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ABSTRACT OF THE DISSERTATION

A Development of Discretization Techniques for Some Elliptic and Hyperbolic

PDE

by

Jonathan W. Serencsa

Doctor of Philosophy in Mathematics with Specialization in Computational Science

University of California San Diego, 2012

Professor Michael Holst, Chair

Professor Steve Shkoller, Co-Chair

In this thesis, we consider the discretization of two different PDE which govern

physical phenomenon. First, we consider the diffusive diffusive logistic equation and

develop several new results on weak solutions and on their approximation by Galerkin-

type methods. Our goal is to establish a rate of convergence for Galerkin approximations

to solutions of this problem, and thus we first consider the continuous model, and briefly

review the literature on the known solution theory. We then state and prove a new re-

sult on existence and uniqueness of weak solutions. Moreover, we provide numerical

results to provide evidence of our theoretical results. Second, we consider the nonlinear

systems of conservation laws which propagate shock waves, rarefactions, and contact

discontinuities, and introduce what we call the C-method. We shall focus our atten-

tion on the compressible Euler equations in one space dimension. The novel feature of

our approach involves the coupling of a linear scalar reaction-diffusion equation to our

system of conservation laws, whose solution C(x, t) is the coefficient to an additional

(and artificial) term added to the flux, which determines the location, localization, and

strength of the artificial viscosity. Near shock discontinuities, C(x, t) is large and lo-

calized, and transitions smoothly in space-time to zero away from discontinuities. Our

approach is a provably convergent, spacetime-regularized variant of the original idea of

Richtmeyer and Von Neumann, and is provided at the level of the PDE, thus allowing a

xi



host of numerical discretization schemes to be employed. We demonstrate the effective-

ness of the C-method with three different numerical implementations and apply these

to a collection of classical problems. All three schemes yield higher-order discretiza-

tion strategies, which provide sharp shock resolution with minimal overshoot and noise,

and compare well with higher-order WENO schemes that employ approximate Riemann

solvers, outperforming them for the difficult Leblanc shock tube experiment.
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Chapter 1

Error Estimates for Positive Discrete

Solutions to the Diffusive Logistic

Equation

1.1 Introduction

In this article we consider the Diffusive Logistic Equation (DLE), which is a widely

accepted model for modeling the steady-state population distribution of a single species

occupying a domain in space. While the nonlinearity is rather simple, and sub-critical

in at least up to three space dimensions, it is not monotone, which prevents one from

using a number of standard techniques usually available for both the analysis and ap-

proximation of nonlinear problems. Another problematic feature of the DLE is the

inability to guarantee uniqueness, unless we require the solution to be positive. While

this positivity constraint is of practical importance when modeling the distribution of a

species (and thus “negative” population makes no sense), it presents considerable dif-

ficulty when trying to construct solutions (both existence arguments as well as explicit

numerical constructions). As a result of these interesting features, the DLE is often used

as a model of more complex nonlinear elliptic equations and elliptic systems. Our goal

in this article is to develop several new results on weak solutions to the DLE, and on

their approximation by Galerkin-type methods. In particular, we wish to establish a spe-

1
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cific rate of convergence for Galerkin approximations to solutions of this problem, in

order to gain insight into the types of techniques that might be useful for establishing

convergence rates for more general nonlinear problems.

The classical formulation of the DLE is as follows. Given a bounded domain Ω ⊂
Rn for n 6 3 whose boundary is of class C2, for some α ∈ (0, 1] and b, c positive

constants, we look for u ∈ C2+α(Ω̄) satisfying

−∆u+ bu2 = cu in Ω, (1.1.1)

u = 0 on ∂Ω. (1.1.2)

The DLE models the steady-state population density of a single species occupying

the region Ω where the boundary ∂Ω is “hostile” to the species (for more details, see [1]

or [2]).

For this classical formulation, we have the following (also classical) result.

Theorem 1.1.1. Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of class C2 and

(λ, φ) be the principle eigenpair of −∆ on Ω with homogeneous Dirichlet boundary

conditions. If c > λ then there exists a unique u ∈ C2+α(Ω̄) satisfying (1.1.1), (1.1.2)

and u > 0 in Ω. Moreover, we have the pointwise bound

c− λ
b

φ 6 u 6
c

b
in Ω̄. (1.1.3)

Proof. See for example [3].

Though the above result asserts the well-posedness of the classical formulation, this

requires the domain in question Ω to posses rather strong regularity properties. In prac-

tice, when trying to provide a discrete formulation, one must first provide some sort of

approximation to the actual domain. Such approximations will generally be some (pos-

sibly non-convex) polygon that interpolates at the boundary. In order to be able to show

that our discrete solutions converge to the continuous solution, it is desirable that one

can solve the continuous problem on the discrete domain. In order to do so, one must

weaken their notation of a solution, to a point that the classical formulation no longer

makes sense. With this in mind, in the first part of the paper we will generalize Theo-

rem 1.1.1 to weak solutions (see Theorem 1.2.2 in §1.2 below). We will then prove a
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similar result (see Theorem 1.3.4 in §1.3 below) where we search for discrete Galerkin

approximations uh living in some finite dimensional subspace Vh ⊂ H1
0 (Ω). Once we

have developed well-posedness results for the continuous and discrete formulations, we

will establish a lemma regarding the “linearization” of the nonlinearity about the con-

tinuous solution, which will be critical in proving the following rate of convergence

result: For h sufficiently small, a Galerkin approximation uh of the solution u to the

DLE satisfies:

||u− uh||H1(Ω) = O(h
1
2

+s),

||u− uh||L2(Ω) = O(h1+2s),

||u− uh||L∞(Ω) = O(h
3−n

2
+s).

where s is determined by the elliptic regularity satisfied by the domain Ω.

In the case Ω is of class C1,1 or convex-Lipschitz, for which Ω possesses full H2-

elliptic regularity and s = 1
2
, there is a wide variety of results which yield the above

rates of convergence for finite element approximations to a general class of linear and

nonlinear elliptic PDE with a variety of boundary conditions (see [4], [5], [6], [7], [8],

[9], [10]). Moreover, the results of [8] suggest that our proposed L∞ bound is rather

poor since one can expect a rate of O(h2| log(h)|n/4+1). However, this requires either

convexity or smoothness of the domain and one must exclude the case where ∂Ω is a

general (non-convex) polygon/polyhedra.

In the case where Ω is a non-convex Lipschitz domain and lacks the full H2-elliptic

regularity, s ∈ (0, 1
2
), the vast number of results we reference above still hold, but with a

reduced order of convergence, as expressed in our desired error bounds. Moreover, the

techniques used in [8] to achieve optimal L∞ convergence estimates can not be applied

without full H2-elliptic regularity.

Despite the extensive amount of literature for nonlinear elliptic problems, the con-

vergence theory for the DLE does not fit into the general framework required by these

results. Subsequently, we must examine the problem in a far more specific way so as to

deal with the positivity constraints and the lack of monotonicity.

We shall define the required assumptions on the approximating spaces Vh more pre-

cisely later in the paper but note that the necessary assumptions hold for the sequence
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for spaces Vh given by piecewise-linear Lagrange finite elements over meshes defined

using triangles or tetrahedra, with the further requirement that Ω can be subdivided ex-

actly using triangles or tetrahedra with strictly acute angles. We further note that for

a rate of convergence to be of practical use, the constants (which must not depend on

the discretization) must be a priori computable quantities. However, keeping track of

how large the constants must be would be overly burdening. With that said, we establish

the convention that C will be a general positive constant, that only depends on problem

parameters (i.e. Ω, n, b, c). Furthermore, we will commonly use the phrase “for h suffi-

ciently small” and such should be interpreted in the sense that “how small h must be,”

is again computable based solely on problem parameters.

Outline of the paper. The remainder of the article is structured as follows. In §1.2,

we first consider the continuous model, and briefly review the literature on the known

solution theory. We then state and prove a basic result on existence and uniqueness of

weak solutions. The proof will be established through a sequence of lemmas, using a

combination of fixed-point arguments, compactness techniques, and maximum principle

arguments. In §1.3, we develop a discrete analogue for Galerkin approximations under

reasonable assumptions on the approximation spaces. The main proof will involve trac-

ing the proof of the continuous result. Both the continuous and discrete results make

it possible to establish a priori error estimates for Galerkin approximations. A critical

technical result is first given in §1.4, which exploits a subtle relationship to an auxil-

iary problem. The main a priori Galerkin error estimates are then established in §1.5,

and are then subsequently used to characterize the rate of convergence of such approx-

imations in a precise way. The error estimates are established by combining maximum

principles with a careful analysis of the spectral structure of the linearized problem, and

by exploiting the subtle relationship to an auxiliary problem given in §1.4. The final

convergence result given in §1.5, is applicable to general finite element approximations

to positive solutions in bounded, non-convex polygonal domains in both two and three

space dimensions. We show that, under reasonable assumptions on the approximation

spaces and on the details of the discretization, the Galerkin method converges at a fixed

rate of convergence (Theorem 1.5.8). Finally, in §1.6 we provided numerical data which

confirm our results.
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1.2 Analysis of the Continuous Problem

Though there are numerous references devoted to the study of classical solutions to

some form of the DLE ([2], [3], [11], [12], [13]) it seems that analogous results for weak

solutions, critical for our error analysis, is apparently not in the existing literature on the

DLE. Thus, we devote the following section to laying down the framework for, and

subsequently proving, the following theorem, which can be viewed as a generalization

of Theorem 1.1.1 to weak solutions.

Before we state our result, we make the following definition:

Definition 1.2.1. A Lipschitz domain Ω ⊂ Rn possesses Hs-elliptic regularity if, given

any elliptic operator L, there exists a constant C > 0 such that

‖w‖Hs(Ω) ≤ C‖Lw‖L2(Ω),

for all w ∈ Hs(Ω) ∩H1
0 (Ω).

We know that any two-dimensional Lipschitz domain possesses H
3
2

+s-elliptic reg-

ularity for s ∈ (0, 1
2
] [15]. Moreover, in any space dimension, convex Lipschitz do-

mains possessH2-elliptic regularity . However, despite our best efforts, we do not know

whether non-convex Lipschitz domains in three dimensions possess H
3
2

+s-elliptic regu-

larity for s ∈ (0, 1
2
].

Theorem 1.2.2. Let Ω ⊂ Rn (n 6 3) possess H
3
2

+s-elliptic regularity for s ∈ (0, 1
2
].

Furthermore, let (λ, φ) be the principle eigenpair of−∆ on Ω with homogeneous bound-

ary conditions, with the convention that φ is normalized w.r.t to L∞ and φ > 0 in Ω. If

c > λ then there there exists a unique u ∈ H 3
2

+s(Ω) ∩H1
0 (Ω) satisfying∫

Ω

∇u · ∇v + bu2v − cuvdx = 0 for all v ∈ H1
0 (Ω), (1.2.1a)

u > 0 in Ω. (1.2.1b)

Moreover, u ∈ L∞(Ω) and we have the pointwise bound

c− λ
b

φ 6 u 6
c

b
a.e. in Ω.
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The proof of Theorem 1.2.2 will be established through a sequence of Lemmas. To

this end, define a ∈ L(H1
0 (Ω)×H1

0 (Ω),R) and B : H1
0 (Ω)→ L2(Ω) via the following

a(u, v) =

∫
Ω

∇u · ∇vdx and (B(u), v) =

∫
Ω

(bu2 − cu)vdx.

Clearly a is bounded, symmetric, and bilinear with

|a(u, v)| 6 ‖u‖H1(Ω)‖v‖H1(Ω) for all u, v ∈ H1
0 (Ω),

and (via the Poincare inequality) coercive with constant m > 0 satisfying

m‖u‖2
H1(Ω) 6 a(u, u) for all u ∈ H1

0 (Ω).

We also have a maximum principle for a i.e. if u ∈ H1
0 (Ω) satisfies

a(u, v+) 6 (>) 0 for all v ∈ H1
0 (Ω),

then u 6 (>) 0 a.e. in Ω, where we define

v+ := max{v, 0}.

For results pertaining to maximum principles for weak solutions to elliptic PDE, see

[14].

On the other hand, B satisfies two other useful properties which we assert in the

following lemma.

Lemma 1.2.3. B is a bounded operator (nonlinear) fromH1(Ω)→ L2(Ω) which more-

over satisfies the following property: If uk, u ∈ H1(Ω) ∩ L∞(Ω) with uk → u a.e. in Ω

then

‖B(uk)−B(u)‖L2(Ω) → 0.

Proof. The boundedness of B follows from the estimate

‖B(u)‖2
L2(Ω) 6 C

(
‖u‖4

L4(Ω) + ‖u‖2
L2(Ω)

)
6 C‖u‖2

H1(Ω),

which follows by Sobolev imbedding since we have restricted ourselves to n = 2, 3.

The second claim then follows from the dominated convergence theorem along with

the fact that as a map from R→ R, f(x) = bx2 − cx is continuous.
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We also establish a few notational conventions.

Definition 1.2.4. Given u1, u2 ∈ H1(Ω) ∩ L∞(Ω) with u1 6 u2 a.e. in Ω, we define the

order interval [u1, u2] ⊂ H1(Ω) ∩ L∞(Ω) via

[u1, u2] = {u ∈ H1(Ω) ∩ L∞(Ω) : u1 6 u 6 u2 a.e. in Ω},

and the homogeneous variant

[u1, u2]0 = [u1, u2] ∩H1
0 (Ω).

Definition 1.2.5. We say G : H1
0 (Ω) → L2(Ω) is monotone increasing (resp. mono-

tone decreasing) on an order interval [u1, u2] if

(G(w1)−G(w2), v+) 6 (>) 0,

for any w1, w2 ∈ [u1, u2] with w1 6 w2 and v ∈ H1
0 (Ω).

Before we prove existence, we have the two following a priori results.

Lemma 1.2.6. If u ∈ H1
0 (Ω) satisfies (1.2.1a), then we have u ∈ H

3
2

+s(Ω) for some

s ∈ (0, 1
2
] and subsequently, u ∈ L∞(Ω).

Proof. Sobolev Embedding and the fact that u ∈ H1
0 (Ω) gives us cu− bu2 ∈ L2(Ω) and

elliptic regularity gives us u ∈ H 3
2

+s(Ω) for some s ∈ (0, 1
2
] (see [15]). The embedding

of H
3
2

+s(Ω) into L∞(Ω) for n 6 3 finishes the proof.

We also have the following uniqueness result.

Lemma 1.2.7. Let u1, u2 ∈ H1
0 (Ω) be solutions to (1.2.1a) and suppose that u1, u2 >

0, a.e. in Ω. Then u1 ≡ u2.

Proof. By (1.2.6) we know that the positivity of u1, u2 is well-defined. Taking each

solution as test functions for the opposite solution in (1.2.1a) gives us∫
Ω

b(u1 − u2)u1u2 dx = 0.

The result follows from the fact that bu1u2 > 0 a.e.
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Proving Theorem 1.2.2 will now proceed as follows. First we establish the existence

of positive, ordered sub- and supersolutions u, u. Second, we propose an iterative pro-

cess that generates pointwise, monotone sequences {uk} and {uk} which remain in the

homogeneous interval [u, u]0 for k > 1. Finally, we use the various modes of conver-

gence to show that our sequences converge to positive solutions of (1.2.1a) which must

be equal by our uniqueness result, Lemma 1.2.7.

Lemma 1.2.8. There exist sub- and supersolutions u, u ∈ H1(Ω) ∩ L∞(Ω) satisfying

a(u, v+) + (B(u), v+) 6 0 and a(u, v+) + (B(u), v+) > 0 (1.2.2)

for all v ∈ H1
0 (Ω) and

0 < u 6 u,

almost everywhere in Ω.

Proof. Since we follow the convention that the principle eigenfunction is positive and

normalized such that ‖φ‖L∞(Ω) = 1 taking u = c−λ
b
φ, given v ∈ H1

0 (Ω) we also have

v+ ∈ H1
0 (Ω) and

a(u, v+) + (B(u), v+) =
(c− λ)2

b

∫
Ω

(φ− 1)φv+ dx.

Since b > 0 and (1− φ)φϕ 6 0 for any ϕ ∈ C∞0 (Ω) with ϕ > 0, u being a subsolution

follows from a density argument. Moreover, the condition c > λ ensures u > 0 in Ω.

We can then take u = c
b

as a supersolution and the ordering u 6 u follows because

φ is normalized in L∞(Ω).

It is rather easy to see that B is not monotone on [u, u] and thus we define a shifted

variant

(Bc(u), v) = (B(u)− cu, v),

which is monotone decreasing on [u, u] and still possesses the boundedness and conti-

nuity properties. Moreover, we also have that the shifted bilinear form defined by

ac(u, v) = a(u, v) + c(u, v),

maintains a maximum principle, its boundedness, and coercivity.

Now, due to the monotone property of Bc and the maximum principle for ac, we

provide an iteration along with the following result.
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Lemma 1.2.9. The sequences {uk} and {uk} defined by

ac(u
k+1, v) + (Bc(u

k), v) = 0 and ac(u
k+1, v) + (Bc(u

k), v) = 0,

for all v ∈ H1
0 (Ω), with u0 = u and u0 = u remain in the order interval [u, u] and are

ordered in the following sense

uk 6 uk+1 6 uk+1 6 uk, for k = 0, 1, . . . . (1.2.3)

Proof. The iterations are defined by a sequence of linear elliptic PDE, and thus standard

existence arguments and the maximum principle allows us to conclude the sequences

are well-defined and remain in H1
0 (Ω) ∩ L∞(Ω) for k > 1. Since u and u are ordered

sub- and supersolutions, we have

ac(u− u1, v+) 6 0 and ac(u
1 − u, v+) 6 0,

for all v ∈ H1
0 (Ω). Furthermore, since Bc is monotone decreasing on [u, u] and u 6 u

we also have

ac(u
1 − u1, v+) 6 0,

for all v ∈ H1
0 (Ω). Thus we have the desired ordering for k = 1. Proceeding inductively

we achieve (1.2.3).

We are now able to prove Theorem 1.2.2.

Proof. (Theorem 1.2.2) To be more concise, we first consider only the sequence uk. By

Lemma 1.2.9 the sequence uk is uniformly bounded, pointwise monotonic in L∞ and

thus there exists v ∈ L∞(Ω) such that any subsequence of uk converges pointwise a.e

to v.

This pointwise convergence allows us to conclude that

‖Bc(u
k)‖L2(Ω),

is uniformly bounded which in turn implies that uk is uniformly bounded in H1
0 (Ω).

Any subsequence ukj must also be uniformly bounded in H1
0 (Ω) and thus there exists

w ∈ H1
0 (Ω) and a further subsequence ukjl with

ukjl ⇀ w in H1
0 (Ω),
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but we also have

ukjl → v pointwise a.e.

Invoking the uniform pointwise boundedness of ukjl along with the necessary strong

L2 convergence of ukjl to w we have v = w a.e. in Ω. Since ukj was an arbitrary

subsequence, we have

uk ⇀ v in H1
0 (Ω),

uk → v in L2(Ω),

uk → v pointwise a.e. inΩ.

Similarly, we have the same result for the respective convergences of uk to v.

Finally, the weak-H1
0 and pointwise convergence allows us to conclude that v and

v satisfy (1.2.1a). Moreover, since u > 0 in Ω and v, v ∈ [u, u]0, Lemmas 1.2.6 and

1.2.7 allows us to conclude that v ≡ v. We then write u ≡ v ≡ v as the unique positive

solution to (1.2.1a).

1.3 Analysis of the Discrete Problem

We now consider ones ability to generate approximate solutions. We first let Xh ⊂
H1(Ω) ∩ L∞(Ω) denote a finite-dimensional subspace and then define the zero trace

analog

Vh = Xh ∩H1
0 (Ω),

and we wish to find conditions such that the following Galerkin formulation is well-

posed.

Find uh ∈ Vh such that∫
Ω

∇uh · ∇vh + bu2
hvh − cuhvh dx = 0 for all vh ∈ Vh, (1.3.1a)

uh > 0 in Ω. (1.3.1b)

In general, the above formulation will not be well-posed for general Vh, however,

under some reasonable assumptions we can achieve well-posedness. We now list the

following assumptions;
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Assumption 1.3.1. Vh must possess a basis {ϕh,k} for which ϕh,k > 0 in Ω. Thus we

define

V +
h = {vh ∈ Vh : vh =

Nh∑
k=1

ξh,kϕh,k with ξh,k > 0},

which is a convex subset of Vh with the property that vh ∈ V +
h has vh(x) = 0 for some

x ∈ Ω if and only if some coefficient with respect to the non-negative basis is zero.

Moreover, we require the basis to be extendable to one for Xh with the same properties

and we define X+
h in the same way.

Assumption 1.3.2. The shifted bilinear form ac must satisfy a discrete maximum prin-

ciple; i.e. if zh ∈ Xh satisfies

ac(zh, vh) > 0 for all vh ∈ V +
h , (1.3.2)

then zh ∈ X+
h and thus we necessarily have the opposite direction;

ac(zh, vh) 6 0 for all vh ∈ X+
h ,

then −zh ∈ X+
h which we just write as zh ∈ X−h .

Assumption 1.3.3. The principle eigenvalue of the discrete Laplacian, denoted λh must

satisfy

λh < c,

and we must be able to take the principle eigenfunction φh to satisfy

φh > 0 in Ω and ||φh||L∞(Ω) = 1.

The above assumptions enable us to use similar techniques to those used for the

continuos problem to prove well-posedness of the discrete problem. We further note that

a large variety of standard approximation spaces will not in general satisfy the above

assumptions. For now, and in the following presentation, we postpone discussing the

existence of a space Vh which satisfies the above assumptions until §1.6.

We then can show the following theorem;

Theorem 1.3.4. If Vh ⊂ H1
0 (Ω) ∩ L∞(Ω) satisfies Assumptions 1.3.1, 1.3.2, and 1.3.3

then there exists a unique uh ∈ Vh satisfying (1.3.1a) and (1.3.1b).
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Moreover,

uh ∈ [
c− λh
b

φh,
c

b
].

Proof. The proof of Theorem 1.3.4 follows a similar procedure as that of Theorem 1.2.2.

Indeed, Assumption 1.3.3 allows us to construct approximate, positive sub- and super-

solutions

uh =
c− λh
b

φh and uh =
c

b
,

where we remark that uh /∈ Vh is not an issue, analogous to how u does not have zero

trace in the continuous case. One can easily verify that uh and uh satisfy

a(uh, vh) + (B(uh), vh) 6 0 and a(uh, vh) + (B(uh), vh) > 0,

for all vh ∈ V +
h .

With the initial iterates u0
h = uh and u0

h = uh, we define uk+1
h , uk+1

h ∈ Vh satisfying

ac(u
k+1
h , vh) + (Bc(u

k
h), vh) = 0 and ac(u

k+1
h , vh) + (Bc(u

k
h), vh) = 0, (1.3.3)

for all vh ∈ Vh. Choosing a basis adhering to Assumption 1.3.1, one solves the above

problems for uk+1
h and uk+1

h which reduce to solving a finite dimensional linear system.

Existence and uniqueness follows since Vh ⊂ H1
0 (Ω) and ac is coercive on H1

0 (Ω).

Moreover, we have the estimates

‖uk+1
h ‖H1(Ω) 6 C‖Bc(u

k
h)‖L2(Ω) and ‖uk+1

h ‖H1(Ω) 6 C‖Bc(u
k
h)‖L2(Ω). (1.3.4)

The proof of the required ordering

uh 6 u1
h 6 · · · 6 ukh 6 · · · 6 ukh 6 · · · 6 u1

h 6 uh, (1.3.5)

follows along the same line of reasoning as that for (1.2.3) due to Assumption 1.3.2; we

omit the details.

We write an equivalent statement of (1.3.5),

ξk
h,j

6 ξk+1

h,j
6 ξ

k+1

h,j 6 ξ
k

h,j, (1.3.6)

for k = 1, 2, . . . and j = 1, 2, . . . , Nh where ξk
h,j

and ξ
k

h,j , denote the coefficients of ukh
and ukh with respect to the bases ensured by Assumption 1.3.1.
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Using (1.3.6) we conclude ξk
h,j

and ξ
k

h,j are bounded monotonic sequences of real

numbers, and thus each converge to some ζ
h,j

and ζh,j . Since the initial discrete sub-

and supersolutions were strictly positive in Ω, we necessarily have that each ζ
h,j

and

ζh,j are positive for all j. Defining vh, vh ∈ Vh via

vh =

Nh∑
j=1

ζ
h,j
ϕh,j and vh =

Nh∑
j=1

ζh,jϕh,j.

Moreover, we have

vh, vh ∈ [
c− λh
b

φh,
c

b
]

satisfying the positivity requirement (1.3.1b). Since all norms are equivalent in finite

dimensions, the convergence of the coefficients guarantee that

ukh → vh and ukh → vh in H1
0 (Ω)

Passing to the limits in (1.3.3) we have vh and vh satisfy (1.3.1a) and (1.3.1b).

The uniqueness of positive solutions follows the same reasoning as in the proof of

Lemma 1.2.7 with H1
0 (Ω) ∩ L∞(Ω) replaced with Vh. Thus, we write uh = vh = vh as

the unique, discrete positive solution.

1.4 A Critical Technical Lemma

Our ability to achieve rate of convergence results in Theorem 1.5.8 depends heavily

on a subtle realization. If we first define the following modified bilinear form given

g ∈ L∞(Ω) via

a(g;w, v) =

∫
Ω

∇w · ∇v + gwv dx for w, v ∈ H1
0 (Ω),

then our unique solution satisfies

a(bu− c;u, v) = 0 for all v ∈ H1
0 (Ω), (1.4.1)

and thus the bilinear form a(bu − c; ·, ·) is not coercive. However, if we are to shift by

some positive function g ∈ L∞(Ω), we can show that the resulting bilinear form

a(bu+ g − c, ·, ·),
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is coercive, which is the statement of the following lemma:

Lemma 1.4.1. For any g ∈ L∞(Ω) with g > 0 in Ω the symmetric bilinear form

a((bu+ g)− c, ·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R,

where u is the unique positive solution to (1.2.1a), then there exists a positive constant

α > 0 such that

a((bu+ g)− c, w, w) > α||w||2H1(Ω) for all w ∈ H1
0 (Ω),

and subsequently satisfies a maximum principle, i.e if

a((bu+ g)− c, w, v+) 6 (>)0 for any v ∈ H1
0 (Ω),

than w 6 (>)0 a.e. in Ω.

The proof of Lemma 1.4.1 will depend on the following technical lemma, which

shows that we have sufficient “wiggle room” for the spectrum of Au.

Lemma 1.4.2. Let η ∈ L∞(Ω) and a(η; ·, ·) satisfy

a(η;w,w) > K‖w‖2
L2(Ω) for all w ∈ H1

0 (Ω), (1.4.2)

for some K > 0. Then there exists ε ∈ (0, 1) sufficiently small depending on η and K

such that

(1− ε)‖∇w‖L2(Ω) + (ηw,w) >
K

2
‖w‖2

L2(Ω) for all w ∈ H1
0 (Ω). (1.4.3)

Proof. For any w ∈ H1
0 (Ω) and ε ∈ (0, 1) we have

(1− ε)‖∇w‖2
L2(Ω) + (ηw,w) = (1− ε)

{
‖∇w‖2

L2(Ω) + (ηw,w)
}

+ ε(ηw,w)

> (1− ε)K‖w‖2
L2(Ω) − ε‖η‖L∞(Ω)‖w‖2

L2(Ω)

and thus taking

ε 6
K

2(K + ‖η‖L∞(Ω))
,

we have the desired result.
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Proof. (Lemma 1.4.1) If we interpret (1.4.1) as saying that (u, c) is an eigenpair to the

following eigenvalue problem:

Find w ∈ H1
0 (Ω) and η ∈ R satisfying

a(bu;w, v) = η(w, v) for all v ∈ H1
0 (Ω), (1.4.4)

we then make the following observations. First, since u is a positive L∞(Ω) function,

the bilinear form a(bu; ·, ·) is a symmetric, coercive bilinear form over H1
0 (Ω)×H1

0 (Ω)

and thus (1.4.4) only possesses a non-trivial solution for η in a countable set we denote

Λ(abu). Moreover, Λ(abu) has a minimal positive value. By (1.4.1), we know that

c ∈ Λ(abu) and since u is thus a strictly positive eigenfunction we necessarily have

c = min Λ(abu).

Since we have assumed that g is a strictly positive L∞(Ω) function, we then have

min Λ(abu) < min Λ(abu+g),

which implies the existence of some δ > 0 such that

min Λ(abu+g) = c+ δ.

This in turn implies that∫
Ω

|∇w|2 + (bu+ g)w2 dx > (c+ δ)‖w‖2
L2(Ω) for all w ∈ H1

0 (Ω),

or

a((bu+ g)− c;w,w) > δ‖w‖2
L2(Ω) for all w ∈ H1

0 (Ω).

To achieve the coercivity bound, we choose 0 < ε < 1 sufficiently small to ensure

the result of Lemma 1.4.2, and thus we have

a((bu+ g)− c;w,w) =

∫
Ω

|∇w|2 + [(bu+ g)− c]w2 dx

= ε‖∇w‖2
L2(Ω) + (1− ε)‖∇w‖2

L2(Ω) + ([(bu+ g)− c]w,w)

> ε‖∇w‖2
L2(Ω) +

δ

2
‖w‖2

L2(Ω)

> min{ε, δ
2
}‖w‖2

H1(Ω),
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and taking α = min{ε, δ
2
} we have the desired coercivity bound.

To see that a(bu+ g − c; ·, ·) satisfies a maximum principle, let v = w yielding

0 > a((bu+ g)− c, w, w+) > α‖w‖2
H1(Ω(0)),

where Ω(0) := {x ∈ Ω : u(x) > 0} and thus w 6 0 in Ω. Similarly, taking v = −w
achieves the reverse inequality.

1.5 Galerkin Error Estimates

We now make assumptions on the approximating spaces Vh regarding how well they

approximate the space H1
0 (Ω).

Assumption 1.5.1. For our given sequence of finite dimensional spaces Vh ⊂ H1
0 (Ω)

indexed by parameter h, for s ∈ (0, 1
2
] there exists some constant C > 0 which does not

depend on h such that

inf
vh∈Vh

‖w − vh‖H1(Ω) 6 Ch
1
2

+s‖w‖
H

3
2+s(Ω)

for all w ∈ H
3
2

+s(Ω). (1.5.1)

Assumption 1.5.2. Our spaces Vh ⊂ H1
0 (Ω) also satisfy

inf
vh∈Vh

‖w − vh‖L∞(Ω) 6 Ch
3−n

2
+s‖w‖

H
3
2+s(Ω)

for all w ∈ H
3
2

+s(Ω). (1.5.2)

The above assumptions are in the form of standard approximation estimates for clas-

sical finite element spaces. We defer a thorough explanation to §1.6.

1.5.1 H1 Estimates

We examine the error between u and uh measured in the H1. Indeed, we have the

error, u− uh satisfying:

Lemma 1.5.3. The approximate solutions uh converge strongly to u w.r.t the H1
0 topol-

ogy and we have the rate

‖u− uh‖H1(Ω) 6 Ch
1
2

+s‖u‖
H

3
2+s(Ω)

, (1.5.3)

where C > 0 is independent of h.
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Proof. The error u− uh satisfies

a(u− uh, vh) + (B(u)−B(uh), vh) = 0 for any vh ∈ Vh, (1.5.4)

and thus we have, for any vh ∈ Vh,

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh),

= a(u− uh, u− vh)− (B(u)−B(uh), vh − uh),

= a(u− uh, u− vh) + (B(u)−B(uh), u− vh)− (B(u)−B(uh), u− uh).

When then have the estimates∫
Ω

|∇(u− uh)|2 + [b(u+ uh)− c] |u− uh|2 dx

6 M(‖u− uh‖H1(Ω) + ‖B(u)−B(uh)‖L2(Ω))‖u− vh‖H1(Ω)

6 (M + L)‖u− uh‖H1(Ω‖u− vh‖H1(Ω),

and since uh is strictly positive in Ω we have a coercivity constant αh > 0 such that

αh‖u− uh‖2
H1(Ω) 6 (M + L)‖u− uh‖H1(Ω)‖u− vh‖H1(Ω).

After dividing through by αh‖u− uh‖H1(Ω) and taking the infimum over all vh in Vh we

have the quasi-optimal error estimate

‖u− uh‖H1(Ω) 6
M +K

αh
inf
vh∈Vh

‖u− vh‖H1(Ω). (1.5.5)

By Assumption 1.5.1, and the fact that M + K is independent of h, all that is left

for us to show is a uniform lower bound on αh. Indeed, we know that uh satisfies the

pointwise lower bound

uh >
c− λh
b

φh,

where φh are the approximate principle eigenfunctions. Note that we have constants

C̃, C̄ > 0 such that

‖φ− φh‖L∞(Ω) 6 C̃hs‖φ‖
H

3
2+s(Ω)

and |λ− λh| 6 C̄h1+2s, (1.5.6)

(see, for example [15]) and by Assumption 1.3.3

φh > 0 in Ω,
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Thus, if we take h sufficiently small, we have

uh >
c− λ

2b
φ,

and thus there exists some constant α̃ > 0, which no longer depends on h, such that we

have the uniform coercivity bound

α̃‖w‖2
H1(Ω) 6

∫
Ω

|∇w|2 + [b(u+ uh)− c]w2dx for all w ∈ H1
0 (Ω),

for h sufficiently small. This allows us to replace αh with α̃ in (1.5.5) and conclude the

proof.

1.5.2 L2 Estimates

Using the standard Aubin-Nitsche trick and the H1-error estimates we prove above,

we prove that L2-error converges with a rate which is faster than that of the H1-error.

First, we state and prove a crucial result.

Corollary 1.5.4. For any w ∈ L∞ such that w > u, a(·, ·) + (B′(w)·, ·) is a coercive,

bilinear form over H1
0 and subsequently possesses a maximum principle.

Proof. Using the identity

a(·, ·) + (B′(w)·, ·) = a((bu+ g)− c; ·, ·),

where g = bu+2b(w−v) > 0, we invoke Lemma 1.4.1 to achieve the desired result.

Corollary 1.5.4, which asserts that linearizations about w > u are invertible, allows

us to prove the following result.

Lemma 1.5.5. The error u− uh satisfies the following rate-of-convergence estimate:

‖u− uh‖L2(Ω) 6 Ch1+2s‖u‖
H

3
2+s(Ω)

, (1.5.7)

where C > 0 is independent of h.

Proof. We first note that we have

(B(u)−B(uh), w) = (B′(u)(u− uh), w)− b
∫

Ω

(u− uh)2wdx (1.5.8)
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for any w ∈ H1
0 (Ω). Now, we let w ∈ H1

0 (Ω) be the unique solution to the following

adjoint problem,

a(v, w) + (B′(u)v, w) = (u− uh, v) for all v ∈ H1
0 (Ω), (1.5.9)

where existence and uniqueness is a result of Lemma 1.5.4. Since u is sufficiently

regular, we have an elliptic regularity result

‖w‖
H

3
2+s(Ω)

6 C‖u− uh‖L2(Ω).

Setting v = u− uh in (1.5.9) we have

‖u− uh‖L2(Ω) = a(u− uh, w) + (B′(u)(u− uh), w)

= a(u− uh, w) + (B(u)−B(uh), w) + b

∫
Ω

(u− uh)2w dx

= a(u− uh, w − wh) + (B(u)−B(uh), w − wh) + b

∫
Ω

(u− uh)2w dx

6 (M +K)‖u− uh‖H1(Ω)‖w − wh‖H1(Ω) + b

∫
Ω

|u− uh|2|w|dx,

for any wh ∈ Vh.

Since n 6 3, we have the embedding

H
3
2

+s(Ω) ⊂ L∞(Ω),

for s > 0, and thus we have

‖w‖L∞(Ω) 6 C‖u− uh‖H1(Ω) 6 Ch
1
2

+s‖u‖
H

3
2+s(Ω)

.

Using this result, along with choosing wh appropriately as in (1.5.1)

‖u− uh‖2
L2(Ω) 6 Ch

1
2

+s‖u− uh‖H1(Ω)‖u− uh‖L2(Ω) + C̃h
1
2

+s‖u‖
H

3
2+s(Ω)

‖u− uh‖2
L2(Ω).

Then, by taking h sufficiently small so that

C̃h
1
2

+s||u||
H

3
2+s(Ω)

<
1

2
,

and dividing by ||u− uh||L2(Ω) we arrive at

||u− uh||L2(Ω) 6 2Ch
1
2

+s||u− uh||H1(Ω).

Using the previously shown H1 error estimate, we then arrive at

||u− uh||L2(Ω) 6 Ch1+2s||u||
H

3
2+s(Ω)

.
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1.5.3 L∞ Estimates

Using the above error estimates, we prove an L∞-error estimate using a simple in-

verse estimate. We expect (and we shall see in our experiments) that our rate of con-

vergence is not optimal for domains which are convex. A number of results have been

shown for linear and nonlinear problems where one can achieve O(h2| log(h)|1+n
4 ) con-

vergence but these proofs are rather technical. Moreover, these proofs rely on full H2-

elliptic regularity which is not generally the case for Lipschitz non-convex domains.

With this said, we provide evidence that our estimate is sharp when the domain is non-

convex. The technique of our simple proof is based upon a proof given in [16].

The following assumption is known to hold for most standard finite element spaces.

Assumption 1.5.6. Let Vh be such that the following estimate holds:

||vh||L∞(Ω) 6 Ch1−n
2 ||vh||H1(Ω) for all vh ∈ Vh. (1.5.10)

Lemma 1.5.7. Under assumptions 1.5.1, 1.5.2 and 1.5.6 the error u − uh satisfies the

following L∞ rate-of convergence estimate:

‖u− uh‖L∞(Ω) 6 Ch
3−n

2
+s‖u‖H2(Ω).

where C > 0 is independent of h.

Proof. To examine the L∞ error, take vh ∈ Vh and we have

‖u− uh‖L∞(Ω) 6 ‖u− vh‖L∞(Ω) + ‖vh − uh‖L∞(Ω)

6 ‖u− vh‖L∞(Ω) + Ch1−n
2 ‖vh − uh‖H1(Ω)

6 ‖u− vh‖L∞(Ω) + Ch1−n
2

{
‖u− uh‖H1(Ω) + ‖u− vh‖H1(Ω)

}
.

Then, choosing vh appropriately, we the desired result.

We can summarize the last few results in the following theorem, the proof of which

can be assembled from the results above.

Theorem 1.5.8. Let Vh ⊂ H1
0 (Ω) be a sequence of subspaces satisfying Assumptions

1.3.1, 1.3.2, 1.3.3, 1.5.1, and 1.5.2 and let uh be the unique, positive, discrete solution

satisfying ∫
Ω

∇uh · ∇vh + (bu2
h − cuh)vh dx = 0 for all vh ∈ Vh. (1.5.11)
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Then, for h sufficiently small, we have the following orders of convergence

‖u− uh‖H1(Ω) = O(h
1
2

+s),

‖u− uh‖L2(Ω) = O(h1+2s),

‖u− uh‖L∞(Ω) = O(h
3−n

2
+s).

1.6 Numerical Results

We provide some numerical experiments to confirm our theoretical results. At this

point, we only assume the existence of the finite dimensional approximating space Vh,

which satisfy certain assumptions. Now, we explicitly define the spaces Vh which satisfy

these assumptions. Indeed, given a domain Ω, let Th denote a quasi-uniform triangular-

ization (see, for example [17]). Further, let

V k
h = {v ∈ H1

0 (Ω) : v|T ∈ Pk(T ), ∀T ∈ Th}

be the standard finite element space defined on Th, where, for k ≥ 1, Pk(T ) denotes the

space of polynomials of degree k on the triangle T . Requiring that the maximum angle

of each triangle T ∈ Th be less than π
2
, we assert that the space V 1

h satisfies our required

assumptions. This is documented in the following result:

Lemma 1.6.1. Let Th be a quasi-uniform triangularization of Ω and suppose there exists

some γ > 0 such that the maximum angle of each T ∈ Th is less than or equal to π
2
− γ.

Then, the space V 1
h satisfies Assumptions 1.3.1, 1.3.2, 1.3.3, 1.5.1, 1.5.2, and 1.5.6.

Proof. It is easy to see that the standard choice of piecewise-linear Lagrange shape

functions satisfies the requirements of Assumption 1.3.1. The fact that V 1
h satisfies As-

sumption 1.3.2 depends on the requirement that the maximum angle of each triangle is

less than π
2
− γ and is proven in [18]. Assumption 1.3.3 follows from (1.5.6), which

is proven in [15], and the satisfaction of Assumption 1.3.2. Finally, the fact that V 1
h

satisfies Assumptions 1.5.1, 1.5.2 and 1.5.6 is a classical result that can be found in

[17].
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(a) The initial triangulation of the square do-

main. h =
√

2
4

(b) A computed FEM solution for h =
√

2
16

Figure 1.1: The Square domain Ω = [0, 1]× [0, 1]

To provide evidence for our theoretical results, we perform convergence studies on

two domains in R2. Though our results establish the existence of the unique positive

solution uh by virtue of a monotone iteration, we find the convergence of the iteration to

be quite slow in practice. Thus, we use a nonlinear Newton iteration which begins with

the initial iterate u0 = u0 = c
b
. We find this to greatly accelerate the original monotone

iteration, but we are unable to rigorously prove any results pertaining to this procedure.

The first domain we consider is the unit square Ω = [0, 1]× [0, 1]. Since this domain

is a convex polygon, and possesses full H2-elliptic regularity, our above results should

hold with s = 1
2
. To show this, we start with an initial triangulation of the domain which

is shown in Figure 1.1(a). Note that the maximum angle on this triangulation is equal

to π
2
, suggesting a loss in the maximum principle, but experiments show that there is

no issue with angles of π
2
. This suggests that the maximum angle condition of [18] is

sufficient but may not be necessary.

We solve (1.3.1) with b = 22, c = 15 on a sequence of uniformly refined meshes.

Since 15 = c > λ1 = π2 (the principle eigenvalue of the Laplace operator on the region

[0, 1]× [0, 1]), we know that (1.2.1) has a unique positive solution u. However, a closed

form solution is not known and we must compare with an approximate solution on an

extremely refined mesh. Specifically, for the initial mesh we have h0 =
√

2
4

, and we

solve for uh for h ∈ {h0,
h0

2
, h0

4
, h0

8
, h0

16
, h0

32
, h0

64
} and compare with an ‘Exact’ solution
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using h = h0
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.
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Figure 1.2: L2, H1, and L∞-error plots for FEM solutions to the DLE posed on the
square with b = 22,c = 15

In Figure 1.6 we plot the resulting errors, measured in L2, H1 and L∞. We also

include plots of the quantities h and h2 for a basis for comparison. We see that our

L2 and H1 rate-of-convergence results are demonstrated by these plots, but as we have

discussed, the L∞ rate is more like O(h2) than the rate O(h) that our results would

suggest.

The second domain we consider is the L-shaped domain Ω = [0, 1]× [0, 1] \ [1
2
, 1]×

[1
2
, 1] for which we show an initial triangulation in Figure 1.3(a). As this domain is

non-convex with a reentrant corner of θ = 3π
2

, this domain only possesses H
7
4 regularity

and thus our results suggest our estimates with s = 1
4
. For this domain, we perform

the same experiments as for the square domain, with the same choices of parameters

b = 22, c = 15. The principle eigenvalue of the L-shaped domain is quite close to that

of the square, and thus c = 15 still admits a positive solution.

In Figure 1.6 we plot the resulting errors where we see that our experiments match up
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(a) The initial triangulation of the L-shaped do-

main. h =
√

2
4

(b) A computed FEM solution for h =
√

2
16

Figure 1.3: The L-shaped domain Ω = [0, 1]× [0, 1] \ [1
2
, 1]× [1

2
, 1]
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Figure 1.4: L2, H1, and L∞-error plots for FEM solutions to the DLE posed on the
L-shaped domain with b = 22,c = 15
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quite well with our theoretical results. We further note that, unlike was the case for the

square where our L∞ convergence results were not sharp, for the L-shaped domain, our

result does seem to be sharp. This suggests that the techniques used to prove improved

rates of convergence do not work for the non-convex case.

1.7 Conclusion

In this article we considered the diffusive logistic equation as a model of more com-

plex semilinear elliptic systems, and developed a number of new results on weak so-

lutions and on their approximation by Galerkin-type methods. Our motivation was to

establish a rate of convergence for Galerkin approximations to solutions of this prob-

lem, as a step towards developing techniques for proving rates of convergence for more

general nonlinear problems. To this end, we first considered the continuous model, and

briefly reviewed the known solution theory. We then proved a new basic result on exis-

tence and uniqueness of weak solutions. The proof involved several lemmas, combining

fixed-point arguments, compactness techniques, and maximum principles. Under rea-

sonable assumptions on the approximation spaces, using similar arguments we developd

a discrete analogue for Galerkin approximations. Both the continuous and discrete re-

sults were critical building blocks for developing a priori error estimates for Galerkin

approximations, and then subsequently using the estimates to characterizing the rate of

convergence of such approximations in a precise way. The necessary error estimates

were established by (again) exploiting (discrete) maximum principles, by analyzing the

spectral structure of the linearized problem in some detail, and then by exploiting the

subtle relationship to an auxiliary problem. Our final convergence result holds for fi-

nite element approximations to positive solutions of the diffusive logistic equation in

bounded, non-convex polygonal domains in both two and three space dimensions. We

showed that, under reasonable assumptions on the approximation spaces and on the de-

tails of the discretization, the Galerkin method converges at a fixed (optimal) rate of

convergence. Our numerical experiments confirm the theoretical predictions.

Although our focus was on the diffusive logistics equation in this article, the tech-

niques developed in the paper are quite general. In particular, the more general elliptic
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problem

−∇ · (a∇u) + b(u) = f in Ω, (1.7.1)

−n · (a∇u) + c(u) = g1 on ∂1Ω, (1.7.2)

u = g0 on ∂0Ω, (1.7.3)

can be analyzed using similar techniques under reasonable assumptions on the functions

a, b, c, f , g0, and g1. Moreover, certain classes of coupled elliptic systems can be handled

using extensions of the arguments here; this will be pursued by the authors in a second

article.

Chapter 1, in part, is currently being prepared for submission for publication of

the material. The dissertation author was the primary investigator and author of this

material. I would like to acknowledge the co-author, Michael Holst.



Chapter 2

A Space-Time Smooth Artificial

Viscosity Method for Nonlinear

Conservation Laws

2.1 Introduction

2.1.1 Smoothing conservation laws

The initial-value problem for a general nonlinear system of conservation laws can

be written as an evolution equation,

∂tU(x, t) + divF (U(x, t)) = 0 with U |t=0 = U0 , (2.1.1)

for an m-vector U defined on (D+1)-dimensional space-time. Such partial differential

equations (PDE) are both ubiquitous and fundamental in science and engineering, and

include the compressible Euler equations of gas dynamics, the magneto-hydrodynamic

(MHD) equations modeling ionized plasma, the elasticity equations of solid mechan-

ics, and numerous related physical systems which possess complicated nonlinear wave

interactions.

It is well known that solutions of (2.1.1) can develop finite-time shocks, even when

the initial data is smooth, in which case, discontinuities of U are propagated accord-

ing to the so-called Rankine-Hugoniot conditions (see §2.2.1 below). It is important

27
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to develop stable and robust numerical algorithms which can approximate shock-wave

solutions. Even in one-space dimension, nonlinear wave interaction such as two shock

waves colliding, is a difficult problem when considering accuracy, stability and mono-

tonicity. The challenge is maintaining higher-order accuracy away from the shock while

approximating the discontinuity in an order-∆x smooth transition region where ∆x de-

notes the spatial grid size.

As we describe below, a variety of clever discretization schemes have been devel-

oped and employed, particularly in one-space dimension, to approximate discontinuous

solution profiles in an essentially non-oscillatory (ENO) fashion. These include, but

are not limited to, total variation diminishing (TVD) schemes, flux-corrected transport

(FCT) schemes, weighted essentially non-oscillatory (WENO) schemes, discontinuous

Galerkin methods, artificial diffusion methods, exact and approximate Riemann solvers,

and a host of variants and combinations of these techniques.

We develop a robust parabolic-type regularization of (2.1.1), which we refer to as

the C-method, which couples a modified set of m equations for U with an additional

linear scalar reaction-diffusion equation for a new scalar field C(x, t). Thus, instead

of (2.1.1), we consider a system of m+1 equations, which use the solution C(x, t) as

a coefficient in a carefully chosen modification of the flux. As we describe in detail

below, the solution C(x, t) is highly localized in regions of discontinuity, and transitions

smoothly (in both x and t) to zero in regions wherein the solution is smooth. Further,

as ∆x → 0, we recover the original hyperbolic nonlinear system of conservation laws

(2.1.1).

2.1.2 Numerical discretization

In the case of 1-D gas dynamics, the construction of non-oscillatory, higher-order,

numerical algorithms such as ENO by Harten, Engquist, Osher & Chakravarthy [19]

and Shu & Osher [20], [21]; WENO by Liu, Osher, & Chan [22] and Jiang & Shu

[23]; MUSCL by Van Leer [24], Colella [25], and Huynh [26]; or PPM by Colella &

Woodward [27] requires carefully chosen reconstruction and numerical flux.

Such numerical methods evolve cell-averaged quantities; to calculate an accurate ap-

proximation of the flux at cell-interfaces, these schemes reconstruct kth-order (k ≥ 2)
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polynomial approximations of the solution (and hence the flux) from the computed cell-

averages, and thus provide kth-order accuracy away from discontinuities. See, for ex-

ample, the convergence plots of Greenough & Rider [28] and Liska & Wendroff [29].

Given a polynomial representation of the solution, a strategy is chosen to compute

the most accurate cell-interface flux, and this is achieved by a variety of algorithms.

Centered numerical fluxes, such as Lax-Friedrichs, add dissipation as a mechanism to

preserve stability and monotonicity. On the other hand, characteristic-type upwind-

ing based upon exact (Godunov) or approximate (Roe, Osher, HLL, HLLC) Riemann

solvers, which preserve monotonicity without adding too much dissipation, tend to be

rather complex and PDE-specific; moreover, for strong shocks, other techniques may

be required to dampen post-shock oscillations or to yield entropy-satisfying approxima-

tions (see Quirk [30]). Again, we refer the reader to the papers [28], [29] or Colella &

Woodward [31] for a thorough overview, as well as a comparison of the effectiveness of

a variety of competitive schemes.

Majda & Osher [32] have shown that any numerical scheme is at best, first-order

accurate in the presence of shocks or discontinuities. The use of higher-order numerical

schemes is, nevertheless, imperative for the elimination of error-terms in the Taylor

expansion (in mesh-size) and the subsequent limiting of truncation error. Moreover,

higher-order schemes tend to be less dissipative than there lower-order counterparts,

as discussed by Greenough & Rider [28]; therein, a comparison between a 2nd-order

PLMDE scheme and a 5th-order WENO scheme demonstrates the improved resolution

of intricate fine structure afforded by 5th-order WENO, while simultaneously providing

far less clipping of local extrema than PLMDE.

In multi-D, similar tools are required to obtain non-oscillatory numerical schemes,

but the multi-dimensional analogues to those described above are generally limited by

mesh considerations. For structured grids (such as products of uniform 1-D grids), di-

mensional splitting is commonly used, decomposing the problem into a sequence of

1-D problems. This technique is quite successful, but stringent mesh requirements pro-

hibits its use on complex domains. Moreover, applications to PDE outside of variants of

the Euler equations may be somewhat limited. For further discussion of the limitations

of dimensional splitting, we refer the reader to Crandall & Majda [33], and Jiang &
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Tadmor [34]. For unstructured grids, dimensional splitting is not available and alterna-

tive approaches must be employed, necessitated by the lack of multi-D Riemann solvers.

WENO schemes on unstructured triangular grids have been developed in Hu & Shu [35],

but using simplified methods, which employ reduced characteristic decompositions, can

lead to a loss of monotonicity and stability.

Algorithms that explicitly introduce diffusion provide a simple way to stabilize

higher-order numerical schemes and subsequently remove non-physical oscillations near

shocks. In the mathematical analysis of conservation laws (and in the truncation error

of certain discretization schemes), the simplest parabolic-regularization is by the addi-

tion of a uniform linear viscosity. Choosing a constant β > 0, which depends upon

mesh-size ∆x and sometimes velocity or wave-speed, and adding

β(∆x)∂2
xU(x, t) (2.1.2)

to the right hand side of (2.1.1) provides a uniformly parabolic regularization of the

hyperbolic conservation laws, and its discrete implementation smears sharp discontinu-

ities across O(∆x)-regions and thus adds stabilization, but unfortunately, at the cost of

accuracy. With the addition of uniform linear viscosity, shocks and discontinuities are

captured in a non-oscillatory fashion, but the transition region from left to right state,

which approximates the discontinuity, tends to grow over time. Moreover, since viscos-

ity is applied uniformly over the entire domain I, the benefits of a higher-order scheme

(away from the discontinuity) may be lost, and the accuracy may reduce to merely first-

order (at best). For practical implementation in a numerical scheme, the use of viscosity

should be localized in regions of shock (so as to stabilize the scheme), limited at contact

discontinuities (to avoid over-smearing the sharp transition), and very small in smooth

regions away from discontinuities. Achieving these requirements allows higher-order

approximation of smooth flow and sharp, non-oscillatory, resolution of shocks and dis-

continuities. Naturally, this necessitates that the amount of added viscosity be a function

of the solution.

The pioneering papers of Richtmyer [36], Von Neumann & Richtmyer [37], Lax &

Wendroff [38], and Lapidus [39] suggest the introduction of nonlinear artificial viscosity

to equations (2.1.1) in a form similar to the following expression:

β(∆x)2∂x (|∂xu(x, t)| ∂xU(x, t)) . (2.1.3)
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We refer the reader to the classical papers of Gentry, Martin, & Daly [40] and Harlow

& Amsden [41] for an interesting discussion on artificial viscosity. Specifically, Gentry,

Martin, & Daly [40] define the nonlinear viscosity of the type (2.1.3) to be artificial

viscosity, and show that the linear viscosity (2.1.2), scaled by the magnitude of local

velocity, arises as truncation error (in finite-difference approximations). The latter is

responsible for stabilizing the transport of sound waves, while (2.1.3) stabilizes the

steepening of sound waves.1

We are primarily concerned with the steepening of sound waves, and shall term ar-

tificial viscosity of the type (2.1.3) as classical artificial viscosity. Formally, the use

of (2.1.3) produces the required amount of viscosity near shocks but allows for second-

order accuracy in smooth regions. On the other hand, the diffusion coefficient |∂xu(x, t)|
is precisely the quantity which loses regularity (or smoothness) near shock discontinu-

ities. Also, the constant β must be larger than one to control numerical oscillations

behind the shock wave, which in turn overly diffuses the waves and produces incorrect

wave speeds.

Alternative procedures have been proposed. For streamline upwind Petrov-Galerkin

schemes (SUPG), Hughes & Mallet [42] and Shakib, Hughes, & Johan [43] use residual-

based artificial viscosity. Guermond & Pasquetti [44] present a similar, entropy-residual-

based scheme for use in spectral methods. Persson & Peraire [45] develop a method

based upon decay of local interpolating polynomials for discontinuous Galerkin schemes.

Later, Barter & Darmofal [46] use a reaction-diffusion equation to provide a regularized

variant of this approach.

Our approach is similar to [46] in that it uses a reaction-diffusion equation to cal-

culate a smooth distribution of artificial viscosity. Instead of regularizing a DG-based

noise-indicator that allows for the growth of viscosity near shocks, we regularize the

classical artificial viscosity of [39], using a gradient-based approach for this source term.

This approach yields both a discretization-independent and PDE-independent methodol-

ogy which can be generalized to multiple dimensions by regularizing a similar viscosity

to that in Löhner, Morgan, & Peraire [47].

In 1-D, our approach proves to be a simple way of circumventing the need for char-

1We are indebted to the anonymous referee for clarifying this point for us.



32

acteristic or other a priori information of the exact solution to remove oscillations in

higher-order schemes. Due to the simple and discretization-independent nature of our

method, we expect our methodology to be useful for a wide range of applications.

2.1.3 Outline of the paper

In §2.2, we introduce the C-method for the compressible Euler equations in one

space dimension. We show that the C-method is Galilean invariant and that solutions

of the C-method converge to the entropy solutions of the Euler equations in the limit of

zero mesh size. We also show the relative smoothness of our new viscosity coefficient

with respect to the classical artificial viscosity of Richtmyer and Von Neumann, and we

demonstrate the ability of the C-method to remove downstream oscillation in slowly

moving shocks.

In §2.3, we give a brief outline of the numerical schemes whose solutions are used in

this paper. First, we outline a second-order, continuous Galerkin finite-element method.

Second, we outline a simple WENO-based finite-volume scheme which performs up-

winding using only the sign of the velocity (no Riemann-solvers or characteristic de-

compositions in primitive variables). The resulting schemes applied to the C-method

are referred to as FEM-C and WENO-C, respectively. Third, we outline the central-

finite-difference scheme of Nessyahu and Tadmor (NT), a simple scheme, easily gener-

alizable to multi-D [48]. Like our FEM-C scheme, the NT-scheme is at best, second-

order, and does not require specialized techniques for upwinding. Fourth, we outline

a Godunov-type characteristic decomposition-based WENO scheme (WENO-G) devel-

oped by Rider, Greenough & Kamm [49] which utilizes a variant of a Godunov/Riemann-

solver as upwinding, providing a very competitive scheme for modeling the collision of

very strong shocks.

In §2.4, we consider the classical shock-tube problem of Sod. With the Sod shock

problem, we apply our FEM-C scheme and compare with the classical viscosity ap-

proach. We then compare the FEM-C scheme with the two standalone methods, NT and

WENO-G.

In §2.5, we consider the moderately difficult problem of Osher-Shu, modeling the

interaction of a mild shock with an entropy wave. We compare FEM-C to NT and
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WENO-G in which the differences are more significant than in the Sod-shock compar-

isons. We show that WENO-C compares well with WENO-G; on the other hand, the

simple WENO scheme without the C-method and without the Gudonov-based charac-

teristic solver also does well in modeling the Osher-Shu test case.

In §2.6, we consider the numerically challenging Woodward-Colella blast wave sim-

ulation, which models the collision of two strong interacting shock fronts. Though the

FEM-C scheme performs better than NT, both second-order schemes are somewhat out-

performed by the higher-order WENO-G method (with characteristic solver). On the

other hand, WENO-C compares well with WENO-G, having slightly less damped am-

plitudes with the same shock resolution.

Finally, in §2.7, we consider the Leblanc shock-tube, an extremely difficult test case

consisting of a very strong shock. For this problem, we devise two strategies to demon-

strate the use of the C-method. In the first strategy, we use our simplified WENO-C

scheme with a right-hand side term for the energy equation that relies on a second C-

equation which smooths gradients of E/ρ. We obtain an excellent approximation of

the notoriously difficult contact discontinuity for internal energy, while maintaining an

accurate shock speed; simultaneously, we avoid generating large overshoots at the con-

tact discontinuity, which would indeed occur without the use of the C-method. For our

second strategy, we show that WENO with the Lax-Friedrichs flux can be significantly

improved with the addition of the C-method. We call this algorithm WENO-LF-C, and

show that by using just one C-equation (as we have for all of the other test cases), we

can sharply resolve the contact discontinuity for the internal energy, with accurate wave

speed, and without overshoots.

2.2 The C-method

We begin with a description of the 1-D compressible Euler equations, written as a

3x3 system of conservation laws. We then explain our parabolic regularization, which

we call the C-method.
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2.2.1 Compressible Euler equations

The compressible Euler equations set on a 1-D space domain I ⊂ R, and a time

interval [0, T ] are written in vector-form as the following coupled system of nonlinear

conservation laws:

∂tu(x, t) + ∂xF(u(x, t)) = 0, x ∈ I , t > 0, (2.2.1a)

u(x, 0) = u0(x), x ∈ I , t = 0, (2.2.1b)

where the 3-vector u(x, t) and flux function F(u(x, t)) are defined, respectively, as

u =


ρ

m

E

 and F(u) =


m

m2

ρ
+ p

m
ρ

(E + p)

 ,

and

u0(x) =


ρ0(x)

m0(x)

E0(x)


denotes the initial data for the problem. The variables ρ, m, and E denote the density,

momentum, and energy density of a compressible gas, while p = P(ρ,m,E) denotes

the pressure function. It is necessary to choose an equation-of-state P(ρ,m,E), and we

use the ideal gas law, for which

p = (γ − 1)

(
E − m2

2ρ

)
, (2.2.2)

where γ denotes the adiabatic constant. The equations (2.2.1) are indeed conservation

laws, as they represent the conservation of mass, momentum, and energy in the evolution

of a compressible gas. The velocity field u(x, t) is obtained from momentum and density

via the identity

u =
m

ρ
.

Inverting the relation (2.2.2), we see that the energy density E is a sum of kinetic and

potential energy density functions:

E =
ρ u2

2︸︷︷︸
kinetic

+
p

γ − 1︸ ︷︷ ︸
potential

.
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The gradient (or Jacobian) of the flux vector F(u) is given by

DF(u) =


0 1 0

(γ−3)m2

2ρ2
(3−γ)m

ρ
γ − 1

−γEm
ρ2

+ (γ − 1)m
3

ρ3
γE
ρ

+ (1− γ)3m2

2ρ2
γm
ρ


with eigenvalues

λ1 = u+ c , λ2 = u , λ3 = u− c , (2.2.3a)

where c denotes the sound speed (see, for example, Toro [50]). These eigenvalues de-

termine the wave speeds.

The behavior of the various wave patterns is greatly influenced by the speed of prop-

agation; as such, we define the maximum wave speed to be

[S(u)](t) = max
i=1,2,3

max
x∈I
{|λi(x, t)|} . (2.2.3b)

We are interested in solutions with shock waves and contact discontinuities. The

Rankine-Hugoniot (R-H) conditions determine the speed s of the moving shock discon-

tinuity, as well as the speed of a contact discontinuity. For a shock wave discontinuity,

the R-H condition can be stated

F (ul)− F (ur) = s(ul − ur)

where the subscript l denotes the state to the left of the discontinuity, and the subscript

r denotes the state to the right of the discontinuity. In general, the following three jump

conditions must hold:

ml −mr = s(ρl − ρr)(
(3− γ)m2

l

2ρ2
l

+ (γ − 1)El

)
−
(

(3− γ)m2
r

2ρ2
r

+ (γ − 1)Er

)
= s(ml −mr)(

γ
Elml

ρl
− γ − 1

2

m3
l

ρ2
l

)
−
(
γ
Ermr

ρr
− γ − 1

2

m3
r

ρ2
r

)
= s(El − Er) .

There can be non-uniqueness for weak solutions that have jump discontinuities, un-

less entropy conditions are satisfied (see the discussion in §2.2.9). So-called viscosity

solutions uvis are known to satisfy the entropy condition (and are hence unique) and are
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defined as the limit as ε → 0 of a sequence of solutions uε to the following parabolic

equation:

∂tu
ε + ∂xF(uε) = ε∂xxu

ε, t > 0, (2.2.4a)

uε = u0, t = 0 . (2.2.4b)

In the isentropic setting, for bounded initial data u0 with bounded variation, solutions uε

converge to the entropy solution uvis of (2.2.1) as ε → 0 (see DiPerna [51] and Lions,

Perthame, & Souganidis [52]). For non-isentropic dynamics, the same result holds if

the initial data has small total variation (see Bianchini & Bressan [53]). Moreover, if

the initial data u0 is regularized, then solutions to (2.2.4) are smooth in both space and

time, and the discontinuity is approximated by a smooth function, transitioning from the

left-state to the right-state over an interval whose length is O(ε).

Some of the classical finite-differencing schemes, such as the Lax-Friedrichs dis-

cretization, is dissipative to second-order and effectively behaves as a discrete version

of (2.2.4). The uniform nature of such diffusion does not distinguish between discontin-

uous and smooth flow regimes, and thus adds unnecessary dissipation in regions of the

wave profile which do not require any numerical stabilization. Such uniform dissipation

contributes to a non-physical damping of entropy waves as well as over-diffusion and

smearing of contact discontinuities, and may lead to errors in wave speeds.

2.2.2 Classical artificial viscosity

The idea of adding localized artificial viscosity to capture discontinuous solution

profiles in numerical simulations dates back to Richtmyer [36], Von Neumann & Richt-

myer [37], Lax & Wendroff [38], Lapidus [39] and a host of other reseachers. The idea

behind classical artificial viscosity is to refine the uniform viscosity on the right-hand

side of equation (2.2.4a) with

∂tu
ε + ∂xF(uε) = βε2∂x(|∂xuε|∂xuε), t > 0 , (2.2.5)

for a suitably chosen constant β > 0, which may depend upon the numerical discretiza-

tion scheme.
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When the velocity u exhibits a jump discontinuity (i.e., at a shock), the quantity

|∂xuε| is O(1
ε
); however, away from shocks, where the velocity is smooth, |∂xuε| re-

mains uniformly bounded in ε, and in such smooth regions, (2.2.5) adds significantly

less viscosity than (2.2.4a). On the other hand, as we shall demonstrate in Figure 2.1,

the use of |∂xuε| as a coefficient in the smoothing operator, can lead to spurious oscilla-

tions in the solution, caused by the lack of regularity in the quantity |∂xuε|.
Formally, the use of the localizing coefficient |∂xuε| corrects for the over-dissipation

of the uniform viscosity in (2.2.4), and a variety of numerical methods have employed

some variant of this idea, achieving methods that are nominally non-oscillatory near

shocks while maintaining second-order accuracy away from shocks. However, as we

have already noted, the quantity |∂xuε| may become highly irregular near shock discon-

tinuities, and may thus require setting the constant β � 1 in order to stabilize incipient

numerical oscillations (see §2.4 for evidence to this observation). While this increase in

β does not effect the asymptotic accuracy of the scheme, it is clearly beneficial to take

β as small as possible to preserve the correct wave amplitude and wave speed.

The loss of regularity of the coefficient |∂xuε| suggests that a smoothed version of

|∂xuε| would greatly benefit the dynamics. Smoothing |∂xuε| in space is not sufficient,

as we must ensure smoothness in time as well. Hence, we propose our C-method, which

indeed provides a regularized version of (2.2.5) and allows for the use of much smaller

values of β (less localized artificial dissipation), higher accuracy, and practical viability.

2.2.3 C-method for compressible Euler

Analogous to (2.2.5), we control the amount of viscosity in (2.2.4a) by the use of a

function Cε(x, t) of space and time, and parameterized by ε := ∆x > 0. This function

Cε(x, t) is the solution to a reaction-diffusion equation which is forced by normalized

modulus of the gradient of uε; the diffusion mechanism smooths the rough diffusion

coefficient, while the reaction mechanism tries to minimize the support of spatial support

of Cε.
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For fixed u0 we choose β > 0 to be O(1). Then, for each ε > 0, we let

uε(x, t) =


ρε(x, t)

mε(x, t)

Eε(x, t)

 and Cε(x, t)

denote the solution of the following parabolic system of (viscous) conservation laws:

∂tu
ε + ∂xF(uε) = ∂x

(
β̃ε2Cε,δ∂xu

ε
)
, t > 0, (2.2.6a)

∂tC
ε − ε S(uε)∂2

xC
ε +

S(uε)

ε
Cε = S(uε)G(∂xu

ε) , t > 0, (2.2.6b)

(uε, Cε) = (uε0, G(∂xu
ε
0)), t = 0, (2.2.6c)

where Cε,δ = Cε + δ for a fixed positive constant 0 < δ < ∆x, and β̃ = β
max
I
|∂xuε|

max
I

Cε
. The

forcing to equation (2.2.6b) is defined as

G(∂xu
ε) =

|∂xuε|
max
I
|∂xuε|

, (2.2.7)

S(uε) is defined by (2.2.3), and uε0 denotes a regularization of the initial data which we

discuss below. We also note that the scaling factor in β̃, given by
max
I
|∂xuε|

max
I

Cε
, is included

only to make comparisons with the classical artificial viscosity approach, but is in no

way necessary.

2.2.4 Regularization of initial data for use with FEM-C

Unlike numerical algorithms which advance cell-averaged quantities, the finite-element

method relies upon polynomial interpolation of nodal values, and requires solutions to

be continuous across element boundaries in order for the interpolation to converge. As

such, the use of discontinuous initial data produces Gibbs-type oscillations, at least on

very short time intervals. To avoid this spurious behavior, it is advantageous to smooth

discontinuous initial profiles when using a finite-elements.

More specifically, we provide a hyperbolic-tangent smoothing for initial data uε0 for

our FEM-C scheme. Since pointwise evaluation is well-defined for smooth functions,

the finite-element discretization scheme can interpolate the regularized data and gener-

ate appropriate initial states.
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For an interval [a, b], we denote the indicator function

1[a,b](x) =

1, x ∈ [a, b],

0, x /∈ [a, b] ,
(2.2.8)

and consider initial conditions with components of the form

(u0(x))i =

Li∑
j=1

1[aij ,b
i
j ]

(x)f ij(x),

where the collection
{

[aij, b
i
j]
}Li
j=1

is pairwise disjoint,

Li⋃
j=1

[aij, b
i
j] = [a, b], for all i = 1, 2, . . .m,

and each of the f ij ’s are smooth. The i-th component of u0 is subsequently smooth over

each of the Li intervals, but may contain jump discontinuities at the boundaries of the

regions [aij, b
i
j].

We then define the regularized initial condition

(uε0(x))i =

Li∑
j=1

1ε[aij ,bij ]
(x)f ij(x),

where

1εIij
(x) =

1

2

[
tanh

(
x− aij
ε

)
− tanh

(
x− bij
ε

)]
.

This regularization procedure achieves approximations of exponential-order away

from discontinuities; near discontinuities, it is a first-order approximation, when mea-

sured in the L1-norm. Specifically, if (u0)i is smooth in ω ⊂ I, then the L1(ω)-norm of

the error

‖ (u0)i − (uε0)i ‖L1(ω) =

∫
ω

∣∣∣(u0(x))i − (uε0(x))i
∣∣∣ dx = O(εp) (2.2.9)

for any positive integer p. Alternatively, if ui0 is discontinuous somewhere in Ω ⊂ I,

the L1(Ω)-norm of the error

‖
(
ui0
)
− (uε0)i ‖L1(Ω) = O(ε). (2.2.10)

These observations assert that our regularization of the initial data allows for higher-

order approximation of the initial data and is analogous to the averaging procedure re-

quired by Majda & Osher [32].
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2.2.5 A compressive modification of the forcingG in the C-equation

The function G in (2.2.7) is chosen in such a manner so that Cε is large where there

are sharp transitions in the velocity field uε(x, t). In compressive regions (i.e., where

∂xu
ε < 0), sharp transitions over lengths of O(ε) correspond to shocks and artificial

viscosity is required so that uε remains smooth. In expansive regions, corresponding to

rarefactions, artificial viscosity is not generally necessary.

These observations motivate the following alternative forcing function:

Gcomp(∂xu
ε) =

|∂xuε|
max
I
|∂xuε|

1(−∞,0) (∂xu
ε) (2.2.11)

where the indicator function 1(−∞,0) introduces viscosity only in regions of compres-

sion.

The ability to use such a switch is heavily dependent on the use of a space-time

smoothing. Since the velocity in many numerical schemes may become oscillatory near

shocks, such a switch can become discontinuous between adjacent cells/elements. How-

ever, the space-time nature of the C-equation resolves this issue, providing a smooth

artificial viscosity profile.

This modified function Gcomp typically increases accuracy in Euler simulations, but

can lead to a loss of stabilization. For our FEM-C approach, where the stabilizing effects

of artificial viscosity are necessary to dampen noise, the use of Gcomp is restricted to the

problems of Sod and Osher-Shu, which contain only moderately strong shocks.

2.2.6 Moving to the discrete level

The use of the C-equation yields smooth solutions uε and thus we expect that a vari-

ety of higher-order discretization techniques, with sufficiently small ∆t and ∆x, could

provide accurate, non-oscillatory approximations. In our implementation, artificial vis-

cosity spreads discontinuities over regions of size O(βε). Thus, given a particular initial

condition, final time, discretization scheme, etc., we choose β > 0 such that the scaling

ε = ∆x produces non-oscillatory profiles.

We also note that the initial condition forCε, given in (2.2.6c) is chosen so to guaran-

tee the coefficients of diffusion in (2.2.6a) are smooth up to t = 0. Moreover, choosing
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such initial conditions for Cε allows one to recover the classical artificial viscosity as

ε → 0. As stated, these initial conditions may require a smaller time-step (by a factor

of 10) for the first few time-steps. In practice, taking Cε ≡ 0 is an effective simplifica-

tion to eliminate the need for smaller initial time-steps. Alternatively, we can solve an

elliptic PDE for Cε at the initial time and similarly eliminate that concern.

2.2.7 The C-method under a Galilean-transformation

We begin our discussion for the case of constant entropy. The Galilean invariance

of the isentropic Euler equations results from the advective nature of the PDE. Since we

solve a modified equation (coupled with the additional C-equation) it is of interest to

know to what extent Galilean invariance is preserved. For simplicity, we assume that

p(x, t) = ρ(x, t)2 .

(The choice γ = 2 corresponds to the shallow water equations, but any other choice of

γ > 1 works in the same fashion.)

Given a fixed v ∈ R we define the change in independent variables

x̃ = x− vt, t̃ = t,

denoting φ(x̃, t̃) = (x, t) and the analogous change in the dependent variables

ρ̃(x̃, t̃) = ρ(x̃+ vt̃, t̃), ũ(x̃, t̃) = u(x̃+ vt̃, t̃)− v. (2.2.12)

A simple calculation yields

∂t̃ρ̃+ ∂x̃(ρ̃ũ) = [∂tρ+ ∂x(ρu)] ◦ φ, (2.2.13a)

∂t̃(ρ̃ũ) + ∂x̃(ρ̃ũ
2 + p̃) =

[
∂t(ρu) + ∂x(ρu

2)
]
◦ φ+ ∂x̃p̃− v [∂tρ+ ∂x(ρu)] ◦ φ.

(2.2.13b)

We further have that

p̃(x̃, t̃) = p(x̃+ vt̃, t̃), (2.2.14)

so that the mass and momentum equations are, in fact, Galilean invariant in the absence

of artificial viscosity.
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With the C-method employed, (2.2.13) transforms to

∂t̃ρ̃+ ∂x̃(ρ̃ũ) = [∂x(C∂xρ)] ◦ φ, (2.2.15a)

∂t̃(ρ̃ũ) + ∂x̃(ρ̃ũ
2 + p̃) = (∂x{C∂x[ρ(u− v)]}) ◦ φ, (2.2.15b)

where we let C = ε2β̃C, and drop the ε superscript for notational convenience.

Examining (2.2.6b), we see that the equation for C is not Galilean invariant, but

this is not a physical quantity, but can rather be viewed as a parameter to the modi-

fied system of conservation laws. As such we define the behavior of C under Galilean

transformations as follows:

C̃(x̃, t̃) = C(x̃+ vt̃, t̃).

With this definition of C̃, we find that

∂t̃ρ̃+ ∂x̃(ρ̃ũ) =
[
∂x̃(C̃∂x̃ρ̃)

]
, (2.2.16a)

∂t̃(ρ̃ũ) + ∂x̃(ρ̃ũ
2 + p̃) =

{
∂x̃[C̃∂x̃(ρ̃ũ)]

}
, (2.2.16b)

and hence the C-method for isentropic Euler retains the Galilean invariance.

We remark that in the absence of artificial viscosity on the right-hand side of the

mass equation, the artificial flux term in the momentum equation is modified according

to (2.3.7) below. This modification ensures Galilean invariance when the mass equation

is left unchanged, which is the strategy employed for our WENO-C scheme.

Next, since the Galilean symmetry is for smooth solutions (for which classical deriva-

tives are well-defined), and since smooth velocity fields simply transport the entropy

function, it is thus a consequence of the transport of entropy, that Galilean invariance

holds for the non-isentropic case as well. The importance of a numerical approxima-

tion to capture the Galilean invariant solution is fundamental to the initiation of the

Kelvin-Helmholtz instability and other basic instabilities present in the Euler equation;

see Robertson, Kravtsov, Gnedin, and Rudd [54] for a thorough discussion. In this con-

nection, we next examine long wavelength instabilities which can arise for very slowly

moving shock waves.
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2.2.8 Regularization through the C-equation

It is of interest to examine the relative smoothness of C (we drop the superscript ε)

to its rough counterpart |ux|, and to determine the effect of this smoothing relative to the

classical artificial viscosity approach. In Figure 2.1 we provide two plots demonstrat-

ing the effect of the C-method. In Figure 2.1(a) we see that the C-equation provides

a smoothened viscosity profile compared to the classical approach. Alternatively, in

Figure 2.1(b) we plot C using the compression-switch modification Gcomp versus us-

ing purely the quantity Gcomp (not smoothed by the C-equation) as a viscosity. In both

cases we see how the C-method provides a far smoother profile with roughly the same

magnitude as the non-smoothened approach.
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Figure 2.1: A comparison of the artificial viscosity profile produced by the C-method
and the classical Richtmyer-type approach for the Sod shock tube at t = 0.2.

A useful feature of the C-method is the ability to tune parameters in the C-equation

to generate non-oscillatory behavior. Though we are quite explicit on the form of the

C-equation in (2.2.6b), a simple modification allows for the diffusion coefficient to be

problem dependent, i.e. allowing for a choice of positive constant κ > 0 and replacing

the diffusion term with

−κε S(uε)∂2
xC

ε .

In most of the forthcoming experiments, we fix κ = 1, but we note that choosing larger

κ can yield smoother solution profiles as the profile of C will be less localized. The

parameter κ is a time-relaxation parameter, and can be viewed in an analogous fashion to
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the time-relaxation parameter present in Cahn-Hilliard and Ginzburg-Landau theories.

For very slow moving shocks, the time-relaxation can be adjusted to scale with the shock

speed.2

We find this to be an effective approach for the flattening procedure discussed in [27]

for removing oscillations that form to the left of a slowly right-moving shock. Moreover,

Roberts [55] concludes that a differentiable form of the numerical flux construction

appears necessary to remove downstream long-wavelength oscillations caused by slow

shock motion. We use the C-method to analyze this.

Using the slow-shock initial conditions outlined in Quirk [30], in Figure 2.2 we show

the success of the FEM-C (outlined below in §2.3.2) in removing these oscillations when

choosing κ = 1 (Fig. 2.2(a)) and κ = 100 (Fig. 2.2(b)).
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Figure 2.2: Application of FEM-C to a very slowly moving shock

2We note that κ is inversely proportional to the Mach number and its precise functional relation shall
be examined in future work.
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2.2.9 Convergence of the C-method in the limit of zero mesh size

The isentropic case

We sketch the proof for the isentropic Euler equations given by

(ρu)t + (ρu2 + p)x = 0, (2.2.17a)

ρt + (ρu)x = 0 , (2.2.17b)

p(ρ) = ργ , (2.2.17c)

where γ > 1.

To simplify the notation, we set ε2β̃ = ε, and set the momentum mε = ρεuε. Fol-

lowing (2.2.6), we write the C-method version of (2.2.17) as

mε
t + [(mε)2/ρε + pε]x = ε

(
Cε,δmε

x

)
x
, (2.2.18a)

ρεt +mε
x = ε

(
Cε,δρεx

)
x
, (2.2.18b)

pε(ρε) = (ρε)γ , (2.2.18c)

Cε
t − ε S(uε)Cε

xx +
S(uε)

ε
Cε = S(uε)G(uεx) , (2.2.18d)

or (2.2.18a,b) can be equivalently written in terms of the vector uε = (mε, ρε) and flux

f(uε) = ((mε)2/ρε + (ρε)γ , mε) as

uεt + f(uε)x = ε [Cuεx]x , (2.2.18’)

where C denotes a diagonal 2x2 matrix with entries Cε,δ which is strictly positive-

definite. Recall that G(uε) = |uεx|/max |uεx|, satisfies G ≥ 0, and that S(uε) =

max(|uε + c|, |uε− c|), with c denoting the sound speed. On any time interval [0, T ], the

maximum wave speed S(uε) is uniformly strictly positive; thus, as the initial data for

Cε
t=0 ≥ 0, the maximum principle shows that Cε(x, t) must be non-negative. We remark

that while the use of Cε,δ = Cε + δ as the coefficient is not required for the numerics, as

δ is taken much smaller than the mesh size ∆x, strict positivity of C simplifies the proof

of regularity of solutions to (2.2.18) as well as the convergence argument.

To avoid issues with spatial boundaries, we shall assume periodic boundary condi-

tions for our spatial domain. Note that in this case, the fundamental theorem of calculus

shows that d
dt

∫
ρ(x, t) dx = 0 and that mass is conserved.
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The basic energy law

In order to prove that solutions to (2.2.18) converge to solutions of (2.2.17), we

must establish ε-independent estimates for solutions of (2.2.18). To do so, we multiply

equation (2.2.18a) by uε, integrate over our spatial domain, and make use of the equation

(2.2.18b) to find that any weak solution to (2.2.18) must verify the basic energy law

d

dt

[∫
1

2
ρε(uε)2 dx+

1

γ − 1

∫
pε dx

]
≤

− ε
∫
Cε,δρε (uεx)

2 dx− εγ
∫
Cε,δ(ρε)γ−2(ρεx)

2 dx . (2.2.19)

(The inequality in (2.2.19) is due to the lower semi-continuity of weak convergence

and is replaced with equality for solutions which are sufficiently regular.) Thus, the

total energy of isentropic gas dynamics is dissipated according to the right-hand side of

(2.2.19), and for each ε > 0, we see that uεx and ρεx are square-integrable (in L2) for

almost every instant of time, if the density ρε ≥ λ > 0, that is, if ρε avoids vacuum. We

shall explain below that this is indeed the case.

Regularity of solutions uε

Suppose that for each instant of time, uε(t) and its derivatives uεx(t) and uεxx(t) are

all square-integrable in space. The reaction-diffusion equation (2.2.18d) is a uniformly

parabolic equation. By our assumption, and as a consequence of Sobolev’s theorem,

uεx(t) is a bounded function; furthermore, the right-hand side of (2.2.18d) is square-

integrable in space, for every instant of time. It is standard, from the regularity theory

of uniformly parabolic equations, that for each time t, Cε(t) then has two spatial (weak)

derivatives which are square-integrable. This, in turn, shows that for ε > 0, solutions

uε possess three spatial (weak) derivative which are square-integrable for almost every

instant of time, and we have verified our assumption. This implies that solutions uε are

classically differentiable in both space and time.

Furthermore, by using the symmetrizing matrix

[
ρε 0

0 γ(ρε)γ−2)

]
we can show that

(uε(·, t), ρε(·, t)) are, independently of ε and t, uniformly bounded in the Sobolev space

H2 (consisting of measurable functions with two weak derivatives in L2), and thus we
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may take a pointwise limit of this sequence as ε→ 0, in the event that the time-interval

is sufficiently small as to ensure that a shock has not yet formed. Of course, we are

interested, in convergence to discontinuous profiles, so we address this next.

Convergence to the entropy solution

We shall now provide a sketch of the limit as ε → 0. A function η : R2 → R is

called an entropy for (2.2.17) with entropy flux q : R2 → R if smooth solutions u satisfy

the additional conservation law

η(u)t + q(u)x = 0 . (2.2.20)

In non-conservative form, (2.2.17) and (2.2.20) are written as

ut +∇f(u)ux = 0 , ∇η(u)ut +∇q(u)ux = 0 ,

from which we obtain the compatibility condition between η and q,

∇η(u)∇f(u) = ∇q(u) . (2.2.21)

The pair (η, q) satisfy (2.2.20) if and only if condition (2.2.21) holds. Moreover, a weak

solution to (2.2.17) is the unique entropy solution if

η(u)t + q(u)x ≤ 0 . (2.2.22)

For isentropic gas dynamics we can set

η(m, ρ) =
m2

2ρ
+

ργ

γ − 1

which is the total energy, with corresponding entropy flux

q(m, ρ) =

[
m2

2ρ
+

γ

γ − 1
ργ
]
m

ρ
.

We observe that ∇2η(m, ρ) is strongly convex as long as ρ > 0.

For the sequence of solution uε of (2.2.18), suppose that as ε → 0, uε converges

boundedly (almost everywhere) to a weak solution u of (2.2.17). We claim that if (η, q)
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satisfy (2.2.20), then (2.2.22) holds in the distributional sense. To see that this is the

case, we take the inner-product of∇η(uε) with equation (2.2.18’), and find that

η(uε)t + q(uε)x = ε∇η(uε) [Cuεx]x
= ε [Cη(uε)x]x − ε[u

ε
x]
T C ∇2η(uε)uεx .

Integrating over the spatial domain and then over the time interval [0, T ] yields∫
η(uε(x, T ))dx−

∫
η(uε(x, 0))dx = −ε

∫ T

0

∫
[uεx]

T C ∇2η(uε)uεx dx dt ,

from which it follows that ∫ T

0

∫
|
√
εuεx|2 dx dt ≤ c̄ (2.2.23)

where the constant c̄ depends upon δ, the minimum value of density, and the entropy in

the initial data. For a smooth, non-negative test function ψ with compact support in the

strip I × (0, T ),∫∫
η(uε)φt + q(uε)φx dxdt =

√
ε

∫∫
C(
√
εuε)xφx dxdt

+

∫∫
ε[uεx]

T C ∇2η(uε)uεxφ dxdt .

Thanks to (2.2.23), the first term on the right-hand side goes to zero like ε, while the sec-

ond term is non-negative, since∇2η(uε) is positive-definite (since η is strongly convex)

as is C. Thus, as ε→ 0, we recover the entropy inequality (2.2.22).

It remains to discuss the assumptions concerning the bounded convergence of uε to

u, as well as the uniform bound from below ρε ≥ ν > 0. The argument relies on finding

a priori bounds on the amplitudes of solutions to (2.2.18). If it is the case that uniformly

in ε > 0,

|uε| ≤M and 0 < ν ≤ ρε ,

then the compensated-compactness approach for isentropic Euler pioneered by DiPerna

[51] and made much more general by Lions, Perthame, & Souganidis [52] provides a

subsequence of uε converging pointwise (almost everywhere) to a solution u of (2.2.17).

For isentropic gas dynamics, our approximation (2.2.18) preserves the invariant

quadrants of the inviscid dynamics (just as in the case of uniform artificial viscosity) and
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provides the bound |uε| ≤ M as long as 0 < ν ≤ ρε for some ν. In particular, the Rie-

mann invariants w = u+ 2γ
γ−1

ρ
√
γ−1 and z = u− 2γ

γ−1
ρ
√
γ−1 satisfy w(x, t) ≤ supw|t=0

and −z(x, t) ≤ sup(−zt=0) and the intersection of these half-planes provides the in-

variant quadrant (see Chueh, Conley, & Smoller [56]), and hence the desired bound

|uε| ≤M as long as vacuum is avoided.

Finally, the fact that we have the lower-bound 0 < ν ≤ ρε is an immediate conse-

quence of the strong maximum principle.

2.2.10 The C-equation as a gradient flow

Notice that equilibrium solutions to the C-equation are minimizers of the following

functional (we drop the superscript ε):

EG(C) =

∫ (
ε

2
C2
x −G(ux)C +

1

2ε
C2

)
dx .

In the absence of a forcing function G(ux), this reduces to

E0(C) =
1

2

∫ (
ε C2

x +
1

ε
C2

)
dx . (2.2.24)

The first term is commonly referred to as the Dirichlet energy and its minimizers are

harmonic functions. The second term can be viewed as a penalization of the Dirichlet

energy. In particular, because the energy functional is bounded by a constant indepen-

dent of ε > 0, the penalization term constrains C to be O(
√
ε). Thus, minimizers are

trying to be harmonic while minimizing their support.

The C-equation can be written as a classical gradient flow equation

dC

dt
= −S(u)∇EG(C) ,

where the gradient is computed relative to the L2 inner-product. Thus the heat operator

in the C-equation, ∂t − ε∂2
x, smooths the forcing in space-time, while the reaction term

S(u)
ε
C minimizes the support of the smoothed profile. This is very much related to

the theories of Cahn-Hilliard and Ginzburg-Landau gradient flows, and we intend to

examine this connection in subsequent papers.
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2.3 Numerical Schemes

We describe two very different numerical algorithms in the context of ourC-method.

First, we outline a classical continuous finite-element discretization, yielding FEM-C

and FEM-|ux| (based on classical artificial viscosity). Second, we discuss a simple

WENO-based scheme for compressible Euler that upwinds solely based on the sign of

the velocity u. To this scheme, we apply a slightly modified C-method resulting in our

WENO-C algorithm.

For the purpose of comparison, we also implement two additional numerical meth-

ods. The first is a second-order central-differencing scheme of Nessayhu-Tadmor (NT),

a nice and simple method which serves as a base-line for our FEM-C comparisons.

The second scheme is a very competitive WENO scheme that utilizes a Godunov-based

upwinding based upon characteristic decompositions (WENO-G). This will serve as a

benchmark for our WENO-C scheme.

2.3.1 Notation for discrete solutions

To compute approximations to (2.2.1), we subdivide space-time into a collection

of spatial nodes {xi} and temporal nodes {tn}. We denote the computed approximate

solution by

uni ≈ u(xi, tn),

noting that for fixed i and n, uni is a 3-vector of solution components, i.e.,

uni =


ρni

mn
i

En
i

 .
It is important to note that we use the notation uni for both pointwise approximations

to u, (acquired via FEM-C) and approximations to the cell-average values of u (acquired

via WENO-C).

A subscripted quantity wi denotes the vector itself and the individual components of

the vector. We overload this notation so to not cause any confusion between functions

defined over a continuum versus those defined only at a finite number of points.
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In FEM-C and WENO-C, we discretize (2.2.6) (or some slight modification) with

ε = ∆x, and use the above notation for the computed solution. We also denote the

approximation to C by Cn
i .

2.3.2 FEM-C and FEM-|ux|: A Second-Order Continuous-Galerkin

Finite-Element Scheme

We choose a second-order continuous-Galerkin finite-element scheme to provide a

discretization of (2.2.6), subsequently defining our FEM-C scheme.

We subdivide I with N + 1 (for N even)-uniformly spaced nodes {xi} separated

by a distance ∆x. In the FEM community, spatial discretization size is more commonly

referred to by element-width; to maintain consistency with the literature, we refer to the

inter-nodal regions as cells. Since we use a continuous FEM, the degrees-of-freedom

are defined at the cell-edges (as opposed to cell-centers)3.

For use in our FEM implementation, it is useful to consider the variational form of

(2.2.6). At the continuum level, (uε, Cε) satisfy∫
I

[
∂tu

ε · Φ− F(uε) · ∂xΦ + βε2
max
I
|∂xuε|

max
I

Cε
Cε∂xu

ε · ∂xΦ

]
dx = 0 , (2.3.1a)

∫
I

[
∂tC

εφ+ S(uε)

(
ε∂xC

ε∂xφ+
1

ε
Cεφ

)]
dx =

∫
I
S(uε)G(∂xu

ε)φ dx (2.3.1b)

for almost every t, for all vector-valued test functions Φ, and all scalar-valued test func-

tions φ.

Using the finite-element spatial discretization based on piecewise second-order La-

grange polynomials, we construct operators AFEM and BFEM, corresponding to the non-

time-differentiated terms in (2.3.1a) and (2.3.1b), respectively. Using these discrete

operators, we write the semi-discrete form of (2.3.1a) and (2.3.1b) as

∂t

[
ui

Ci

]
+

[
AFEM(ui, Ci)

BFEM(ui, Ci)

]
= 0 (2.3.2)

3When we compare our FEM-C scheme with other, cell-averaged schemes, we perform an averaging
procedure based upon averages between nodes.
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where ui and Ci represent the nodal values of an approximation to uε and Cε for which

ε = ∆x (see §2.2.6). For a standard reference on the details of this procedure, see

Larsson & Thomée [57].

The time-differentiation in (2.3.2) is approximated by a diagonally-implicit second-

order time-stepping procedure; first we predict un+1
i to and solve the implicit set of

equations for Cn+1
i and follow by implicitly solving for un+1

i using Cn+1
i . Our fully

discrete scheme is given by

ũn+1
i = uni +AFEM(uni , C

n
i ), (2.3.3a)

Cn+1
i = Cn

i +
tn+1 − tn

2

[
BFEM(ũn+1

i , Cn+1
i ) + BFEM(uni , C

n
i )
]
, (2.3.3b)

un+1
i = uni +

tn+1 − tn
2

[
AFEM(un+1

i , Cn+1
i ) +AFEM(uni , C

n
i )
]
. (2.3.3c)

For smooth solutions, where artificial viscosity is not necessary, our FEM-C scheme

is second-order accurate in both space and time when the error is measured in the L1-

norm. Moreover, the addition the artificial viscosity obtained through the C-method is

formally a second-order perturbation (in ∆x) and we have verified this accuracy when

β > 0 (again, for smooth u0). For u0 containing jump discontinuities, the given scheme

is no longer second-order accurate on all of I but preserves second-order accuracy in

the smooth regions away from discontinuities.

For the classical artificial viscosity schemes (2.2.5), the C-equation is no longer used

but we require a similar step to predict the velocity for use in the diffusion coefficient.

This analogous scheme, is referred to as the FEM-|ux| scheme.

2.3.3 WENO-C: A Simple WENO scheme using the C-method

Our WENO-based scheme is motivated by Leonard’s finite volume schemes ([58],

pg. 65). Upwinding is performed solely based on the sign of the velocity at cell-edges,

and the WENO reconstruction procedure is formally fifth-order.

We divide the interval I into N equally sized cells of width ∆x, identifying the N

degrees-of-freedom as cell-averages over cells centered at the xi. The cell edges are

denoted using the fraction index, i.e.

xi+1/2 =
xi + xi+1

2
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Subsequently, we denote a cell-averaged quantity by wi and its values at the left and

right endpoints by wi−1/2 and wi+1/2, respectively.

Given a vector wi, corresponding to cell-average values, and vectors zi−1/2, zi+1/2

corresponding to left and right cell-edge values, we define the jth component of vector[
WENO(wi, zi±1/2)

]
j

=
1

∆x

(
w̃j+1/2zj+1/2 − w̃j−1/2zj−1/2

)
where the cell-edge values of w̃j+1/2 are calculated using a fifth-order WENO recon-

struction, upwinding based upon the sign of zj+1/2.

For the flux in the energy equation, we use

[
WENOE(Ei, ui±1/2)

]
j

=
1

∆x

(
Ẽj+1/2uj+1/2

(1 +
pj
Ej

) + (1 +
pj+1

Ej+1
)

2
−

Ẽj−1/2uj−1/2

(1 +
pj−1

Ej−1
) + (1 +

pj
Ej

)

2

)
. (2.3.4)

Using this simplified WENO-based reconstruction, we construct the operatorsAWENO

and BWENO where

AWENO



ρi

mi

Ei

 , Ci

 =


WENO(ρi, ui±1/2)

WENO(mi, ui±1/2) + ∂̃pi −
∂̃Cui+1/2−∂̃Cui−1/2

∆x

WENOE(Ei, ui±1/2)


(2.3.5a)

BWENO



ρi

mi

Ei

 , Ci
 = S(ui)

[
Ci
∆x
−G(∂̃ui)

]
−
∂̃SCi+1/2 − ∂̃SCi−1/2

∆x
. (2.3.5b)

where for a general quantity wi, defined at the cell-centers, we denote

wi+1/2 =
wi+1 + wi

2
, ∂̃wi :=

wi+1 − wi−1

2∆x
, ∂̃wi+1/2 =

wi+1 − wi
∆x

.

We also use the shorthand notation

∂̃Cui+1/2 = β ∆x2 max
i

∣∣∣∂̃ui+1/2

∣∣∣ Ci+1/2

max
i

Ci
ρi+1/2 ∂̃ui+1/2,

and

∂̃SC = ∆x S(ui) ∂̃Ci+1/2.
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Using the above definitions, we define the semi-discrete form

∂t

[
ui

Ci

]
+

1

∆x

[
AWENO(ui, Ci)

BWENO(ui, Ci)

]
= 0 (2.3.6)

and we generate the sequence of iterates uni and Cn
i with a standard fourth-order Runge-

Kutta time-stepper.

The resulting discretization outlined above is a slight variation on that outlined in

(2.2.6). While the amount of artificial viscosityC(x, t) is controlled by only the velocity,

we only add artificial viscosity to the momentum equation. This change is based upon

the fact that WENO already minimizes the production of numerical oscillations and

the addition of artificial viscosity is primarily intended on stabilizing the solution near

strong shocks, whereas standalone WENO may lose stability. Without dissipation on

the right-hand side of the mass equation, it is necessary to modify the artificial viscosity

on the momentum equation as follows:

ε2β̃∂x(C∂x(ρu))→ ε2β̃∂x(Cρ∂xu) . (2.3.7)

This modification allows the C-method to maintain a basic energy law (in fact, it is

the energy law (2.2.19) with the last term on the right-hand side), and simultaneously

permits higher accuracy for our WENO-based scheme.

2.3.4 NT: A Second-order Central-Differencing scheme of Nessayhu-

Tadmor

The central-differencing scheme of Nessyahu and Tadmor is an extension of the

first-order Lax-Fredrichs finite difference scheme in which linear, MUSCL-based re-

constructions are used to yield a second-order accurate scheme. The resulting scheme

is extremely easy to implement (a FORTRAN code for 2-D problems is given in the

Appendix of [34]) and does not require the use of Riemann solvers or characteristic di-

rections for the purpose of upwinding. The NT scheme allows for various choices of

limiters to enforce TVD or ENO but the UNO-limiter (see Harten & Osher [59]) is the

most successful for our range of experiments.
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Though NT is easy to implement and is easy generalized to multi-D (yielding the JT-

scheme [34]), it merely serves as a base-line comparison for our FEM-C. Both FEM-C

and NT are second-order, but FEM-C turns out to be far less diffusive by comparison.

2.3.5 WENO-G: WENO with Godunov-based upwinding

In [49] the authors study a fifth-order, WENO-based discretization, upwinding by

virtue of a high-accuracy Godunov-scheme. Their scheme has the usual trait of WENO,

offering minimal diffusion near extrema, and has the added stabilization and accuracy

of higher-order Godunov solvers. For a more in-depth description, see [49].
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Figure 2.3: Comparison of FEM-C and FEM-|ux|, for the Sod shock-tube experiment
with N = 100, t = 0.2. β = 0.5 for both FEM-C and FEM-|ux|.

2.4 Sod shock-tube problem

For the classic Sod shock-tube problem, we consider the domain I = [0, 1] along

with the initial conditions
ρ0(x)

m0(x)

E0(x)

 =


1

0

2.5

1[0, 1
2

)(x) +


0.125

0

0.25

1[ 1
2
,1](x), (2.4.1)

imposing natural boundary conditions at x = 0 and x = 1. This standard test problem,

first considered in Sod [60], is a preliminary test for the viability of numerical schemes.
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An exact solution is known for this problem and consists of two nonlinear waves (one

shock and one rarefaction) along with a contact discontinuity.

In Figure 2.3(b) we compare the results of FEM-C and FEM-|ux| at t = 0.2 using

N = 100 cells. We note that this comparison uses the standard choice of G in (2.2.6)

since we are merely concerned with the C-equation performing as a smooth version of

classical artificial viscosity schemes. Unlike comparisons with the schemes based on

cell-averages, we compare the nodal values of FEM-C and FEM-|ux|. In this compari-

son, we choose β = 0.5 for both schemes and see that the accuracy of both FEM-C and

FEM-|ux| are quite comparable and each scheme resolves the shock in 3 cells. How-

ever, we notice noise in FEM-|ux| near the shock. In Figure 2.3(b) this observation is

exemplified and we see that FEM-C is relatively non-oscillatory by comparison.

To limit these oscillations generated by FEM-|ux|, we increase β by a factor of 6 and

compare the resulting density in Figure 2.4. In Figure 2.4(b) we can see a significant loss

in accuracy when increasing to β = 3. Furthermore, in Figure 2.4(a) we see FEM-|ux|
requires 6 cells to capture the shock.
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Figure 2.4: Comparison of FEM-C and FEM-|ux|, for the Sod shock-tube experiment
with N = 100, t = 0.2. β = 0.5 for FEM-C and β = 3.0 for FEM-|ux|.

In Figure 2.5 we compare the results of the FEM-C scheme versus NT and WENO-

G. Each simulation is performed with N = 100 and for the FEM-C scheme we choose

β = 0.4 and now use Gcomp (see §2.2.5).

Each scheme produces similar resolution of the shock and contact discontinuity,



57

capturing the shock in 3 cells and the contact discontinuity in 6 cells. The NT-scheme

produces small, smooth, non-physical oscillations as the density transitions from the rar-

efaction to the lower states, and performs the worst at the rarefaction. Both FEM-C and

WENO-G are essentially non-oscillatory and despite WENO-C performing slightly bet-

ter at the rarefaction, the results are virtually indistinguishable at the shock and contact

discontinuity.
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Figure 2.5: Comparisons of FEM-C against NT and WENO schemes, for the Sod shock-
tube experiment with N = 100 and t = 0.2.

2.5 Osher-Shu shock-tube problem

For the problem of Osher-Shu, we consider the domain I = [−1, 1] along with initial

conditions
ρ0(x)

m0(x)

E0(x)

 =


3.857143

10.14185

39.1666

1[−1,−0.8)(x) +


1 + 0.2 sin(5πx)

0

2.5

1[−0.8,1](x),

(2.5.1)

imposing natural boundary conditions at x = −1 and x = 1

This moderately difficult test problem, first considered in [21], proves to be more

difficult for numerical schemes due to the evolution a shock-wave which interacts with

an entropy-wave; care is required to accurately capture the amplitudes of the post-shock
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(b) FEM-C vs. WENO-G

Figure 2.6: Comparisons of FEM-C against NT and WENO-G schemes, for the Osher-
Shu shock-tube experiment with N = 200 and t = 0.36.

entropy waves. Since the density is not monotone, standard flux limiters may unnec-

essarily apply too much dissipation at local-extrema, significantly reducing accuracy.

An exact solution for this problem is not available and our ‘Exact’ solution in our plots

is generated using the DG-solver furnished in Hesthaven & Warburton [61] with 3200

cells.

In Figure 2.6 we compare the results of FEM-C (we choose β = 0.5 and use Gcomp),

versus NT and WENO-G at t = 0.36. In Figure 2.6(a) we see that NT diffuses the

post-shock amplitudes and FEM-C provides improved results. On the other hand, in

Figure 2.6(b) we see that all but one of the post-shock amplitudes are slightly better

for the WENO-G scheme. This insufficiency of the FEM-C scheme is not completely

surprising as the FEM-C is only formally second-order versus the fifth-order accuracy

of the WENO-G scheme.

Noting this insufficiency of the FEM-C scheme, we compare the WENO-G scheme

with WENO-C in Figure 2.7(a) and see the WENO-C scheme is more accurate in re-

solving the post-shock amplitudes. This comes at a price however, as we see WENO-G

is more accurate in the N-wave region [−0.6, 0].

Furthermore, it is interesting to note that in Figure 2.7(b) where we choose β = 0 in

our simplified WENO-scheme, we see that the C-equation is not necessary for Osher-

Shu. As we see in §2.6 this ceases to be the case as the collision of strong shock waves
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require stabilization.
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Figure 2.7: Comparisons of WENO-C with WENO-G and our WENO scheme with
artificial viscosity deactivated, for the Osher-Shu shock-tube experiment with N = 200
and t = 0.36.

2.6 Woodward-Colella Blast Wave

The colliding blast wave problem of Woodward-Collella is posed on the domain

I = [0, 1] with initial conditions

ρ0(x) = 1,

m0(x) = 0,

E0(x) = 250 · 1[0.9,1] + 0.25 · 1[0.1,0.9) + 2500 · 1[0,0.1),

and reflective boundary conditions at x = 0 and x = 1. This challenging blast wave

problem, considered in [31] tests the ability of a numerical scheme to handle collisions

between strong shock waves. Any viable scheme generally requires stabilization at these

collisions. For the results of a wide range of schemes applied to this problem, see [27].

An exact solution for this problem is not available and the ‘Exact’ solution in our plots

is generated with a 400-cell PPM solver.

As is standard in our sequence of experiments, we provide a comparison of FEM-C

(β = 0.5) with NT and WENO-G in Figure 2.8 at t = 0.038. It is interesting to note,
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the use of Gcomp is far too oscillatory in this difficult test problem; we revert to the

standard choice of G. We again see that while FEM-C is superior to NT in capturing the

amplitude of the two peaks in the density, FEM-C is far too diffusive in comparison to

WENO-G.
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Figure 2.8: Comparisons of FEM-C against NT and WENO-G schemes, for the
Woodward-Colella blast-tube experiment with N = 400 and T = 0.038.

Despite the relative inefficiency of FEM-C compared to WENO-G, it is interesting

to note that our FEM-C results (with N = 1200) are better than the artificial viscosity

schemes use in Colella & Woodward [27]. Our scheme is slightly sharper at the shocks

and contact discontinuities and is just as accurate in the height of the two peaks.

Before moving to a comparison of WENO-G and WENO-C, in Figure 2.9(a) we see

that our simplified WENO scheme is highly oscillatory due to the strong shock collision,

necessitating the use of stabilization. This requirement contrasts to the observations

made in §2.5. However, in Figure 2.9(b), we see that the use of a classical artificial

viscosity significantly dampens the instability but moderate oscillations occur and the

C-method provides similar dampening in a smooth way.

Finally, in Figure 2.10 we demonstrate the relative success of WENO-C versus

WENO-G. At the left peak, WENO-G is more accurate, but at the right peak the reverse

situation occurs. Each scheme provides very good results, and it is clear that WENO-

C is a simple alternative to WENO-G which produces similar results for complicated

shock interaction.
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Figure 2.9: WENO with and without stabilization applied to the Woodward-Colella
blast-tube experiment with N = 400 and t = 0.038.
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Figure 2.10: Comparison of WENO-C against WENO-G, for the Woodward-Colella
blast-tube experiment with N = 400 and t = 0.038.
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2.7 Leblanc shock-tube problem

We conclude our experiments with the Leblanc shock-tube, posed on the domain

I = [0, 9], with initial conditions
ρ0(x)

m0(x)

E0(x)

 =


1

0

10−1

1[0,3)(x) +


10−3

0

10−9

1[3,9](x) , (2.7.1)

with natural boundary conditions at x = 0 and x = 9, and with the adiabatic constant

γ = 5
3
.

Because the initial energy E0 jumps eight orders of magnitude, a very strong shock

wave is produced, making the Leblanc problem an extraordinarily difficult numerical

experiment. First , numerical methods tend to over-estimate the correct shock speed

whenever the shock wave in the pressure field is not sharply resolved. Second, numerical

approximations tend to produce large overshoots in the internal energy

e =
p

(γ − 1)ρ

at the contact discontinuity. We refer the reader to Liu, Cheng, & Shu [62] and Loubére

& Shashkov [63] for a discussion of the difficulties in the numerical simulation of the

Leblanc problem for a variety of numerical schemes. The second-order finite-element

basis that we use for our FEM-C algorithm is not sufficiently high-order to accurately

capture wave speeds in Leblanc, but our fifth-order WENO-C scheme is ideally suited

for this difficult test case. We shall present two differing strategies for WENO-C, which

both capture the correct shock speed and remove overshoots of the internal energy.

2.7.1 Strategy One: A C equation for the energy density

As we introduced the C-method in equation (2.2.6), artificial viscosity is present on

the right-hand side of all three conservation laws for momentum, mass, and energy. For

the WENO-C algorithm, only viscosity in the momentum equation has been used for the

Sod, Osher-Shu, and Woodward-Colella test cases. Due to the strength of the shock in

Leblanc, we now return to using artificial viscosity for the energy equation. In our first
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strategy for this problem, we solve for one additional linear reaction-difffusion equation

for a new C-coefficient to use on the right-hand side of the energy conservation law.

Specifically, to combat the large overshoot in the internal energy e, we solve a sec-

ond C-equation for the coefficient which we label CE; the forcing term for the CE
equation uses |∂x(E/ρ)|/max |∂x(E/ρ)|, replacing |∂xu|/max |∂xu| which forces the

C-equation for the coefficient Cu, used for the right-hand side of the momentum equa-

tion.4

In particular, since Cu is found using the Gcomp forcing, activated only in compres-

sive regions when ux < 0, for the CE equation, we activate the right-hand side only in

expansive regions when ux ≥ 0. To be precise, this modified WENO-C scheme replaces

the semi-discrete form (2.3.6) with

∂t

[
ui

Ci

]
+

1

∆x

[
ÃWENO(ui,Ci)

B̃WENO(ui,Ci)

]
= 0. (2.7.2)

The resulting fully-discrete scheme solves for uni and

Cn
i =

(
Cn
ui

Cn
Ei

)

where the modified fluxes ÃWENO and B̃WENO are given by:ÃWENO



ρi

mi

Ei

 ,
[
Cui

CEi

]
 =


WENO(ρi, ui±1/2)

WENO(mi, ui±1/2) + ∂̃pi −
∂̃Cuui+1/2−∂̃Cuui−1/2

∆x

WENOE(Ei, ui±1/2)− ∂̃CEEi+1/2−∂̃CEEi−1/2

∆x

 (2.7.3a)

4Gradients of the function E/ρ are similar to gradients of the internal energy e for regions near the
contact discontinuity where large overshoots may occur.
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B̃WENO



ρi

mi

Ei

 ,
[
Cui

CEi

]
 =

 S(ui)
[
Cui
∆x
−Gcomp(∂̃ui)

]
−

∂̃SCui+1/2
−∂̃SCui−1/2

∆x

S(ui)
[
CEi
∆x
−Gexpand(∂̃(E/ρ)i, ∂̃ui)

]
−

∂̃SCEi+1/2
−∂̃SCEi−1/2

∆x
.

 (2.7.3b)

The expansive-region forcing for CE is given by

Gexpand

(
∂̃Ei, ∂̃ui

)
=

|∂̃(E/ρ)i|
max
i
|∂̃(E/ρ)i|

1[0,∞)(∂̃ui) (2.7.4)

and we use the shorthand

∂̃Cuui+1/2 = βu ∆x2 max
i

∣∣∣∂̃ui+1/2

∣∣∣ Cui+1/2

max
i

Cui
ρi+1/2 ∂̃ui+1/2,

and

∂̃CEEi+1/2 = βE ∆x2 max
i

∣∣∣∂̃ui+1/2

∣∣∣ CEi+1/2

max
i

CEi
ρi+1/2 ∂̃(E/ρ)i+1/2.

In Figure 2.11(a) we plot the difference between WENO-C with and without the use

of this new equation for CE . For WENO-C with CE activated, we choose βu = 1.0 and

βE = 0.15; with the CE-equation deactivated, we use βu = 1.0 and βE = 0. Observe

that activating the CE-equation removes the large overshoot at the contact discontinuity.

Furthermore, examining the location of the shock, we see that the use of theCE-equation

produces more accurate approximations of the shock speed.

In Figure 2.11(b) we show the results of WENO-C at N = 360, 720, 1440. In this

plot, we see very little overshoot at each level of refinement and this small overshoot

does not grow with refinement.

2.7.2 Strategy Two: a new type of viscosity for the energy density

Our second strategy for the Leblanc problem may be viewed as being motivated by

the energy dissipation rate of real fluids, and adheres to our framework of only solving

one C-equation, forced by the normalized modulus of the gradient of velocity. The idea
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Figure 2.11: Internal energy plots for WENO-C for the Leblanc shock-tube experiment
at t = 6.

is easy to explain, and we begin by writing the equations for momentum and mass (we

drop the superscript ε):

(ρu)t + (ρu2 + p)x = ε2β̃(Cρux)x , (2.7.5a)

ρt + (ρu)x = 0 (2.7.5b)

p = (γ − 1)ρ e , (2.7.5c)

Ct − ε S(u)Cxx +
S(u)

ε
C = S(u)G(ux) (2.7.5d)

where

β̃ = β
max
I

∂xu

max
I

C
.

By multiplying the momentum equation by the velocity u, integrating over the spatial

domain, and using the conservation of mass equation, we find the basic energy law:

d

dt

[∫
1

2
ρu2 dx+

1

γ − 1

∫
p dx

]
= −ε2β̃

∫
Cρu2

x dx . (2.7.6)

Note, that when ε = 0, the variable E is exactly the energy density; that is, when ε = 0,

E = 1
2
ρu2 + p

γ−1
. Thus, we formulate a right-hand side term for the energy equation

to ensure the E continues to represent the energy density for ε > 0. To do, we choose

a right-hand side which will provide the same energy law as (2.7.6). We introduce the

following equation:

Et + (uE + up)x = −ε2β̃Cρ u2
x . (2.7.7)
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The fundamental theorem of calculus shows that integration of (2.7.7) provides the same

basic energy law as (2.7.6). Hence, our second strategy employs the equation (2.7.5) to-

gether with (2.7.7). The interesting feature of the new right-hand side of the energy

equation is its nonlinear structure, quadratic in velocity gradients. This energy loss

compensates for entropy production, and can become anti-diffusive near contact dis-

continuities. As such, we shall discretize this set of equations using the very stable

Lax-Friedrichs flux. We remark that the term ε2β̃Cρ u2
x is analogous to the viscous dis-

sipation term of the Navier-Stokes-Fourier system and can be found as a truncation error

in [40].

As we noted above, to the best of our knowledge, the most commonly used numerical

schemes applied to Leblanc tend to exhibit a significant overshoot in the internal energy

e at the contact discontinuity. Furthermore, on coarse meshes (< 2000 cells), the speed

of the shock tends to be inaccurate. Indeed, this is the case for arguably the most widely

used WENO implementation, designated WENO-LF-5-RK-4 by Jiang & Shu [23]. This

scheme, which we call WENO-LF, uses a Lax-Friedrichs flux-splitting with a 5th-order

WENO reconstruction in space and 4th-order Runge-Kutta in time.

If we examine the contact discontinuity at x ≈ 6.8 in Figure 2.12(a), at resolu-

tions N = 360, 720, 1440 we see that WENO-LF exhibits relative overshoots of 12.8%,

11.8% and 11.4% respectively. This slow decay of the overshoot suggests that WENO-

LF suffers from the Gibbs-phenomenon, despite it’s attempt to quell oscillatory behav-

ior. Examining the shock at x ≈ 8 we see that the computed shock speeds are inaccurate.

To address the loss of accuracy exhibited by WENO-LF, we propose the use of the

C-equation along with a nonlinear viscosity on the energy equation. Since WENO-LF

has an intrinsic artificial viscosity (by virtue of the Lax-Friedrichs splitting) on the right-

hand side of the momentum equation, we find that we do not need to explicitly use our

artificial viscosity for the momentum (even though this mathematically motivated our

nonlinear viscosity for the energy equation). As such, we require a single C-equation

which is forced by Gcomp(ux).

Keeping consistent with the semi-discrete formulation, we write the WENO-LF-C
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scheme

∂t

[
ui

Ci

]
+

1

∆x

[
AWENO-LF(ui) +H(ui, Ci)

BWENO(ui, Ci)

]
= 0 (2.7.8)

where BWENO is given by (2.3.5b) andAWENO-LF corresponds to the choice of the WENO

flux described in [23] (i.e. if H ≡ 0 then (2.7.8) is the same as WENO-LF). The term

H is a discrete approximation of β̃ε2Cε,δρε|∂xuε|2. The operatorH is defined as

H(ui, Ci) =


0

0

β∆x2max
i
∂̃ui+1/2

Ci
max
i
Ci
ρi|∂̃ui|2

 .
In Figure 2.12(b) we demonstrate the benefit of WENO-LF-C with β = 5.0, again

at successive refinements of N = 360, 720, 1440. The overshoot at the contact disconti-

nuity is relatively non-existent while the shock speeds are far more accurate and appear

to converge to the correct speed at a faster rate.
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Figure 2.12: Internal energy plots for the Leblanc shock-tube experiment at t = 6 using
WENO-LF with and without the C-equation.

2.8 Concluding Remarks

We have presented a localized space-time smooth artificial viscosity algorithm, the

C-method, and have demonstrated its efficacy on a variety of classical one-dimensional
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shock-tube problems. As compared to more established procedures, the C-method has

been shown to be highly competitive with regards to accuracy and stability, while being

relatively easy to implement. Because of its simplicity, the C-method can readily be

extended to multiple space-dimensions and/or utilized in reactive-flow simulations. Of

value to reactive flows is the localized smooth diffusion provided by the C-method;

specifically, the function C can be used to actively influence various mixing-rate-limited

reactions occurring near sharp boundaries.

In the future, the gradient-based source term used in the current implementation of

the C-method may be combined with a noise-indicator that turns off the current gradient-

based source term when it is not needed. Such noise-indicators require a very high-order

scheme compatible with DG or 11th-order WENO to name just two examples. By

projecting the solution onto a suitable basis, the noise-indicator would activate when

small-scale coefficients of this basis do not have sufficient decay; in turn, an indicator

function, localized about the region of noise, would activate and force the C equation.

This approach is taken in [46], but without any gradient-based forcing functions like our

function G or Gcomp.

For example, with our first strategy, after the rapid initial growth of the internal

energy field in the Leblanc shock-tube problem, this field is essentially representative

of the advection of a square-wave. Thus, after initial growth, the gradient-based source

term in the C equation for energy could be deactivated leading to less diffusion in the

downstream contact discontinuity; simultaneously, the noise-indicator would activate if

small-scale instabilities were to set in. (This, of course, motivated our second strategy,

where the diffusion coefficient β̃ used maxux rather max |ux|.)
But, for more general problems, the impact of the activation/deactivation of the

source term in the C-method on numerical accuracy is not entirely obvious and is left

for future research.

Chapter 2, in full, has been accepted for publication in Journal of Computational

Physics. The dissertation author was the primary investigator of this paper. I would like

to acknowledge the co-authors, Jon Reisner and Steve Shkoller.
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