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Second Order Task Specifications in the Geometric 

Design of Spatial Mechanical Linkages 
 

Nina P. Robson, Texas A&M University; J. Michael McCarthy, University of California, Irvine 

 

Abstract 

 

   This paper builds on the authors‘ planar kinematic 

synthesis for contact task specifications and formulates the 

kinematic specification of the synthesis problem for spatial 

open-serial chains in which a desired acceleration of the end-

effector is specified. 

  

     Applications of this research focus on the design of spa-

tial linkages to maintain specified local motion. A recently 

developed failure recovery strategy of a general six-degree-

of-freedom TRS robotic arm is discussed and some experi-

mental set up and tests of the proposed failure recovery are 

presented. The authors also briefly show another possible 

application of the geometric design of linkages using accele-

ration task specifications. It combines the second-order ef-

fects of the task with the particular kinematics of the chain to 

yield free parameters that allow for more than one system to 

accomplish one and the same task. 

   

Introduction 

 

 This study considered the synthesis of spatial chains to 

guide an end-effector through a number of multiply sepa-

rated positions [1], [2].  The kinematic specification is a 

number of task positions with specified end-effector veloci-

ties and accelerations. The goal of this study was to obtain 

all of the solutions to a given task specification in order to 

design mechanical linkages that could move the end-effector 

smoothly through the specified task.  Research in the synthe-

sis of serial chains to achieve acceleration requirements is 

limited. It is primarily found in the synthesis theory for pla-

nar RR chains, and the work by Chen and Roth [3] for spa-

tial chains. The use of second-order effects first appeared in 

the analysis of grasping in a work by Hanafusa and Asada 

[4], where planar objects are grasped with three elastic rods. 

 

Cai and Roth [5] and Montana [6] developed an expres-

sion for the velocity of the point of contact between two 

rigid bodies that includes the curvature of the contact bodies. 

Second-order contact kinematics for regular contacts such as 

surface-surface, curve-curve, curve-surface and vertex-

surface are formulated in a unified framework in the recent 

work of Park et al. [7], extending Montana's first-order con-

tact kinematics for surface-surface contact only. Sarkar et al. 

[8] develop an expression for the acceleration of the contact 

point between two contacting bodies. 

 

Second-order considerations have also appeared in work 

by Trinkle [9] in the study of stability of frictionless polyhe-

dral objects in the presence of gravity. The mobility of bo-

dies in contact has been studied using first-order theories 

that are based on notions of instantaneous force and veloci-

ties [10]. For example, Ohwovoriole and Roth [10] describe 

the relative motion of contacting bodies in terms of Screw 

Theory, which is a first-order theory. Using first-order no-

tions, Reuleaux [11], Mishra et al. [12] and Markenskoff et 

al. [13], derive bounds on the number of frictionless point 

contacts required for force closure, which is one means of 

immobilizing an object. However, first-order theories are 

inadequate in practice. The source of deficiency is that the 

relative mobility of an object in contact with finger bodies is 

not an infinitesimal notion but a local one. One must consid-

er the local motions of the object, not the tangential aspects 

of the motions, as employed by the first-order theories. 

 

Rimon and Burdick [14], [15] show that acceleration 

properties of movement can be used to effectively constrain 

a rigid body for part-fixturing and grasping applications.  In 

previous work by the authors, planar synthesis [16] was pre-

sented as a technique for deriving geometric constraints on 

position, velocity and acceleration from contact and curva-

ture task requirements. These constraints yielded design eq-

uations that can be solved to determine the dimensions of the 

serial chain.  

 

In this current study, the authors briefly present this planar 

approach, expand on the spatial approach [17], [18] and 

present some of the applications of second-order task speci-

fications for the geometric design of spatial linkages.   

 

Geometric Design of Planar Me-

chanical Linkages with Task Acce-

leration Specifications 
  

Assume that the planar task consists of positioning an end-

effector of a robot arm at a start and a finish position M
j
 , 

j=1,…, n, such that in these positions there are prescribed 

velocities and accelerations. Let the movement of a rigid 

body be defined by the parameterized set of 3 x 3 homoge-

neous transforms [T(t)]=[R(t), d(t)] constructed from a rota-

tion matrix, R(t), and translation vector d(t). A point p fixed 
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in the moving body traces a trajectory P(t) in a fixed coordi-

nate frame F such that: 

or 

 

 

 

The goal is to determine the movement of the end-effector as 

defined by [T(t)]. 

 

The movement of M relative to a world frame F in the vicin-

ity of a reference position, defined by t=0, can be expressed 

by the Taylor series expansion, 

 

The matrices [T
j

0 ], [ ] and [ ] are defined by the posi-

tion, velocity and acceleration of the end-effector in the vi-

cinity of each task position M
j
.  Therefore, a point p in M 

has the trajectory P(t) defined by the equation 

 Let  p=[ ]
-1

P, which yields 

 where 

are the planar velocity and planar acceleration matrices, 

which are defined by the end-effector velocity and accelera-

tion specifications in the vicinity of some task positions M
j
, 

j=1, ..., n.  

 

   For example, the design parameters for a planar RR chain 

are the coordinates B=(Bx, By) of the fixed pivot, the coordi-

nates P
1
=(Px, Py) of the moving pivot when the floating link 

is in the first position, and  the length R of the link.  In each 

task position the moving pivot P
j
 is constrained to lie at the 

distance R from B, so we have, 

  

 

The first and second derivative of this equation provide the 

velocity constraint equation 

  

 

 

and the acceleration constraint equation 

 

 

 

  

In order to determine the five design parameters, five design 

equations are required. Choosing one of the task positions to 

be the first and using the relative displacement matrices [D1j] 

=    [
 

 ][ ]
-1

 allow one to define coordinates P
j
 taken by 

the moving pivot as follows: 

 

  

 

It is now possible to substitute P
j
 in equation (7) to obtain 

  

These are the position design equations. Notice that [D11] is 

the 3 x 3 identity matrix. From our definition of the 3 x 3 

velocity matrix, we have P
j 
= [Ωj][D1j]P

1
 and substituting 

P
j
 into (8), we obtain the velocity design equations 

 

  

From our definition of the 3 x 3 acceleration matrix, we have 

( P
j 
)= [Λj][D1j]P

1
 and substituting P

j
 in equation 

(9) yields 

 

  
 

where j=1,…., n. These are the acceleration design equa-

tions. Thus, for each of the n task positions, the position, 

velocity and acceleration design equations have the follow-

ing form: 

  
 

   The algebraic solution to the set of four bilinear equations 

for an RR chain is presented in McCarthy [19] for the case 

of five position synthesis and applies without any changes to 

the design equations (14). 

T
j

0
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Geometric Design of Spatial Mechan-

ical Linkages with Task Acceleration 

Specifications 

  

Assume that the spatial task consists of positioning an 

end-effector of a robot arm at a start and a finish position M
j
, 

j=1,...,n, such that in these positions there are prescribed 

velocities and accelerations. The rotation angles used to de-

fine the orientation of the moving body in space are chosen 

to be (θj, Φj, Ψj), representing the longitude, latitude, and 

roll angles that position the z-axis of the moving frame in the 

j-th position. Thus, the rotation matrix [A
j
] is given by 

 

  

 

where [X(.)], [Y(.)], and [Z(.)] represent rotations about the 

x, y and z axes, respectively. Using this convention, and the 

notation d
j
=(dx,j, dy,j, dz,j), the position data can be expressed 

as the 4 x 4 homogeneous transform 

 

 where sin(.) and cos(.) are noted with s(.) and c(.), respec-

tively.  Let the movement of the task frame M relative to the 

world frame F be defined by the 4 x 4 homogeneous trans-

form [K(t)],  and consider its Taylor series expansion in the 

vicinity of both start and finish positions, such that 

  

The matrices [ ], [ ] and [ ] are defined by the posi-

tion, velocity and acceleration of the end-effector in the vi-

cinity of the two task positions M
j
.  A point p in the moving 

frame has the trajectory P
j
(t) in the fixed frame F in the vi-

cinity of a task position M
j
 (see Figure 1), given by the equa-

tion 

 

 

 

 
Figure 1. A spatial 6R serial chain with its fixed F and moving 

M frames 

 

This equation can be rewritten by substituting p=[ ]
-1

 P
j
 to 

obtain the relative transformation 

 

 

 

 

  

The kinematic specification consists of set of spatial dis-

placements and the associated angular and linear velocities  

[V
j  

]=[W
j
, v

j
], j=1, ..., n in start and finish positions, where 

 

 The dot denotes derivatives with respect to time. From this, 

the 4 x 4 spatial velocity matrix [ Ω
j
 ] is given by 

 

  

 

 

 

 

where w
j
=(wx,j, wy,j, wz,j) is  the angular velocity vector and 

v
j
=(vx,j, vy,j, vz,j) is the linear velocity vector at the jth posi-

tion. Assuming the acceleration properties of the motion are 

defined at the j-th position, yields to: 

 

  

 

In order to define the 4 x 4 acceleration matrix [Λ
j
], we in-

troduce the 4 x 4 matrix constructed from (22), [
 j
]=[α

j
, 

a
j
], to obtain 

 

  

 

where j denotes the position in which the acceleration terms 

are defined. 
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Spatial Synthesis Applications 
  

   The spatial synthesis example is a part of the authors‘ ef-

forts to explore new, efficient methods for the design of 

fault-tolerant robot manipulators, as well as novel task-

planning techniques. Particularly, the authors examined a 

non-redundant general six-degree-of-freedom TRS robot 

manipulator (see Figure 2), mounted on a movable platform 

is fault-tolerant with respect to the originally specified task, 

consisting of second-order specifications,  after one of its 

joints fails and is locked in place.   

 
Figure 2. The TRS arm is a general six-degree of freedom serial 

chain configured so that the first pair of revolute joints inter-

sect at right angles forming T-joint (also known as U-joint) and 

the last three joints intersect in a point to define a spherical 

wrist 

 

The  Dentavit-Hartenberg parameters [20] of the arm are 

listed in Table 1. The task data is presented in Table 2. It 

consists of two positions with velocity, defined in the first 

position and velocity and acceleration specifications in the 

second position.  
 

Table 1. Denavit-Hartentberg parameters for the TRS arm 

 
 

 

Table 2. Task data for planning movement of the TRS arm 

 
 

   Figure 3 shows the TRS arm moving through the specified 

task. The trajectory is determined from the joint parameters 

using a fifth-degree polynomial interpolation following [21], 

[22]. 

 
Figure 3. The world frame F, the location of fixed pivot B in the 

base of the arm, the moving pivot p of the TRS arm 

 

   In the following sections, the authors present the recovery 

strategy for the six-degree-of-freedom TRS arm, to achieve 

the originally specified task in the case of an actuator failure.   

 

Arm Actuator Failures 
 

   The recovery strategy is based on the ability to reposition 

the arm base so that the point B at the intersection of S1 and 

S2 of the TRS can be placed where needed in a horizontal 

plane parallel to the X-Y plane of the world frame F. The 

point B lies at the origin of the fixed coordinate system, Bz = 

-140 mm at all times, i.e. the arm base can move freely in 

the X-Y plane. The authors assumed that the TRS arm could 

grasp the tool frame where necessary so that the wrist center 

P could be positioned in F where necessary. The proposed 

strategy reconfigures the arm-platform system using degrees 

of freedom that exist in the system but are locked during arm 

movement. Thus, the recovery plan is achieved by first iden-

tifying values for the reconfiguration parameters B=(Bx, By, 

-140) and P=(Px, Py, Pz) that ensure that the end-effector of 

the TRS arm can achieve the specified task for each particu-

lar arm joint failure, shown below. These constraint equa-

tions combine with the specified task to provide a set of po-

lynomial equations for the reconfiguration parameters of the 

platform arm system.  Solutions to these equations are ob-

tained numerically using the polynomial homotopy contin-

uation sofware PHC [23].  The movement of each reconfi-

gured arm is determined by solving the inverse kinematics 

failure model in each of the task positions, and then using 

joint trajectory interpolation to guide its end-effector through 

the prescribed task [14]. 
 

   Assume that the actuator of joint S1, in Figure 2, which 

controls the shoulder azimuth angle, of the TRS arm has 

failed and that the brakes have been set to maintain a con-

stant angle θ1.The remaining actuated joints of the TRS form 

a parallel RRS chain that can position the wrist in a plane 

perpendicular to the horizontal axis. Once a normal G=( Gx, 

Gy, Gz) to this plane and a position of the wrist center P=(Px, 

Py, Pz) are identified, then the coordinates of the base pivot B 
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can be computed to reposition the base of the platform to 

allow the arm to guide the tool frame through the specified 

task,  despite the S1 joint failure [24]. The polynomial system 

of design equations for the parallel RRS consists of four 

bilinear quadratic equations and one linear equation in the 

five unknowns r=(Gx, Gy, Px, Py, Pz).  The total degree of the 

system is 2
4
 = 16, which is small enough to directly elimi-

nate the variables and obtain a univariate polynomial of de-

gree six.  The solution, corresponding to failure at θ1= 90
o
, is 

given in Table 3. 

 
Table 3. The reconfiguration parameters for a failed S1 joint 

 
 

Figure 4(a) shows the reconfigured platform arm system 

and the trajectory generated to guide the TRS arm through 

the original task with an S1 joint failure.  

 

 
                  (a)                                  (b)                               (c) 

Figure 4. (a) The reconfigured platform arm system for an S1 

actuator failure. (b) The reconfigured platform arm system for 

an S2 actuator failure. (c) The reconfigured platform arm sys-

tem for an S3 actuator failure 

 

Next, the authors considered the case in which the actuator 

of the second joint S2 of the TRS arm, which controls the 

shoulder elevation angle, fails and that the brakes have been 

set to maintain θ2 at a constant value.  The remaining joints 

of the arm in Figure 2 form a perpendicular RRS chain that 

can locate the wrist center on a circular torus. We obtain five 

polynomial equations that define the reconfiguration para-

meters r=(Bx, By, Px, Py, Pz) that allow the platform arm sys-

tem to complete the task despite the failure. The system of 

five quartic polynomials has a total degree of 4
5
 = 1024.  

The real solution, corresponding to shoulder elevation fail-

ure at θ2 = 0
o
, is listed in Table 4.  

 

Table 4. The reconfiguration parameters for a failed S2 joint 

 
 

Figure 4(b) shows the reconfigured rover arm system for 

the crippled TRS arm with an S2 joint failure through the 

original task.  If the elbow actuator of joint S3 of the TRS 

arm in Figure 2 fails then we assume its brakes can be set so 

that θ3 has a constant value. The remaining joints of the arm 

form a TS chain that can position the wrist center p=[ ]P 

on a sphere, with a radius R, about the base point B. The 

radius R is defined by the link lengths a23 and a34, the angle 

θ3, and is equal to 

 

  

 

where the value of θ3 is determined from the joint sensor of 

the failed actuator. As in the previous cases, we seek the 

reconfiguration parameters r=(Bx, By, Px, Py, Pz) that allow 

the arm to perform the original task, despite the failure. The 

polynomial system consists of five quadratic equations in the 

unknowns r and has a total degree of 2
5
 = 32 [25].  The real 

solution, corresponding to elbow failure at θ3 = 68.56
o
, i.e. 

R= 400 mm, is given in Table 5.   

  
Table 5. The reconfiguration parameters for a failed S3 joint 

 
 

Figure 4(c) shows the reconfigured platform-arm system 

and the trajectory generated to guide the TRS with the elbow 

joint failure to achieve the originally specified task.  A Sur-

face Mobility Platform (Gears LLC), a Lynxmotion robot 

arm, integrated using Single-Board RIO – 9632 (National 

Instruments) are used for the experimental set up.  Tests of 

the proposed strategy are currently performed in the Space 

Robotics Lab at Texas A&M (see Figure 5).  

 

 
Figure 5. Experimental set up. Arm in stowed position 

 

Figure 6 (a) shows the healthy arm holding a tool, moving 

through a task consisting of second-order specifications. 

Figure 6(b) shows the new location of the fixed B and mov-

ing p pivots of the arm, after an elbow failure. The closer 
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look shows how the re-grasping ability of the end-effector 

had allowed for the tool to be grasped at a different location.  

 

 
(a) 

 

 
(b) 

Figure 6. (a) The healthy arm moving through the a task. (b) 

New locations for the base pivot B and the moving pivot p have 

been obtained in order for the crippled TS arm to obtain the 

originally specified task despite the elbow failure 

 

   Finally, Figure 8 is a recent result from our efforts to de-

sign mechanical linkages, constrained to have the same 

coordinates for the fixed pivot B and the same end-effector 

path trajectory. 

 

 
Figure 8. The TS chain (Bp1) and the perpendicular RRS chain 

(Bp2) move smoothly through the second order task 

 

The animation shows that both TS and perpendicular RRS 

linkages satisfy the second-order task specification and 

move smoothly throughout the task. 

 

Summary  

  

    Formulation of the kinematic specification for the synthe-

sis of spatial kinematic chains with specified task accelera-

tion was presented. Applications have focused on exploring 

new strategies for the failure recovery of general six-degree-

of-freedom manipulators. The last example combines the 

second-order effects of the task with the particular kinemat-

ics of the chain to yield free parameters that allow for more 

than one system to accomplish the same task.  
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