ability to solve graph reachability between SSA values with much better

resource efficiency and performance characteristics than previous approaches and provide

almost linear scalability to truly large programs.

A dynamic program analysis makes observations on the concrete execution of target pro-

grams. It extracts desired properties directly from the program states during run time. For

instance, variable values, exceptions, processor states, and most importantly, the program

paths. Knowing the exact execution path helps dynamic analyses to yield precise results,

as opposed to the over-approximations used by its static counterparts. However, dynamic

analyses are known to suffer from the coverage problem. Specifically, it’s difficult to gener-

ate proper inputs that trigger every possible program paths. Leading to incomplete or even

unsound analysis results.

Dynamic program analysis is often used in performance engineering like throughput analysis.

Throughput analysis aims to estimate the cycle counts and instruction per cycle (IPC) of
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a specific part of program. It is crucial to the development workflow of many performance

sensitive applications. Modern processors employee a large number of optimizations, like

superscalar architecture and out-of-order execution, to increase the program throughput

without any code modification. However, the exact execution model of such optimizations

is usually proprietary, varying between different hardware vendors or even processor models,

and hard to predict key throughput properties like instruction latency and number of cache

misses. Making timing estimation on the target programs more difficult.

Traditionally, cycle-accurate emulator has been a popular dynamic approach to the afore-

mentioned problems. Tools fall under this category faithfully model the architectural details

to match processor’s run time behavior, providing concrete and generally accurate estimates.

Nevertheless, they suffer from high analytic performance overhead and can require hours to

days for analyzing a program. Furthermore, architectural simulators exhibit a high architec-

ture dependence and are complicated to set up, often requiring dedicated expert knowledge

and/or giving rise to compatibility issues with standard tools and default environments.

In Chapter 4, we present MCAD, a lightweight alternative that provides whole-program

throughput prediction of binary software. MCAD follows a hybrid approach that supple-

ments static throughput estimates with dynamic runtime information. To avoid the over-

head of cycle accurate architectural simulation, MCAD uses an emulation-based approach

to obtain execution traces using QEMU [12] and dynamically forwards them to the LLVM

Machine Code Analyzer (MCA) [2] for instruction-level analysis. MCAD improves on the

state of the art by scaling up to complex real-world software. It is well suited to providing

cycle count estimates with rapid developer-centric turn-around times while targeting a range

of different hardware architectures.
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1.2 Contributions

This dissertation makes the following contributions, organized by chapter:

Chapter 3

• Efficient Graph Reachability. A novel tree like graph structure that encodes inter-

procedural, flow-sensitive, context-sensitive and sparse value flow information and can

resolve reachability queries in near constant time,

• Linear Scalability. An algorithm to construct the value flow graph whose memory

and runtime requirements scale almost linearly with the program size, and

• Open Source Implementaiton. A full source-language agnostic, LLVM IR-based

implementation of our technique that scales to large real-world projects containing

hundreds of thousands of lines of code.

Chapter 4

• Novel Differential Timing Analysis. We present MCAD: a new open-source frame-

work for throughput estimation yielding highly accurate differential timings, on par or

better than the current state-of-the-art, while reducing turnaround time by several

orders of magnitude.

• Hybrid Approach. Our prototype implementation leverages QEMU as a fast in-

struction executor, utilizing MCA to model individual per-instruction execution cy-

cles, rather than simulation-based approaches that faithfully model complex processor

front-ends.

5



• Efficient and Accurate Analysis on Real-World Cases. We provide a detailed

evaluation of MCAD with respect to accuracy and scalability for the popular x86

and ARMv8 instruction-set architectures using several different devices and hardware-

performance counters to collect timing measurements for real-world traces as ground

truth.

6



Chapter 2

Background

Program analysis studies the properties of software artifacts. It provides a better compre-

hension on the target software that can be further used in a wider variety of goals and

applications, ranging from performance improvements to security enhancements. The com-

plexities of those tasks usually grow up with the scale of the code bases. However, with

the increasing number of code bases exceeding millions lines of code, researchers and prac-

titioners have been struggling to keep the time and resources spending on program analyses

reasonable.

We focus on the scalability issues in two of the most prominent program analysis areas:

performance estimation and dataflow analysis. To familiarize the readers with these two

program analysis areas, we first cover some concepts shared between them in Section 2.1

and Section 2.2. Then, Section 2.3 and Section 2.4 provide introductions to the foundations

of their respective discussions in Chapter 3 and Chapter 4, in which additional area-specific

background will be provided in the beginning of each chapter.
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2.1 Trade-off Between Performance and Precision

When designing a program analysis – either a static or dynamic one, in many cases people

have to make trade offs between performance and precision, which are properties that usually

trend inversely proportional to one another. Finding the sweet spot between them for a

specific application has always been a hard problem in this area.

The performance of a program analysis is usually described in more straightforward ways,

including its run time, space consumption (i.e. memory and storage space) and the size of

programs under analysis. On the other hand, the precision of a program analysis is usually

characterized by its sensitivities. There are primarily four kinds of sensitivities, differing

from each other on the resolution, in the form of program constructions or concepts, of which

their analysis results can yield:

• Flow sensitivity. Whether the analysis considers control flows.

• Context sensitivity. Whether the analysis considers (inter-procedural) function calls,

specifically the caller contexts.

• Field sensitivity. Whether the analysis can distinguish individual fields in an aggregate-

type value, like a struct.

• Path sensitivity. Similar to flow-sensitivity, but it can distinguish not just the general

control flow but also individual program path.

Here, we are particular interested in the first two sensitivities for both static and dynamic

program analyses. These sensitivities will be covered in detail in the following paragraphs,

along with their potential impacts on the analysis performance.

To motivate our discussions, we perform a taint analysis on the C snippet depicted in Fig-

8



ure 2.1. In this analysis, the only source of taint is the return value of function taint src

(line 6); the analysis reports a positive result if any tainted value can reach the first argument

of function taint sink (line 7).

1 struct Agg {

2 int f1;

3 int f2;

4 };

5

6 int taint_src ();

7 void taint_sink(int v);

8

9 void foo(struct Agg *x) {

10 int v = 0;

11 taint_sink(v);

12 if (x)

13 v = x->f1;

14 taint_sink(v);

15 }

17 void bar() {

18 struct Agg obj;

19 obj.f2 = taint_src ();

20 foo(&obj);

21 }

22

23 void zot() {

24 foo(NULL);

25 }

Figure 2.1: Example C code for Section 2.1

Flow sensitivity A flow sensitive analysis takes control flow locations into considerations.

Take function foo in Figure 2.1 as an example, there are two calls to taint sink on line 11

and 14; both consume variable v. A flow-insensitive analysis always yields a positive result

regardless of which taint sink call sites the users are asking, as long as variable v is tainted

somewhere in the entire program. This leads to false positive at line 11, as it consumes

nothing but a (non-tainted) constant so it will never be tainted. On the other hand, a

flow-sensitive analysis can correctly tell that only line 14 is considered a potential tainted

site.

In principle, such sensitivity is achieved by tracking the variable in interest (in this case v)

through control flow path. Traditionally, this is done by maintaining certain data structures

at each program point. For instance, in this case, both dynamic and static analyzers can

maintain a set of tainted variables before (or after) each statement [30]. However, such
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per-statement data structures don’t usually scale well with the number of statements as well

as tracked variables, in terms of run time and memory consumption. As they might grow

quadratic or even cubic [51, 57, 28] with the aforementioned factors in the worst case. More

importantly, many of the collected information on each statement might turn out be either

redundant or unused [38], hence a waste of efforts.

Flow-insensitive analyses tend to use a single data structure to model the analysis problem

of a sub-program construction (e.g. function) or the entire program. Abstracting away all

the control flow details. For instance, they can use a single set to carry all possible tainted

variables in Figure 2.1. As a consequence, they usually scale better with program complexity

as well as the analysis domain. Of course, this approach – especially when using with static

analyzers – can easily create false positives due to its inability to distinguish different control

flow points, as we illustrated earlier with variable v in Figure 2.1.

Context sensitivity A context sensitive analysis is able to calculate the results of a

function based on its caller contexts. Using function foo in Figure 2.1 as the example again,

there are two callers in the same snippet: bar and zot. Since zot always calls foo with

a NULL value, line 12 will never be taken, hence both line 11 and 14 will never be tainted

under this calling context. Nevertheless, a context-insensitive analysis is unable to make

such inference and yield a false positive analysis result for foo function called at line 24,

which is something that does not happen for a context-sensitive analysis.

There are several ways to implement a context-sensitive analysis. For a static analysis the

most straight forward way is by inlining every callee functions to their call sites. This es-

sentially turns an inter-procedural analysis problem into an intra-procedrual one, bringing

the benefits of little or no modification to the original analysis algorithm. However, such ap-

proach can easily increase memory pressure as the program under analysis bloats. Moreover,

it’s tricky to handle recursion and an analysis usually sets an upper bound on the number
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of recursive levels it will track down [68].

Another common approach taken by context-sensitive static analyses is using function sum-

mary. Specifically, the analysis summarizes the ingress and egress information of a callee

function, for each caller context, and inserts such summary into the respective call site. This

method avoids the aforementioned code bloating issue. Nevertheless, it still imposes limita-

tions on recursion, which is usually mitigated by over-approximation with lost of precision.

Such precision lost can be avoided if the analysis has certain data flow property, specifically

a distributive transfer function, which will be covered later in Section 2.3 and Chapter 3.

2.2 Memory Aliasing

The problem of memory aliasing in program analysis stems from indirect memory operations,

where values are accessed through memory addresses known during run time. Two memory

addresses are aliases if the memory objects they point to are overlapped, either partially

or completely. Memory aliasing can have significant implications on program behavior,

including the potential for unexpected side effects, bugs, and performance issues.

One of the primary challenges associated with memory aliasing is that it can lead to un-

intended modifications of data. When multiple pointers or references are allowed to access

and modify the same memory location, changes made through one pointer can affect the

values accessed through other pointers. This can lead to incorrect program behavior, as

it violates the assumption that each memory location is only modified by a single entity.

Memory aliasing-related bugs can be challenging to diagnose and fix, as the root cause may

be distant from the observable symptoms.

Memory aliasing also poses challenges to both static and dynamic program analyses. For

instance, when a compiler encounters memory aliasing, it needs to consider all possible paths

11



through the program to determine if a memory location can potentially be modified. This

can limit the ability of the compiler to apply more aggressive optimizations such as loop

unrolling, common subexpression elimination, or instruction scheduling. The presence of

memory aliasing can result in conservative assumptions by the compiler, leading to subopti-

mal generated code and reduced performance.

Out-of-order execution is an optimization technique commonly seen in modern processors.

It reorders incoming instruction sequence to increase throughput and maximize the degree

of Instruction Level Parallelism (ILP). In order to preserve the semantic of the original pro-

gram, online dependency analysis plays an important part in this process, which boils down

to resolving dependencies on resources like register files and, more importantly, accessed

memory addresses. It has to make sure instructions that accesses memory aliases can’t be

reordered. This is a complicated dynamic analysis for both the hardware and various emu-

lators used in both functional and cycle-accurate program analysis. Emulators of such kind

usually take weeks or even months on running larger programs due to the aforementioned

complexity, making scalability one of the most prominent issues in its field.

2.3 Dataflow Analysis

Dataflow analysis is the bread and butter for performing static program analysis. It helps

users to get an approximation of data movements during run time in a static fashion. This

data is usually abstract program facts or properties in which users are interested in. For

instance, memory objects pointed by a certain pointer, constant values, and tainted variables,

to name a few. A dataflow analysis usually evaluates such program facts at each statement

following the control flow order, going either forward or backward. We can express a forward
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dataflow analysis with the following model:

OUTs = GENs ∪ (INs −KILLs)

INs = ⊓
∀i∈pred(s)

OUTi

In this formulation, INs and OUTs are the input and output sets of dataflow facts for

statement s, respectively; GENs and KILLs are the respective sets of facts generated and

killed by s; pred(s) is the set of predecessors of s, while succ(s) is its successors counterpart;

⊓ is the meet operator we will cover shortly. Using taint analysis as an example, which tries

to find the set of variables that are tainted at a given program point, GENs is the set of

variables newly tainted by s; KILLs can be the set of ”sanitized” variables.

We can further rewrite the above formulation into:

fs(INs) = GENs ∪ (INs −KILLs)

INs = ⊓
∀i∈pred(s)

fi(INi)

Where we abstract each statement s into a transfer function fs over the inputs INs.

Determining program executions statically is difficult, as this problem can be boiled down

to the halting problem [59], which is famously undecidable in the general case. Thus, peo-

ple usually design their analyses in a way that over-approximates the real executions that

accounts for every possible program states. The key to such over-approximation is the as-

surance on soundness (i.e. does not yield incorrect results). To this end, dataflow facts are

usually modeled using lattice. A lattice L is partially ordered set in which a partial order

⊑ is defined between some of the elements. In the context of dataflow analysis, each element

in L is modeled as a possible dataflow result. Given two elements a, b ∈ L, a ⊑ b can be

interpreted as ”a is a safer result than b”.
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A safe dataflow result can be used by transformations or optimizations without breaking

the original program semantics. The exact interpretation of ”safe” and definition of ⊑ vary

among different analyses. For instance, to a taint analysis it is always considered safe to claim

that all variables are tainted, albeit being extremely imprecise. Thus, a ⊑ b is defined using

superset operator a ⊇ b for a, b ∈ Ltaint. In contrary, to an available expression analysis,

which gives a set of expressions that need not to be recomputed at each program point, it

is considered safe to make every expressions subject to recomputation. Therefore, a ⊑ b is

defined using subset operator a ⊆ b for a, b ∈ Lavlexpr.

When we consider a statement with multiple predecessors, like joining two branches, we

have to specify a way to merge dataflow facts coming from different predecessors with meet

operator ⊓. Similar to ⊑, The exact definition of ⊓ depends on the analysis. For instance,

in taint analysis, ⊓ is a set union. On the other hand, in an available expression analysis ⊓

is a set intersection on invariant expressions from all predecessors.

2.3.1 Properties of transfer function

A dataflow analysis usually traverses along control flow to evaluate the desired dataflow facts

on each statement. In the ideal model, this is done by enumerating every possible program

paths and apply transfer functions along the path accordingly, before merging these path-

based results at the end. Such solution is also called Meet-Over-Paths (MOP). However,

MOP is generally computational infeasible due to the inherent path explosion problem in

static analysis. In practice, people usually prefer another kind of solution called Maximum

Fixed Point (MFP). The idea of MFP is to merge dataflow facts whenever the control flows

join, in conjunction with an iterative procedure that repeats until a fixed point solution is

found. The seminal work by Kam et al. [30] showed that if the transfer function is monotone,

such fixed point solution can be found.
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Given a finite lattice L, partial order ⊑ and meet operator ⊓, a transfer function f is said

to be monotonic iff:

f(a ⊓ b) ⊑ f(a) ⊓ f(b) where a, b ∈ L

The monotonic property effectively ensures that dataflow facts during the iterative process

only gradually become safer. More formally speaking, the lattice elements of dataflow facts

only progress in a single direction in the lattice. And since the lattice has a finite height,

this process is guarantee to terminate.

Similar to monotonic function, a transfer function is said to be distributive iff:

f(a ⊓ b) = f(a) ⊓ f(b) where a, b ∈ L

Transfer functions with this property hold the same precision regardless of applying them

before or after a merge. It is a subset of monotonic function.

2.4 Throughput Analysis

In the field of performance engineering for computer programs, throughput analysis plays a

critical role in assessing and optimizing the efficiency and scalability of software applications.

Throughput analysis focuses on measuring the rate at which a program can process a specific

workload or perform a set of tasks. It helps software developers and performance engineers

identify performance bottlenecks, understand system limitations, and improve the overall

throughput of their applications.

One of the primary objectives of throughput analysis in performance engineering is to identify

and address performance bottlenecks within a computer program. Performance bottlenecks

are points in the code where the program’s execution slows down or becomes inefficient,
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limiting the overall throughput of the application. By analyzing the flow of work, examining

resource utilization, and measuring metrics such as response time and throughput rate, per-

formance engineers can pinpoint the areas that negatively impact performance. Throughput

analysis helps identify inefficient algorithms, resource-intensive operations, or synchroniza-

tion issues, allowing developers to optimize code and improve the throughput of the program.

Furthermore, throughput analysis is crucial for evaluating the scalability of computer pro-

grams. Scalability refers to the ability of a program to handle an increasing workload or user

demand without a significant decrease in performance. Throughput analysis helps perfor-

mance engineers assess how the program’s throughput changes as the workload or the number

of concurrent users increases. By conducting load testing and analyzing performance met-

rics under different workloads, engineers can identify scalability limitations, determine the

maximum throughput the program can handle, and make necessary optimizations to ensure

the program can scale effectively.

Moreover, throughput analysis provides valuable insights into the impact of system configu-

ration and hardware resources on program performance. By varying parameters such as the

number of processing cores, memory allocation, or disk I/O rates, performance engineers can

analyze how different system configurations affect the program’s throughput. This informa-

tion enables engineers to optimize resource allocation, fine-tune system settings, and select

appropriate hardware components to maximize program throughput and achieve optimal

performance.

Throughput analysis is a crucial aspect of performance engineering for computer programs.

By identifying performance bottlenecks, evaluating scalability, and analyzing the impact of

system configuration, performance engineers can optimize code, allocate resources effectively,

and improve the overall throughput and performance of software applications. Through this

analysis, developers can ensure their programs can handle increasing workloads and meet

the performance expectations of end-users.
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Chapter 3

Scaling Interprocedural Value-Flow

Analysis to Large Codebases

Context- and flow-sensitive value-flow information is an important building block for many

static analysis tools. Unfortunately, current approaches to compute value-flows do not scale

to large codebases, due to high memory and runtime requirements. This paper proposes a

new scalable approach to compute value-flows via graph reachability. To this end, we develop

a new graph structure to represent instruction dependencies which (i) is highly time and space

efficient in its construction, and (ii) allows us to resolve reachability queries in near constant

time. Underlying our approach are two key insights. First, the analysis domain is restricted

to represent only sparse SSA def-use chains and second, the graph construction traverses

def-use chains in opposite direction. Traditionally, dependency graphs are constructed in

forward direction resulting in graphs with a high number of non-tree edges. Our approach

instead minimizes the tree width of the resulting graph which allows us to employ time and

space efficient tree traversal algorithms to compute graph reachability and at the same time

enables efficient graph computation and storage.
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We present a value-flow analysis framework, DFI, implementing our approach. We compare

DFI against a state-of-the-art value-flow analysis framework, PhASAR, to extract value-

flows from 10 real-world software projects. Compared to PhASAR, DFI reduces analysis

time by a factor of 14 and at the same time reduces memory requirements by a factor of 3

on average. Our analysis shows that, in contrast to previous approaches, DFI’s memory and

runtime requirements scale almost linearly with the number of analyzed instructions.

3.1 Introduction

Value-flow analysis is a subset of dataflow analysis that helps to statically reason about the

dependencies among program constructs such as variables and memory blocks. It underpins

many crucial program analysis techniques that are widely used in compiler optimizations and

for finding security vulnerabilities: taint analysis [24, 10], uninitialized variable analysis [63],

live variable analysis [36], and available expression analysis, to name a few. In order to

operate effectively, such techniques usually require precise value-flow information that is

context- and flow-sensitive as well as interprocedural [62].

Seminal work by Reps et al. [51] demonstrated that interprocedural context- and flow-

sensitive analysis for finite, distributive, subset value-flow problems can be expressed as

reachability between nodes within a program graph. Their algorithmic framework IFDS

operates on a graph structure in which each node maps to a value-flow fact within the target

program. But, while solved in theory, in practice the adoption of static value-flow frameworks

is still limited by severe scalability issues. In fact, as we will show in Section 3.4, currently

there exists no static analysis framework that is able to solve such kind of value-flow prob-

lems for larger real world codebases such as OpenSSL and FFmpeg on single commodity

PCs.
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The memory and runtime requirements of static value-flow analysis frameworks such as IFDS

are largely governed by the graph representation of the program and the performance of the

graph reachability algorithm. Indeed, previous approaches to solving the scalability problem

have often focused on working around the shortcomings of established graph-reachability

algorithms [28, 37, 9]. In contrast, in this paper, we present a solution that is based on a

novel sparse graph representation, leading to a reachability algorithm that is highly efficient

in answering value-flow queries.

Our key insight is that by restricting value-flow facts to SSA values, the program graphs

representing value-flow can be constructed to have a low tree width [52], which is a measure

of how similar a graph is to a tree. Specifically, we found that performing a depth-first

traversal in the opposite direction of SSA def-use chains will result in a graph with a signif-

icantly reduced number of non-tree edges. Based on this insight, we develop a novel graph

reachability algorithm based on tree traversal which significantly reduces processing time

and memory requirements compared to previous approaches. In fact, our new algorithm

allows us to determine dependencies between two arbitrary instructions in near constant

time for most queries. Additionally, the resulting graph representation is sparse, thereby

further reducing processing time and memory requirements by incorporating only program

statements relevant for value-flow propagation.

We implemented these ideas in a framework that we call DFI1. DFI is an interprocedural flow-

and context-sensitive value-flow analysis framework for a specific kind of finite, distributive,

subset problems with SSA values as their value-flow facts. To quantify the improved per-

formance of our approach, we evaluate DFI against PhASAR [53], a state-of-the-art static

dataflow analysis framework for LLVM IR. PhASAR is a popular IFDS-based framework

that can solve the same kind of value-flow problems as DFI. As our evaluation shows, DFI is

able to scale to significantly larger codebases on commodity hardware than PhASAR, using

1The name DFI pays homage to IFDS, while our reversal of the letters alludes to the fact that our
technique processes nodes in the reverse order.
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significantly less memory overall, and running significantly faster. Therefore, DFI constitutes

the first static solution to resolve interprocedural context- and flow-sensitive value-flow for

real-world software projects, reaching to over a million lines of code, under realistic resource

limitations. In summary our contributions are the following:

• a novel tree like graph structure that encodes interprocedural, flow-sensitive, context-

sensitive and sparse value flow information and can resolve reachability queries in near

constant time,

• an algorithm to construct the value flow graph whose memory and runtime require-

ments scale almost linearly with the program size, and

• a full source-language agnostic, LLVM IR-based implementation of our technique that

scales to large real-world projects containing hundreds of thousands of lines of code.

We further pledge to make the source code of our project freely available under an open-

source license.

3.2 Background

In this Section, we explain terminologies and concepts that will serve as the building blocks

for rest of the paper.

3.2.1 Flow-Sensitive Value-Flow Analysis

Value-flow analysis models the specific propagation of data through a program’s storage

locations. A flow-sensitive analysis respects the program’s control flow and calculates results

for each program point. In contrast, flow-insensitive analysis ignores statement ordering and
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computes a single solution that is sound for all program points. Traditionally, to achieve flow-

sensitivity, value-flow analysis is built on top of a monotone dataflow analysis framework [30].

The analysis follows control flows in the control-flow graph (CFG), while accounting for

changes in dataflow facts made by each statement. For example, in a taint analysis, dataflow

facts are represented by a set of tainted variables at a given program point. For each

statement i, the transfer function calculates two sets: INi and OUTi, which represent the sets

of dataflow facts that hold right before and right after statement i. In the context of a taint

analysis, the transfer function might add (or subtract) variables that are (or not) tainted. INi

is equal to OUTi−1 passed down from previous statement in the control flow, in the case of

having multiple predecessor statements, INi is the set union of OUTp,∀p ∈ predecessors(i).

The algorithm repeatedly performs such updates on every statement until it reaches a global

fixed point.

This approach usually comes with a high performance overhead. Dataflow facts are propa-

gated to every program point, despite the fact that only a small portion of them is needed

to answer the dataflow query we are interested in. In addition, maintaining two sets per

statement tends to create a large memory footprint as well.

SSA-Based Sparse Value-Flow Analysis

In recent years, sparse value-flow analysis [25, 57, 48, 26] has introduced a promising solution

to the aforementioned problem. Sparse value-flow analysis avoids propagating dataflow facts

through program statements that are unrelated to the analysis. A common way is to perform

the analysis on Static-Single Assignment (SSA) form [21] of programs.

In SSA, each variable is defined exactly once in a “static” view of the program, i.e., disregard-

ing “dynamic” reassignments of variables that may happen at the same program location

inside of loops. If there are multiple static definitions of a variable in the original program

(such as multiple separate program locations that perform assignments to the variable), then
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each such assignment of the original program variable becomes a separate SSA variable or

value. SSA form expresses value definitions and usage information, also called def-use chains,

explicitly, so that tracing values to their immediate uses becomes much easier. Therefore,

def-use chains can help us to rule out irrelevant data flows and greatly improve the efficiency

of value-flow analyses [49].

Tracking every variable in SSA form is difficult as it has to account for potential aliasing

among pointer variables. To tackle this problem, mainstream compilers such as GCC [46]

and LLVM [33] adopt a variant of SSA called partial SSA which divides variables into two

categories: top-level and address-taken. Top-level variables cannot be referenced indirectly

via a pointer and can be trivially converted into SSA form; address-taken variables are

referenced indirectly via top-level pointer variables and are not represented in SSA form at

all. This additional layer of indirection makes it more difficult for us to track value-flows on

address-taken variables in partial SSA. In Section 3.3.1, we will show our solution to this

problem.

3.2.2 Value-Flow Analysis as Graph Reachability

Reps et al. pioneered the idea of solving traditional dataflow analyses by turning them

into graph reachability problems in their IFDS framework [51], inspiring a whole body of

research on graph reachability based program analysis [60, 31, 11, 42]. IFDS is designed

to solve finite, distributive, subset dataflow problems. These problems have distributive

transfer functions defined as F ⊆ 2D → 2D, where D is a finite set of dataflow facts. In

other words, the problem domain is restricted to the powersets of dataflow facts. IFDS can

thereby describe local transfer functions on each statement as a mapping between dataflow

facts before and after the statement. The transfer functions connect individual dataflow

facts across statements via edges that transitively compose into paths in a larger exploded
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supergraph. An intraprocedural dataflow query then boils down to computing whether there

is a valid path between the vertex representing the dataflow source and the program points

we are interested. Interprocedurally, the paths are extended from a call site to a callee and

back to the same call site. Context-sensitivity is achieved by matching call and return edges.

The IFDS framework can operate on arbitrary domains D given that they are finite. In

contrast, DFI restricts the dataflow fact domain to SSA values covering a wide range of

crucial value-flow analyses like taint analysis and uninitialized variable analysis, to name a

few.

3.2.3 Reachability via Depth-First Tree Intervals

A Depth-First Tree (DFT) is a common approach to compute graph reachability. A DFT is

an ordered spanning tree derived from the process of Depth-First Search (DFS) [20]. Each

vertex of a DFT is assigned an integer interval ⟨sv, ev⟩: sv is the discovery timestamp when

v is first visited and ev is the finish timestamp when all out-neighbors of v have been visited.

The timestamp is initialized with zero and it is increased by one upon visiting a new out-

neighbor from a vertex. Formally speaking, an interval has the following invariant:

sv, ev ∈ Z, sv ≥ 0 ∧ ev ≥ 0 ∧ ev > sv

Figure 3.1 shows an example graph with its DFT intervals. To simplify the problem without

losing generality, we always add a pseudo vertex δ to connect every vertex in the graph, such

that the spanning tree has a single root.

For a given vertex in the spanning tree, its interval always subsumes the intervals of all

vertices in its subtree. An interval ⟨sk, ek⟩ is said to subsume another interval ⟨sl, el⟩, denoted
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Figure 3.1: A graph annotated with DFT intervals

by ⟨sk, ek⟩ ⊇ ⟨sl, el⟩, if they have the following properties:

sk ≤ sl ∧ ek ≥ el =⇒ ⟨sk, ek⟩ ⊇ ⟨sl, el⟩

Vertex F in Figure 3.1, for example, has an interval of ⟨10, 15⟩, which subsumes the intervals

of its children ⟨11, 12⟩ and ⟨13, 14⟩. Conversely, vertex E and F are siblings so none of their

intervals subsumes one or the other. We distinguish between tree edges (solid lines) and

non-tree edges (dashed lines) in Figure 3.1. There are two types of non-tree edges: cross

edge and back edge. They are defined using the interval relationship: for vertices k and l,

alone with their corresponding intervals ⟨sk, ek⟩ and ⟨sl, el⟩, Edge k → l is

• a cross edge if el < sk ∨ ek < sl, and

• a back edge if ⟨sl, el⟩ ⊇ ⟨sk, ek⟩.

For example, in Figure 3.1, edge E → C is a cross edge, and edge H → D is a back edge.

By comparing the intervals of arbitrary two vertices, using the subsuming relation defined
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earlier, we can easily know whether they can reach each other through (spanning) tree edges

in constant time. However, this property only holds for tree edges. For reachability queries

on generic graphs, we also need to consider paths that go through non-tree edges. To answer

those queries, several previous works [61, 64, 29] have proposed a variety of ad-hoc solutions

on top of DFT intervals. In Section 3.3.3, we are going to introduce an augmented DFT-

interval graph reachability algorithm to solve this problem.

3.3 DFI Design and Implementation

DFI is designed to be programming-language agnostic on its input program and can process

any program compiled into LLVM IR. Section 3.3.1 will cover necessary preprocessing to

convert this initial LLVM IR into a form more favorable to value-flow analysis. Sections 3.3.2

to 3.3.4 will cover the details of our main algorithm and implementation.

3.3.1 Preprocessing

DFI relies heavily on the sparse SSA program representation to track value-flows efficiently.

However, as discussed in Section 3.2.1, the partial SSA form used by LLVM IR excludes

address-taken variables. To track the value-flows of address-taken variables we convert the

original input program into a custom representation that improves handling of indirect mem-

ory operations and pointers.

We implement this custom program representation using MLIR [34], a versatile framework

to create custom intermediate representations (IRs) for program analyses and compiler op-

timizations. A custom IR is called dialect in MLIR. It consists of a type system and various

building blocks that define the semantics like operation, block, region, and attribute, to

name a few. A program statement or LLVM IR instruction is usually modeled by a MLIR
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operation. We create our own DFI dialect on top of existing LLVM IR constructions with

three custom operations: dfi.store, dfi.may use and dfi.call.

dfi.store and dfi.may use operations

To make value flows on address-taken variables explicit in SSA from, DFI introduces two

new memory operations to the dialect: dfi.store and dfi.may use. Inspired by the idea

of MemorySSA [19, 47]. dfi.store acts like a normal llvm.store instruction with two

additional features in its IR form: (i) it can carry an auxiliary set of address-taken variables

that are potentially referenced by the pointer it is storing to (its MayDef set), and (ii) it

returns a new virtual register for each input pointer that is either directly-written or part of

the MayDef set and replaces successive uses of those input pointers with the new SSA variable

names. Listings 3.1 and 3.2 demonstrate the transformation of store into dfi.store. In

the example pointer %g might point to variable %a. Therefore the llvm.store at line 3

in Listing 3.1 is transformed into a dfi.store that produces two results (%g0 and %a0)

representing the post-store %g and %a registers, with %a being in the MayDef set. As a

consequence, e.g. the input argument of load in line 4 is updated to %a0 to capture side

effects induced by potential aliasing. In the absence of pointer aliasing the MayDef set is

empty and dfi.store simply produces a new SSA value for the pointer operand that replaces

its subsequent uses.

To capture side effects of read-only memory operations like load or getelementptr on

pointers operands, we introduce dfi.may use as an additional instruction. dfi.may use

makes potential side effects explicit by aggregating them into a new virtual register which is

used to replace the original operand of the read-only memory operation. In line 5 and 6 of

Listing 3.2 the input of the load instruction is replaced with the return value of dfi.may use

which aggregates side effects on %a through %g.

1 // %g might point to %a
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2 func @f(%p: !ptr <i32 >, %g: !ptr <i32 >, %a: !ptr <i32 >) {

3 llvm.store 34, %g

4 %v1 = llvm.load %a

5 %v2 = llvm.load %g

6 }

Listing 3.1: Original IR

1 // %g might point to %a

2 func @f(%p: !ptr <i32 >, %g: !ptr <i32 >, %a: !ptr <i32 >) {

3 %g0 , %a0 = dfi.store 34, %g mayDef{ %a }

4 %v1 = llvm.load %a0

5 %m = dfi.may_use( %g0 , %a0 )

6 %v2 = llvm.load %m

7 }

Listing 3.2: IR after conversion to use dfi.store and dfi.may use

dfi.call operation

To support interprocedural analysis, it is essential to capture value-flows of the callee function

at a given call site. For callees that have no side effects (e.g. pure functions), it suffices to

propagate value-flows through function arguments and the return value. However, we also

need to consider output arguments where results are carried through pointer type function

parameters. In order to capture the value-flows propagated through output arguments, DFI

replaces normal function call operations, llvm.call, with custom dfi.call operations.

Similar to dfi.store, for each pointer argument in the original llvm.call, we add a pointer-

type result in the result list of dfi.call. Listing 3.4 and 3.3 show the result of replacing

llvm.call with dfi.call. 2

1 llvm.func @f(%v: i32 , %p: !ptr <i32 >) -> i64 {

2 %r = llvm.call @g(%v, %p )

3 %0 = llvm.load %p : !ptr <i32 >

4 llvm.return %r : i64

2For better readability, we will omit the type notation of all dfi.call occurrences in rest of the paper.
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5 }

Listing 3.3: IR before conversion to dfi.call.

1 llvm.func @f(%v: i32 , %p: !ptr <i32 >) -> i64 {

2 %r, %p0 = dfi.call @g(%v, %p )

3 %0 = llvm.load %p0 : !ptr <i32 >

4 llvm.return %r : i64

5 }

Listing 3.4: IR after conversion to dfi.call. The newly added function call result %p0 on

line 2 captures side effects induced by the callee g w.r.t pointer argument %p.

3.3.2 Structure and Workflow

Figure 3.2 shows the overall structure in DFI which comprises of two primary components:

main analysis engine and client analysis. The main analysis engine performs whole-program

analysis on the preprocessed MLIR code and passes results to the client analysis for down-

stream processing.

DEFI Analysis Engine

Intra-Procedural 
Module

Interprocedural 
Module Analysis Results

Client Analysis

Local Transfer 
Functions & 

Reversed Roots

Value-Flow 
Applications

Target 
Program

(in MLIR form)

Provide to

Workflow direction

Figure 3.2: Structure of the analysis engine in DFI

First, as further detailed in Section 3.3.3, intraprocedural DFT intervals are computed by

the analysis engine based on value-flow mapping information provided by the client analysis.
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Next, as described in Section 3.3.4, the intraprocedural value-flows will be propagated to

their callers in order to support interprocedural queries. Finally, the client analysis makes

analysis queries to retrieve flow- and context-sensitive value-flow information from the

analysis engine to solve domain-specific problems.

3.3.3 Intra-procedural Analysis

This Section discusses the algorithm of tracking intraprocedural value-flows. As mentioned

in Section 3.2.2, value-flow analysis can be boiled down to a graph reachability problem,

where each vertex is a dataflow fact on a certain program point and value-flow queries are

answered by determining the reachability of two vertices.

Similar to IFDS, DFI also approaches the intraprocedural part of this problem by employing

a local transfer function for each statement and a graph reachability solving technique.

However, instead of the tabulation-based strategy used by the original IFDS technique,

DFI adopts a novel graph reachability solving technique based on depth-first spanning tree

intervals introduced in Section 3.2.3. The idea is that for a given value-flow analysis problem,

if every relevant operation in the program is annotated with DFT intervals, we are able to

determine the reachability between two arbitrary operations by comparing their intervals in

nearly constant time.

To demonstrate this concept, Figure 3.3 shows a MLIR function in which the values are

annotated with DFT intervals. For instance, value %p and %1 have ⟨0, 5⟩ and ⟨1, 4⟩ for their

intervals, respectively. These intervals are annotated on the spanning trees derived from the

SSA def-use graph, consisting of edges that go from a single SSA value definition to its

uses.

3To simplify the code, in rest of the paper we ”inline” the constants that are normally represented by
dedicated llvm.constant operations. Also, we use !ptr in replacement of !llvm.ptr for pointer types.
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llvm.func @foo(%a: i32, %p: !ptr<i32>)->i32 {

  %t = llvm.alloca 1 x i32

  %0 = dfi.store %a, %t : !ptr<i32>

  %1 = llvm.load %p : !ptr<i32>

  %2 = dfi.store 3, %p : !ptr<i32>

  %3 = llvm.add 2, %1 : i32

  llvm.return %3 : i32

}

〈6, 9〉 〈0, 5〉

〈1, 4〉

〈2, 3〉

〈7, 8〉

Figure 3.3: DFT intervals in a MLIR function3

Assume a taint analysis is performed on Figure 3.3 and %p is a tainted value. To determine

if the return value %3 is tainted it is sufficient to check if its interval ⟨2, 3⟩ is subsumed by

that of %p ⟨0, 5⟩. In this case, since ⟨0, 5⟩ ⊇ ⟨2, 3⟩ per our definition in Section 3.2.3, the

return value is tainted. In fact, both %1 and %3 are tainted, as their intervals are both

inside the subtree of ⟨0, 5⟩. On the other hand, %0, whose interval is ⟨7, 8⟩, is not tainted

because it resides in a different DFT subtree rooted at ⟨6, 9⟩.

To calculate the trees and associated intervals shown in Figure 3.3 the client analysis cus-

tomizes the traversal mechanism introduced in Section 3.2.3. First, for each function, the

client analysis chooses a set of root vertices to start the traversal. Note that the traversal

timestamp in each function always starts from zero. Second, for each vertex in the function,

a local transfer function is provided by client analysis to dictate the out-going vertices to

visit next. In the context of taint analysis on Figure 3.3, the client analysis picks %a and %p

as the traversal roots. For the local transfer function, the rules for each kind of operation

are shown in Figure 3.4. Take the rule for dfi.store as an example, in which the result

pointer %q is tainted only if the stored value %v is tainted. It effectively stops the DFT

traversal to go from %p to %q, but allows the path from %v to %q.

The DFT interval scheme described in the previous example only details the computation of
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%q = dfi.store %v, %p %r = llvm.add %a, %b %v = llvm.load %p

%v %p

%q

%a %b

%r

%p

%v

Figure 3.4: Local taint analysis transfer functions on Figure 3.3

reachability based on (spanning) tree edges. In the following Section we will discuss a more

general reachability problem w.r.t both tree and non-tree edges.

Non-Tree Edges in SSA Def-Use Graph

Non-tree edges inhibit the application of the simple interval-based graph reachability algo-

rithm on generic SSA def-use graphs. To generalize our solution over those graphs, we first

discuss program constructs that result in non-tree edges.

1 llvm.func @f(%a: i32 , %b: i32 , %c: i32) -> i32 {

2 %t = llvm.add %a, %c : i32

3 %r = llvm.mul 3, %t : i32

4 llvm.return %r : i32

5 }

Listing 3.5: A MLIR function

Figure 3.5a shows the SSA def-use graph for Listing 3.5. In Figure 3.5a, each vertex is

labeled with an operation or value and edges are labeled with the value being used. Starting

the creation of DFT intervals from function argument %a will produce three edges: %a, %t,

and %r. However, when we proceed to visit rest of the vertices, the edge between %c and

llvm.add becomes a non-tree edge, since the latter operation has been visited before. We

observe that, with this scheme, a non-tree edge appears if there is more than one operand

in an operation. The additional operands create multiple parent vertices for the operation

resulting in non-tree edges. Therefore, the number of non-tree edges is proportional to the

number of operands. Unfortunately, the majority of nodes in standard LLVM IR have more

31



%a %c

%t = llvm.add %a, %c

%r = llvm.mul 3, %t

llvm.return %r

%a %c

%t

%r

(a) SSA def-use graph

%a %c

%t = llvm.add %a, %c

%r = llvm.mul 3, %t

llvm.return %r

%r

%t

%c%a

(b) Reversed SSA def-use graph

Figure 3.5: SSA def-use graphs for Listing 3.5

than one operand.

Benchmark name no use 1 use 2 uses 3 uses 4+ uses
libcrypto (OpenSSL) 31.89% 59.65% 4.00% 1.53% 2.93%
libssl (OpenSSL) 33.44% 59.97% 2.30% 1.55% 2.74%
SQLite 3 30.70% 52.26% 9.53% 3.09% 4.42%
FFmpeg 20.67% 59.98% 11.53% 3.59% 4.23%
Lighttpd 30.50% 63.74% 2.08% 1.05% 2.63%
Servo 37.19% 50.58% 7.43% 1.69% 3.11%

Table 3.1: Percentage of SSA values with the respective number of uses

Reversed DFT Traversal

To effectively reduce the number of non-tree edges in a SSA def-use graph, DFI adopts a

novel solution: traversing the graph in the reverse direction when building DFT intervals.

In Figure 3.5a the traversal direction goes from a SSA definition to its uses. If we reverse

this direction and go from a SSA use to its value definition, as demonstrated in Figure 3.5b,

the number of non-tree edges no longer depends on the fixed number of operands. Instead,

for a given value, the number of non-tree edges is proportional to the number of its SSA

uses.

This led us to an important new realization: in most of the real-world codebases, the majority

of the SSA values have a single or even no SSA use. Table 3.1 shows the percentage of SSA

values against different number of SSA uses in 6 real-world codebases. The statistics show
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that 80% to 90% of the SSA values have a single or no use in all benchmarks. In other

words, if we traverse the SSA def-use graphs in the opposite direction, the resulting number

of non-tree edges is far smaller than the number of tree edges.

Reversed DFT Root Reversed DFT traversal starts from a set of vertices called reversed

roots. They are the out-neighbors of pseudo vertex δ introduced in Section 3.2.3. In DFI, the

client analysis can pick its own reversed roots within a function body to begin the traversal.

By selecting all possible value-flow end points as reversed roots, the client analysis ensures

that all possible value flows through a function are expressed in the resulting graph, which

is critical to the soundness of the analysis. Some of the most common end points include

instructions producing no result (e.g. return instructions) and values with no SSA users. It

is worth noting that DFI is able to compute all possible value flow paths at once because

our algorithm is both time and space efficient, which we will show in Section 3.4.

Augmented DFT-Interval Graph Reachability

With reduced number of non-tree edges, DFI augments the DFT-interval-based algorithm

to solve graph reachability in reversed SSA def-use graphs. In short, this method duplicates

the interval upon encountering a non-tree edge, such that we can use a similar subsuming

relationship between two intervals to determine their reachability.

To support our method, we introduce a new data structure: interval set. An interval set Π

is a collection of intervals

{⟨s1, e1⟩, ⟨s2, e2⟩, ..., ⟨sn, en⟩}

in which every element separates themselves with each other by least one timestamp. i.e.

∀⟨si, ei⟩, ⟨sj, ej⟩ ∈ Π, i ̸= j =⇒ ei < sj − 1 ∨ ej < si − 1
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An interval set Πi is said to subsume another set Πj, namely Πi ⊇ Πj, if any of the interval

in Πi can subsume another interval in Πj. i.e.

∃⟨sk, ek⟩ ∈ Πi, ⟨sl, el⟩ ∈ Πj s.t. ⟨sk, ek⟩ ⊇ ⟨sl, el⟩

Two interval sets Πi and Πj can be merged by operator ∪, denoted as Πi∪Πj. Let Πk be the

merged interval set from Πi and Πj, it can subsume both Πi and Πj i.e. Πk ⊇ Πi∧Πk ⊇ Πj.

In our augmented DFT-interval-based reachability algorithm, each SSA def-use graph vertex

v is associated with an interval set Πv (rather than a single interval). Vertex vi can reach vj

if and only if Πvj subsumes Πvi . i.e.

vi ⇝ vj ⇐⇒ Πvj ⊇ Πvi ∧ Πvi ̸= ∅ ∧ Πvj ̸= ∅

Note that since we build DFT intervals in reversed direction, a vertex can reach another

vertex if the interval set of the destination subsumes that of the source. To build interval

sets for each vertex in the graph, the interval set of each vertex is first initialized with

a single interval created from a normal DFT-interval building process (see Section 3.2.3).

Next, non-tree edges are incorporated.

Given a cross edge vs → vd, Πvd is merged into Πvs and the interval sets of all of its ancestors.

Figure 3.6a shows an example of handling cross edge E → D. The interval set for destination

vertex D, {⟨2, 3⟩}, is merged into the interval sets of E, as well as its ancestors C and A. This

allows us to account for graph reachability of two vertices that passes through E → D. For

example, C can reach D because ΠC ⊇ ΠD. If vs → vd is a back edge, Πvd will be merged into

the interval sets of all vertices in the corresponding Strongly-Connected Component (SCC).

The intuition behind this is that every vertex in such SCC belong to a subtree rooted at vd,

per the definition of back edge mentioned in Section 3.2.3. In other words, Πvd subsumes

the interval sets of all of those vertices. Thus, our merging scheme here is able to reflect the
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(b) Back Edge

Figure 3.6: Non-tree edge handling

mutual connectivity of vertices in a SCC, including the back edge. Figure 3.6b shows an

example of handling back edge D → A. The interval set for destination vertex A, {⟨0, 9⟩},

is merged into the interval sets of every other vertex in the same SCC. Namely, vertices B,

C, and D.

Meet Operator The meet operator specifies how value flows are combined from different

program paths e.g. at a control flow merge point. In our algorithm, we use interval set

merge ∪ as our meet operator. Per our previous definition of ∪, the merged interval set is

always a safe approximation for the incoming interval sets and thus ensures soundness.

3.3.4 Inter-procedural Analysis

This Section discusses how to apply our interval-based reachability algorithm across interpro-

cedural constructions e.g. call sites. DFI uses a summary-based interprocedural value-flow

algorithm. We summarize the value-flows of each function in a function value-flow summary

which is propagated to all of its call sites. Since the newly introduced callee summary alters

value-flows inside the caller function, this process is repeated until a fixed point is reached.

A function value-flow summary comprises of a set of reachable relationships between function
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Value Interval Set Summarized Value-Flow

%r {⟨0, 7⟩}

%r

%a %b %c
%t {⟨1, 6⟩}
%a {⟨2, 3⟩}
%c {⟨4, 5⟩}

(a) Listing 3.5

Value Interval Set Summarized Value-Flow

(On Call Site)

%t1 {⟨0, 7⟩}
%k %r

%k’ %r’

%t0 {⟨1, 4⟩}
%k {⟨2, 3⟩}
%r {⟨5, 6⟩}

(b) Listing 3.6, reversed root %t1

Figure 3.7: Function value-flow summaries in two different synthetic analyses

arguments and (outgoing) results. The results of a function are returned values or output

(i.e. pointer) arguments. The summary describes the mapping between arguments and

results which is expressed through argument and result indices. The result index is equal to

the index of its counterpart in the result list of the dfi.call operation (see Section 3.3.1).

In every dfi.call, the original returned value (if there is any) has index 0, followed by

pointer argument type results. We denote I(p) as the argument index of argument p. In

addition, O(p) is defined as the result index of p if p is part of PTf , a subset of function

arguments for f containing all pointer arguments. The value-flow summary for function f is

denoted as Sf = SR
f ∪SP

f . The sets S
R
f and SP

f represent mappings from function arguments

to return value and to output arguments respectively. Let Rf and Pf be the set of return

values and arguments in f , respectively. SR
f is defined as

{I(p)⇝ 0 | p⇝ r,∀p ∈ Pf ,∀r ∈ Rf}

Figure 3.7a shows the value-flow summary of f based on interval sets derived from a synthetic

value-flow analysis. Since Πr ⊇ Πa and Πr ⊇ Πc, the value of SR
f == Sf is {0⇝ 0, 2⇝ 0}

1 llvm.func @g(%k: !ptr <i32 >, %r: !ptr <i32 >) {

2 %t0 = llvm.load %k : !ptr <i32 >

3 %t1 = dfi.store %t0, %r : !ptr <i32 >

4 }

Listing 3.6: A MLIR function with two pointer arguments
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SP
f captures the potential value-flows applied on pointer arguments in function f . Specif-

ically, it contains mappings between pointer arguments and corresponding output results

on the dfi.call sites. Since the result of a pointer argument can be difficult to locate in

the callee, we use the reachability between pointer arguments and the reversed roots as a

safe approximation4. For arbitrary two pointer arguments p0 and p1, SP
f is initialized with

I(p0)⇝ O(p0) and I(p1)⇝ O(p1). If p0 and p1 can both reach a reversed root τ , then we

can add I(p0) ⇝ O(p1) and I(p1) ⇝ O(p0) into SP
f . Formally speaking, let Tf be the set

of reversed roots in f , SP
f is defined as

{I(p)⇝ O(k), I(k)⇝ O(p) | ∃τ ∈ Tf s.t.

p⇝ τ ∧ k ⇝ τ, ∀p, k ∈ PTf} ∪ {I(p)⇝ O(p) | ∀p ∈ PTf}

Figure 3.7b shows an example value-flow summary for function g in Listing 3.6 based on

another synthetic value-flow analysis. k′ and r′ correspond to the results of k and r at a call

site, respectively. Since both k and r can reach the reversed root %t1, SP
g in this case can

be written as

{I(k)⇝ O(k), I(k)⇝ O(r), I(r)⇝ O(r), I(r)⇝ O(k)}

which is equal to {0⇝ 0, 0⇝ 1, 1⇝ 1, 1⇝ 0}

Value-Flow Summary Propagation

Next, we propagate the value-flow summary Sf to every call site of f . On a high level, Sf

provides the missing local value-flow mappings at every call site of f . With this information

in place, we are able to add new value-flows to the caller functions to improve precision.

This process consists of two phases.

In the first phase, for each vs ⇝ vd in Sf , we perform another round of reversed DFT

4As explained in Section 3.3.3 all value flow endpoints are selected as reversed roots.
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f g

Value Interval Set Value Interval Set
%v {⟨5, 6⟩} %k {⟨3, 4⟩}
%p {⟨1, 2⟩} %b ∅
%t0 {⟨0, 3⟩} %s0 ∅
%t1 {⟨4, 7⟩} %s1 {⟨0, 1⟩}

Sf = {0⇝ 1, 1⇝ 0, 1⇝ 1} %s2 ∅
%s3 {⟨2, 5⟩}

(a) After intraprocedural analysis

f g

Value Interval Set Value Interval Set
%v {⟨5, 6⟩} %k {⟨3, 4⟩}
%p {⟨1, 2⟩} %b {⟨8, 9⟩}
%t0 {⟨0, 3⟩} %s0 {⟨3, 4⟩, ⟨6, 7⟩}
%t1 {⟨4, 7⟩} %s1 {⟨0, 1⟩}

Sf = {0⇝ 1, 1⇝ 0, 1⇝ 1} %s2 ∅
%s3 {⟨2, 5⟩}

(b) After value-flow summary propagation phase 1

f g

Value Interval Set Value Interval Set
%v {⟨5, 6⟩} %k {⟨3, 4⟩}
%p {⟨1, 2⟩} %b {⟨8, 9⟩}
%t0 {⟨0, 3⟩} %s0 {⟨3, 4⟩, ⟨6, 7⟩}
%t1 {⟨4, 7⟩} %s1 {⟨0, 1⟩, ⟨8, 9⟩}

Sf = {0⇝ 1, 1⇝ 0, 1⇝ 1} %s2 {⟨3, 4⟩, ⟨6, 7⟩}
%s3 {⟨2, 5⟩}

(c) After value-flow summary propagation phase 2

Figure 3.8: Interval sets breakdown for Listing 3.7. Values with italics names are reversed
roots.
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traversal in the caller context. This time, instead of using reversed roots designated by the

client analysis, we use the actual parameter values of vs as revered roots. Upon finishing, the

second phase starts by propagating the resulting interval sets of vs from vd in the opposite

direction until reaching the original (caller) reversed roots.

1 llvm.func @f(%v:i32 , %p:!ptr <i32 >) -> i32 {

2 %t0 = llvm.load %p : !ptr <i32 >

3 %t1 = dfi.store %v, %p : !ptr <i32 >

4 llvm.return %t0 : i32

5 }

6 llvm.func @g(%k:i32 , %b:!ptr <i32 >) -> i32 {

7 %s0 = llvm.add %k, %k : i32

8 %s1 ,%s2 = dfi.call @f(%s0, %b)

9 %s3 = dfi.store %k, %s2 : !ptr <i32 >

10 llvm.return %s1 : i32

11 }

Listing 3.7: Snippet for value-flow summary propagation.

Listing 3.7 along with Figure 3.8 demonstrates the interprocedural propagation of intervals.

Applying the local transfer functions from Figure 3.4 results in (callee) value-flow summary

Sf = {0 ⇝ 1, 1 ⇝ 0, 1 ⇝ 1} (See Figure 3.8a). On line 8, phase 1 performs a reversed

DFT traversal using %s0 and %b (i.e. actual parameter to %v and %p in f) as reversed roots

(see Figure 3.8b). In phase 2, the interval sets for %s0 and %b, obtained in phase 1, are

transitively merged into the interval sets of its parent vertices (i.e. %s1 and %s2) in the

augmented DFT (see Figure 3.8c).

Propagating callee value-flow summaries into the caller function might change its value-

flow summary. DFI uses a worklist-based algorithm, shown in Algorithm 1, to recursively

propagate the changed summaries to its callers until reaching a fixed point.
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Algorithm 1 Interprocedural Worklist Algorithm
1: Worklist = all functions

2: while Worklist ̸= ∅ do

3: f := Worklist.pop()

4: Sf := GetV FSummary(f)

5: if Sf has changed then

6: for all c ∈ callers(f) do

7: PropagateSummary(Sf , c)

8: if c /∈ Worklist then

9: Worklist.push(c)

10: end if

11: end for

12: end if

13: end while

In Algorithm 1, GetV FSummary(f) returns Sf for function f ; PropagateSummary(Sf , c)

performs the two-phase propagation introduced earlier with callee value-flow summary Sf in

caller function c.

Reachable Functions Summary

We are now able to calculate interprocedural value-flows with flow and context-sensitivity of

two values va and vb in the same function by determining their reachability via interval sets

i.e. Πvb ⊇ Πva . In this part, we generalize this ability for va and vb that reside in arbitrary

functions.

In the previous Section, the value-flow summary of callee function was propagated to the

caller, in order to add context-sensitive value-flows into the caller function. This process

is now augmented to additionally propagate a reachable function summary. A reachable

function summary Ψ(ε) provides a mapping from an endpoint ε to a set of transitively-

reachable endpoints. An endpoint εif represents the i-th argument of function f .

1 llvm.func @f(%a0: i32 , %a1: i32) {

2 dfi.call @g(%a0)
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3 }

4 llvm.func @g(%a0:i32) {

5 dfi.call @f(10, %a0)

6 dfi.call @k(23, 75, %a0)

7 }

8 llvm.func @k(%a0:i32 , %a1:i32 , %a2:i32)

Listing 3.8: MLIR functions with interprocedural calls

Take Listing 3.8 as an example, the reachable function summary for ε0f (i.e. the first argument

of function f) is

Ψ(ε0f ) = {ε0g, ε1f , ε2k}

Because the first argument of f will be passed to the first argument of g, which further

passes it to the second and third argument of f and k, respectively.

To calculate Ψ, we use the same infrastructure outlined in Algorithm 1. Basically, for a

given function f with n arguments, Ψ(ε0...n−1
f ) is repeatedly propagated to all of its callers

and merged with their summaries until reaching a fixed point, namely, none of the reachable

function summaries changed. With reachable function summaries, we are able to perform a

two-stage process to answer the value-flow query va ⇝ vb, where va and vb are in different

functions f and g, respectively. First, we calculate a set

{εie | ∀e ∈ callees(f) s.t. va ⇝ εie}

Then, we check if any of the Ψ(εie) contains an endpoint of g, εjg, for arbitrary argument

index j. If not, that means function f cannot even reach function g. Finally, in the second

stage, we can conclude that va can reach vb only if endpoint εjg can reach vb. Namely,

εjg ⇝ vb =⇒ va ⇝ vb.
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Subject Version # LOC # LOC (LLVM IR) # of Functions Description
FFmpeg 4.2 1.2M 4.6M 17802 A/V encoder and decoder
OpenSSL 3.0.0 532K 1.1M 13490 Crypto and TLS
SQLite 3 3.36.0 166K 376K 1103 SQL database
Nginx 1.23.1 152K 502K 1415 Web server

Lighttpd 1.4.60 97K 216K 1258 Web server
du

9.1.113

816 74K 577 Disk utility
expr 779 58K 405 Command line utility
csplit 1063 53K 386 Text processor
tac 481 49K 334 Text file utility
ls 4K 42K 561 Filesystem utility

Table 3.2: Description of analysis subjects we used in scalability evaluations

3.4 Evaluation

In this Section, we discuss three research questions:

• RQ1: The performance of the graph construction. Specifically, we evaluate the scala-

bility of DFI against large codebases (§ 3.4.1 and § 3.4.2).

• RQ2: The efficiency of answering graph reachability queries. Specifically we examine

the size distribution of vertex interval sets which is strongly related to query time

(§ 3.4.3).

• RQ3: The precision of DFI which we measure in terms of false positives / negatives

for a given client analysis (§ 3.4.4).

ForRQ1 andRQ2, we select five open-source codebases of different domains and sizes as our

primary analysis targets: Lighttpd, Nginx, SQLite 3, OpenSSL, and FFmpeg; as well as five

small programs from Coreutils: ls, tac, csplit, expr, and du. Table 3.2 details the selected

target programs, lines-of-code (LOC) are listed in textual as well as LLVM 14 IR code,

since DFI operates on LLVM IR input. The targets are built using Link-Time Optimization

(LTO) to generate a monolithic executable without dynamic dependencies. As mentioned in
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Section 3.3.1 DFI operates on MLIR. However, due to its novelty MLIR still lacks a general

pointer analysis implementation at the time of writing. Thus, all of the experiments in this

section omit information from supplemental pointer analysis. All experiments are performed

on a commodity desktop running Ubuntu 20.04 LTS with a 6-core, 12-thread Intel i7-8700K

CPU and 32GB of RAM.

3.4.1 Scalability of Different Client Analyses

We measured the performance of DFI with two different client analyses: uninitialized

variable analysis and taint analysis, both analyses are flow and context-sensitive.

The uninitialized variable analysis determines if an address-taken variable is initialized before

use. To simplify the problem without losing generality, we only consider memory stores as

valid initializations of a variable. The DFI client analysis selects values without users and

instructions with no result as the reversed roots in each function and constructs the value

flow graph accordingly. We then query the constructed graph to determine if heap memory

allocated by malloc remains uninitialized before use by a strlen function.

The taint analysis determines if a tainted value can flow from one point of the program (i.e.

the source) to a different program point (i.e. the sink). We consider the destination of a

memory store tainted only if the stored value is tainted. Reversed root selection is identical

to the previous analysis; we select return values of errno location as source and first

operands of strlen as the sinks.

Table 3.3 lists the results of running uninitialized variable analysis and taint analysis against

all targets listed in Table 3.2. The runtime measurement is split into three categories, Total

time (TT), Analysis time (AT), and Query time (QT). The total time is a normalized wall-

clock time of the entire process excluding file parsing; the analysis time measures the time
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Uninitialized Variable Analysis Taint Analysis PhASAR Taint Analysis
#V+#E # Q AT (s) QT (ms) TT (s) Max RR #V+#E # Q AT (s) QT (ms) TT (s) Max RR TT (s) Max RR

FFmpeg 4627096 169260 5.41 1450.9 31.33 3.77 GB 6827728 166140 7.51 452.3 60.22 4.97 GB 900.48 15.73 GB
OpenSSL 1083094 682 0.61 0.6 6.98 729.88 MB 1475276 43648 2.10 421.5 13.29 1.04 GB 41.54 2.86 GB
SQLite3 425875 204 1.77 0.2 2.03 347.02 MB 476421 11016 2.27 8.5 2.76 404.77 MB Out-Of-Stack Out-Of-Stack
Nginx 252779 1380 0.17 4.6 0.32 223.12 MB 290343 11940 0.19 51.6 0.59 233.43 MB 3.30 601.37 MB

Lighttpd 116120 324 0.05 0.5 0.12 113.91 MB 163115 1638 0.12 6.1 0.25 140.39 MB 0.70 275.11 MB
du 103090 1248 0.07 1.7 0.13 113.71 MB 133390 1952 0.09 7.3 0.16 118.76 MB 0.41 205.66 MB
expr 79266 448 0.06 0.8 0.09 100.48 MB 103778 160 0.07 0.2 0.12 104.56 MB 0.31 166.41 MB
csplit 71550 336 0.05 0.5 0.08 95.84 MB 95216 348 0.06 0.4 0.10 98.79 MB 0.26 158.97 MB
tac 66550 336 0.05 0.6 0.08 95.73 MB 88626 288 0.06 0.4 0.11 98.88 MB 0.25 153.07 MB
ls 62538 630 0.04 1.0 0.09 96.11 MB 76408 2205 0.04 5.1 0.11 97.98 MB 0.25 144.52 MB

Table 3.3: Performance of different client analyses in DFI and PhASAR. (#V+#E: Number
of visited vertices and edges; # Q: Number of queries; AT: Analysis time; QT: Query time;
TT: total time; Max RR: Max resident memory)

spent in the main analysis; query time measures the time spent in answering analysis queries

based on the graph constructed in the main analysis phase. The memory consumption

measures the maximum amount of physical memory allocated during the evaluation of each

target, which is roughly equal to resident memory. The number of visited edges and vertices is

listed in the #V+#E column, respectively. Our evaluation shows that taint analysis visited

roughly 10% ∼ 56% more vertices and edges compared to uninitialized variable analysis on

every target. The number of analysis queries, as shown in the # Queries column, ranges

from a few hundreds to hundreds of thousands for both analyses. All experiments finished

within 2 minutes using no more than 5 GB of physical memory.

Scalability of the Analysis

To evaluate the scalability of DFI on our client analyses, we measure the increase in total

time and memory consumption against increases of the target code size expressed as the sum

of the number of edges and vertices in DFI’s program graph. The results of the scalability

evaluation w.r.t different client analyses are shown in Figure 3.9, along with their polynomial

regression lines. Figure 3.9a shows the runtime (right y-axis) and memory consumption

(left y-axis) of DFI-based uninitialized variable analysis against the total number of visited

vertices and edges (in logarithmic scale) across all targets. The same experiment is repeated

for taint analysis, shown in Figure 3.9b, which we also include measurements for PhASAR

which we further discuss in Section 3.4.2.
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DFI Time −0.58 + 6.67e-6x + 5.04e-14x2 DFI Memory 61072 + 0.59x + 5.42e-8x2
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(a) Unitialized Variable Analysis

DFI Time −1.14 + 9.63e-6x − 9.14e-14x2
DFI Memory 37651 + 0.711x + 6.81e-9x2

Phasar Time 0.373 + −5.34e-7x + 1.94e-11x2 Phasar Memory −17798 + 1.95x + 6.89e-8x2
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(b) Taint Analysis

Figure 3.9: Scalability of time and memory consumption
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In both experiments, DFI’s runtime and memory consumption are quadratically bounded

with a very small leading coefficient indicating almost linear growth, as that the linear

coefficient dominates the increase in memory and runtime over the number of visited vertices

and edges for the evaluated range. A similar trend is also observed on the analysis time of all

targets except SQLite 3. We found that, in processing the SQLite 3 codebase, significantly

more time was spent in the interprocedural worklist algorithm (Algorithm 1). Specifically,

in the propagation of callee function summaries to call sites in caller functions. Further

investigation reveals two important factors contributing to this problem. First, SQLite 3

has a much denser call graph, in which each callee function is called by 3x ∼ 4x more

call sites on average, compared to call graphs in other targets. Second, Table 3.2 shows

that functions in SQLite 3 contain more code on average, primarily because the codebase

has fewer functions compared to other projects of comparable size. The fact that these

two factors multiply together (i.e. higher number of propagations to many large-size caller

functions) induces a higher performance overhead in Algorithm 1. However, we argue that

the source code structure of SQLite 3, more specifically, their interprocedural function call

structure, is relatively unusual.

Last but not the least, both analyses spend no more than negligible 0.01 millisecond per

analysis query regardless of program size.

3.4.2 Comparison with PhASAR

PhASAR [53] is the state-of-the-art dataflow analysis framework for LLVM IR that can

solve the same kind of problems as DFI. Namely, finite, distributive, subset value-flow

problems. The last two columns of Table 3.3 list the performance of taint analysis as

implemented by PhASAR. We use the same configuration as for DFI’s taint analysis de-

tailed in 3.4.1. To enable a fair comparison, we adapted PhASAR’s taint analysis transfer
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function to match DFI’s. More specifically, the change consists of treating the result of

getelementptr as tainted if any of its operands is tainted. Originally, PhASAR taints the

result of getelementptr only if the base pointer is tainted. Note that even without this

change, PhASAR shows nearly the same scalability behavior with the results in Section 3.4.2.

As we will mention in Section 3.4.4, the ground truth in precision analysis uses the equivalent

set of value-flow transfer rules as well. In line with the previous experiments, we also dis-

able pointer analysis and exclude time spent on input parsing and preprocessing to evaluate

PhASAR’s performance.

As depicted in Table 3.3 DFI’s taint analysis runs faster and takes less memory than PhASAR

in nearly every benchmark. In addition, we found that PhASAR generally requires more

stack space due to its deep call stack during dataflow propagation. Thus, we increase

the maximal stack size from 8 MB to 512 MB for this specific experiment. Nevertheless,

PhASAR still runs out of stack when analyzing SQLite3. On average, DFI runs ∼14x faster

and takes ∼3x less memory than PhASAR. If we focus on the five larger benchmarks, DFI

outperforms PhASAR by ∼15x on performance and ∼3.6x on peak memory consumption.

The runtime and memory consumption trends of DFI and PhASAR are also depicted in

Figure 3.9b. PhASAR’s memory and runtime requirements increase significantly faster than

DFI’s as expressed by the leading coefficient of the fitted polynomials which are ∼ 10 and

∼ 103 times larger for memory and runtime respectively.

3.4.3 Size Distribution of Interval Set

Section 3.3.3 introduces the concept of an interval set Πv for a vertex v and its subsuming

operator ⊇. The properties of an interval set play an important role in efficiently determining

the reachability of two vertices. Specifically, given two interval sets Πp and Πq with at most

N intervals each, the time complexity for evaluating Πp ⊇ Πq is O(N2).
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Figure 3.10: Size distribution of interval sets

Figure 3.10 shows the size distribution of interval sets across the five larger targets in both

client analyses. In uninitilized variable analysis, majority of the interval sets have at most

20 intervals, while half of them have no more than 4 intervals. For taint analysis, half of the

interval sets have at most 5 intervals and 75% of the interval sets have less than 15 intervals.

These numbers show that the average size of an interval set is usually small. Thus, they offer

additional evidence towards the effectiveness of our novel reversed DFT traversal scheme in

reducing the number of non-tree edges.

3.4.4 Precision

In this section, we evaluate DFI’s precision by evaluating taint analysis results on a selected

set of 33 Coreutils programs and measure the number of false positives and negatives against

ground truth. We also conduct the same experiment on PhASAR to compare with our

results. The taint analysis we used in this experiment designates the argc argument of main

function (representing the number of command line arguments) as the source and uses binary

compare instructions in the target binary as sinks.
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Retrieving Ground Truth

We obtain the ground truth for this experiment by a unique dynamic tracing technique

based on sanitizers and symbolic execution. A center part of this technique is carried by

DataFlowSanitizer [15] (DFSan for short) in Clang/LLVM. DFSan provides a instrumentation-

based solution to dynamically track data flows. To that end, DFSan provides an interface to

attach labels to target variables which are propagated along the program’s dataflow paths

and can be evaluated at arbitrary program points. For our experiments, we attach a label

on the source variable (argc) at the beginning of the program; A sink (compare instruc-

tion) is considered tainted if any of its instruction operands contains the initial source label.

To streamline the evaluation, we instrument compare/sink instructions with SanitizerCov-

erage [55] (Sancov for short), also provided by Clang/LLVM, to insert wrapper functions

that check the labels on instruction operands and report taint status along with a unique

tag assigned to the specific compare instruction.

As we generate our ground truth via dynamic tracing, we rely on high coverage to ensure

the quality of our measurements. We use KLEE [18], a state-of-the-art symbolic execution

framework, to generate a set of high coverage inputs and use them to drive the ground truth

collecting runs. We run KLEE on each Coreutils tool for 2 hours, resulting in an average

coverage of over 90%. The coverage for each tool is shown in the right-most column of

Table 3.4. For the following evaluations we only consider sinks that are covered by our input

corpus.

Comparison with PhASAR

Taint analysis precision for both DFI and PhASAR is shown in Table 3.4, presented as the

number of false negatives, false positives, and true positives against ground truth. Con-

trary to the experiments in Section 3.4.1 and Section 3.4.2, pointer analysis is enabled for
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PhASAR in this evaluation. Among these benchmarks, DFI has a lower precision of 66%,

compared to PhASAR’s 98% precision. However, PhASAR only has 39% recall, which is

(much) lower than DFI’s 90% recall and inferior to the average. Overall, the F1 score for

DFI is 0.76, which is higher than PhASAR’s F1 score of 0.55.

We found that majority of DFI’s false negatives are due to limited support of global variables

and indirect function calls, as well as the lack of supplemental pointer analysis information

(see Section 3.5.2). We believe false negatives can be eliminated once these limitations are

addressed. Most of the false positives are induced by foreign function calls whose value

flow models in DFI are yet to be refined. For instance, both memcpy and memmove require

better transfer functions to propagate tainted values. Another example is malloc: in DFI

we consider the allocated heap memory to be tainted if its function argument (representing

the size of the memory) is tainted. However, the ground truth always treats a heap memory

freshly allocated by malloc as ”clean” regardless of its function argument. We believe this

issue can be easily solved by attaching custom transfer functions on foreign function calls.

3.5 Discussion

3.5.1 Soundness and Comparison with IFDS

DFI and the original IFDS [51] share many parts in their theoretical frameworks. Both of

them adopt distributive transfer functions operate on the powersets of finite value-flow /

dataflow facts and use the same meet operator. These properties imply the existence of

fixed-point solutions, hence a safe approximation to the problem. DFI further restricts the

value-flow facts to be SSA values, therefore it can not directly express the full range of

dataflow problems expressible under IFDS, for example, conventional constant propagation.

When it comes to interprocedural analysis, both works adopt a functional approach, namely,
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Tool Name
DFI PhASAR

LCov
FN FP TP FN FP TP

basename 0 0 3 0 0 3 98.81%
comm 0 0 3 2 0 1 91.75%
date 0 0 3 4 0 3 92.53%

dircolors 1 0 2 3 0 0 85.47%
dirname 0 0 1 2 0 1 98.21%
echo 0 0 5 11 0 2 97.79%

expand 0 9 1 0 0 1 92.78%
false 0 1 0 0 1 0 97.06%
fmt 0 1 3 2 0 3 88.19%

hostid 0 0 1 0 0 1 97.22%
id 1 0 4 6 0 0 84.31%
kill 0 12 3 2 0 2 91.73%
link 0 0 3 0 0 3 95.12%

logname 0 0 1 0 0 1 94.74%
mkfifo 0 0 2 1 0 1 80.21%
mknod 0 0 6 6 0 2 86.03%
mktemp 0 0 2 3 0 0 94.81%
nice 0 0 3 4 0 3 90.91%
nl 0 0 2 0 0 2 92.05%

pathchk 0 0 2 1 0 2 82.05%
printenv 0 0 2 4 0 1 98.46%
readlink 0 0 3 2 0 1 98.78%

rm 0 0 3 3 0 2 95.33%
shuf 0 15 8 9 0 0 81.48%
sync 0 0 1 0 0 1 84.85%
touch 7 0 3 6 0 2 82.18%
tsort 0 0 2 1 0 1 95.43%
tty 0 0 1 0 0 1 98.25%

uname 0 0 1 0 0 1 90.83%
unexpand 0 1 1 0 0 1 92.09%

uniq 0 2 1 1 0 1 93.63%
unlink 0 0 2 0 0 2 97.44%
whoami 0 0 1 0 0 1 95.12%

Average
0.26

± 1.21
1.21

± 3.51
2.32

± 1.65
2.15

± 2.76
0.03

± 0.17
1.35

± 0.95
91.95%

Precision 66% 98%
Recall 90% 39%

Table 3.4: Precision of DFI and PhASAR on Coreutils programs (FN: false negatives; FP:
false positives; TP: true positives)
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leveraging callee function summaries.

The implementation of DFI is quite different from IFDS, though. DFI replaces the tabulation-

based reachability algorithm with a simple interval lookup and avoids the accumulation of

transitive edges which constitute a large part of the memory footprint of IFDS solvers [28, 9,

37]. Further, DFI processes only relevant program statements by utilizing sparse SSA def-use

chains, whereas IFDS processes every program statement along control flow paths inducing

memory and runtime overheads [28]. Since DFI has a completely different implementation,

it’s worth it to discuss the fixpoint convergence of DFI’s intra- and interprocedural analysis

algorithms.

Fixpoint convergence The intraprocedural reversed DFT traversal, introduced in Sec-

tion 3.3.3, operates basically the same as normal DFS traversal on spanning tree edges and

thus ensures its fixpoint convergence on those edges. While handling non-tree edges, we

never remove any interval or interval subset during the propagation, therefore the process is

monotonic with respect to the partial orders of the interval sets. Thus, fixpoint convergence

is given. For the interprocedural case, we focus on Algorithm 1. The terminating condition

for Algorithm 1 is dictated by changes to function summaries. These changes are caused

by transitively propagating any callee function summary into the current function context.

The propagation is driven by the same traversal algorithm that is also used for the intrapro-

cedural case mentioned above. Thus, a fixpoint convergence w.r.t. function summaries can

be inducted from the convergence of interval sets in callee functions, due to the fact that a

function summary is derived from interval sets of the same function.
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3.5.2 Limitations

Currently DFI is not fully capable of analyzing the following program constructions: variadic

function calls, exception handling, and interprocedural value flows among global variables.

We are actively working on extending DFI to add support for these features. In addition,

DFI relies on auxiliary pointer analyses to calculate MayUse/MayDef pointer sets on memory

operations. An over approximated pointer sets might indirectly create more non-tree edges

in our reversed DFT and increase the average size of an interval set.

3.6 Summary

Value-flow analysis is an important component of many program optimizations. Previous

researchers have made significant contributions and created important tools, but true scal-

ability of these tools to large real-world codebases has so far proven elusive. We present

a solution that is able to overcome these scalability bottlenecks. Key to our approach is a

novel sparse graph representation of value flows that exhibits low tree widths. The result-

ing graph algorithms have much lower resource requirements and much better performance

characteristics than previous approaches and provide almost linear scalability to truly large

programs. Our prototype implementation is based on LLVM, is source-language agnostic,

and will be open-sourced.
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Chapter 4

Efficient Whole-Program Throughput

Estimation

Differential throughput estimation, i.e., predicting the performance impact of software changes,

is critical when developing applications that rely on accurate timing bounds, such as auto-

motive, avionic, or industrial control systems. Often enough, developers have to create such

applications without having continuous access to the target hardware, and hence they fre-

quently need to rely on software-based instruction throughput estimation tools instead of

being able to use accurate on-device measurements.

State-of-the-art estimation techniques broadly fall into two categories: On one side, there are

dynamic approaches that emulate the execution of a program using cycle-accurate microar-

chitectural simulators. These achieve high precision, albeit at the cost of long turnaround

times and convoluted setups, making them unsuitable for rapid development processes. On

the other side are static approaches that predict cycle counts for a given stream of instructions

outside of a concrete runtime environment. While such static approaches are fast, they don’t

scale well with the number of instructions under analysis and focus mostly on predictions
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over single basic blocks, thereby requiring developers to pre-select critical instruction se-

quences manually. Furthermore, static approaches lack dynamic runtime information, which

reduces prediction accuracy and precludes analysis of common programming constructs such

as data-dependent control flows.

We present MCAD, a hybrid timing analysis framework that combines the advantages of

dynamic and static approaches to provide accurate differential throughput prediction for

complete programs. Instead of relying on heavyweight cycle-accurate emulation, MCAD col-

lects instruction traces along with dynamic runtime information from QEMU and streams

them to an LLVM based static throughput estimator. This results in an entirely new ca-

pability in which the performance impact of a software change can be estimated in minutes

with high precision, reducing turnaround times by several orders of magnitude compared to

existing approaches with similar accuracy. Our evaluation shows that MCAD scales to real-

world applications such as FFmpeg and Clang with millions of instructions, achieving < 3%

geo. mean error compared to ground truth timings from hardware-performance counters on

x86 and ARM machines.

4.1 Introduction

Semantically equivalent modifications of a given piece of software can result in varying de-

grees of performance degradation due to resource contentions on the architectural and mi-

croarchitectural level. For systems that have tight timing restrictions, it is therefore critical

to identify specific implementations that minimize negative performance impacts and main-

tain timing restrictions over the execution of the whole program. If the target system is

not available to perform on-device measurements, developers instead need to rely on tools

to estimate cycle counts for a given program or instruction sequence. To that end, several

approaches have been developed that roughly fall into one of two categories: (i) emulating
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the execution of concrete runtime instances of the program on simulated hardware (i.e.,

dynamic approaches) and (ii) estimating the cycle count of program instructions without

concrete execution under an abstract runtime environment (i.e., static approaches).

Dynamic approaches achieve high precision using architectural simulators [17, 65, 13] which

faithfully model the runtime behavior. They provide concrete and generally accurate esti-

mates, however, they suffer from high runtime overhead and can require hours to days for

analyzing a program. Furthermore, architectural simulators exhibit a high architecture de-

pendence and are complicated to set up, often requiring dedicated expert knowledge and/or

giving rise to compatibility issues with standard tools and default environments.

Static approaches [35, 43, 6, 2, 54, 39, 23, 40, 27] alleviate the performance and setup cost

of dynamic hardware simulators. Traditionally, such approaches target worst-case execu-

tion time predictions over all possible execution paths [54, 39, 23, 40, 27]. More recent

works [35, 43, 6, 2] focus on smaller execution sequences and also construct parametric mod-

els that generalize to multiple architectures. These models are either trained end-to-end

using throughput data [43] or programmatically tuned for key parameters, such as port

utilization, that are publicly available in the form of experimentally determined measure-

ments [35, 6]. However, static approaches are fundamentally limited in practice due to their

lack of concrete dynamic runtime information. Hence, traditional static approaches lack

support for essential program constructs such as loops, data-dependent control flows, and

memory accesses [44, 7]. In addition, the scope of many static throughput estimation tools

is limited to throughput predictions of individual basic blocks [35, 43, 6], i.e., only a handful

of instructions. Even for tools that can in theory process multiple basic blocks at once,

predictions do not usually hold across control-flow transfers. For example, MCA [2] does

not follow call or jump targets and instead simply falls through to the next instruction while

adding a static cycle penalty1.

1https://github.com/llvm/llvm-project/blob/main/llvm/lib/MCA/InstrBuilder.cpp#L224
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In this paper, we present MCAD, a lightweight alternative that provides whole-program

throughput prediction of binary software. MCAD follows a hybrid approach that supple-

ments static throughput estimates with dynamic runtime information. To avoid the over-

head of cycle accurate architectural simulation, MCAD uses an emulation-based approach to

obtain execution traces using QEMU [12] and dynamically forwards them to the LLVM Ma-

chine Code Analyzer (MCA) [2] for instruction-level analysis. In addition, MCAD extends

MCA to resolve several inherent limitations of static throughput estimation. First MCA’s

instruction analysis is redesigned to process instructions in a streaming fashion, which en-

ables the analysis to scale to large real-world binaries. Second, concrete dynamic runtime

information capturing control-flow and memory aliasing properties is incorporated into the

analysis to obtain estimates that accurately predict instruction cycle counts across basic

block boundaries. The main purpose of MCAD is to provide fast, yet accurate differential

timing analyses: cycle counts for whole program execution traces which typically contain

hundreds of thousands to millions of instructions can usually be produced within the order

of minutes or seconds.

MCAD enables the assessment of timing effects induced by software changes as part of the

development process by comparing the cycle counts before and after a change and identifying

the least intrusive change with respect to execution time. We extensively test and evaluate

MCAD with respect to scalability and accuracy on a number of different real-world applica-

tions such as FFmpeg and Clang to demonstrate that MCAD can model microarchitectural

behaviors, such as instruction latencies in superscalar processors, accurately and with low

cost. The geo. mean error in differential timing between MCAD and hardware performance

counters in our experiments is smaller than 3% across several different microarchitectures

and application software.

Summary of Contributions:
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• We present MCAD: a new open-source2 framework for throughput estimation yielding

highly accurate differential timings, on par or better than the current state-of-the-art,

while reducing turnaround time by several orders of magnitude.

• Our prototype implementation leverages QEMU as a fast instruction executor, utilizing

MCA to model individual per-instruction execution cycles, rather than simulation-

based approaches that faithfully model complex processor front-ends.

• We provide a detailed evaluation of MCAD with respect to accuracy and scalability

for the popular x86 and ARMv8 instruction-set architectures using several different

devices and hardware-performance counters to collect timing measurements for real-

world traces as ground truth.

4.2 Background and Motivation

In this section we provide background on inherent limitations of static throughput estimation

approaches and present a use case scenario to motivate the design goals of MCAD.

4.2.1 Static Throughput Estimation Challenges

Throughput estimation is an active area of research that aims to statically predict the per-

formance upper bound of a program, usually measured by cycle counts or Instruction Per

Cycle (IPC), of a single basic block. Current tools model microarchitectural details such as

instruction latency and number of micro-ops of the target processor. However, there are two

major issues with this approach: (i) it does not easily transfer across branch instructions

or function call boundaries (ii) dynamic information such as execution context and memory

2Will be made available after de-anonymization. Some of our contributions in this work have been adopted
and are currently in use as part of LLVM.
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loop:
vmulps %xmm0, %xmm1, %xmm2
vhaddps %xmm2, %xmm2, %xmm3
vhaddps %xmm3, %xmm3, %xmm4
cmp %r9d, %eax
jle L1

L0:
mulq %r8
jump loop

L1:
movl 16(%ebp), %eax
addl 8, %ebp
jno loop

Figure 4.1: x86 64 assembly control flow.

aliasing is usually not taken into account.

Control Flow Transfers.

Figure 4.1 shows the control flow of an x86 64 assembly code snippet consisting of three

basic blocks, loop, L0, and L1. Block loop calculates a vector dot product followed by a

conditional branch into either block L0 or L1 based on a data-dependent comparison, with

both blocks jumping back to loop at the end.

Using Intel Coffee Lake as an example target architecture, throughput predictions of the in-

dividual basic blocks of this program will not generalize across executions. The reason is that

instruction-level throughput for this program actually depends on the ordering of executed

basic blocks on that architecture. In particular, executions where L0 follows loop (List-

ing 4.1) are roughly 5∼10 cycles slower, per iteration, than executions in which L1 follows

loop (Listing 4.2). This might seem counterintuitive as Listing 4.1 contains fewer instruc-

tions than Listing 4.2 and, more importantly, there is a memory read instruction (movl
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16(%ebp), %eax) in the latter trace, which should be slower than scalar multiplication (mulq

%r8). However, measurements on the target architecture reveal that there is a substantial

slowdown in traces that follow the shorter Listing 4.1 due to resource contention between

the two basic blocks.

1 vmulps %xmm0, %xmm1, %xmm2

2 vhaddps %xmm2, %xmm2, %xmm3

3 vhaddps %xmm3, %xmm3, %xmm4

4 cmp %r9d , %eax

5 j l e L1

6 mulq %r8

7 jmp loop

Listing 4.1: Trace of executing L0 after loop in Figure 4.1

1 vmulps %xmm0, %xmm1, %xmm2

2 vhaddps %xmm2, %xmm2, %xmm3

3 vhaddps %xmm3, %xmm3, %xmm4

4 cmp %r9d , %eax

5 j l e L1

6 movl 16(%ebp ) , %eax

7 addl 8 , %ebp

8 jno loop

Listing 4.2: Trace of executing L1 after loop in Figure 4.1

Specifically, the vhaddps instruction always requires execution port 5, which is also demanded

by the mulq instruction [5]. This creates a dependency between those two instructions and

forces the mulq instruction to stall until previous vhaddps instructions release the desired

execution port. On the other hand, in Listing 4.2 movl and addl do not have conflicting

resource requirements with the previous instruction. That means both instructions will be
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dispatched into execution no later than the previous vhaddps instructions and execute in

parallel, thus, resulting in higher instructions-per-cycle count than Listing 4.1.

As explained earlier, current static throughput prediction approaches will use static instruc-

tion ordering as a substitute for dynamic control flow, resulting in a low-accuracy prediction.

Moreover, existing approaches face severe practical limitations with regards to scalability.

In Section 4.3 we detail our design of MCAD which tackles both of these challenges.

1 vsetvl i zero , a0 , e8 , m2, tu , mu

2 vadd.vv v12 , v12 , v12

3 vsetvl rd , rs1 , r s2

4 vadd.vv v12 , v12 , v12

Listing 4.3: Example RISC-V assembly code

Execution Context.

Listing 4.3 shows a RISC-V assembly snippet comprised of vector instructions. In RISC-

V, the VSETVL and VSETVLI instructions set the vector length multiplier (LMUL) which

determines the number of elements that are processed by subsequent vector instructions.

Therefore, the latency of each vector instruction differs depending on the current value of

LMUL. For instance, line 1 in Listing 4.3 sets LMUL to 2 (due to the m2 operand), which

results in a cycle latency that reflects a LMUL of 2 for the VADD instruction in the next line;

in line 3 LMUL is set to the value stored in register rs2, resulting in a potentially different

latency that reflects the LMUL that was just set, for VADD at line 4. Due to the lack of

dynamic runtime information, static approaches can not determine the concrete value of

rs2 and therefore can not accurately model the latency of the VADD instruction in line 4.

This example shows that while the instructions on line 2 and 4 are identical, their exact la-

tencies are actually influenced by the environment values, namely LMUL, as well as dynamic
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values stored in the registers. Current throughout prediction approaches fail to provide ac-

curate estimations for these cases and resort to a conservative upper bound latency due to

the lack of dynamic information. Some existing tools can circumvent this issue with manual

annotations. For instance, LLVM MCA allows developers to instrument their programs with

special comments that contain runtime information, which MCA uses to make more accurate

queries into the scheduler model. However, while these instrument comments can improve

analysis, handwriting them does not scale well with large number of instructions.

Memory Aliasing.

Real processors reorder instructions to optimize instruction throughput. To that end, they

analyze memory dependencies between individual load and store instructions to determine a

valid instruction scheduling that minimizes contention. Static throughput estimators trying

to model this behaviour are limited due to the lack of concrete memory aliasing information.

For instance, Listing 4.4 shows two x86 64 instructions that access memories indexed by base

registers %r13 and %r14. Without knowing the exact values in these base registers, it’s hard

to know if memory aliasing prevents the instructions from being reordered, which makes

a big difference in terms of latency. Some tools like MCA either assumes that individual

memory operations never access aliasing addresses or that all memory accesses alias; both

cases resulting in lowered prediction accuracy.

1 addq 7 , 8(%r13 )

2 movq %r9 , 8(%r14 )

Listing 4.4: x86 64 assembly code with memory accesses
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4.2.2 Differential Throughput Estimation

Differential throughput estimation is meant to predict the performance impacts of applying

certain changes (e.g. software patches) on the target programs. To motivate MCAD’s differ-

ential throughout estimating capabilities, we detail how MCAD can be applied to find the

optimal variant of a security patch to a binary with tight timing requirements post deploy-

ment. In our scenario, a buffer overflow vulnerability due to a missing bounds check has been

identified. To fix the vulnerability the developer needs to patch the missing check into the

binary. As detailed in Section 4.2.1 the location of the patch as well as the specific assem-

bly instructions can have a high impact on overall performance due to resource contentions

on the micro architectural level. Developers therefore typically iterate through several se-

mantically equivalent versions of a patch in order to minimize the performance degradation.

MCAD provides developers with the means to quickly iterate through several versions of the

target binary to estimate the resulting performance impact and triage potential bottlenecks

without requiring access to the actual hardware.

To perform the throughput estimation, a developer runs the original binary as well as several

patch candidates with concrete inputs through the MCAD pipeline and compares estimated

cycle counts between versions. If required, MCAD allows to restrict the analysis to specific

regions of the program (see Section 4.3.1). In addition, MCAD provides a timeline view

which details each instruction’s state transitions through the instruction pipeline (see Sec-

tion 4.4.3). This information helps developers to triage performance degradations and guides

them towards execution paths that are less sensitive to changes.
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Figure 4.2: High-level structure of MCAD

4.3 Design

In this section we present our overall design of MCAD as depicted in Figure 4.2. As explained

in the previous section, current throughput prediction approaches face severe challenges

with respect to prediction across basic blocks, as well as scalability and turnaround times.

The main goal of MCAD is to tackle all of these challenges to enable scalable and precise

differential throughput analyses that can be used to actively drive development and steer

engineers towards implementations with favorable runtime behavior.

4.3.1 Goals and Challenges

MCAD’s design should tackle three main goals:

First, we would like to provide whole-program throughput estimates across thousands of

basic blocks and potentially millions of instructions. At a high level MCAD uses a broker
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component that provides execution traces in form of an instruction stream and a core com-

ponent that analyzes instruction-level throughput of the respective trace on-the-fly. Results

can then be processed by a viewer component for human-readable summarization and data

reporting. In principle, the method by which execution traces are obtained and streamed

to the core component is not tightly coupled to the method that is used to analyze the

instruction stream. In early tests we compared several existing throughput analysis tools

for use with our core component. However, we encountered several challenges with adopt-

ing any of them for our framework. As illustrated in the previous section, state of the

art throughput prediction approaches do not generalize across control-flow transfers, and,

within MCAD, streaming instructions that follow a control-flow transfer should seamlessly

interface with the microarchitectural throughput prediction engine used for our analysis. As

existing throughput prediction tools are designed for single basic block use, they also fail to

scale up, in terms of both memory consumption and processing capabilities, when streaming

input instructions on-the-fly from the broker component even for trivial programs. We also

encountered numerous bugs when using the tools that seemed most fitting in this dynamic

context, some of which we detail in Section 4.4.

Second, MCAD aims to support a development-driven workflow. This means, that developers

are able to use MCAD to analyze the timing impact after modifying some part of the code,

which might take the form of both a binary patch or a source-level change of the original

program under our model. In addition to whole-program analyses, developers hence are able

to choose to analyze only parts of the program. Selecting which parts of the program to

analyze is done at varying levels of granularity to reduce noise in the resulting reports and

speed up the analysis if so required. For example, in the scenario outlined by Section 4.2.2,

the target program might contain components such as unmodified sequences of code, which

are irrelevant to the throughput analysis, but whose run time might depend on unpredictable

inputs (e.g. random number generators). In such cases, the developer can circumvent those

components by excluding their traces from MCAD’s analysis.
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Third, MCAD aims to provide timely feedback for the throughput estimates using an ap-

proach that ideally also generalizes across architectures. While purely dynamic approaches

are already capable of producing whole-program estimates today, the associated turnaround

times and costs of setting up and running full-scale system simulation can be prohibitively

expensive (i.e., on the order of hours or even days) [17, 65, 13]. Furthermore, existing dy-

namic throughput analysis tools are often tightly coupled to a specific architecture, which

is why we opt for an emulation-based approach for producing execution traces inside our

broker component using QEMU [12].

We will elaborate how MCAD tackles each of the respective challenges to achieve these goals

throughout the rest of this section.

4.3.2 Scalable Throughput Prediction

As explained in Section 4.2.1 all existing throughput prediction engines are designed with

single-basic-block use in mind. In our prototype we build on top of MCA [2], a perfor-

mance analysis tool and library that was designed to estimate the basic block throughput

in a static fashion. MCA employs a microarchitectural simulator to emulate an individ-

ual instruction’s timeline inside an out-of-order processor. It taps into the LLVM compiler’s

scheduling database, a mature and production-tested data source whose contents are curated

by hardware vendors.

However, we found that MCA has difficulties to scale up in our dynamic scenario. Like other

throughput prediction engines, it does not support accurate analysis of instructions beyond

a branch point or a function call out of the box. On top of that, we found that some of the

design trade-offs inside MCA make it prone to high memory pressure while processing large

number of instructions. Enabling online analysis within MCAD required several changes

to the underlying analysis infrastructure, such as MCA’s serialization, memory model, and
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instruction lifecycle. For example, different memory operations were assumed to never access

aliasing addresses. After introducing our changes, we found that dynamic memory traces

can actually help the existing load-store unit inside MCA perform better.

In Section 4.4.2, we explain our modifications of MCA used in MCAD to tackle the afore-

mentioned issues and make MCAD’s core component scale up to real-world applications.

4.3.3 Development-Driven Workflow

MCAD enables a development-driven workflow by providing fast whole-program throughput

estimates that can easily be compared between two versions of a program. Furthermore,

for cases that only modify a small portion of the original binary, MCAD also provides an

option to analyze only part of the binary. In this mode, developers can designate the desired

area by either specifying the symbol of a function or providing explicit address ranges in the

program. If an address range is provided, MCAD essentially yields the original basic-block

granularity of the underlying analysis engine, while providing the flexibility of comparing

the execution of multiple basic blocks at the same time.

4.3.4 Analysis Performance and Generalization Across Architec-

tures

The broker component is responsible for supplying execution traces to the core component.

This includes interoperating with the origin of execution traces and converting them into

a unified low-level representation. This also means that the broker and core components

need to work together to enable a timely and architecture-independent operation of MCAD.

By default, execution traces are transmitted remotely from QEMU using a custom plugin.

QEMU’s emulation-based approach incurs around 30% runtime overhead [32], effectively en-
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abling near-native execution speeds when using hardware virtualization extensions. QEMU

also has extensive support for many major architectures,3 meaning that MCAD’s broker

component is able to fulfill both of these requirements. It is noteworth to mention that

MCAD also provides a facility for reading offline execution traces, which can be collected

from executions on a physical device using any kind of tracing method available for that

device. As mentioned earlier, MCAD’s core component uses MCA. Since MCA uses LLVM’s

infrastructure, targeting different hardware architectures and processor models in the anal-

ysis engine requires little effort.4 As a result, both the broker and the core component of

MCAD generalize well across several architectures and provide top-of-the-line performance.

Moreover, with QEMU and LLVM MCAD uses tools that many software developers will

already be deeply familiar with.

4.3.5 Model Assumptions

MCAD is able to model out-of-order and superscalar execution commonly seen in modern

processors. Simultaneous Multithreading (SMT), data or instruction cache simulation, and

branch predictor are not in the current scope of this project. In addition, MCAD currently

only supports analysis of single threaded executions.

4.4 Implementation

In this section we describe the workflow and implementation of MCAD in detail. Figure 4.3

depicts the interaction between the different components: first, the target binary program is

executed by QEMU, which collects execution traces and sends them to our analysis engine in

3QEMU supports x86, MIPS, SPARC, ARM, PowerPC, RISC-V among many others, including individual
processor models and specific microarchitectures

4LLVM supports x86, MIPS, SPARC, ARM, PowerPC, RISC-V among many others.
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Figure 4.3: General workflow and interactions between the major components within MCAD.

real time. Inside our analysis engine the executed instructions are further processed by timing

analyses built on top of MCA [2], which provides algorithms for microarchitectural simula-

tion and instruction scheduling of modern processors. Finally, MCAD provides estimates

for key timing and performance metrics like the prospective cycle counts, instruction-level

throughput, and the ability to identify potential bottlenecks.

4.4.1 Instruction Broker

MCAD’s broker implementation is a standalone process that produces MCInst [4] objects,

an internal representation for machine code instructions used within LLVM, and forwards

them in batches to the core component. The broker interface is designed to be extensible and

allow integration of custom implementations and enable streaming of instruction sequences

to the core component from a variety of different sources. So far, we integrated and tested

two broker implementations: an assembly file broker that takes its input from an assembly

file on disk and a QEMU broker that uses a QEMU plugin to communicate with the QEMU-

broker process using TCP sockets to process the raw execution trace in real time before

streaming them into the core component for analysis.
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Broker implementations can choose to attach arbitrary metadata to the streamed instruction

trace: for instance, by attaching load and store addresses and the size of memory operations

we can enable more precise dependency detection between memory accesses in the analysis

engine of the core component. In particular, MCAD’s QEMU plugin collects raw instructions

as executed by the emulator alongside additional information regarding memory operations,

which is then used to improve analysis results with respect to instruction reordering. In

this mode of operation MCAD’s broker dynamically instruments memory read and write

operations to gather target address and size of the data. The QEMU plugin will then send

these data to the receiving core component that runs in parallel in a separate process. Inside

the core component this metadata that is attached to memory operations is then inserted

into a registry that is used by the core component for joint analysis.

Developing custom brokers is straightforward and only requires implementing a few call-

back functions before loading them as shared libraries during runtime. This allows users to

rapidly switch between different workloads and environments depending on their needs. It is

important to note that we do not make any assumptions about a broker’s internal execution

model – so long as the broker adheres to the streaming interface to supply the next batch of

instructions.

4.4.2 Analysis Core

Our core component builds on top of state-of-the-art throughput prediction engines, which

are designed as offline tools for static throughput estimation of small sequences of machine

instructions (usually at the basic block granularity). Given a (short) sequence of assembly

instructions, they provide throughput estimation results on the microarchitectural level ei-

ther through end-to-end trained models for a given architecture or through simulation of the

different stages inside a modern processor with varying levels of detail and manually tuned

70



key parameters per architecture. Unfortunately, all existing throughput prediction tools

failed to scale up with our dynamic model of execution: as an example, using the standard

video and audio encoder FFmpeg [58] executes around 20 million instructions on a Linux

x86 64 machine while decoding a short MPEG-4 video with duration of 2 seconds. Within

MCAD, this type of application would be considered a lightweight real-world workload. We

found that none of the existing approaches were able to analyze anywhere near this kind of

workload.

However, since MCA already has support for slightly larger pieces of code compared to

all other related approaches through their loop kernel analysis, we implemented MCAD’s

default analysis engine on top of that. Our investigation into adopting MCA for our core

component showed several failure cases while handling larger workloads. Internally, MCA

models four distinct execution stages Entry, Dispatch, Execute, and Retire. Under MCAD’s

workflow the instruction stream provided by the broker enters from the Entry stage and

is processed by each subsequent stage sequentially. MCA then assigns an internal data

structure to each instruction to keep track of its scheduling status within the simulation

pipeline. Originally, this pipeline reads all input instructions ahead of time before the start

of the analysis. Because MCA assumes those instructions to come from a file. This property,

while it aligns with the overall design goal of MCA to provide throughput estimates for only

small sequences of assembler instructions, is not suited for whole program analysis. In some

of our tests, MCA consistently drained all available physical memory on the machine running

the analysis due to the allocation of this internal instruction representation.

Stream Processing To address the scalability issue we created a new incremental mode

for the MCA simulation pipeline. In this mode, the simulation pipeline fetches input instruc-

tions incrementally. If there are no instructions available from the input source, the pipeline

will save its current state and exit. Upon the arrival of new input instructions, the simula-
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tion will be restored and proceed from its previous state. To reduce memory consumption,

we implemented a new instruction recycling mechanism for the MCA simulation pipeline.

This instruction recycler will reclaim and collect internal instruction data structures from

retired instructions, instead of releasing their memory. These recycled data structures will

then be reused to model new incoming instructions. Our experiments showed that with this

recycling mechanism, MCAD’s core analysis uses one third of memory on average than the

unmodified MCA implementation.

MCA simulates different execution units which process individual instructions and determine

results of the operation in question. These estimates include cycle counts, potential pipeline

stalling, and predictions of possible instruction re-ordering. For instance, MCA’s Load-Store

Unit tracks the availability of memory operations and their (data) dependencies. This is cru-

cial for simulating out-of-order scheduling in modern processors, which frequently reorder

memory operations based on their dependencies. We significantly extended these existing

capabilities by providing an online analysis workflow: by sequentially parsing the incom-

ing instruction stream and processing each instruction according to the simulated pipeline,

MCAD is able to present an estimate of how arbitrarily long instruction sequences might be

scheduled within the processor.

Runtime Information As detailed in Section 4.2.1, due to unknown runtime state MCA’s

throughput predictions fail to model control flow transfers accurately and therefore struggle

to analyze many essential programming constructs such as loops or interprocedural calls.

MCAD addresses these issues by providing concrete runtime information that resolves am-

biguities regarding block ordering, register state and memory aliasing.

Upon encountering a jump or call instruction MCA simply falls through to the next in-

struction as it lacks information about dynamic targets and fails to resolve data-dependent

control flows. MCAD supplements this information based on the concrete execution traces
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obtained from QEMU and forwarded to our analysis core.

MCA contains a component called Load Store Unit (LSUnit in Figure 4.3) which simulates

load and store reordering that could happen in the hardware scheduler of the simulated

processor model. This type of hardware optimization re-orders memory instructions to

break dependencies when possible, which is largely determined by their memory aliasing

properties at runtime. However, without precise memory access information, MCA can only

make coarse-grained assumptions, for instance, all memory instructions are aliasing with each

other, which are controlled by a command line parameter. MCAD leverages the memory

traces collected from QEMU to improve this situation. We modified MCA’s Load Store

Unit such that aliasing properties are now dictated by fine-grained memory accessing traces

as provided by our QEMU plugin. This enables our custom core component to simulate

load and store reordering with higher accuracy by using dynamic information as it becomes

available during execution.

4.4.3 Sub-Region Feature and Viewer Component

MCAD’s viewer component displays throughput estimations with information like total cycle

counts or potential pipeline stalls. An example of this can be seen in Listing 4.5. We also

prototyped a view of the timing itinerary of individual instruction in a timeline view. For

instance, Listing 4.6 shows the timeline of the execution trace in Listing 4.1. From this

timeline we can easily spot the resource contention between mulq and vhaddps as mentioned

in Section 4.2.1. This particular view is a fork from the timeline view that exists in MCA.

However, the timeline view in MCA has limitations on the maximum number of analyzed

instructions and cannot inspect the itinerary of a subset of an analyzed execution trace

which we implemented as part of MCAD’s subregion feature. For this reason, third-party

visualization tools are also supported in this component. For instance, we prototyped a
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new timeline view based on Chrome Developer Tools (DevTools) [1]. In our early test we

already found this a lot easier to scroll and navigate through the thousands or even millions

of instructions that are processed by MCAD, compared to the terminal-based LLVM-MCA

timeline view. Since this view was designed to analyze large number of network requests it

provides a solid basis to help our new timeline view scale up.

Instructions: 350

Total Cycles: 262

Total uOps: 600

Dispatch Width: 6

uOps Per Cycle: 2.29

IPC: 1.34

Block RThroughput: 5.0

Listing 4.5: Summary View

[1,0] . D=eeeeE ---------R .. vmulps

[1,1] . D==== eeeeeeE ---R .. vhaddps

[1,2] . D========== eeeeeeER vhaddps

[1,3] . D==eE------------R cmpl

[1,4] . D===eE -----------R jle

[1,5] . D===== eeeeE ------R mulq

[1,6] . DeE --------------R jmp

Listing 4.6: Timeline View

74



4.5 Evaluation

MCAD’s main goal is to enable developers to quickly assess and iterate on the timing impact

of program modifications, including patches, across control transfers (e.g. branches and

function calls). In this section, we use binary programs of different release versions to

evaluate performance and cycle-count accuracy against physical hardware traces to quantify

how MCAD fares in comparison. More formally, given two different versions i and j of a

program P , denoted as Pi and Pj, as well as a throughput predictor H that provides the

number of execution cycles under a specific input for the respective program, we define the

differential throughput ∆H(Pi, Pj) describing the change in cycle counts between version i

and version j of program P as predicted by H as follows:

∆H(Pi, Pj) =
H(Pj)

H(Pi)

Given two versions of a program Pi and Pj, as well as their inputs, we first use MCAD to pre-

dict their differential throughput, resulting in ∆MCAD(Pi, Pj). Second, we similarly measure

their relative difference in cycle counts from version i to version j using hardware-performance

counters on physical devices, resulting in ground truth differential throughput ∆G(Pi, Pj).

Finally, we formally define the error of MCAD’s prediction of differential throughput between

version i and version j as:

Eij = |∆G(Pi, Pj)−∆MCAD(Pi, Pj)|

4.5.1 Differential Throughput Prediction

To assess the overall accuracy and ability to generalize throughput predictions across control

transfers we conduct experiments using two popular and widely used applications as target
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programs: the ffmpeg video encoder/decoder and the C/C++/Objective-C compiler clang.

We select ffmpeg for our case study as video encoding represents a complex and highly

performance-intensive task with many applications in real-world use cases. clang represents

a large-scale software consisting of complex branching logic, which is well suited to test

MCAD’s cross-branch prediction accuracy and also plays an important role in many real-

world scenarios.

We collect baseline cycle-count measurements on three physical machines with different in-

struction set architectures (ISAs) and microarchitectures:

• Intel CoffeeLake: 6-core Intel i7 8700K x86 64 CPU, clocked at 3.70GHz and 32G of

RAM running Ubuntu 20.04

• AMD Zen 2: 12-core AMD Ryzen 9 3900X x86 64 CPU, clocked at 2.48GHz and 32G

of RAM running Ubuntu 20.04

• ARM Cortex-A57: 4-core ARM Cortex-A57 AArch64 CPU, clocked at 1.73GHz and

4G of RAM running Ubuntu 16.04

Compared to running baseline measurements on smaller program scopes (e.g. a single ba-

sic block), measuring larger execution traces faces much more operating system noise. To

avoid noise due to CPU migration or context switching we allocate a single processor core

exclusively for the process under measurement. In addition, we disable Simultaneous Multi-

threading (SMT, also called Hyper-Threading on Intel processors) on the benchmarking core

since it is not supported by our analysis engine as mentioned in Section 4.3.5. The baseline

measurements are obtained using Linux Perf, which leverages the Performance Monitor Unit

(PMU) provided by the underlying hardware, and are averaged over 1000 repetitions.
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(b) Clang Intel Coffee Lake
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(c) ffmpeg AMD Zen2
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(d) Clang AMD Zen2
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(e) ffmpeg ARM Cortex-A57
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(f) Clang ARM Cortex-A57

Figure 4.4: Differential execution timing comparisons between subsequent development ver-
sions of ffmpeg and clang. Relative cycle count differences are plotted in blue and orange
for MCAD and Perf respectively. The gray bars represent the Mean Absolute Percentage
Error for each experiment, the geometric mean of all error values is plotted in red. In all
experiments, we compare MCAD’s predictions against hardware-performance counter mea-
surements collected from execution traces on the respective physical devices.
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FFmpeg

We evaluate ffmpeg on subsequent version pairs using 9 different release versions in the

following order: 2.0, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 4.2, and 4.4. For each experiment, we use the

same 14KB MPEG-4 video file as reference input and execute the following command:

ffmpeg -i input.mp4 -f null -

Figure 4.4a, 4.4c, and 4.4e depict the differential throughput predictions of MCAD, between

∆MCAD(ffmpegi, ffmpegj)

and the baseline ∆ij for version pairs (i, j) as (2.0, 2.2), (2.2, 2.4), and so forth. In addition,

the Figures present the resulting error rates Eij for the corresponding version pairs between

ground truth measurements on physical devices and predictions by MCAD.

Our results show that MCAD closely follows hardware cycle counts and never deviates from

changes in the baseline count by more than 15%. On average, the error is 1.8% for Intel,

2.6% for AMD, and 1.1% for the ARM Cortex-A57 with a standard deviation of less than

6.3% in all cases. Nevertheless, on both Intel and AMD machines, two version pairs show

unusually high error: (3.1, 3.3) and (3.3, 4.2) deviate from baseline measurements by around

10% to 15%. Further investigation showed that this deviation is likely due to a high number

of cache misses during the execution of ffmpeg version 3.3 on Intel and AMD machines.

Figure 4.5 shows the number of cache misses when running different versions of ffmpeg on

CoffeeLake and Zen 2, measured using hardware performance counters averaged over 1000

repetitions. On both machines the number of cache misses spikes for version 3.3, exceeding

the second highest measurement by at most 30%. As detailed in Section 4.3.2, MCAD utilizes

LLVM’s instruction scheduling database for instruction latency information which assumes

that all memory accesses result in cache hits. Therefore, without proper and potentially
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Figure 4.5: Number of cache misses during the execution of different ffmpeg versions on
CoffeeLake and Zen2 machines.

expensive cache simulation (See Section 4.3.5), MCAD’s precision will be hindered by cycle

count penalties originating from cache misses.

Clang

We conducted our experiments for clang using 8 different release versions as follows: 6.0,

7.0, 8.0, 9.0, 10.0, 11.0, 12.0, and 13.0. In order to reduce the amount of I/O interference and

simplify the experiments without losing generality, we focus on the backend of clang’s com-

pilation pipeline. More specifically, we measure the cycles consumed by clang in compiling

an unoptimized LLVM IR program to an object file. The LLVM IR input file (input.ll) is

generated from the following C program:

int foo(int x, int y) {

return x * 2 + y;

}

We use input.ll as the reference input for our experiments and execute the following

command:

clang -O2 -c input.ll -o /dev/null
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Figure 4.4b, 4.4d, and 4.4f depict the differential throughput predictions of MCAD, between

∆MCAD(clangi, clangj)

and the baseline ∆ij as well as the error rates Eij between predictions by MCAD and baseline

for version pairs (i, j) as (6, 7), (7, 8), and so forth.

Again, our results show that MCAD closely follows the hardware cycle count and never

deviates from the changes in the baseline count by more than 12%. On average, the error is

2.3% for Intel, 2.2% for AMD, and 1.9% for the ARM Cortex-A57 with a standard deviation

of less than 5% in all cases. On both Intel and AMD machines, we observe a spike of

nearly 10% error on version pair (12.0, 13.0). Similar to the culprit for unusually high error

percentage in Section 4.5.1, we find that this spike of error is caused by higher number of

cache misses on version 13.0: compared to other clang versions, clang 13.0 creates 13% to

35% more cache misses on both machines. In addition, on the ARM machine, we observe

around 10% of error on version pairs (11.0, 12.0) and (12.0, 13.0). We find that this is caused

by sudden increase of memory operations in both version pairs. For instance, the number of

LDUR (memory load) and STR (memory store) instructions increases by a factor of 27 in said

version pairs. Modern processors usually apply advanced optimizations, such as load-store

forwarding, during the execution of these memory operations which might not be accurately

modeled by MCA.

Version Delta # LoCC

6.0 ∼7.0 3,040,664
7.0 ∼8.0 2,699,505
8.0 ∼9.0 3,099,259
9.0 ∼10.0 2,676,054
10.0 ∼11.0 3,795,173
11.0 ∼12.0 6,029,487
12 .0 ∼13.0 5,629,956

Geomean 3,658,380.7

Table 4.1: # LoCC between clang release versions
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Version Delta # LoCC

14.0.0 ∼14.0.1 2,761
14.0.1 ∼14.0.2 4,515
14.0.2 ∼14.0.3 76
14.0.3 ∼14.0.4 3,151
14.0.4 ∼14.0.5 1,453
14.0.5 ∼14.0.6 596

Geomean 1,171.5

Table 4.2: # LoCC between clang minor release versions

Version Delta # LoCC

2.0 ∼2.2 205,518
2.2 ∼2.4 197,301
2.4 ∼2.6 128,982
2.6 ∼2.8 226,955
2.8 ∼3.1 274,626
3.1 ∼3.3 193,774
3.3 ∼4.2 390,620
4.2 ∼4.4 293,100

Geomean 227,723.0

Table 4.3: # LoCC between ffmpeg release versions

Version Delta # LoCC

4.2 ∼4.2.1 482
4.2.1 ∼4.2.2 2,013
4.2.2 ∼4.2.3 1,687
4.2.3 ∼4.2.4 773
4.2.4 ∼4.2.5 2,098
4.2.5 ∼4.2.6 332
4.2.6 ∼4.2.7 132

Geomean 735.4

Table 4.4: # LoCC between ffmpeg minor release versions

4.5.2 Differential Throughput Prediction on Small Changes

So far, MCAD has shown its accurate differential throughput predictions on changes between

major software release versions. In this sub-section, we futher illustrate MCAD’s capability

of predicting differential throughput originating from (much) smaller changes, like software

patches. This is supported by repeating the Intel CoffeeLake experiments from Section 4.5.1

and Section 4.5.1, but using minor ffmpeg and clang releases, which have far less modifi-
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Figure 4.6: Differential throughput prediction of small software changes in ffmpeg and Clang

on Intel CoffeeLake

cations between them, rather than their major releases as the analysis targets. Ideally, we

should characterize the size of changes between two different versions based on their program

binaries. However, measuring differences between two binaries is a hard problem [22, 50].

Therefore, we use lines of (source) code changes (# LoCC) as an approximate metric of

change between two software versions.

For our evaluation, we repeat the experiments detailed in Section 4.5.1 for ffmpeg on 7

minor releases for version 4.2: 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6, and 4.2.7. The # LoCC

between minor releases range from 132 to around 2000 lines with a geomean of 735 lines

(See Table 4.4), whereas # LoCC between major ffmpeg releases evaluated in Section 4.5.1

range from 128k to 390k lines with a geomean of 227k (See Table 4.3). Figure 4.6a shows

the differential throughput results along with their error percentage.

We repeat the experiment for clang, for which we evaluate 6 minor 14.0 releases: 14.0.1,

14.0.2, 14.0.3, 14.0.4, 14.0.5, and 14.0.6. The # LoCC between these minor releases range

from 76 to around 4k lines with a geomean of 1171 lines (See Table 4.2). In contrast,

the # LoCC between major clang releases evaluated in Section 4.5.1 range from 2.6M to
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6M lines with a geomean of 3.6M lines (See Table 4.1). Figure 4.6b shows the differential

throughput results as well as the respective their error percentage.

Both experiments show that MCAD’s predictions follow the hardware cycle counts closely,

with only marginal error rate of less than 1% on average and 1.5% in the worst case.

4.5.3 Scalability and Comparison

Besides accurate predictions that generalize across control-flow transfers, another major goal

of MCAD is scalability. In particular, we aim for MCAD to scale up with the complexity

of real-world target programs. In this section, we compare against four state-of-the-art

throughput prediction and analysis approaches: OSACA [35], Ithemal [43], uiCA [6], and

LLVM-MCA [2]. We present the results in Table 4.5.

First, we focus on the benchmarks these tools used in their repositories or publications. We

compare the type and size of benchmark, as well as their supported target instruction sets.

All prior art operates on the individual basic block level with the exception of LLVM MCA

which also contains designated support for loop kernels. However, in both cases instruction

sequences usually consist of only 10∼20 instructions at most. On the other hand, MCAD was

designed to work on real-world program traces containing millions of instructions. MCAD

also supports most of the hardware architectures that QEMU and LLVM support, which

amounts to nearly 20 different Instruction-Set Architectures (ISAs). In contrast, most other

tools are highly architecture specific and only support x86 64.

We further evaluate these tools using the same reference input and compare their performance

with respect to execution time and memory consumption. For this purpose, we collected the

execution trace of a ffmpeg invocation using version 4.2 as described in Section 4.5.1 storing

the results into a file. The resulting instruction stream consists of roughly 27 million x86 64
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instructions. To give state-of-the-art approaches the benefit of the doubt we perform this

experiment on an 80-core Intel Xeon E7-4870 machine, clocked at 2.4GHz, equipped with

198GB of RAM and the same amount of swap space, setting a 48-hour time limit on the

execution.

As shown, OSACA and Ithemal did not finish this task: OSACA bailed out with failures

related to loading hardware models after parsing the input file; Ithemal promoted an out-of-

memory error from its DynamoRIO [16] runtime before bailing out. Similarly, uiCA could

not finish within the time limit after consuming significant amount of memory. Last but not

the least, despite being able to finish, LLVM-MCA consumed significantly more time and

memory compared to MCAD, demonstrating the effectiveness of our changes over standard

MCA in our implementation.

4.6 Discussion

Current state-of-the-art throughput prediction approaches either explicitly model or learn

microarchitectural implementation details, resource usage, instruction scheduling, and la-

tency numbers, using data. This data is sometimes provided by processor vendors directly,

although, most of the time it is collected using emperical methods, like measuring instruction

latencies using many different software configurations, and large numbers of repetitions to

reduce inherent error signals.

MCAD builds on top of this prior work that provides insights into modern processor pipelines

through detailed measurements and experiments. Since a lot of this research has been con-

tributed in part by vendors directly and in other parts incorporated by the community into

the LLVM compiler infrastructure, MCAD currently uses LLVM MCA as the core analysis

5uiCA uses the Mean Absolute Percentage Error (MAPE) to compare the error of a prediction against
a single execution on a physical device, whereas we use the mean error of the predicted difference in cycles
between two executions.
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engine. However, the core analysis component in our design can support other throughput

analysis engines in principle, which would allow us to predict timing effects of a number of

optimizations in modern processors that are not currently modeled by LLVM MCA, such

as including instruction prefetching and branch prediction which usually happen in the pro-

cessor frontend. The main obstacle towards that as demonstrated by our experiments in

Section 4.5.3, however, remains overcoming scalability issues of the related approaches.

Looking ahead to future work we anticipate that research into analysis of multi-process

and multi-thread executions should be feasible within MCAD in principle. As introduced

in Section 4.3 we collect execution traces using QEMU and a custom plugin and certain

recently-added QEMU plugin interfaces would allow us to distinguish traces originating

from different virtual CPUs at runtime. Nevertheless, how to incorporate modern processors’

concurrency models into current throughput prediction approaches remains an open research

question. It would also be possible to substitute QEMU for other methods of execution trace

collection entirely: for instance, leveraging binary rewriting tools would enable us to insert

instrumentations that report the executed instructions natively.

Last but not least, we believe a more scalable, intuitive, and interactive timeline or waterfall

view could provide developers with more insights by visualizing resource dependencies among

instructions, pointing towards potential avenues for improving continuous development of

timing-sensitive code.

4.7 Summary

To summarize, our results show that MCAD improves on the state of the art by scaling

up to complex real-world software. It is well suited to providing cycle count estimates

with rapid developer-centric turn-around times while targeting a range of different hardware
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architectures. MCAD can drive software development by quickly iterating on small changes

and assessing their timing impact on real-world programs such as ffmpeg and clang, with

a mean error in differential throughput estimates of < 3% compared to hardware-based

measurements.
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Chapter 5

Related Works

5.1 Improvements on the Scalability of IFDS

The original IFDS/IDE algorithm [51] together with practical extensions proposed by Naeem

et al. [45] is nowadays implemented by many analysis frameworks for JAVA [14, 10] and

C/C++ [53]. In addition, several approaches have been proposed to further reduce memory

consumption and processing time of IFDS implementations. Sparsedroid [28] improves the

sparsity of the dataflow propagation. The number of dataflow edges is reduced by connecting

dataflow facts directly to their next point of use, instead of the next node in the CFG.

DiskDroid [37] and CleanDroid [9] reduce the footprint of the graph reachability algorithm

by detecting stale edges and either move them to disk or completely remove them from

the working set. Coyote [56] improves the parallelism of bottom-up IFDS implementations

by increasing the granularity of caller-callee dependencies. Intraprocedural analysis is split

into multiple independent parts which can then be run in parallel. All of the mentioned

approaches address shortcomings that are specific to the original IFDS implementation and

are therefore not directly comparable to DFI.
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5.2 Sparse Value-Flow Analysis

SVF [57] is another sparse value-flow analysis framework focused on computing points-to

information. Similar to DFI, SVF operates on the sparse SSA def-use chains. To capture

the relations between address taken variables SVF uses its own MemorySSA constructions

derived from precomputed points-to information, like Andersen’s analysis [8], and continuous

refinements on the sparse value flow graph (SVFG). Different from DFI and IFDS based

approaches, SVF does not support the configuration of custom value-flow transfer functions.

5.3 Program Analysis via Big Data analytics

Recent contributions such as BigSpa [66], Grapple [67], GraSpan [62] and Chianina [68]

work around scalability issues of static analysis frameworks by developing core functionalities

inspired by big data analytics in order to support certain classes of static analyzers. The

actual analysis is then implemented on top of the core API and can thereby be transparently

scaled to the available resources of the underlying system. Systems approaches are orthogonal

to DFI as they aim to provide primitives to improve the resource utilization of static analyzers

but do not aim to optimize the analysis algorithm itself.

5.4 Static Timing Analyses

A large body of prior research focused on static prediction of worst-case timing behavior [54,

39, 23, 40, 27]. However, reasoning about timing properties of arbitrary programs reduces

to the halting problem in the general case and as a result approaches for calculating worst

case execution time make strong assumptions such as an upper bound on the number of
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loop iterations, recursion depth, effects of memory accesses, and external I/O operations. In

practice, this means that the user of traditional tools has to provide upper bound information

for all loop constructs, recursion, avoid indirect memory accesses through pointers, and avoid

the use of I/O operations in analyzed parts of the code. Ensuring proper and correct usage

then typically requires dedicated build toolchains and environment setups, as well as expert

knowledge about the analysis framework. Moreover, such tools typically over-approximate

cycle counts up to several orders of magnitude over physical hardware execution in order

to remain sound, with several tools providing timing estimates in units of wall-clock time

rather than cycles [44, 7].

More recently, a number of approaches [6, 35, 2, 43] proposed throughput modeling of ma-

chine code using parametric models for accurate, yet fast throughput prediction. Such

approaches predict timing aspects of a particular instruction sequence of the target pro-

gram rather than reasoning about the entire set of possible executions at once like prior

static approaches do. While their underlying parametric models require knowledge of key

microarchitectural aspects such as port usage, instruction latencies, and other internal de-

tails that may not be publicly available, recent advances in machine learning showed that

architecture dependence can be tackled to some extent by learning model parameters from

data [43]. However, without ruling out the use of learning-based solutions, our evaluation

show that currently such approaches are severely limited with respect to scalability, pro-

viding throughput estimates only for a handful up to a few hundred instructions at most,

also lacking support for prediction across control-flow transfers. In contrast, MCAD han-

dles complex binary programs containing literally millions of individual instructions with

near-native execution speeds.
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5.5 Dynamic Timing Analyses

Dynamic approaches aim at providing detailed and concrete timing analyses of the running

software using concrete inputs. There are two main flavors of dynamic timing analysis tools:

either using physical hardware tracing or using architectural simulators. Approaches using

physical tracing execute the program on the target architecture and measure cycle counts

directly using the facilities provided by the device [41, 3]. While in theory this yields the

most precise results and should also be reasonably fast, in practice this is often not the case:

the target architecture might be a production system that is not readily available to the

developer running the test and in a collaborative environment each team would require their

own physical device to test their changes against.

Additionally, setting up and using facilities for accurate cycle-count measurements can be a

time-intensive task in and of itself, requiring complicated setup, and potentially support by

the target program’s build toolchain as well as the operating system of the production system.

Worse yet, the target architecture might not actually provide any built-in facilities for accu-

rate measurement of cycle counts, requiring developers to implement purpose-built, custom,

and highly architecture-dependent in-house measurement frameworks, whose accuracy might

actually be limited in the end.1 Cycle-accurate architectural simulators [17, 65, 13] on the

other hand promise to provide a similar level of accuracy as physical tracing without requir-

ing an actual physical device to capture program execution. Unfortunately, simulation-based

approaches also come with major drawbacks: first, performance is typically at least three

orders of magnitude slower than native execution (or even slower) as they faithfully simulate

microarchitectural details of modern processor pipelines completely in software. Second,

they are usually aimed towards explorative hardware design and implementation studies of

novel architectures rather than simulating throughput of software for existing platforms. As

1For instance, because of requiring instrumentation of the original binary where instrumentation overhead
cannot easily be measured at runtime.
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a result, these frameworks are not easily accessible and can be difficult to integrate with

existing software development tools and continuous integration workflows due to the high

resource requirements and time-intensive nature of the simulation-based approach.
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Chapter 6

Conclusion

Software codebases are getting larger and more complex, but contemporary program analysis

has yet kept up with them. The inability to scale computation resources used by analyses

with these large codebases often leads to reduced analysis quality and hinders the crucial

tasks that are depending on these results, such as bug finding and performance tuning. In

this dissertation we show some ideas and paths to solve this issue in dataflow and throughput

analysis, two of the most important program analysis sub-fields.

Dataflow analysis plays a central role in programming language and software engineering

fields. People have proposed countless of ideas to improve the scalability of dataflow analy-

sis on different problems. For instance, IFDS-based solver and adopting sparse representation

for program under analysis. However, there is yet a solution to leverage both the aforemen-

tioned techniques in a coherent way. Our efficient value-flow framework for IFDS problems,

DFI, not only combines traditional IFDS framework with LLVM-IR-based sparse program

representation, but more importantly, creates a novel depth-first, interval-based graph reach-

ability algorithm that traverses the SSA graph in reverse direction, as reverse SSA graph

has a relatively low tree width hence suitable for efficient tree-based solutions. All together,
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DFI scales better than sate-of-the-art IFDS framework on large codebases like OpenSSL by

several magnitudes, with comparable precision.

Throughput analysis is key to providing insights to the development of many performance

sensitive applications. Unfortunately, contemporary throughput analysis techniques that

use either static or dynamic approach struggle to strike a balance between performance

and precision, which often leads to difficulties in analyzing non-trivial workload from real-

world software. MCAD, our hybrid throughput analysis framework, combines the advantages

of static and dynamic strategies by streaming program execution traces from performant

emulators to efficient static throughput analyzer. MCAD scales well with large codebases

like FFmpeg and Clang, outperforming other state-of-the-art static throughput analyzers.

In terms of precision, our framework also achieves less than 3% geo. mean error compared

to ground truth timings on the task of differential throughput analysis targeting x86 and

ARM machines.
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