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On the Performance of MRC Receiver with

Unknown Timing Mismatch-A Large Scale

Analysis

Mehdi Ganji, Student Member, IEEE, Hamid Jafarkhani, Fellow, IEEE

Abstract

There has been extensive research on large scale multi-user multiple-input multiple-output (MU-

MIMO) systems recently. Researchers have shown that there are great opportunities in this area, however,

there are many obstacles in the way to achieve full potential of using large number of receive antennas.

One of the main issues, which will be investigated thoroughly in this paper, is timing asynchrony among

signals of different users. Most of the works in the literature, assume that received signals are perfectly

aligned which is not practical. We show that, neglecting the asynchrony can significantly degrade the

performance of existing designs, particularly maximum ratio combining (MRC). We quantify the uplink

achievable rates obtained by MRC receiver with perfect channel state information (CSI) and imperfect

CSI while the system is impaired by unknown time delays among received signals. We then use these

results to design new algorithms in order to alleviate the effects of timing mismatch. We also analyze the

performance of introduced receiver design, which is called MRC-ZF, with perfect and imperfect CSI.

For performing MRC-ZF, the only required information is the distribution of timing mismatch which

circumvents the necessity of time delay acquisition or synchronization. To verify our analytical results,

we present extensive simulation results which thoroughly investigate the performance of the traditional

MRC receiver and the introduced MRC-ZF receiver.
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I. INTRODUCTION

Introducing multiple-input multiple-output (MIMO) systems was a breakthrough in commu-

nication systems which was studied extensively during the past two decades [1]–[3]. Using

multiple antennas at transmitter and receiver provides the opportunity to increase the capacity

and improve the performance significantly [4], [5]. One of the applications of MIMO systems is

in multiuser scenarios where K users, each equipped with multiple antennas communicate with a

common multiple antenna receiver. Beside traditional problems in point to point communication,

due to distributed nature of multiuser-MIMO (MU-MIMO) systems, new challenges exist like

timing mismatch between received signals from different users [6]. When the number of users and

number of receive antennas are moderate, this issue is often handled by synchronization methods

[7]–[9]. Recently, it has been shown that timing mismatch can even improve the performance

when the time mismatch values are known by the receiver and proper sampling and detection

methods are used [10]–[14]. However, increasing the number of receive antennas and users

makes the time delay estimation or synchronization challenging and even impractical, especially

in the context of massive MIMO systems [15].

In large scale MU-MIMO systems, the base station is equipped with very large number of

receive antennas and communicates with tens of users at the same time and frequency. The

benefits of massive MIMO settings including, near optimal performance using simple processing

like maximum ratio combining (MRC), increased spectral efficiency and energy efficiency, have

been studied in the literature [16]–[18]. However, there are many challenges which need to be

addressed before the gains can be realized in practice [19], [20]. For hundreds of receive antennas,

one major challenge is the fact that it is impossible to receive perfectly aligned signals at all

the receive antennas. Therefore, it is of great importance to investigate timing mismatch in large

scale MU-MIMO systems. For large scale multi-carrier MU-MIMO systems, the timing mismatch

between the received signals can be modeled as the phase rotation of the received symbols. Such

a phase rotation behaves similar to the phase noise introduced by the oscillator at the receiver and

has been studied in the literature [21], [22]. However, to the best of our knowledge, there is no

work in the literature to consider the timing mismatch in single-carrier massive MIMO scenarios.

In [23], it is shown that using single carrier transmission can achieve near optimal sum rate. The

authors have proposed a simple precoding which mitigates the intersymbol interference (ISI)

caused by channel multipath. However, they assume perfect symbol level alignment enabling
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(a) ISI caused by multipath channel (b) ISI caused by imperfect sampling

Fig. 1: Demonstration of two different sources of creating ISI

perfect sampling at the peak point of the transmitted pulse shape which might be challenging in

a large scale MU-MIMO system. Inevitable timing mismatch between received signals, results

in imperfect sampling, and hence creates another source of ISI as illustrated in Fig. 1.

In Fig. 1a, the ISI is created by dotted symbols which are delayed copies of the transmitted

symbols caused by a frequency selective channel. In Fig. 1b, the ISI is generated by imperfect

sampling. Note that imperfect sampling is unavoidable when the received signals are not aligned.

If the timing mismatch values are known at the receiver, it can obtain ISI-free samples for each

user by oversampling as many times as the number of users, as explained in [14]. However,

considering practical challenges for delay acquisition in a large scale MU-MIMO system,

we assume that the timing mismatch values are unknown and the receive only knows their

distribution. In this work, we will investigate the effect of timing mismatch in the performance

of MRC receiver. We consider flat fading Rayleigh fading channels to reveal the main concepts;

however, the results can be generalized to frequency selective channels which is the topic of our

future work.

It is shown in the literature that in large scale MU-MIMO systems, a low complexity MRC

receiver can approach near optimal performance and even outperform its complex counterparts,

i.e., ZF and MMSE receivers, at low SNR [17]. An MRC receiver also follows the power

scaling law which roughly indicates that to maintain the same quality-of-service as with a single-

antenna BS, the transmit power of a 100-antenna BS would be only almost 1% of the power

of the single-antenna system [24]. As we shall see, ignoring the asynchrony can significantly
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degrade the performance of the MRC receiver (and expectedly other existing receiver designs).

We develop a mathematical model that explicitly accounts for the timing mismatch among the

received signals. It then quantifies the detrimental impact of asynchrony on the MRC receiver,

and suggests how to mitigate it by making some modifications to the MRC receiver. The paper

makes the following specific contributions:

• We derive a tight approximation for the achievable uplink rate using the MRC receiver

in the presence of timing mismatch. We consider a single cell scenario with perfect and

imperfect CSI. Our results are general and cover any arbitrary delay distribution including

the synchronous scenario.

• We find the optimal sampling times which maximize the asymptotic achievable rate by the

MRC receiver when the number of receive antennas goes to infinity.

• We show that the MRC receiver cannot provide the power scaling law when there is

misalignment between received signals.

• We introduce a new receiver design called MRC-ZF which alleviates the effects of timing

mismatch and follows the power scaling law.

• We derive an achievable uplink rate approximation when the MRC-ZF receiver is used.

The rest of the paper is organized as follows: first we introduce the system model in

Section II. Then we explain discretization and receiver processes in Section III. We analyze the

achievable rates obtained by the MRC receiver when unknown delays exist in Section IV and

the MRC-ZF receiver structure is presented for two scenarios: perfect CSI and estimated CSI.

Next, simulation results are presented in Section V to verify the effectiveness of our proposed

methods. Finally, we summarize our contributions in Section VI.

II. SYSTEM MODEL

We consider a system with K users, transmitting data to a common receiver with M receive

antennas simultaneously where M is very large and tends to infinity. Due to different physical

locations of users, their signal is received with various time delays. It is assumed that each data

stream is received with an arbitrary delay smaller than the symbol interval. The signal transmitted

from User k is described by:

sk(t) =
√
ρd
∑N

i=1 bk(i)p(t− (i− 1)Ts) (1)
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where Ts, ρd and p(.) represent the symbol length, the transmit power, and the pulse-shaping

filter with non-zero duration of T , respectively. Also, N is the frame length and bk(i) is the

transmitted symbol by User k in the ith time slot. The transmitted signals are received with a

relative delay of ςkm and a channel path gain of ckm =
√
βkhkm. In channel path gains,

√
βk

shows path loss that depends on the distance between the corresponding user and the base station

and hkm represents fading coefficients which are usually modeled as Rayleigh distribution with

zero mean and variance one. Channel path gains are assumed to be fixed during the transmission

of each frame. Then, the continuous received signal at the mth receive antenna can be represented

by:

ψm(t) =
√
ρd
∑K

k=1 ckmsk(t− ςkm) + νm(t) (2)

where K is the number of users and νm(t) is the white noise with zero mean and variance one.

The relative delays among users can be separated in two parts: one for frame level asynchrony

and the other for symbol level asynchrony, i.e, ςkm = dkmTs + τkm. It is always assumed that

dkm is known (without loss of generality dkm = 0, k = 1, · · · , K,m = 1, · · · ,M). Otherwise,

even in the case of correct detection, it is not possible to know the index of the corresponding

symbol; meaning that communication is not possible. In addition, in most of the work in the

literature, symbol level synchrony is assumed, i.e., τkm = 0, k = 1, · · · , K,m = 1, · · · ,M
which might be challenging, especially, in a multiuser scenario where users are located at various

places experiencing completely different paths. Even if we have perfect control over the delays at

transmitters, we can use such a control to synchronize the signals at one of the receivers. Then, in

a multi-user system with several receivers, it is impossible to have perfect time-synchronization

at the symbol level for all receivers. In addition, even knowing/estimating the values of the

time asynchrony, i.e., τkm values, may not be possible for more than a few number of receive

antennas. Therefore, we consider the general case in which the time delays are treated as random

variables. Usually, due to the lack of information about time delays, the time delays are assumed

to have uniform distribution. However, this assumption hides the fact that one of the signals

arrives at the receiver first and provides the time origin for performing matched filtering and

sampling processes. To explain it further, assume that we have two users. Each user’s signal is

received first with probability of half. Therefore, each user will have zero timing mismatch with

probability of half and uniform timing mismatch between (0, Ts) otherwise. Hence, the most
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general assumption for the distribution of time delays is that each of them is chosen from the

following distribution:

f(τ) =
1

K
δ̄(τ) +

K − 1

K
U(0, Ts) (3)

where δ̄(.) is the continuous Delta function and U(0, Ts) is the uniform function in the interval

of (0, Ts). This distribution shows that with probability of 1
K

, each user signal is received before

other users’ signals, i.e. τkm = 0, and with the probability of K−1
K

, it is uniformly distributed

in the interval of (0, Ts). From now on, we assume dkm is equal to zero and τkm is a random

variable following the density function in Eq. (3). Note that our approach and analysis works

for any other known density function as well.

III. RECEIVER DESIGN

In this section, we explain the receiver design that includes the transformation of the continuous

signal in Eq. (2) into discrete samples and the combination of the obtained samples at different

receive antennas by the MRC method.

A. Output Samples

To obtain the discrete samples of the received signal, first the continuous received signal

should be passed through a matched filter and its output can be written as follows:

ψ̂m(t) =
√
ρd

K
∑

k=1

√

βkhkm

N
∑

i=1

bk(i)g(t− (i− 1)Ts − τkm) + νm(t) ∗ p(t) (4)

where g(t) = p(t) ∗ p(t). The convolution g(t), called convoluted pulse shape is zero outside

the interval of [0 2T ]. The sampling instants are represented as tsn and are equal to e + T +

(n − 1)Ts, n = 1, · · · , N . The quantity of e is a design parameter that affects the performance

significantly. Optimizing sampling instants can be translated into optimizing the factor e that is

defined as the sampling origin. If all the received signals were synchronized, then e = 0 would

be the optimum value, which is the assumption in most of the work in the literature. However,

due to having unknown delays among received signals, the optimum value of e is not zero

anymore and will be found based on the system model characteristics. The obtained samples at

the sampler of the mth receive antenna denoted by ym(n) = ψ̂m(t)|tsn can be written as:

ym(n) =
√
ρd

K
∑

k=1

√

βkhkm

N
∑

i=1

bk(i)g(e+ T + (n− i)Ts − τkm) + ν̂m(t)|e+T+(n−1)Ts
(5)
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where ν̂m(t) = νm(t) ∗ p(t). Eq. (5) can also be interpreted as passing the T + e shifted version

of the output of the matched filter through a sampler with sampling frequency of fs =
1
Ts

. After

obtaining N samples, we can put them together and form the system model equation as follows:

ym =
√
ρd

K
∑

k=1

√

βkhkmGkmbk + nm 1 ≤ l ≤ K, 1 ≤ m ≤ M (6)

where bk = [bk(1), bk(2), · · · , bk(N)]T is the transmitted frame by the kth user and nm =

[nm(1), nm(2), · · · , nm(N)]T is the noise vector containing samples of ν̂m(t), i.e., nm(n) =

ν̂m(t)|e+T+(n−1)Ts
, 1 ≤ n ≤ N . Also, Gkm is an N ×N matrix defined as:

Gkm =















g(e+ T − τkm) · · · g(e+ T + (1−N)Ts − τkm)

g(e+ T + Ts − τkm) · · · g(e+ T + (2−N)Ts − τkm)
...

. . .
...

g(e+ T + (N − 1)Ts − τkm) · · · g(e+ T − τkm)















N×N

(7)

Defining Tkm =
√
βkhkmGkm, Eq. (6) can be written as the following short form:

ym =
√
ρd

K
∑

k=1

Tkmbk + nm 1 ≤ k ≤ K, 1 ≤ m ≤M (8)

The noise vector has zero mean and identity covariance matrix.

B. Maximum Ratio Combining

As a quick recap, the MRC is a low complexity receiver that consists of multiplying samples

of each receive antenna by conjugate of the corresponding channel coefficient estimate and

then averaging them among all the receive antennas. These estimates are usually obtained

by transmitting pilot sequences at the beginning of the frame. Then, those estimated channel

coefficients are used to perform MRC. Denoting c̃lm as the estimate of the channel coefficient

between the lth user and the mth receive antenna, the MRC output for detection of the lth user’s

symbols, i.e, ymrc
l = 1

M

∑M
m=1 c̃

∗
lmym, can be expressed as:

ymrc
l =

√
ρd

K
∑

k=1

Tmrc
lk bk + nmrc

l (9)

where the effective channel matrices and the resulting noise vector are denoted by Tmrc
lk and

nmrc
l , and will be defined later based on available CSI and detection methods. In the next

section, we analyze the performance of the MRC detection for perfect CSI and estimated CSI at

the receiver. First, to reveal the main effects of the interuser time delays, we consider the case
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that channel coefficients are perfectly known at the receiver, i.e, c̃lm = clm, l = 1, · · · , K,m =

1, · · · ,M . Next, we consider the more general case where the channel coefficients are estimated

by sending pilot sequences.

IV. ANALYSIS OF ACHIEVABLE RATES

A. Perfect CSI

In this section, we assume that channel coefficients are estimated separately for each user. It

might be impractical due to the large number of users being served by the base station; however,

it will uncover the main effects of unknown time delays on the performance. Unlike the case of

perfect synchronization where there is no uncertainty in the effective channel coefficients, here,

the effective channel matrices consist of random variables which only their statistics are known

by the receiver. The source of randomness is the unknown delays between received signals. By

assuming c̃km = ckm, the random matrix Tmrc
lk,p can be represented as follows:1

Tmrc
lk,p =

1

M

M
∑

m=1

√

βlβkh
∗
lmhkmGkm (10)

With the assumption of symbol level synchronization between received signals of different users,

Tmrc
lk,p turns into 1

M

∑M
m=1

√
βlβkh

∗
lmhkmIN , which means that there is no ISI. As a result, the

major impairment comes from interuser interference and it is shown in [24] that the approximate

achievable rate can be calculated as:

Rmrc−ideal
l,p ≈ log2















1 +
ρdβl(M + 1)

ρd
K
∑

k=1
k 6=l

βk + 1















(11)

However, due to the existence of unwanted mismatch between received signals, this ideal rate is

not achievable by the MRC receiver. In fact, by overlooking the symbol level synchronization,

the major impairment would be ISI and the achievable rate is denoted in the next theorem.

1The subscripts p and ip are used for perfect CSI and imperfect CSI, respectively.
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Theorem 1: The achievable rate of the MRC receiver for User l, when there is unknown time

delays between received signals, can be approximated as:

Rmrc
l,p ≈ log2















1 +
ρdβl(2E[g

2
0] + (M − 1)E[g0]

2)

ρd
I
∑

i=−I

E[g2i ]
K
∑

k=1
k 6=l

βk + ρdβl
I
∑

i=−I
i 6=0

(2E[g2i ] + (M − 1)E[gi]2) + 1















(12)

where

E[gni ] =

∫ ∞

−∞
gn(e + T + iTs − τ)f(τ)dτ (13)

and I is the number of significant adjacent side lobes of the pulse shape.

Proof: the proof is presented in Appendix A.

The first term in the denominator of Eq. (12) is IUI caused by other users. However, its difference

with Eq. (11) is that due to unknown timing mismatch values the aforementioned IUI is not only

caused by the same indexed symbols but also the adjacent symbols, represented by multiplication

factor of
∑I

i=−I E[g
2
i ] in Eq. (12). The second term in the denominator is the ISI, which is caused

by adjacent symbols of the desired user. By increasing M, the effect of ISI is much more severe

than IUI. The last term is related to additive white noise.

Example 1: For the ideal case of perfect synchronization, i.e, f(τ) = δ̄(τ) Eq. (12) turns

into:

Rmrc
l,p ≈ log2



















1 +
g2(e + T )ρdβl(M + 1)

g2(e+ T )ρd
K
∑

k=1
k 6=l

βk + ρd





I
∑

i=−I
I 6=0

g2(e+ T + iTs)



 (
K
∑

k=1
k 6=l

βk + (M + 1)βl) + 1



















(14)

Now, it is clear that if the pulse shape satisfies the Nyquist no-ISI condition, by putting e = 0, i.e.,

sampling at T +nTs instants, the second term in the denominator can be completely eliminated

and Eq. (14) turns into Eq. (11). Therefore, the formula in Eq. (12) is general and covers all sorts

of delay distributions and pulse shapes including the ideal case of symbol-level synchronization.
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Example 2: We assume that rectangular pulse shape is used and time delays follow the

distribution in Eq. (3). Then, values of E[gi] and E[g2i ] are calculated as follows:


















E[g0] =
1
K

(

1− e
T

)

+ K−1
K

(

T 2−2e2+2eT
2T 2

)

E[g−1] =
1
K

(

e
T

)

+ K−1
K

(

e2

2T 2

)

E[g1] =
K−1
K

(

(T−e)2

2T 2

)



















,



















E[g20] =
1
K

(

1− e
T

)2
+ K−1

K

(

1
3
+ e

T
− e2

T 2

)

E[g2−1] =
1
K

(

e
T

)2
+ K−1

K

(

e3

3T 3

)

E[g21] =
K−1
K

(

(T−e)3

3T 3

)



















Note that for the rectangular pulse shape, E[gi] and E[g2i ] are nonzero only when i = −1, 0, 1.

Assume that K = 10, then, based on the choice of e, an approximate expression for the achievable

rate can be calculated. For example, by inserting e = 0, the approximate achievable rate is:

Rmrc
l,p ≈ log2















1 +
ρdβl(0.8 + 0.3(M − 1))

0.7ρd
K
∑

k=1
k 6=l

βk + ρdβl(0.6 + 0.2(M − 1)) + 1















(15)

If we choose e = 0.5, the approximate achievable rate is:

Rmrc
l,p ≈ log2















1 +
ρdβl(1.1 + 0.5(M − 1))

0.6ρd
K
∑

k=1
k 6=l

βk + ρdβl(0.2 + 0.04(M − 1)) + 1















(16)

Therefore, for large M , e = 0.5 results in better performance compared to e = 0.

In the ideal case of synchronized reception, the power scale law of massive MIMO systems

states that the transmit power of each user can be cut down by 1
M

with no degradation in the

achievable rate of each user, i.e., Rideal
l,p → log2 (1 + Edβl) as M → ∞, ρd =

Ed

M
[17]. However,

by ignoring the inevitable timing mismatch, the promised benefit of power scaling in massive

MIMO setting vanishes. In more detail, if we put ρd =
Ed

M
in Eq. (12) and let M go to infinity,

then we have:

Rmrc
l,p → log2















1 +
EdβlE[g0]

2

Edβl
I
∑

i=−I
i 6=0

E[gi]2 + 1















(17)
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The achievable rate in Eq. (17) is limited by ISI, and by increasing the transmit power it will

be saturated to a constant value, i.e.:

Rmrc
l,p → log2















1 +
E[g0]

2

I
∑

i=−I
i 6=0

E[gi]2















(18)

Therefore, at high SNR regime, no matter how much transmit power is used, the achievable

rate converges to a fixed value independent of the transmit power. This fixed value depends

on the delay distribution, pulse shape and sampling origin e. Using this criterion, more robust

pulse shapes can be designed to make the performance less vulnerable to unknown time delays.

Designing suitable pulse shapes is out of the scope of this work; however, for any given pulse

shape, the sampling origin can be optimized. For example, the optimum value of e for rectangular

pulse shape and delay distribution presented in Eq. (3) can be found by optimizing the following

expression which is obtained by inserting the values of E[gi] into Eq. (18):

max
e

(2(T 2 − eT ) + (K − 1)(T 2 − 2e2 + 2eT ))2

(2eT + (K − 1)e2)2 + (K − 1)2(T − e)4
(19)

The above optimization problem can be solved to obtain the optimal value of e for any number

of users. The optimal values of e for T = 1 and a few examples of K are shown in Table I. By

TABLE I: Optimal Sampling Origin e

Case K=2 K=4 K=6 K=8 K=10 K=12 K=14 K=16

Optimal e 0.18 0.35 0.41 0.44 0.45 0.46 0.46 0.47

increasing the number of users, the optimal value of e approaches half. The simulation results

on the optimal values of e for the root raised cosine pulse shape are shown in Section V.

B. Imperfect CSI

In practice, acquiring CSI is not free. In fact, the channel coefficients are estimated by sending

known sequences of symbols, called pilot sequences, and costs a portion of the coherent time Tc.

We assume that each user assigns its first Np symbols of each frame to send pilot symbols. We

denote the assigned pilot sequence to the kth user as pk = [pk(1), · · · , pk(Np)]. It is common in

the literature that the assigned pilot sequences for different users are mutually orthogonal, i.e.,
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〈pi.pj〉 = δ(i− j), where 〈 . 〉 shows the inner product. In addition, Np should be equal to or

greater than the number of users and its optimal value is shown to be Np = K [25]. The mutual

orthogonality enables all the users to send the pilot symbols simultaneously without interfering

with each other. The K ×Np matrix that contains all the pilot sequences is represented by:

Φ =















p1(1) · · · p1(Np)

p2(1) · · · p2(Np)
...

. . .
...

pK(1) · · · pK(Np)















K×Np

(20)

Due to orthogonality between rows, the pilot matrix is unitary, i.e., ΦΦH = IK . In the ideal

case of perfect synchronization, the received signal can be written as:

Yp =
√
ρpCΦ+N (21)

where Yp and N are M ×Np matrices of received samples and noise samples, respectively, and

C is equal to HD1/2 where H is the M ×K matrix of fading coefficients between the K users

and the BS, i.e., H(k,m) = hkm, and D is a K ×K diagonal matrix containing the path-loss

coefficients, i.e., D(k, k) = βk. Also, ρp is the power assigned to transmission of pilot sequences

and it is equal to ρp = Npρd. Therefore, the least square estimate of the channel matrix C can

be calculated as:

C̃ =
1

√
ρp

YpΦ
H (22)

Then, C̃ is used to perform MRC. The achievable rate by each user is equal to [17]:

Rideal
l,ip ≈ log2















1 +
Npρ

2
dβ

2
l (M + 1)

ρd(Npρdβl + 1)
K
∑

k=1
k 6=l

βk + ρd(Np + 1)βl + 1















(23)

Eq. (23) shows that the effect of reduction in the power of pilot and data symbols are multiplied

together and as a result, the power-scaling law admits a power reduction in the order of 1√
M

with

no degradation in the achievable rate of each user, i,e., R̄ideal
l,ip → log2 (1 +NpE

2
dβ

2
l ) as M →

∞, ρd = Ed√
M

. [17]. However, due to the existence of unknown time delays, the estimation

process is also degraded and as a result, the channel estimations are contaminated by unwanted

channel coefficients. This phenomenon is similar to the “pilot contamination” effect in which

channel estimates are contaminated due to the pilot reuse. As a result, not only ISI but also IUI
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will degrade the performance. In what follows, we provide a similar analysis for the channel

estimation when the misalignment exists between received signals. Time delays modify Eq. (21)

to:

Yp =
√
ρp

i=I
∑

i=−I

CiΦi +N (24)

where Ci
M×K and Φi

K×Np
are defined as follows:

Ci =















g(e+ T + iTs − τ11)
√
β1h11 · · · g(e+ T + iTs − τK1)

√
βKhK1

g(e+ T + iTs − τ12)
√
β1h12 · · · g(e+ T + iTs − τK2)

√
βKhK2

...
. . .

...

g(e+ T + iTs − τ1M )
√
β1h1M · · · g(e+ T + iTs − τKM)

√
βKhKM















Φi≤0 =















p1(1− i) · · · p1(Np) 0 · · · 0

p2(1− i) · · · p2(Np) 0 · · · 0
...

. . .
...

pK(1− i) · · · pK(Np) 0 · · · 0















,Φi≥0 =















0 · · · 0 p1(1) · · · p1(Np − i)

0 · · · 0 p2(1) · · · p2(Np − i)
...

. . .
...

0 · · · 0 pK(1) · · · pK(Np − i)















The process of de-spreading, which is multiplying the received pilot signal by 1√
ρp
ΦH , yields

the following channel matrix estimator:

C̃ = C0 +

i=I
∑

i=−I
i 6=0

CiΦiΦH + Ñ (25)

where Ñ is the estimation noise. We denote ΦiΦH by Υi which is equal to IK for i = 0, and

for the other values of i can be calculated as:

(Υi<0)T = Υi>0 =











〈 p1(1 : Np − i).p1(1 + i : Np)〉 · · · 〈 p1(1 : Np − i).pK(1 + i : Np)〉
...

. . .
...

〈 pK(1 : Np − i).p1(1 + i : Np)〉 · · · 〈 pK(1 : Np − i).pK(1 + i : Np)〉











where p(i : j) represents the vector [p(i), p(i+ 1), · · · , p(j)]. Therefore, the channel coefficient

estimate of User l to receive antenna m can be represented as:

c̃lm = g(e+ T − τlm)clm +
i=I
∑

i=−I
i 6=0

g(e+ T + iTs − τlm)Υ
i(l.l)clm +

K
∑

j=1
j 6=l

λljmcjm + ñlm (26)
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where λljm is called “the leakage factor” from User j to the estimation of the User l’s channel

coefficient to receive antenna m and is equal to:

λljm =

i=I
∑

i=−I

g(e+ T + iTs − τjm)Υ
i(j, l) (27)

Besides the estimation noise, unknown time delays impose three additional impurities to the

channel estimation. The first one is due to imperfect sampling time whose effect is shown

by the multiplication factor of g(e + T − τkm). The second impurity in Eq. (26) originates

from adjacent interfering symbols of the desired user. The last impurity is similar to the “pilot

contamination” effect, i.e., the channel estimation of each user to the mth receive antenna is

contaminated by channel coefficients of other users. In the “pilot contamination” problem, the

reason of contamination is reusing the same pilot sequences in different cells, however, here the

reason is unknown timing mismatches between received signals. Due to the time asynchrony

between received signals, the orthogonality between pilot sequences is not preserved anymore

and the de-spreading matrix is not able to eliminate the effect of interfering users. When the

perfect synchronization is assumed, Υi is all zero matrix for all values of i except Υ0 which is

equal to IK . In this case, the leakage factors will be equal to zero and by choosing e = 0, the

set-up will be identical to that of the perfect synchronization, i.e., c̃lm = clm + ñlm.

By using the channel estimates of (26) for performing MRC, we can calculate the effective

channel matrices as:

Tmrc
lk,ip =

1

M

M
∑

m=1

K
∑

j=1

λljm
√

βjβkh
∗
jmhkmGkm (28)

The effective noise vector is also equal to:

nmrc
l,ip =

√
ρd

M

M
∑

m=1

ñ∗
lm

K
∑

k=1

√

βkhkmGkmbk +
1

M

M
∑

m=1

(

K
∑

j=1

λljm
√

βjh
∗
jm + ñ∗

lm

)

nm (29)

Then, the achievable rates for imperfect channel state information, is presented in the next

theorem.

Theorem 2: The achievable rate by the MRC receiver using orthogonal channel estimation,

when there is unknown time delays between received signals can be approximated as follows:

Rmrc
l,ip ≈ log2

(

1 +
desired signal

IUI + ISI + noise

)

(30)
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where desired signal, ISI, IUI and noise components are defined as follows, respectively:

desired signal = ρdβ
2
l (2γ

′′
lll(0) + (M − 1)(γ′lll(0))

2)) + ρdβl

K
∑

j=1
j 6=l

βjγ
′′
ljl(0)

ISI = ρdβ
2
l

I
∑

n=−I
n 6=0

(2γ′′lll(n) + (M − 1)(γ′lll(n))
2) + ρdβl

K
∑

j=1
j 6=l

βj

I
∑

n=−I
n 6=0

γ′′ljl(n)

IUI = ρd

K
∑

k=1
k 6=l

β2
k

I
∑

n=−I

(2γ′′lkk(n) + (M − 1)(γ′lkk(n))
2) + ρd

K
∑

k=1
k 6=l

K
∑

j=1
j 6=k

βkβj

I
∑

n=−I

γ′′ljk(n)

noise =
ρd
ρp

K
∑

k=1

βk

I
∑

n=−I

E[g2n] +
K
∑

k=1

βkλ
′′
lk +

1

ρp

where

γ′ljk(n) = E[γljkm(n)]

= E[λljmg(e+ T + nTs − τkm)]]

=

∫ ∞

−∞

∫ ∞

−∞

(

i=I
∑

i=−I

Υi(j, l)g(e+ T + iTs − τj)

)

g(e+ T + nTs − τk)f(τj)f(τk)dτjdτk

Note that after taking average over all receive antennas, the receive antenna index is discarded.

The terms γ′′ljk(n) and λ
′′

lk are defined similarly as:

γ′′ljk(n) =

∫ ∞

−∞

∫ ∞

−∞

(

i=I
∑

i=−I

Υi(j, l)g(e+ T + iTs − τj)

)2

g2(e+ T + nTs − τk)f(τj)f(τk)dτjdτk

and

λ′′lk = E[λ2lkm] =

∫ ∞

−∞

(

i=I
∑

i=−I

Υi(k, l)g(e+ T + iTs − τ)

)2

f(τk)dτk

Proof: the proof is presented in Appendix B.

These results are general for any pilot matrices and delay distributions. Values of

γ′ljk(n), γ
′′
ljk(n), λ

′′
lk and E[g2n] only depend on the pulse shape, pilot sequences and the delay

distribution which can be calculated analytically or numerically. Similar to Example 1, we can

show that by inserting f(τ) = δ̄(τ) and e = 0, Eq. (30) simplifies to Eq. (23) which shows that

the perfect synchronized scenario is a special example of the general formula in Theorem 2.
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Example 3: We consider another simple example to clarify Theorem 2. Assume that the pulse

shape is rectangular, K = 2 and I2 is used as the pilot matrix. Then,

Υ0 = I2, Υ−1 =





0 0

1 0



 , Υ1 =





0 1

0 0



 (31)

Hence, the ”leakage factors” , i.e., λ11m and λ12m are equal to g(e+ T − τ1m) and g(e− τ2m),

respectively. The values of λ′′1k are expected values of λ21km with respect to τkm, therefore we

have:

λ′′11 =
1

2

(

1− e

T

)2

+
1

2

(

1

3
+
e

T
− e2

T 2

)

, λ′′12 =
e2

2T 2

(

1 +
e

3T

)

(32)

The values of γ′1jk(n) are aslo expected values of λ1jmg(e + T + nT − τkm) with respect

to τjm and τkm. As a result, we have, γ′111(n) = E[g(e + T − τ1m)g(e + T + nT − τ1m)],

γ′112(n) = E[g(e+T−τ1m)]E[g(e+T+nT−τ2m)], γ′121(n) = E[g(e−τ2m)]E[g(e+T+nT−τ1m)]
and γ′122(n) = E[g(e− τ2m)g(e+ T + nT − τ2m)]. After some calculations, we will have:



















γ′111(0) =
1
2
(1− e

T
)2 + 1

2
(1
3
+ e

T
− e2

T 2 )

γ′111(−1) = 1
2
( e
T
− e2

2T 2 − e3

3T 3 )

γ′111(1) =
(T−e)2

2T 2 − (T−e)3

3T 3



















,



















γ′112(0) =
1
4
(3T

2−2e2

2T 2 )2

γ′112(−1) = 1
4
(3T

2−2e2

2T 2 )(2eT+e2

2T 2 )

γ′112(1) =
1
4
(3T

2−2e2

2T 2 ) (T−e)2

2T 2



















(33)



















γ′121(0) =
1
4
(2eT+e2

2T 2 )(3T
2−2e2

2T 2 )

γ′121(−1) = 1
4
(2eT+e2

2T 2 )2

γ′121(1) =
1
4
(2eT+e2

2T 2 ) (T−e)2

2T 2



















,



















γ′122(0) =
1
2
( e
T
− e2

2T 2 − e3

3T 3 )

γ′122(−1) = e2

2T 2 (1 +
e
3T
)

γ′122(1) = 0



















(34)

Values of γ′′1kj(n) can be calculated similarly. Then, based on the choice of e, approximate

expressions for achievable rates can be found. For example, by inserting e = 0, the approximate

achievable rates are:

Rmrc
1,ip ≈ log2











1 +
ρdβ

2
1(1.2 + 0.4(M − 1))

ρdβ2
1(0.08)

2(M − 1) + 0.5ρdβ1β2 + 0.8ρd
ρp

2
∑

k=1

βk + 0.7β1 +
1
ρp











If we choose e = 0.5, the approximate achievable rates will be:

Rmrc
1,ip ≈

log2











1 +
ρdβ

2
1(0.5 + 0.2(M − 1))

(ρdβ
2
1(0.2)

2 + ρdβ
2
2(0.3)

2) (M − 1) + 0.25ρdβ1β2 + 0.5ρd
ρp

2
∑

k=1

βk + 0.4β1 + 0.2β2 +
1
ρp










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Therefore, for large M , e = 0 results in better performance compared to e = 0.5. However,

when the number of users increases the optimum value of e changes.

Note that due to the existence of timing mismatch, the promised power scaling law is demolished.

If we reduce the transmit power by order of 1√
M

and let M go to infinity, then the achievable

rate for each user is:

Rmrc
l,ip → log2















1 +
NpE

2
dβ

2
l (γ

′
lll(0))

2

NpE2
dβ

2
l

i=I
∑

i=−I
i 6=0

(γ′lll(i))
2 +NpE2

d

K
∑

k=1
k 6=l

β2
k

i=I
∑

i=−I

(γ′lkk(i))
2 + 1















(35)

By increasing the transmit power, the achievable rate saturates at the following fixed value:

Rmrc
l,ip → log2















1 +
β2
l (γ

′
lll(0))

2

β2
l

i=I
∑

i=−I
i 6=0

(γ′lll(i))
2 +

K
∑

k=1
k 6=l

β2
k

i=I
∑

i=−I

(γ′lkk(i))
2















(36)

The above analysis shows that, the promised single user bound is degraded by ISI and IUI due

to imperfect channel estimation. When we had perfect information of channel coefficients, the

only degradation was ISI due to timing mismatch, however, by using orthogonal sequences to

estimate the channel coefficients IUI is also another source of degradation. For any given pulse

shape and time delay, the performance criteria in Eq. (36) can be optimized by changing the

sampling origin e. For example, the optimum value of e for rectangular pulse shape and the

delay distribution presented in Eq. (3), is shown in Table II. Again, as K increases, the optimal

TABLE II: Optimal Sampling Origin e

Case K=2 K=4 K=6 K=8 K=10 K=12 K=14 K=16

Optimal e 0 0.12 0.28 0.38 0.44 0.46 0.46 0.48

value of e approaches half. While such an optimization can increase the achievable rates in

Theorems 1 and 2, many promising benefits of using a massive number of receive antennas will

still be out of reach in the presence of unknown time delays. Therefore, we design two receiver

structures, for perfect CSI and imperfect CSI scenarios, to remove the unwanted effects of ISI

and IUI imposed by unknown time delays. The details are presented next.
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C. MRC-ZF Receiver Structure

In an ideal massive MIMO system, the achievable uplink rate grows unbounded when M

grows large. Therefore, we can scale down the power of each user by the ratios of M and
√
M

for perfect and imperfect CSI, respectively, to achieve the single user performance. However, in

a realistic massive MIMO system where timing mismatch among received signals is inevitable,

the uplink achievable rate using the MRC receiver approaches a constant value when M grows

large, as shown in Theorems 1 and 2. Therefore, the power scaling law provided by the MRC

receiver in a perfectly synchronized massive MIMO system is not achievable with unknown time

delays. Hence, we modify the MRC receiver to cancel the effects of ISI and IUI imposed by

unknown time delays.

When channel coefficients are estimated one by one with no error, the dominant degradation

is ISI. On the other hand, when the channel coefficients are estimated simultaneously by sending

pilot sequences, the degradation is caused by ISI and IUI. The underlying reason is the expected

value of effective channel matrices, Tmrc
lk,p and Tmrc

lk,ip calculated in the next lemma.

Lemma 1: The expected value of the effective channel matrices obtained by the MRC receiver,

with perfect and imperfect CSI, i.e., Tmrc
lk,p and Tmrc

lk,ip are, respectively, calculated as follows:

E[Tmrc
lk,p ] =

√

βlβkδ(l − k)















E[g0] E[g−1] · · · E[g1−N ]

E[g1] E[g0] · · · E[g2−N ]
...

. . .
. . .

...

E[gN−1] E[gN−2] · · · E[g0]















(37)

E[Tmrc
lk,ip] =

K
∑

j=1

δ(j − k)
√

βjβkE[λljmGkm]

= βk















γ′lkk(0) γ′lkk(−1) · · · γ′lkk(1−N)

γ′lkk(1) γ′lkk(0) · · · γ′lkk(2−N)
...

. . .
. . .

...

γ′lkk(N − 1) γ′lkk(N − 2) · · · γ′lkk(0)















(38)

Proof: The proof involves simple and straightforward calculations including the fact that

E[h∗lmhkm] = δ(l − k).

Eq. (37) shows that the expected value of the effective channel matrices from different users

is zero except the one corresponding to the desired user. By using the law of large numbers,
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(a) MRC-ZF Receiver with perfect CSI (b) MRC-ZF Receiver with imperfect CSI

Fig. 2: MRC-ZF Receiver

it can be shown that when M grows large, effective channel matrices approach their expected

values. Therefore, IUI vanishes and the dominant degradation will be ISI caused by effective

channel matrix of the desired user. On the other hand, Eq. (38) shows that the expected value

of the effective channel matrices is nonzero for all users. It means that, even when M grows

large, interference from other users still exist. Therefore, not only ISI but also IUI degrades the

performance. We use the concept of zero forcing receiver to cancel the effect of these averaged

matrices, however, other methods like minimum mean squared error (MMSE) and successive

interference cancellation (SIC) can also be used. For perfect CSI scenario where only one nonzero

effective channel matrix exists, the effect of the averaged ISI can be cancelled by multiplying

the output sample of the MRC receiver by matrix Z which is defined as:

Z =















E[g0] E[g−1] · · · E[g1−N ]

E[g1] E[g0] · · · E[g2−N ]
...

. . .
. . .

...

E[gN−1] lE[gN−2] · · · E[g0]















−1

(39)

For the imperfect CSI scenario, because all the effective channel matrices are nonzero, we

need extra set of equations to be able to cancel all interference terms. Therefore, we utilize

the concept of oversampling as explained in [13], [12] and [14]. The receiver structure for the

proposed methods are shown in Figures 2a and 2b. The description of these methods follows

next.
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1) MRC-ZF Receiver with Perfect CSI: As shown in Fig. 2a, the output samples of the MRC

receiver are multiplied by Z to cancel the effect of the averaged ISI. Note that matrix Z is pre

calculated once based on the pulse shape, sampling origin and delay distributions and then, it

can be used during the entire transmission. We call this receiver MRC-ZF whose output samples

are:

y
mrc−zf
l,p =

√
ρd

K
∑

k=1

T
mrc−zf
lk,p bk + n

mrc−zf
l,p (40)

where T
mrc−zf
lk,p = ZTmrc

lk,p , n
mrc−zf
l,p = Znmrc

l,p and entries of matrix T
mrc−zf
lk,p are calculated

as follows:

T
mrc−zf
lk,p (n1, n2) =

1

M

M
∑

m=1

√

βlβkh
∗
lmhkm

N
∑

i=1

Z(n1, i)g(e+ T + (i− n2)Ts − τkm) (41)

For the special case of symbol-level synchronization, i.e., f(τ) = δ̄(τ), Z will be identity matrix;

meaning that no additional processing is required which is in line with the works done in the

literature. The expected value of matrix T
mrc−zf
lk,p is equal to δ(l − k)IN which means the

effect of ISI diminishes for large values of M. The approximation of the achievable rate by the

MRC-ZF receiver is presented in the next theorem.

Theorem 3: The achievable rate by each user using the MRC-ZF receiver can be approximated

by:

Rmrc−zf
l,p ≈ log2



1 +
ρdβl(2ξ

′′
a,a + (M − 1))

ρd(
∑N

n=1
ξ′′a,n)

∑K
k=1 βk + 2ρdβl

∑N
n=1
n 6=a

ξ′′a,n + ǫa



 (42)

where ξ′′a,n = E
[

G′2(a, n)
]

and ǫa = ZZH(a, a) are only functions of the distribution of delays

and the pulse shape. Assuming the same distribution for all the time delays, receive antenna and

user indices are discarded after taking expectations. Also note that due to the structure of the

system, the achievable rate for different symbols of the frame except the I-boundary ones is the

same, thus the index of a can be discarded.

Proof: The proof is presented in Appendix C.

By using the MRC-ZF receiver which exploits the statistics of unknown time delays, the effect

of averaged ISI is vanished. If the number of receive antennas goes to infinity, the achievable rate

goes to infinity. Therefore, we can scale down the transmit power and still provide the desirable
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performance. In other words, if we choose ρd =
Ed

M
in Eq. (42) and let M go to infinity, we will

have:

Rmrc−zf
l,p → log2

(

1 +
Edβl
ǫa

)

, as M → ∞, ρd =
Ed

M
(43)

Hence, even in the presence of unknown time delays, the power scaling law is held by using the

MRC-ZF receiver. The value of ǫa is calculated based on pulse shape, time delay distribution

and sampling origin. The loss of ǫa is because of noise enhancement by ZF and can be mitigated

by using other cancellation methods like MMSE and SIC which is topic of our future work.

2) MRC-ZF Receiver with Imperfect CSI: As explained before, when the channel coefficients

are estimated by using orthogonal pilot sequences, the effective channel matrices for the K

users are nonzero. Therefore, we need at least K sets of samples to be able to cancel them using

ZF method. Denoting yt
m, 1 ≤ t ≤ K as the set of N samples obtained at sampling times of

et + T + (n− 1)Ts, n = 1, · · · , N , as shown in Fig. 2b, we can collect all samples obtained at

receive antenna m in a vector yos
m = [(y1

m)T , · · · , (yK
m)T ]T to derive:

yos
m =

√
ρdTmb+ nos

m (44)

where b = [b1
T , · · · , bKT ]T includes transmitted vectors of all users and Tm is defined as:

Tm =















T 1

1m T 1

2m · · · T 1

Km

T 2

1m T 2

2m · · · T 2

Km
...

. . .
. . .

...

TK
1m TK

2m · · · TK
Km















(45)

where T t
km represents the channel matrix of User k to receive antenna m in the tth set of

samples, i.e., T t
km =

√
βkhkmG

t
km where Gt

km is defined as Eq. (7) with e = et. The noise

vector also includes all the noise vectors obtained from different sampling times, i.e., nos
m =

[(n1

m)T , · · · , (nK
m)T ]T and its covariance matrix is calculated by:

Σnos =















Σ11 Σ12 . . . Σ1K

Σ21 Σ22 . . . Σ2K

...
. . .

. . .
...

ΣK1 ΣK2 . . . ΣKK















(46)
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where Σt1t2 is the covariance matrix between noise samples obtained at times t1 and t2 defined

as:

Σt1,t2 =















g(T + (et1 − et2)) · · · g(T + (1−N)Ts + (et1 − et2))

g(T + Ts + (et1 − et2)) · · · g(T + (2−N)Ts − (et1 − et2))
...

. . .
...

g(T + (N − 1)Ts + (et1 − et2)) · · · g(T + (et1 − et2)















(47)

The receive antenna index is discarded because the noise covariance matrix is the same at all

receive antennas. The channel coefficient of User l to receive antenna m , i.e., c̃slm is equal to:

c̃slm =
K
∑

j=1

λsljmcjm + ñs
lm (48)

where λljm is the “leakage factor” and is equal to:

λsljm =
i=w
∑

i=−w

g(es + T + iTs − τjm)Υ
i(j, l) (49)

After performing MRC for the lth user, the resulting system of equations is:

y
os−mrc
l,ip =

√
ρdT̂lb+ n

os−mrc
l,ip (50)

where T̂l is the effective channel matrix:

T̂l =















T̂ 1

l1 T̂ 1

l2 · · · T̂ 1

lK

T̂ 2

l1 T̂ 2

l2 · · · T̂ 2

lK
...

. . .
. . .

...

T̂K
l1 T̂K

l2 · · · T̂K
lK















(51)

and each subblock, T̂ t
lk, is defined as:

T̂ t
lk =

1

M

M
∑

m=1

(

K
∑

j=1

λsljmc
∗
jm

)

T t
km (52)

The effective noise is also calculated as:

n
os−mrc
l,ip =

√
ρd

M

M
∑

m=1

(ñs
lm)

∗Tmb+
1

M

M
∑

m=1

(

K
∑

j=1

λsljmc
∗
jm + (ñs

lm)
∗

)

nos
m (53)
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Using Lemma 1, the expected value of T̂l is equal to:

E[T̂l] =















Γ1

l1 Γ1

l2 · · · Γ1

lK

Γ2

l1 Γ2

l2 · · · Γ2

lK
...

. . .
. . .

...

ΓK
l1 ΓK

l2 · · · ΓK
lK





























β1IN 0 · · · 0

0 β2IN · · · 0
...

. . .
. . .

...

0 0 · · · βKIN















= Γl















β1IN 0 · · · 0

0 β2IN · · · 0
...

. . .
. . .

...

0 0 · · · βKIN















(54)

where Γt
lk is calculated as:

Γt
lk =















γ′lkkt(0) γ′lkkt(−1) · · · γ′lkkt(1−N)

γ′lkkt(1) γ′lkkt(0) · · · γ′lkkt(2−N)
...

. . .
. . .

...

γ′lkkt(N − 1) γ′lkk(N − 2) · · · γ′lkkt(0)















(55)

and its elements are equal to:

γ′lkkt(i) = E[λslkmg(et + T + iTs − τkm)]

=

∫ ∞

−∞

(

i=w
∑

i=−w

Υi(k, l)g(es + T + iTs − τk)

)

g(et + T + iTs − τk)f(τk)dτk (56)

Matrix Γl in Eq. (54) is only related to sampling origins, ets, pilot sequences, pulse shape and

delay distributions and it is known at the receiver. To resolve the problem of ISI and IUI, we

calculate the inverse of Γl and denote it as Wl, which is constructed by subblocks of Wlk, i.e.

Wl = [Wl1
T , · · · ,WlK

T ]T . Then, in order to detect the transmitted symbols of the lth user,

we multiply the output of the MRC receiver, i.e. y
os−mrc
l , by the lth subblock of Wl, i.e. Wll.

Therefore, the resulting samples will be:

y
mrc−zf
l,ip =

√
ρd

K
∑

k=1

T
mrc−zf
lk,ip bk + n

mrc−zf
l,ip (57)

where T
mrc−zf
lk,ip = WllT̂lk, n

mrc−zf
l,ip = Wlln

os−mrc
l,ip and T̂lk = [(T 1

lk)
T , . . . , (TK

lk )
T ]T . It is

easy to show that, the expected value of matrix T
mrc−zf
lk,ip is equal to δ(l − k)IN . Therefore,

as M grows large, T
mrc−zf
lk,ip will be closer to its expected value and the effect of ISI and IUI

converges to zero. The achievable rates for the aforementioned system is presented in the next

theorem.
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Theorem 4: The achievable rate by mapping the output samples of the MRC-ZF receiver using

orthogonal channel estimation, when there is unknown time delays between received signals can

be approximated by:

Rmrc−zf
l,ip ≈ log2

(

1 +
desired signal

IUI + ISI + noise

)

(58)

where desired signal, ISI, IUI and noise components are defined, respectively as:

desired signal = ρdβ
2
l (2γ̂

′′
lll(a, a) + (M − 1)) + ρdβl

K
∑

j=1
j 6=l

βj γ̂
′′
ljl(a, a)

ISI = ρdβ
2
l

N
∑

i=1
i 6=a

2γ̂′′lll(a, i) + ρdβl

K
∑

j=1
j 6=l

βj

N
∑

i=1
i 6=a

γ̂′′ljl(a, i)

IUI = ρd

K
∑

k=1
k 6=l

β2
k

N
∑

i=1

2γ̂′′lkk(a, i) + ρd

K
∑

k=1
k 6=l

K
∑

j=1
j 6=k

βkβj

N
∑

i=1

γ̂′′ljk(a, i)

noise =
ρd
ρp

Ul(a, a)

K
∑

k=1

βk +

(

K
∑

k=1

βkλ
′′
lk +

1

ρp

)

Vl(a, a)

where Ul = WllE[ĜkmĜ
H

km]WH
ll and Vl = WllΣnosWH

ll . Also,

γ̂′′ljk(a, i) =

∫ ∞

−∞

∫ ∞

−∞

(

λsljĜlkm(a, i)
)2

f(τj)f(τk)dτjdτk (59)

E[λ′′lk] =

∫ ∞

−∞
(λslk)

2 f(τk)dτk (60)

where Ĝlkm(a, i) =
∑NK

r=1 W ll(a, r)Ĝkm(r, i) and Ĝkm = [(G1

km)T , · · · , (GK
km)T ]T . Assuming

the same distribution for all the time delays, receive antenna index is discarded after taking

expectations. Again, note that due to the structure of the system, the achievable rate for different

symbols of the frame except the I-boundary ones is the same, thus the index of a can be

discarded.

Proof: The proof is presented in Appendix D.

By using the MRC-ZF receiver which exploits the statistics of unknown time delays, the effect

of averaged ISI and IUI is vanished. If the number of receive antennas goes to infinity, the

achievable rate goes to infinity. Replacing ρd =
Ed√
M

in Eq. (58) and letting M go to infinity, we

will have:

Rmrc−zf
l,ip → log2

(

1 +
Edβl

Vl(a, a)

)

, as M → ∞, ρd =
Ed√
M

(61)
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Hence, even in the presence of unknown time delays, the power scaling law is held by

using the MRC-ZF receiver. The value of Vl(a, a) is calculated based on pulse shape, time

delay distribution and sampling origin. Again, the loss of Vl(a, a) which is because of noise

enhancement by ZF can be mitigated by using other cancellation methods like MMSE and SIC.

V. SIMULATION RESULTS

In this section, simulation results are presented to verify our theoretical analysis. In the

simulations, time delays follow the distribution mentioned in Eq. (3), noise samples and fading

coefficients are also distributed as CN(0, 1). The large-scale channel fading is modelled as

βk = zk/(rk/rh)
v, where zk is a log-normal random variable with standard deviation of σ, v is

the path-loss exponent, and rk is the distance between the kth user and the BS which varies in

the interval of [rh, R]. We have assumed that v = 1.8, σ = 8, rh = 100 and R = 1000. In Fig. 3,

the performance of the MRC receiver with perfect CSI is presented by theoretical approximation

in Theorem 1 and via simulation. The sum rate for 5 users are plotted with respect to the number

of receive antennas. The results include rectangular (Rect.) pulse shape and raised cosine (R.C.)

pulse shape with roll-off factor of β = 0.5. Different sampling origins (e) are used to show the

effect of e in the performance. Our theoretical approximation and simulation results match. It

also shows that, unknown time delays limit the performance, and by increasing M , the sum rate

is saturated. Although changing the sampling origin does not eliminate the performance limit, it

can provide about 10 bpcu gain in the sum rate which is around 100% increase in the achievable

rate. Fig. 4 shows the asymptotic performance, i.e. M → ∞, with respect to the sampling origin.

It includes the result for different number of users, K = [2, 5, 15], and as the number of users

increases, the optimal value of e tends to half which verifies the results in table I. This is in line

with the fact that for small number of users the distribution in Eq. (3) is closer to a delta function

whose optimal sampling origin is e = 0. By increasing the number of users, the distribution

tends to uniform whose best sampling origin is half. In Fig. 5, the performance of the MRC-ZF

receiver with perfect CSI is presented. By increasing M , the sum rate increases without bound

unlike the MRC receiver whose sum rate is limited. Different values of e are included to show

the effect of sampling origin. Around 5 bpcu additional rate can be achieved by appropriate

choice of e. In Fig. 6, the sum rate for the MRC receiver with imperfect CSI is presented. It

shows that the sum rate is limited due to ISI and IUI and increasing M does not change the

sum rate much. However, changing the sampling origin can slightly improve the performance.
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Fig. 3: Performance of the MRC receiver with respect to number of receive antennas, using

perfect CSI for 5 users each of them using 20 dB transmit power and different number of

receive antennas

Fig. 4: Asymptotic performance of the MRC receiver with respect to sampling origin for different

number of users, using perfect CSI and ρd = 20 dB

In Fig. 7, the asymptotic performance of the MRC receiver with respect to sampling origin is

presented. Again, we observe that, by increasing the number of users, the optimal sampling

origin tends to half. In Fig. 8, the performance of the MRC-ZF receiver with imperfect CSI

is presented. Number of users is equal to 5 and 5 sets of samples are obtained by sampling at
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Fig. 5: Performance of the MRC-ZF receiver with different sampling origins, using perfect CSI

for 5 users each of them using 20 dB transmit power and different number of receive antennas

Fig. 6: Performance of the MRC receiver with different sampling origins, using imperfect CSI

for 5 users each of them using 20 dB transmit power and different number of receive antennas

times uniformly distributed between (0, 1), i.e, et =
t
6
, 1 ≤ t ≤ 5. It shows that, by increasing

M , the sum rate achieved by the MRC-ZF receiver can be increased without saturation. The

simulation results and theoretical approximation in Theorem 4 are also very close which verifies

the analysis. In Fig. 9, the performance of the MRC and the MRC-ZF receivers are presented

while ρd = Ed

M
and M is very large. Increasing Ed does not increase the sum rate achieved by
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Fig. 7: Performance of the MRC receiver for different number of users with respect to sampling

origin, using imperfect CSI. Each users uses 20 dB transmit power and the number of receive

antennas goes to infinity

Fig. 8: Performance of the MRC-ZF receiver with uniform oversampling, using imperfect CSI

for 5 users each of them using 20 dB transmit power and different number of receive antennas

the MRC receiver whereas, in the MRC-ZF receiver the achievable sum rate increases by Ed

showing that by using the MRC-ZF the scaling power law can be achieved. In Fig. 10, a similar

analysis is presented for imperfect CSI with a power scale of 1√
M

. Again, it verifies our claim

that the MRC receiver is unable to hold the power scale law when there is time delay between
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Fig. 9: Comparison of the MRC receiver with different sampling origins and the MRC-ZF

receiver, using perfect CSI for 5 users when M goes to infinity and ρd =
Ed

M

received signals. However, by implementing the MRC-ZF, a power scale of 1√
M

is achieved.

Fig. 10: Comparison of the MRC receiver with different sampling origins and the MRC-ZF

receiver, using imperfect CSI for 5 users when M goes to infinity and ρd =
Ed√
M

VI. CONCLUSION

In this work, we obtained the general formula for the achievable rate by the MRC receiver

when unknown timing mismatch exists. We showed that unknown timing mismatch degrades
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the performance substantially. In other words, in the presence of unknown timing mismatch, the

achievable rate by each user is limited when the number of receive antennas goes to infinity. To

address this challenge, we introduced two receiver design methods, one when the perfect CSI

is available and one when CSI is estimated by orthogonal pilot sequences, which restore the

benefits of massive MIMO. We proved that these introduced receivers follow the power scale

law, i.e., single user performance can be achieved by using arbitrary small transmit power. In

our proposed receiver designs, we used ZF method to cancel the effect of averaged ISI and

IUI, however, other methods like MMSE or SIC can also be used. We also used oversampling

besides ZF to cancel the effect of contamination in the channel estimations caused by timing

mismatch. This method can be adopted to address the similar problem of “pilot contamination”

which is topic of our future work. At the end, we presented simulation results which confirmed

our analysis.

APPENDIX A

We analyzed four different receiver structures, including: MRC with perfect and imperfect CSI

and MRC-ZF with perfect and imperfect CSI. The output sample of either of these receivers for

detection of the ath symbol of the lth user can be written in a general framework as:

y
mrc/mrc−zf
l,p/ip (a) =

√
ρd

K
∑

k=1

N
∑

n=1

T
mrc/mrc−zf
lk,p/ip (a, n)bk(n) + n

mrc/mrc−zf
l,p/ip (a) (62)

Discarding the subscripts for different receivers, the corresponding achievable rate can be

calculated as follows [17]:

Rl(a) = E



log2



1 +
ρd|Tll(a, a)|2

ρd
∑K

k=1
k 6=l

∑N
n=1 |Tlk(a, n)|2 + ρd

∑N
n=1
n 6=a

|Tll(a, n)|2 + |nl(a)|2







 (63)

To approximate the above expression, we use the following lemma:

Lemma 2: Given any two positive random variables, X and Y, we have the following identity:
∣

∣

∣

∣

E

[

log2

(

1 +
X

Y

)]

− log2

(

1 +
E[X ]

E[Y ]

)∣

∣

∣

∣

≤ log2

(

E[X + Y ]E

[

1

X + Y

]

E[Y ]E

[

1

Y

])

(64)
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Proof: We know that f(x) = log2(x) and g(x) = log2(
1
x
) are concave and convex functions,

respectively. Hence, by using Jensen’s inequality, we can get the following bounds:

log2

(

1

E
[

1
Y

]

)

≤ E [log2(Y )] ≤ log2 (E[Y ]) (65)

log2

(

1

E
[

1
X+Y

]

)

≤ E [log2 (X + Y )] ≤ log2 (E[X + Y ]) (66)

By combining these inequalities, we can conclude that:

log2

(

1

E
[

1
X+Y

]

)

− log2 (E[Y ]) ≤ E [log2(X + Y )]−E [log2(Y )] ≤ log2(E[X + Y ])− log2

(

1

E
[

1
Y

]

)

(67)

log2

(

1

E
[

1
X+Y

]

)

− log2(E[Y ]) ≤ log2(E[X + Y ])− log2(E[Y ]) ≤ log2(E[X + Y ])− log2

(

1

E
[

1
Y

]

)

(68)

We know that if A ≤ x ≤ B and A ≤ y ≤ B, then |x − y| ≤ B − A. Therefore,
∣

∣

∣
E
[

log2
(

1 + X
Y

)]

− log2

(

1 + E[X]
E[Y ]

)∣

∣

∣
is upper-bounded by log2 (E[X + Y ]) − log2

(

1

E[ 1

Y ]

)

−

log2

(

1

E[ 1

X+Y ]

)

+ log2 (E[Y ]). After some calculations, the upper-bound can be simplified to

log2
(

E[X + Y ]E
[

1
X+Y

]

E[Y ]E
[

1
Y

])

which completes the proof.

By applying a Taylor series expansion of 1
Y

around E[Y ], we will have:

E

[

1

Y

]

=
1

E[Y ]
+O

(

V AR[Y ]

E3[Y ]

)

(69)

as
V AR[Y ]
E[Y ]

→ 0 [24]. Eq. (69), implies that there exist positive numbers ǫ and C such that:

E

[

1

Y

]

≤ 1

E[Y ]
+ C

V AR[Y ]

E3[Y ]
when

V AR[Y ]

E[Y ]
≤ ǫ (70)

In Eq. (63), Tlk(a, n) is equal to the average of M independent R.V.s, i.e., Tlk(a, n) =

1
M

∑M
i=1 t

i
lk(a, n). The expected value and variance of each summand is denoted as µlk(a, n)

and σ2
lk(a, n), respectively. As a result, the expected value and variance of Tlk(a, n) are equal

to µlk(a, n) and 1
M
σ2
lk(a, n), respectively. Then, E[|Tlk(a, n)|2] and V AR[|Tlk(a, n)|2] can be

bounded by:

V AR[|Tlk(a, n)|2] ≤
4

M
µ2
lk(a, n)σ

2
lk(a, n) (71)

E[|Tlk(a, n)|2] ≥ µ2
lk(a, n) (72)



32

where Inequality (72) is a result of Jensen’s inequality and Inequality (71) is derived using

Taylor approximation, i.e., V AR[f(X)] = (f ′(E[X ]))2V AR[X ] − (f ′′(E[X]))2

4
V AR2[X ]. After

some calculations, it can be shown that
V AR[Y ]
E2[Y ]

and
V AR[X+Y ]
E2[X+Y ]

can be made sufficiently small by

increasing M , i.e, the number of receiver antennas, and as a result we have:
∣

∣

∣

∣

E

[

log2

(

1 +
X

Y

)]

− log2

(

1 +
E[X ]

E[Y ]

)∣

∣

∣

∣

≤ log2

((

1 + C1
V AR[X + Y ]

E2[X + Y ]

)(

1 + C2
V AR[Y ]

E2[Y ]

))

(73)

Finally, by using the bounds in (71) and (72), we can conclude that:

|Rl(a)− R̃l(a)| ≤ 2 log2

(

1 +
cσ2

Mµ2

)

(74)

where R̃l(a) is equal to:

R̃l(a) = log2



1 +
ρdE[|Tll(a, a)|2]

ρd
∑K

k=1
k 6=l

∑N
n=1E[|Tlk(a, n)|2] + ρd

∑N
n=1
n 6=a

E[|Tll(a, n)|2] + V AR[nl(a)]





(75)

µ = minl,k,n µ
2
lk(a, n), σ

2 = maxl,k,n 4µ
2
lk(a, n)σ

2
lk(a, n) and c is a constant. Inequality (74) shows

that for sufficiently large values of M , the achievable rate can be approximated by R̃l(a) presented

in Eq. (75). When M grows large, the approximation becomes tighter and R̃l(a) → Rl(a) as M

goes to infinity which is line with the fact that variables get close to determinitic values as M

grows large. Simulation results also show that for M larger than 100, the approximation is very

precise. Hence, for finding the achievable rates for different receivers, we just need to calculate

the values of E[|Tlk(a, n)|2] and the variance of effective noise vector for different receivers.

For the MRC receiver with perfect CSI, Tmrc
lk,p = 1

M

∑M
m=1

√
βlβkh

∗
lmhkmGkm and the values of

E[|Tlk(a, n)|2] are calculated in the next lemma.

Lemma 3: The expected value of |Tmrc
lk,p (a, n)|2 can be calculated as follows:

E
[

|Tmrc
lk,p (a, n)|2

]

=







β2
l

M2

(

2ME[g2n−a] +M(M − 1)E[gn−a]
2
)

k = l

βlβk

M2 (ME[g2n−a]) k 6= l
(76)
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Proof:

Case k = l:

E
[

|Tmrc
ll,p (a, n)|2

]

=
1

M2
E

[(

M
∑

m=1

βl|hlm|2Glm(a, n)

)(

M
∑

m=1

βl|hlm|2Glm(a, n)

)]

=
β2
l

M2







M
∑

m=1

E
[

|hlm|4G2
lm(a, n)

]

+
M
∑

m1=1

M
∑

m2=1
m2 6=m1

E
[

|hlm1
|2Gkm1

(a, n)|hlm2
|2Glm2

(a, n)
]







=
β2
l

M2






2

M
∑

m=1

E
[

G2
lm(a, n)

]

+
M
∑

m1=1

M
∑

m2=1
m2 6=m1

E [Glm1
(a, n)]E [Glm2

(a, n)]







=
β2
l

M2

(

2ME
[

G2(a, n)
]

+M(M − 1)E2 [G(a, n)]
)

(77)

where G is defined similar to Gkm, except that the indices of receive antenna and user are

dropped because all the delays are assumed to have the same distribution from different users at

different receive antennas. Denoting E [G(a, n)] as E[ga−n] which is defined below, completes

the proof for the case k = l.

E[gi] =

∫ ∞

−∞
g(e+ T + iTs − τ)f(τ)dτ (78)

Note that E[gi] is nonzero only for −I ≤ i ≤ I .

Case k 6= l:

E
[

|Tmrc
lk,p (a, n)|2

]

=
1

M2
E

[(

M
∑

m=1

√

βlβkh
∗
lmhkmGkm(a, n)

)(

M
∑

m=1

√

βlβkhlmh
∗
kmGkm(a, n)

)]

=
βlβk
M2

(

M
∑

m=1

E
[

|hlm|2|hkm|2G2
km(a, n)

]

)

=
βlβk
M2

(

M
∑

m=1

E
[

G2
km(a, n)

]

)

=
βlβk
M2

(

ME
[

G2(a, n)
])

=
βlβk
M2

(ME[g2n−a]) (79)
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Covariance matrix of the effective noise vector is also calculated as:

COV [nmrc
l,p (a)] = E

[

nmrc
l,p nmrc

l,p
H
]

= E

[(√
βl
M

M
∑

m=1

h∗lmnm

)(√
βl
M

M
∑

m=1

hlmn
H
m

)]

=
βl
M2

M
∑

m=1

E
[

|h2lm|
]

E
[

nmnH
m

]

=
βl
M

IN (80)

By inserting the expected values of |Tmrc
lk,p (a, n)|2 and also the variance of the effective noise

vector, we have:

R̃mrc
l,p ≈ log2















1 +
ρdβl(2E[g

2
0] + (M − 1)E[g0]

2)

ρd
I
∑

i=−I

E[g2i ]
∑K

k=1 βk + ρdβl
I
∑

i=−I
i 6=0

(2E[g2i ] + (M − 1)E[gi]2) + 1















(81)

which completes the proof.

APPENDIX B

In the MRC receiver using the estimated CSI, the effective channel matrices denoted

by Tmrc
lk,ip are equal to 1

M

∑M
m=1

∑K
j=1 λljm

√

βjβkh
∗
jmhkmGkm. The value of λljm is the

leakage factor of unwanted users for the estimation of the desired channel and is equal to
∑i=w

i=−w g(e+ T + iTs − τjm)Υ
i(j, l).

Lemma 4: The expected value of |Tmrc
lk,ip(a, n)|2 is:

E
[

|Tmrc
lk,ip(a, n)|2

]

=

=
1

M2















β2
k

(

2Mγ′′lkk(n− a) +M(M − 1)(γ′lkk(n− a))2
)

+

K
∑

j=1
j 6=k

βjβk(Mγ′′ljk(n− a))















(82)

where γ′′ljk(n − a) = E[γ2ljkm(n − a)] and γ′ljk(n − a) = E[γljkm(n − a)] are the expectations

over the distributions. Note that, the receive antenna index is discarded after taking expectations.

Also, γ′′ljk(n− a) and γ′′ljk(n− a) are nonzero only when −I ≤ n− a ≤ I .
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Proof:

E
[

|Tmrc
lk,ip(a, n)|2

]

=

=
1

M2
E

[(

M
∑

m=1

K
∑

j=1

λljm
√

βjβlh
∗
jmhkmGkm(a, n)

)(

M
∑

m=1

K
∑

j=1

λljm
√

βjβlhjmh
∗
kmGkm(a, n)

)]

=
1

M2
E

[

K
∑

j=1

(

M
∑

m=1

λljm
√

βjβlh
∗
jmhkmGkm(a, n)

)

K
∑

j=1

(

M
∑

m=1

λljm
√

βjβlhjmh
∗
kmGkm(a, n)

)]

(83)

Due to independence between channel coefficients with different index, we have:

E
[

|Tmrc
lk,ip(a, n)|2

]

=
1

M2















E

[(

M
∑

m=1

βk|hkm|2γlkkm(n− a)

)(

M
∑

m=1

βk|hkm|2γlkkm(n− a)

)]

+

K
∑

j=1
j 6=k

E

[(

M
∑

m=1

√

βjβkh
∗
jmhkmγljkm(n− a)

)(

M
∑

m=1

√

βjβkhjmh
∗
kmγljkm(n− a)

)]















(84)

where γljkm(n− a) = λljmGkm(a, n). Using the results in Lemma 3, we have:

E
[

|Tmrc
lk,ip(a, n)|2

]

=

1

M2















β2
k

(

2Mγ′′lkk(n− a) +M(M − 1)(γ′lkk(n− a))2
)

+

K
∑

j=1
j 6=k

βjβk(Mγ′′ljk(n− a))















(85)

The effective noise vector is equal to:

nmrc
l,ip =

√
ρd

M

M
∑

m=1

ñlm

K
∑

k=1

√

βkhkmGkmbk +
1

M

M
∑

m=1

(

K
∑

j=1

λljm
√

βjh
∗
jm + ñlm

)

nm (86)

where ñlm is the estimation noise which is Gaussian and its variance is 1
ρp

. After some

calculations, it can be shown that the variance of the ath element of the noise vector is equal

to:

V AR[nmrc
l,ip (a)] =

ρd
Mρp

K
∑

k=1

βk

w
∑

i=−w

E[g2i ] +
1

M

(

K
∑

j=1

βjλ
′′
lj +

1

ρp

)

(87)
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where λ′′lj = E[λ2ljm] is the average of λ2ljm over the delay distributions. Finally, by inserting

the expected values of |Tmrc
lk,ip(a, n)|2 and also the variance of noise samples into Eq. (74), we

achieve the following result:

R̃mrc
l,ip ≈ log2

(

1 +
desired signal

IUI + ISI + noise

)

(88)

where the desired signal, ISI, IUI and noise components are defined as follows, respectively:

desired signal = ρdβ
2
l (2γ

′′
lll(0) + (M − 1)(γ′lll(0))

2)) + ρdβl

K
∑

j=1
j 6=l

βjγ
′′
ljl(0)

ISI = ρdβ
2
l

I
∑

i=−I
i 6=0

(2γ′′lll(i) + (M − 1)(γ′lll(i))
2) + ρdβl

K
∑

j=1
j 6=l

βj

I
∑

i=−I
i 6=0

γ′′ljl(i)

IUI = ρd

K
∑

k=1
k 6=l

β2
k

I
∑

i=−I

(2γ′′lkk(i) + (M − 1)(γ′lkk(i))
2) + ρd

K
∑

k=1
k 6=l

K
∑

j=1
j 6=k

βkβj

I
∑

i=−I

γ′′ljk(i)

noise =
ρd
ρp

K
∑

k=1

βk

I
∑

i=−I

E[g2i ] +
K
∑

k=1

βkλ
′′
lk +

1

ρp

which completes the proof.

APPENDIX C

In MRC-ZF receiver with perfect CSI, T
mrc−zf
lk,p = ZTmrc

lk,p and matrix Z is defined by Eq.

(39). n
mrc−zf
l,p is also defined as Znmrc

l,p .

Lemma 5: The expected value of |Tmrc−zf
lk,p (a, n)|2 can be calculated as follows:

E
[

|Tmrc−zf
lk,p (a, n)|2

]

=







β2
l

M2 (2Mξ2a,n +M(M − 1)δ(a− n)) k = l

βlβk

M2 (Mξ2a,n) k 6= l
(89)
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Proof: Case k = l:

E
[

|Tmrc
ll,p (a, n)|2

]

=
1

M2
E

[(

M
∑

m=1

βl|hlm|2G′
lm(a, n)

)(

M
∑

m=1

βl|hlm|2G′
lm(a, n)

)]

=
β2
l

M2

(

M
∑

m=1

E
[

|hlm|4G′2
lm(a, n)

]

+

M
∑

m1=1

M
∑

m2=1
m2 6=m1

E
[

|hlm1
|2G′

lm1
(a, n)|hlm2

|2G′
lm2

(a, n)
]







=
β2
l

M2

(

2

M
∑

m=1

E
[

G′2
lm(a, n)

]

+

M
∑

m1=1

M
∑

m2=1
m2 6=m1

E [G′
lm1

(a, n)]E [G′
lm2

(a, n)]







=
β2
l

M2

(

2Mξ′′a,n +M(M − 1)(ξ′a,n)
2
)

(90)

where G′(a, n) is defined as follows:

G′
lm(a, n) =

N
∑

i=1

Z(a, i)g(e+ T + (i− n)Ts − τlm) (91)

Afer taking expectations, indices of receive antennas and users are discarded. We denote

E
[

G′2(a, n)
]

as ξ′′a,n which is only related to pulse shape, delay distribution and sampling

origin and can be calculated numerically. On the other hand, E [G′(a, n)] which is denoted as

ξ′a,n can be calculated analytically as follows:

ξ′a,n = E

[

N
∑

i=1

Z(a, i)g(e+ T + (i− n)Ts − τ)

]

=

N
∑

i=1

Z(a, i)E [g(e+ T + (i− n)Ts − τ)]

=

N
∑

i=1

Z(a, i)E[gi−n]

= δ(a− n) (92)

Therefore, we will have:

E
[

|Tmrc
ll,p (a, n)|2

]

=
β2
l

M2

(

2Mξ′′a,n +M(M − 1)δ(a− n)
)

(93)
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When k 6= l, it can be similarly shown that:

E
[

|Tmrc
lk,p (a, n)|2

]

=
βlβk
M2

(Mξ′′a,n) (94)

Covariance of the noise vector is also calculated by:

COV [nmrc−zf
l,p (a)] = E

[

n
mrc−zf
l,p n

mrc−zf
l,p

H
]

= E
[

Znmrc
l,p nmrc

l,p
HZH

]

=
βl
M

ZZH (95)

We denote ZZH(a, a) as ǫa which is only related to the pulse shape, distribution of delay

and origin of sampling. Therefore, by inserting the expectation values and the variance of noise

samples, an approximation of the lower-bound on the achievable rate can be calculated as follows:

R̃mrc−zf
l,p ≈ log2



1 +
ρdβl(2ξ

′′
a,a + (M − 1))

ρd(
∑N

n=1
ξ′′a,n)

∑K
k=1 βk + 2ρdβl

∑N
n=1
n 6=a

ξ′′a,n + ǫa



 (96)

Note that due to the structure of system, the achievable rate for different subchannels except the

I-boundary ones is same.

APPENDIX D

In the MRC-ZF receiver with imperfect CSI, T
mrc−zf
lk,ip =

1
M

∑M
m=1

∑K
j=1 λ

s
ljm

√

βjβkh
∗
jmhkmWllĜkm where Wll and Ĝkm = [(G1

km)T , . . . , (GK
km)T ]T

are defined in Section IV-B. The noise vector n
mrc−zf
l,ip is also equal to Wlln

os−mrc
l,ip .

Lemma 6: The expected value of |Tmrc−zf
lk,ip (a, n)|2 can be calculated as follows:

E
{

|Tmrc−zf
lk,ip (a, n)|2

}

=

1

M2















β2
k (2Mγ̂′′lkk(a, n) +M(M − 1)(δ(l − k)IN (a, n)) +

K
∑

j=1
j 6=k

βjβk(Mγ̂′′ljk(a, n))















(97)

Proof: Following the same steps as Lemma 4, replacing Gkm with Ĝlkm = WllĜkm

results in:

E
[

|Tmrc−zf
lk,ip (a, n)|2

]

=

1

M2















β2
k

(

2Mγ̂′′lkk(a, n) +M(M − 1)(γ̂′lkk(a, n))
2
)

+
K
∑

j=1
j 6=k

βjβk(Mγ̂′′ljk(a, n))















(98)
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where γ̂′′ljk(a, n) = E[γ̂2ljkm(a, n)] and γ̂′lkk(a, n) = E[γ̂lkkm(a, n)] and the expectation is over

the delay distributions (γ̂ljkm(a, n) = λsljmĜlkm(a, n)).

We can calculate γ̂′lkk(a, n) analytically as:

γ̂′lkk(a, n) =
[

WllE[λ
s
lkmĜkm]

]

(a, n)

= [WllΓlk] (a, n) (99)

where Γlk = [(Γ1

lk)
T , . . . , (ΓK

lk)
T ]T . Because Wl is the inverse of Γl, we can conclude that:

γ̂′lkk(a, n) = δ(l − k)IN (a, n) (100)

Therefore, Eq. (98) can be further simplified to:

E
{

|Tmrc−zf
lk,ip (a, n)|2

}

=

1

M2















β2
k (2Mγ̂′′lkk(a, n) +M(M − 1)(δ(l − k)IN (a, n)) +

K
∑

j=1
j 6=k

βjβk(Mγ̂′′ljk(a, n))















(101)

The effective noise vector is equal to:

n
mrc−zf
l,ip =

√
ρd

M

M
∑

m=1

ñs
lm

K
∑

k=1

√

βkhkmĜlkmbk +
1

M

M
∑

m=1

(

K
∑

j=1

λsljm
√

βjh
∗
jm + ñs

lm

)

Wlln
os
m

(102)

where n̂lm is the estimation noise which is Gaussian and its variance is 1
ρp

. After some

calculations, it can be shown that the variance of the ath element of the noise vector is equal

to:

V AR[nmrc−zf
l,ip (a)] =

ρd
Mρp

K
∑

k=1

βkUl(a, a) +
1

M

(

K
∑

j=1

βjλ
′′
lj +

1

ρp

)

Vl(a, a) (103)

where Ul = WllE[ĜkmĜ
H

km]WH
ll and Vl = WllΣnW

H
ll . Finally, by inserting the expected

values of the effective channel matrices and also the variance of noise samples into Eq. (75),

we derive the following result:

R̃mrc−zf
l,ip ≈ log2

(

1 +
desired signal

IUI + ISI + noise

)

(104)
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where the desired signal, ISI, IUI and noise components are defined, respectively as:

desired signal = ρdβ
2
l (2γ̂

′′
lll(a, a) + (M − 1)) + ρdβl

K
∑

j=1
j 6=l

βj γ̂
′′
ljl(a, a)

ISI = ρdβ
2
l

N
∑

i=1
i 6=a

2γ̂′′lll(a, i) + ρdβl

K
∑

j=1
j 6=l

βj

N
∑

i=1
i 6=a

γ̂′′ljl(a, i)

IUI = ρd

K
∑

k=1
k 6=l

β2
k

N
∑

i=1

2γ̂′′lkk(a, i) + ρd

K
∑

k=1
k 6=l

K
∑

j=1
j 6=k

βkβj

N
∑

i=1

γ̂′′ljk(a, i)

noise =
ρd
ρp

K
∑

k=1

βkUl(a, a) +

(

K
∑

k=1

βkλ
′′
lk +

1

ρp

)

Vl(a, a)

Note that due to the structure of the system, the achievable rate for different subchannels except

the I-boundary ones is the same, thus the index of a can be discarded.
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