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ABSTRACT

In dyuamlc and buckling analysis of structures a few eigen~
values and associated eigenvectors may be reqguired in the sclution
of the generalized eigenvalue problem Av = ABv, where A is posi-
tive definite, Currently, when the order of the matrices is very
large, approximate solution techniques are used. The alm in this
research was the development of efficient computer programs which
can find the required eigenvalues and corresponding eigenvectors
of large systems to the desired accuracy.

First the dynamic and buckling problems are presented in
which the generalized eigenvalue problem arises., In this dis-
cussion the special properties of the operators A and B in
structural analysis are identified and the eigenproblem solution
requirements are stated, Also, approximate solution techniques
which are commonly used are critically reviewed. 1In particular,
it is pointed out, that in these analyses we do not know about the
accuracy of the eigenvalue approximations obtained,and that an
approximation to an important eigenvalue can be missed altogether.

The numerical details of two solution algorithms are then
developed, The first technique is a determinant search method, in
which triangular factorization and vector inverse iteration is
combined in a very efficient manner., The second algorithm is a
subspace iteration,which is more economical when the bandwidth
of the system is large, Both techniques solve the generalized
eigenvalue problem without a transformation to the standard form,

There are no difficulties when B is banded or diagonal non-



negative definite., Also eigenvalues and corresponding vectors

e e
need not be found to high precision for numerical stability,
Operation counts are evaluated to develop waximum efficiency
in the ifterations and to give cost estimates of using the
algorithms, The study of the number of operations and of
numerical aspects is used in the development of a program for
the practical case B diagonal and non-negative definite when A
has any order and bandwidth,
Various practical example analyses including the analysis
of dam, a plane frame and a three~dimensional building frame

are presented to show the capabilities and convergence character-

istics of the soclution techniques,
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LIST OF SYMBOLS

lg are defined in the text, and those not frequently

uset may have different meaning in different parts of the thesis,

Only those which do not change meaning and are often used are

listed bhelow,

A = band matrix

B = band or diagonal matrix

E: = Cholesky factor of B

n = order of A and B

m = half bundw&dth of A ; bandwidth = 2mA+1
m_ = half bandwidth of B ; bandwidth = 2mB+1
A, = eigenvalues of AV = ABv

A = diagonal array of eigenvalues ki

v. = eigenvectors of Av = ABv

V = matrix storing the eigenvectors Vi

x, = lteration vector

X, = matrix storing iteration vectors

A = diagonal matrix storing eigenvalue approximations
A = projection of A

B = projection of B

W = shift

p(p) = characteristic polynomial

I = identity matrix

e, = 1'th column of I



1, INTRODUCTION

In this dissertation we consider the generalized eigenvalue
problem
Av = ABv (1.1)
where A and B are symmetric matrices of order n and half bandwidth
mA and mB, respectively. vThis equation arises in dynamic and
buckling analysis of structures, At least one of the matrices

is positive definite, There are n real eigenvalues Ki and

corresponding orthonormalized eigenvectors which we order as

During recent years the ability to perform structural anal-
yses has improved significantly, The finite element method used
on a digital computer can allow earthquake or buckling analyses of
large and very complex systems [17]. In these analyses the solu-
tion of Eq. (1,1) is required for only a few eigenvalues and
vectors, Procedures which solve for all eigenvalues and which
do not take advantage of the banding characteristics in A and B
are at least inefficient and regarding storage may well be
impossible to use,

Currently, when the order of the eigenvalue problem is very
large and we only require a few eigenvalues approximate methods
are used for solution [27],

The object of this research was the development of efficient

programs which solve for a few required eigenvalues and associated
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vectors in Eg. (1.1), The matrices A and B shall be allowed to be
‘of different forms of practical significance,

Tn the thesis, first the buckling and dynamic problemsvin
which Eq, (1.1) arises are presented, This leads to a descrip-
tion of the operators A and B in each case and a proper statement
of thevlarge eigenvalue problems to be considered. Then the
theory and algorithms déveioped for solution are given. Whenever
possible, the theory is presented to obtain a good physical
understanding, Finally, example analyses are given to show the
convergence characteristics of the programs,

Basically two different solution techniques have been de-
veloped, A determinant search algorithm was implemented which
combines triangular factorization with vector inverse iteration
in a very efficient manner, The program is most efficient in the
analysis of systems with small bandwidth, The other scheme is a
subspace iteration which is economically used on systems with
larger bandwidth, Included in the thesis is a routine for the
practical case B diagonal and non-negative definite to allow the
solution for any matrix size and bandwidth. In the determinant
search algorithm and the subspace iteration, Eg. (1.1) is solved
directly without transforming to the standard eigenvalue prablem,
The programs are given in Appendix II, They are written in
Fortran IV and have been tested on the CDC 6400 at the University
of California at Berkeley.

In my opinion the solution of eigenvalue problems is most

fascinating for its theory and the large variety of practical



numerical problems., For those readers who are not very familiar
with the problem some background in the theory and efficient
solution methods for the problem Av = Av with A being small are

given in Appendix I.



2, THE LARGE GENERALIZED EIGENVALUE PROBLEM
IN STRUCTURAL ANALYSIS

2.1 Introduction

Before the'different solution procedures to Eg, (1,1) are
presented, we should discuss the cases in dynamic and stability
analysis where Eq, (Iul)iarises, This way we can observe the
different properties Whicﬁ the operators A and B can take and
define the large eigenvalue problems that we consider, The
approximate solution technigues used in practice will also be

presented and critically discussed.

2.2 The Eigenvalue Problem in Dynamic Analysis

The equations of motion for a system of structural elements
can be written as
Mi + Ch + Ku = P (2.1)
where M is the mass, C the damping and ¥ is the stiffness matrix
of the system, all of order n, Vectors u and P store displace-~
ments and forces, respectively [2]., The matrices M, C and K are
obtained in conventional beam analysis of structures, in the two
and three dimensional finite element discretization of continua
and using other techniques of analysis, such ag the finite
difference method,
Equation (2,1) is solved by considering first free vibration
conditions, where
Mi + Ku = O (2.2)
Substituting

u =@ sin w(t-to)



we obtain the generalized eigenvalue problenm
2

Ko = w” My (2.3)
The n eigenvalues give the natural fregquencies of the system and
the eigenvectors the corresponding vibration modes, The complete
solution to Eq, {(2.3) can be written as

2

Ko = Mm% Q (2.4)

. : 2 _ . 2
where the columns in @ are the eigenvectors @i and (07 = diag {wi}y

2.

with u_»], -~ 0 all i,

We now change basis from the physical coordinate basis to

the M-orthogonal basis of eigenvectors., Thus Eq. (2.1) becomes

" kL 2 T

X+ C*X4+0Q "X =% p v (2.5)
where X lists the coordinates in the new basis and C¥ = & C%, If,
in practice, c* is assumed to be diagonal, Eq. (2.5) consists of n
decoupled equations, which are readily solvable 27,

The most time consuming step in the analysis is the eigen-
value solution, If the size of the matrices is large, the com-
puter time required to solve for all eigenvalues and vectors is
enormous. However, experience has shown that many structures
respond to particular types of dynamic loading primarily in a few
modes, and that the contribution of the other modes can be
neglected, For example, in earthquake response analysis it can
be sufficiently accurate to consider only the lowest eigenvalues
and corresponding vectors, Naturally, the exact number of modes
to be included in an analysis depends on the structure, the load~
ing and the accuracy sought, But provided the required eigen-
values and vectors in Eg., (2.3) can be found with a reasonable

computer effort, large dynamic systems can be analyzed,
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Consider in more detail the eigenvalue problem in Bq. (2.3).
It iz of particular importance that in structural analysis both

matrices K and M are banded, i.e,

k,. =0 for j - i+ m,
1 J2 3

m = 0 for j > i + m
ij J B

where (2mA + 1) and (ZmB + 1) are the bandwidths of the matrices.
Assuming that all rigid body modes have bheen removed from the
system, K is positive definite. If, in a finite element analysis
4 consistent mass formulation is used, M is also positive definite
and m, = mA. However, experience has shown that a consistent mass
formulation is often not necessary and good accuracy can be ob-
tained in a lumped mass analysis, Then M is diagonal with mii
positive or zero,

Because the order of the eigenvalue problem in Eq. (2,3) can
be several hundred, approximate techniques have been developed to
reduce computational requirements for finding the few lower modes,

If it can be justified to lump all mass at some specific

degrees of freedom, we can rewrite Eq. (2.3) as

K K ) 0
aa ac cta ma CPa

=W (2,8}

¢ 0
Kca ch @c 0 QPc

We can now use static condensation on the @C degrees of freedom
and obtain the eigenvalue problem

Koo =0 m @ (2.7)

where



In practice, K can obtained as follows
a
T ‘ T
K = LL° 5 LY K ; K = K - Y Y
co ca a aa

Alternatively,

P -

we may modify the complete structure

om, However

-3

stiftfoess by

using Gaussian eliminstion on the ¢ degrees of fre
z - 2

a scheme is then needed to take account of the increasin

g

bandwidth of the system,

For solution of ©® we can use the relation K T w
c ce e ca a

given in Eaq., (2.6),
In the analysis we could also solve

¥ K £ I
aa ac a

£ .
Ca co C

where f = K"l
: a

and then use

0 [ s
\!FC < k’ﬂ

Although the degrees of freedom have been partitioned in Egs, {2,8)

and (2,9), there is obviously no need for it in this anal
that instead of Egq. (2,7) we would now consider the problem
1

- =t P
2 ma a ma C”’a (see Eq. (2.17))
W
The order of Eq, (2.7} is the number of mass degrees of freedom

allocated to the structure, Depending on the engineer's experience and the

structure analyzed,

the eigenvalues obtained from this eguation may
only be crude approximations to the eigenvalues of the original
model of Eq, (2.3).

A more general technique for finding an approximation to the
lowest eigenvalues and vectors of large systems is the Rayleigh
Ritz analysis,

For a general discussion of this method we con-

sider the eigenvalue problenm

Av = ABvwv (2,10}



with A and B positive definite and the operators defined in
an n-—dimensional spacé Vn' The Rayleigh minimum principle states
that

11 = min p{(v) (2,11)

where the minimum is taken over all functions v and p(v) is the

Rayleigh guotient 0(v) = (v,Av) . 0 (2.12)
(v,Bv)

In the Ritz analysis we define a set of funtions v in a subspace

V  of dimension g
q

(2,133

<|
i
e
v
-

where the fi are the Ritz basis functions and the §i are Ritz

coordinates, Substituting Eg. (2.13) into (2,12) we get

p (V) = 2= 2,14
i a 3 ( )
T —
) ) E E B
Lo /s i 73 ij
j=1 i=1
with
B = (f.,Af.
aij { x J)
i~ (2.15)
= {(f
15 = (B
The necessary condition for a minimum of p(;) is %g = 0
i

(i=1l,...,4). This vields

o~ ot

Aa = 0 Ba (2.16)

~

where a is a vector listing the Ritz coordinates, A and B are full

symmetric matrices with typical elements given in Eq. (2,15),



(2.16) yields g eigenvalues pl,...,pq

The solution of Eq.,
which are used to obtain from

and corresponding eigenvectors,
8 are upper bound approxi-

Eq. (2,13) ;1,,..,55. The eigenvalye:
mations to the eigenvalues of Eg. (2,10}, i,e,
A< ;A = P P hoo<
Dl Pohy 92 7 Mg 03 ; Py pq

1
is contained in v
n

The first'inequality is obvious because V

e the second inequality we observe that

To prov
A = opin LV,AV)
27 {v,Bv)
with the constraint
(V,Bvl) = 0
Similarly
v, AV
p2 = min *("E,_:Z*-:-)'
v, Bv)

satisfying

G}&%)::o
Now consider an auxiliary problem, in which
~ v Av
(v,B%)
with the constraint
(V,Bvl) =0

Né because Vq is contained in Vn But

We realize that X? <p
severe constraint on v is the eigenfunction

P < .
pz pz Since the most

Therefore

L
by =Py S 0y

v

are proved similarly,

The inequalities for KS to Xq
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Tn dynamic analysis we obtain the Ritz functions from a
static solution in which ¢ load patterns are specified in R, i.e.
KT = R
and for Eg, (2.16)

A”Z:? TH; B = T MF

Although we have shown that an eigenvalue calculated from a
Ritz analysis is an upper bound on the corresponding exact eigen-
value of the system, we did not establish anything about the
error in the eigenvalue, Naturally this error depends on the
Ritz functions chosen, We only obtain good results if the func-
tions span a subspace which is close to the least dominant
invariant g-dimensional subspace of the operators,

The technigue of mass lumping followed by static condensa~
tion and the Ritz analysis have been presented as two methods,
Together with other techniques, such as the component mode
synthesis [37], they are rvecognized in Chapter 4 as the first step
in a subspace iteration, Let us show that the static condensation
procedure resulting in Eg, (2.7) is actually a Ritz analysis,

It is demonstrated in Section 3.6 that zero diagonal elements in the
mass matrix correspond to infinite fregquencies, To obtain approxi-
mations to the lowest frequencies in Egq. (2.8) we can apply the
Ritz analysis, The Ritz functions are the displacement patterns
asgociated with the degrees of freedom @a’ and are given in Eq,

{(2.9), Transforwming Eq. (2.8) we obtain
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1 Tk K i {‘ 1 |T m 0 I
a8 ac {p ) = W | pe (:P X
£ K K K £ K & Lf K 0o of lfrk ¢
¢ a ca | cc ¢ a c g i c a
or
= ) 58]
Ka ?a s ¥a

which is Eq. (2.7). Therefore, in the static condensation we per-

form a Ritz analysis of the lumped mass model of the structure,
Because the Ritz functions span the subspace which corresponds
Lo the finite eigenvalues of the model, we calculate these eigen-
values 'exactly' (see Section 4,2), If less Ritz functions are
used, upper bounds to the lowest eigenvalues are obtained as
discussed above, In practice, the equivalent Ritz analysis would

be carried out using the transformation

¢, f
- Ta; T= a

Pe fc
where fa and fc are calculated in Eq. (2.8), and the vector a
lists the Ritz coordinates, We note that a = Ka @a' The Ritz
transformation of Eq. (2.6) gives
£ oa=o” £om f a (2.17)

In the Ritz analysis, hardly more numerical effort is required
if the original model of Eq. (2.3) is analyzed and if in Egq. (2.8)
different load patterns are specified in order to obtain a ' petter!
T. 1If mass is lumped in the analysis of a complex structure, the
- pumber of mass degrees of freedom should still be significantly
larger than the number of eigenvalues required, in order to keep
an adequate mass distribution in the system,

The main difficulty in a Ritz analysis of a complex structure

is the selection of 'good' basis functions, It is often thought
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that a repetition of the analysis with a somewhat larger set of
Ritz functions is a good check on the results of the first
analysis, This is not.necessarily true, In repeating the
analysis we may merely detect that our first analysis gave bad
approximations to the lowest eigenvalues and vectors,

In summary, two serious problems are pPresent, TFirstly, we
cannot estimate how accurate our approximations to the required
eigenvalues and vectors are, Secondly, we do not know if we miss
an approximation to a lower eigenvalue and vector altogether,
This uncertainty in a practical dynamic analysis may lead to a
large pumber of repetitions of the analysis, involving a high
cost which nevertheless does not remove all uncertainty. It may
then have been more efficient to rather solve once and for all
accurately for the required eigenvalues and vectors.

The structural model of Eq. (2.3) may be a refined repre-
sentation of the structure or a rather crude stiffness and mass
approximation, In my opinion, programs should be available to
analyze any model, without the analyst fitting it to particular
program requirements,

In earthquake analysis we mainly require the lowest modes
of the system, In other important problems in dynamics we may need
to find all eigenvalues and associated vectors in a given inter-
val, This may be the case, because of a high level of power

spectral density of excitation in a given frequency region [47.
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The large eigenvalue problems arising in dynamic analysis
and considered here, can therefore be stated as follows.

Given two operators A and B, find

1, the lowest few A and associated v which satisfy

AV = ABv (2,18)

or

2. find all A and corresponding v which satisfy Eq. (2.18)
and where b < A< B

In Eq. (2.18) the operator A is of order n, symmetric and
positive definite and has bandwidth (2mA +1). The operator B
has either the same properties as A or is diagonal and non-
negative definite. The eigenvalues in Eq. (2.18) are all posi-
tive. Alsoc, we consider the problem as large if it is much
cheaper to solve for only the required eigenvalues and vectors
instead of calculating simply all, In general , the system will
be large if the high speed core storage of a reasonable size

computer is too small to use an in-core Householder—-QR~Inverse

iteration technique [1] (see Appendix I and Section 6.,7)

2.3 The Eigenvalue Problem in Buckling Analysis

The equations governing bifurcation buckling of a structure
are

Ku = A KGll (2,19

where K is the small deflection stiffness matrix and KG is the

geomeiric stiffness matrix of the system [4]. The parameter A

gives the buckling load and u is the corresponding buckling mode,
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We observe that this is an eigenvalue problem of the form
stated in the previous section, However, in this case the
operator B, which corresponds to KGvin Eq. (2,19), is in general
indefinite and is always banded, Using the notation in Eq.

(2.18) we consider the problem

Bv = 1 Av (2,20}
in which # = 1/h and can be negative or positive, In this
equation we want to solve for the maximum value of # which gives
the lowest buckling load, It may also be of interest to find the
next lowest buckling loads, Namely, if they are very close, then
preventing the 1oweét buckling mode to occur does not make the
structure much safer,

For solution of the buckling problem we naturally cannot use
the static condensation analysis., A Ritz analysis is appropriate,
but the problems discussed in the previous section are again

present,
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3. A DETERMINANT SEARCH TECHNIQUE FOR THE SOLUTION
OF Av = ABv WITH SMALL BANDWIDTH

3,1 Introduction

Determinant search technigues have been used since long ago
for finding the eigenvalues of small symmetric and nonsymmetric
matrices [56]., For the analysis of larger problems in structural
engineering the technique was generally considered inefficient,
bhecause each determinant evaluation requires one triangular
factorization, If a determinant search iteration is used alone
to calculate eigenvalues to high precision, many factorizations
may be necessary., This is costly unless the bandwidth of the
system is very small,

In this chapter a very efficient algorithm which combines
triangular factorization with wector iteration is presented, A
determinant search is only used to shift into the vicinity of the
next unknown root, As will be shown, the number of negative
pivots in a factorization tells if an unknown root is smaller than
the current shift. Inverse iteration is then used to find the
vector and eigenvalue,

Programs SECANT and SECANTD use the technigue and are
briefly introduced in Section 3,7. Example analyses are given

in Chapter 6.

3.2 Considerations for an Iteration Scheme

We first consider the generalized eigenvalue problem
Av = ABv (3.1
when B is positive definite, The case B diagonal non-negative

definite is discussed in Section 3.8, An equivalent problem is
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to calculate the zeros of the polynomial p(A) = det (A- AB).
Our aim is to find a Few lowest eigenvalues and assocliated vec-
tors when A and B are large and have small bandwidth,

For solution we may think of some well-known technicues,
Let us briefly mention them,

A transformation of Eg. (3.1) to the standard eigenvalue

problem vields

Av = A v (3.2)
where

A=TtagT (3.3)

B = a[j ?:’T (3.4)

o i

v =L v (3.5)

In Eq. (3.4) we find the Cholesky decomposition of B. Therefore
B should not be ill-conditioned with respect to inversion
(see Section 4,3).

Let us distinguish two cases: Assume that B is banded,

Then A is full, Therefore, regarding storage and the solution of
the eigenvalue problem in Eq. (3,1) the transformzation is un-
economical,

However, if B is diagonal, we find the transformation trivial
and A has the same band as A, We now need to solve a standard
eigenvalue problem,

As A is large, a Householder-QR-Inverse iteration
solution is uneconomical because we would set out to find all

eigenvalues without taking advantage of the band in k.
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An efficient technique to find an eigenvalue and the asso-

ciated eigenvector of A is the Rayleigh quotient iteration defined

a8
T oo S ko=1,2,... (3.6
(A p(Xk} I} Kk—%l Xk Ek £ Loy { )
{x Ax. )
k’ k
5 S 3.7
P = s (3.7)
& k
where £} is chosen to normalize x}+1, Under certain conditions con-
5 L4

vergence is ultimately cubic to an eigenpair (Kiiva) 6]

4 ( - RAE .
[227, The particular eigenvalue to which the iteration conver-
ges depends on the initial vector chosen, We note that each

iteration needs one triangular factorization, and that we may

well converge to an eigenvalue which we are not interested in,
For our problem, it is much more efficient to apply a shift only
after always a few inverse iterations and to assure that the
eigenvalues are found sequentially from the lowest one upwards,
This technique is used in program BANEIG {7]. The algo-
rithm finds the smallest eigenvalue and corresponding vector of
K'by shifting from the left towards Al” This way the shifted
matrix remains positive definite. The shift is determined using
an empirical rule once the iteration vector has settled down in
the inverse iteration., After calculation of Kl and ;i’ the
algorithm uses an orthogonal similarity transformation due to
Rutishauser to deflate the matrix [8]. The importance of this
deflation is that the new matrix has $till the same band as 4.

However, the eigenvector needs to he found to high precision,

inverse iteration with shifting as before vields the next
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h deflation and

bud
Lol

smMal ] cigenvalue, The program continues wi

2n cal~

inverse iteration until all reguired eigenvalues have be

culated, The final eigenvectors of Eg., (3.2) are obtained by

applying the orthogonal transformations back onto the eigenvectors

of the deflated matrices,

As stated before the program can handle only the case B

diagonal and positive definite., Numerical difficulties can arise
1t some diagonal elewments in B are small.

Bagically, the algorithm uses triangular factorization and
inverse iteration. The undesirable matrix deflation is necessary
to assure convergence to an eigenvalue and vector not yet calcu-
lated, The transformation fo the standard eigenvalue problem must
be performed to be able to use the deflation procedure,

A more direct scheme would use triangular factorization and
inverse iteration on EBg., (3,1) without transforming to the
standard eigenvalue problem. Then ﬁhe case B banded would not
present extra numerical problems., But to obtain best program
efficiency we should use efficiently 2ll the information that we

can obtain from each factorization and inverse iteration,

3.3 The Triangular Factorization and its Use in the

Iteration Scheme

In inverse iteration with Rayleigh guotient shifts, triangu-
lar factorization is basically used to speed convergence in the
vector iteration, Essentially the iteration goes for the vector
but the eigenvalue is found at the same fime,

To benefit more from a factorization we can evaluate the

characteristic polynomial at the current shift uk,
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Let p(uw) = det(A ~uB) and assume that we have the 1oT decomposi-
tion of (A‘”MKB), then

LDLY = (A ) (3.8)

n
pQ, ) = det(LDLT) =0 4, (3.9)
k i=1 i -

The polynomial values aﬁ successive shifts can directly be used
to iterate towards a root. However, a clever scheme must be
implemented to assure eonvefgence to the next unknown root,

Another most important observation can be used at each
factorization, Simply stated, we know that the number of nega-
tive elements in D in Eg, (3.8) is equal to the number of
eigenvalues smaller than uk. |

This statement and the polynomial iteration scheme are ex-
plained in detail after the triangular factorization has been

discussed,

3.3.1 The Triangular Factorization of A -uyB

We note that for uk larger than Kl, the matrix (A~ ukB) is
not positive definite. Therefore, we cannot find its Cholesky
factors but the LDLT decomposition exists provided none of the
leading principal minors vanishes,

A practical way of obtaining L and D in Egq. (3.8) is to use
simple Gaussian elimination on A-—ukB, Here we reduce the
matrix into upper triangular form expressed as

-1 | _
Lo qoeely Iy (A W B) = U (3.10)

where



1
-y b c(k)

L__,l B k+l,k 4 _ ki k- u wc(k)
k -4 5 " keik e * "kk  kk
k+2,k kk
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k+mA,k
) 1_

k
and céﬂ? denotes the (4,m) element of the matrix C = A~ B

after the first (k-1) row reductions have been carried out,.
Equation (3.10) rewritten becomes Eg., (3.8) where

L=1L L ;DLT::U

1 2"'Ln—1

We note that the k'th leading principal minor Mk is given as

Mk = u U,,...uU (3.11)

Obviously, if Mk~1 is nonzero, but Mk is zero, then ukk equals
zero, and the decomposition does not exist, also indicated by the

fact that multipliers £k+‘

ik become infinitely large. 1In prac-
9

tice, a decomposition is regarded as numerically unstable, if
multiplier growth occurs. In such case the errors involved in
the decomposition are large. In general, partial pivoting could
be used to ensure that multipliers do not exceed unity in
modulus. However, the bandwidth of the system would then increase
and more operations are required [5].

In the programs the triangular factorization in Eg, (3.10)
is used, As described above, the main aim in the eigenvalue

iteration is to shift into the vicinity of the next unknown root.



If the triangular factorization would prove to be unstable, the
program would have to increase the shift in its last digits and
try a new factorization, In all example analyses this never
happened, Also, experiments have been carried out, in which
matrices have been triangularized at and near calculated elgen-
values, The decompositions have always proved stable, The
discussion in the next section indicates why instability is un-
likely to occur,

As an estimate of the work involved in the evaluation of
Eg. (3.8) plus the calculation of the determinant, we consider
the number of operations required, One operation is equal to
ope multiplication which is nearly always followed by an addition,
Assume that the half bandwidths mA and mB are full and constant,
Neglecting terms involving the bandwidths only, we have as the

number of operations reguired

E~nm2 + é~nm + Zn when m=m, = m

2 " ' T AT B
1 2 3
avnm + 5 nm o+ Zn  when m = mA; mB = 0

These formulae are used for comparison purposes., In most actual
systems the bandwidths vary and many zerc multipliers occur, The

solution solver must take due advantage of bhoth,

3.3,2 The Eigenvalue Separation Theorem

Consider the problem Av = ABv in Eq. (3.1) and a different
problem of dimension n ~ 1 which we call the first associated con-
straint problem, i.e,

Alvi =3 B (3,12)
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where 4 and B are obtained by omitting the last rows and columns
of A and B, We can show that the eigenvalues of this problem are

separating those of Eqg. (3,1), i.e,

e

P S\ (3.13)

In a dynamic analysis this wmeans that the fregquencies of a struc-
ture which is constrained in its n'th degree of freedom lie in
between the frequencies of the unconstrained structure, For a
simple and elegant proof of Egq., (2.13) we use the minimax charac-—

terization of eigenvalues [97], which savs

A = qu{min iﬁiﬁﬂ}l
<}:*+1 N 132 ) S (V s By ;})

(3.14)
with v satisfying (gi,v) =0 (i=1,.,.,r), where the gi are

arbitrary constraint vectors, Equation (3.14) simply states that
we select a set of gi and find the minimum of the Rayleigh
quotient satisfying the constraints over all v, The maximum of

these wminima as the constraint vectors are varied equals x1+1'

Similarly, for the problem in Hg. (3.12)

: . (v, Aav)Y
AT = maxdmin ——lee
r {(v,Bv)

with (g.,v) = 0 (i=1,,,.,r) where the g, are arbitrary for
ok J
i=l,...,r-1 but g = e This ensures that the last element in v
r
ig zero, because ep is the last column in the nXn identity matrix

I. Because the constraint for 31'1 zan be more severe and in-
i

7
cludes that for A we have
r?

To determine A we use
-
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(v,Av) |
(v,Bv})

-

A max{minv
T

with (givv) = 0 (i=1,,.,.,r-1) and all g, are arbitrary, To

e \ . 5
evaluate A we have the same constraints but one more, hence
T

which proves Eg, (3.13). 1In the same way, the eigenvalues of
the second constraint problem obtained by eliminating the last
two rows and columns of A and B separate those of the first con~
straint problem, etc,

Figure 1 gives the eigenvalues of a simply supported beanm
with four degrees of freedom and of its constraint problems.

Recall that a sequence of polynomials {Qi(x)} form a
“i=l,...,n

Sturm Sequence if the roots of the polynomial Qi(x) separate the
roots 0f<91+1(X)i Hence we have proved that the characteristic
polynomials of the associated constraint problems and of the
eigenvalue problem in Eg. (3.1) form a Sturm Sequence,

We can now give a reason why instabilility in the triangular
factorization of Eq. (3,10} is unlikely to occcur., A small i'th
pivot in the factorization means that the current shift is an
eigenvalue of the constraint problem obtained by fixing the
degrees of freedom (i+l) tObn, But from experience we know that
the frequencies of vibration of the structure cbtained by figing
many degrees of freedom are much higher than the lowest frequen-
cies of the uncoustrained structure . Hence, if at all, a small
pivot is likely to occur only when 1 is near to n, This mesans

that multiplier growth is not possible,
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The practical use of the eigenvalue sgeparvation property is
as follows: Assume that we carry out a triangular factorization
at shift uk and that Mk is not an eigenvalue of the (n~1) asso-
ciated constraint problems., Then we can use D in Eg., (3.8) to
calculate the determinants of all constraint problems. But con-
sider only their signs, Referring to Fig. 1, we find that due to
the eigenvalue separation property, for Kr < uk < kr+1 we must
have exactly r negative elements in D. Hence at any shift My the
number of negative elements in D tells us how many eigenvalues in
Eq. (3.1) are smaller than uk, This is a most important fact,
because with it we are able to find how many eigenvalues exist in
g particular interval.

The Sturm Sequence property has been used in simple
bisection to find eigenvalues of matrices [10][11], However, this
is only economical if the matrices have very small bandwidth, in
particular when A and B are tridiagonal, A more efficient algo-
rithm would use the polynomial values at the shifts to accelerate
iteration to the next unknown root, The eigenvalue separation

property can be used at each shift to check if an unknown root

has been passed,

3,.3.3 The Interpolation Scheme

Consider the iteration to Xl in Fig, Z where iterates uk
and ukml are lower bounds to the root., As will be shown in
Section 3.5 it is most economical for us to obtain merely a

shift near Xl and then start inverse iteration for the eigen-—

vector, The extrapolation formula used in the algorithm is
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p(uk)
4 = 4+ 7 (i, ~ )] (3.15)
MR+1 uk L p ) - pu ) Pyo1 uk
k k-1
with T & constant, When T = 1.0 we have the well-known Secant
iteration, where % A and ¢ A, as k = ©, (Convergence
tteration, uk+l 1 i1 1 £

in this iteration can be slow, and we need an efficient accelera-
tion scheme. Starting the iteration, we let T = 2.0 because it
is known that in this case %k+l = Ma' where ua is the smallest
stationary point of p [5]. A jump over a root would simply be
detected by a sign change in p. However, when we iterate towards
a multiple root as in Fig. 3, convergence with T = 2,0 is still
slow, Fortunately, the eigenvalue separation theorem allows’us
to accelerate the iteration still more. We double T after each
iteration in which the iterates did not change in their first
3 to 4 digits, We may thus jump over a single root, a multiple
root or into a cluster of roots, but this is always detected by
counting the number of negative elements in D. Naturally, with
the strategy adopted, we cannot jump far beyond the unknown roots,
The advantage of the one-sided approach to Xl is also
obtained for any other root, say I, by using instead of

J+17
p(uk) in Eq. (3,15), the deflated polynomial pj(uk), where

J
Pj(pk) = pu )/ i?l(uk - %i) (3.16)

and the Xl to A, have already been calculated, Fig, 3,
J

In the algorithm the accelerated Secant iteration is stopped

once either of the following criteria is satisfied:
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(1}  Assume that we did not jump over a root and that the

correction to ph  in Eg. (3,15) is smaller than one half of the

K
final tolerance required on the root, We then approached the
root from below and are near encugh to start inverse ilteration,
The final eigenvalue is calculated by adding the Rayleigh
correction to uk {see Section 3.4).

(23 Let o be the number of negative pivots in the factori-

zation at u and # be the number of eigenvalues which have

k+1’
been determined and which are smaller than uk+1' Suppose
Y = -8, then we know that we jumped over Y unknown eigenvalues,
inverse iteration is now used for the vectors and Rayleigh
corrections are calculated to obtain the v eigenvalues.
In the process eigenvectors corresponding to eigenvalues larger
than pk+1 may be found; for example, if we jumped into an eigen-
value cluster,

For iteration towards the next unknown eigenvalue, we use
FEg, (3,16) to suppress the last found roots from two previously
calculated polynomial values, which are the starting points in
Eg, (3.15) with T = 2,0, 1In Eq. (3,18) we do not want to divide
by values close to zero and therefore select two p-values far
enough from the calculated roots. As implemented in the programs,
it is only necessary to store the last three calculated polynomial
values,

The objective of obftaining economically a shift near the next
unknown root can also be pursued using a Newton itevration with

the same factor T, where



| o p(uk)

L =k
Tkl "k

o (3.17)
P ,uk)

The Newton iteration has been used efficiently in the eigenvalue
solution of tridiagonal matrices [5]. For matrices with larger
handwidtih the main difficulty lies in finding an economical
algorithm to evaluate pf(uk), The following scheme was con-

sidered, The function pf(u) is given by

d ,
p{ {(4) = det B 90 det (B ]A ~wi) (3.18)
Y

where | is now a variable.
FACT Let K be a square matrix of order n, with its elements

kij functions of t. Then

n
d . ] (i)
a1 det K = Z; det K
j=1
(i) . . . . : ’ ¥ :
where K is K except in row j, which is now (k, k.. ..k, ),
Jj1 Jjz dn
Using the fact we have
n
"'\”' - « .
p/(u) = det B{w zJ det (B 1A-MI)(J’J)} (3.19)
j=1

1 .

where (B A-MI}(J’J) is obtained by deleting vow j and column j
-1 '

from (B A ~pIl).

We need to use an efficient scheme to evaluate Eg. (3.19),

1

Consider an equation for element (j,j) in (BM1A~"QI)“ ,

» . . -1 _ (\]1_‘))
{8 1A - 1) 1 _ det(B A-ul)

JJ det(B A - pI)
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Hence Eg, (3.19) becomes

n
/ [ -1 3 -1 “1,
=~ det Bidet - ) B A -ul } }
p’ (W) et Bldet(B A -pD) ) {( L) '
=1
& fa =
ind for By
n
“(u) = - det(A-pu, B) }A {(B“lA - 1)"1} (3.20)
L My o APy Jj ’
Jj=1
[ -1 Y
To calculate {(B A-*pkl) we solve
3
(A-~uk B) z = Bej (j=1,...,n) (3.21)
where we need to find only the j'th element in z, say Zj' The

Newton iteration formula, Eq. (3.17), then becomes

_ |
Pri = M n

One may like to compare the cost of two Secant steps with one
Newton iteration, Essentially, we then need to compare the opera-

tions involved in the solution of Eg., (3.21) and two factoriza-

ks

. 2 .
tions or about n mA versus %r1mA operations, Therefore the

Newton iteration is much more costly, The algorithm was tested
‘and it was found that the iteration times are much longer than

using Secant steps,

3,3,4 Starting Iteration Values

In the Secant iteration we need two starting values By and
o which are both lower bounds on Kl. With B positive definite

one starting value is zero, As the second value we may use a
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negative number, whose magnitude depends on the norms of A and B,
However, it is more efficient to use for MZ a positive lower
bound on Xl. If uz is close to kl we may need only one more
factorization to bracket the root, Let us note that a positive
lower bound on Kl cannot be obtained usiﬁg matrix norms only.
Assume that A is a structure stiffness matrix with the rigid body
modes not removed, and that B = I, It is clear that from the
magnitudes of the elements in A alone we cannot conclude that
the lowest eigenvalue of A is zero,

A positive lower bound estimate on kl would be obtained
from a single Newton step. But the evaluation of the tangent is
costly, Therefore, the following scheme was used, An approximate
tangent was evaluated using first 3, then 5, then 7, etc.
evenly spaced columns in B, until successive tangent approxima-
tions varied by less than a factor, If the factor is small, we
probably have to evaluate the tangent quite accurately, But if
the factor is large, then b, may be much larger than Xl. In this
case, if there are Y negative pivots in the factorization at uz
the next estimate for By is taken equal to the last one divided
by (Y + 1) until v = 0, It is reasonable to use in the approxi-
mate tangent evaluation about as many operations as in a single

Secant step. On this basis we should use approximately % m

A
columns in B, However, as also observed in test examples, in

general many more columns in B may be needed to obtain from the

approximate Newton step By < Xl.
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not more effective,

Inver iteration analysis shows that an iteration vector

ultimately converges to the eigenvector corresponding to the
cigenvalue nearest to the shift, provided the starting vector
ig not deficient in that eigenvector. But it is important to
note that with a low convergence tolerance, we may accept an
approximation to any other eigenvector, In fact, if the toler-
ance is too low we may accept a vector which is not an approxi-
mation to an eigenvector at all, Also, convergence should be
based on the Rayvleigh corrections calculated. If the vector
iterates into an eigenspace of dimension larger than one, two
successive iteration vectors may be completely different and yet
have converged,

For an operation count we summarize an inverse iteration
step at the shift w to consist of

(A - uB) e T Yy (3, 24)

where referring to Section 3,3.1 we obtain x

- 15 ing
LDL =y
i1 T Yk

The right hand side reduction gives
L7 x = D L v
xk+l ' ’ Tk

and the back~substitution gives x (see also Chapter 5). Next

k+1

we form
y = B x (3,25)
¢ - k+1’yk

o) - (3.26)



1
— - —_ ] P
e { y — (Y i - s ; / 'S F K
/ = {y oW LoLo, w )/ (x V ) (3.
ST I T N t ot kil Ykal
where the w, are stored in core, and
i
W, = Bv
i i
o = (v v )
J Tkl
The number of operations are
dnp m+ 2nt + 5o when mo= W, o= m
A B
Zam 4+ Znt + 5n when m = mA : mB = 0

If the eigenvectors are calculated to high precision we
g
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27)

would only need to orthogonalize the starting iteration vector

to the eigenvectors already found, However, in general, the

orthogonalization in each iteration is advisable,

We should mention an inverse iteration scheme in which we

~ e
use the transformation z = L x _with B = LL". Then Eq. (3.24)
can be written as
T la-wm T0 3 =z (3.28)
; -’ k+1 k R
and we iterate as follows
’:J o A: Z
“x Loz
A-uBzy =7
— T o
Z = I 4
Jk+l 7k+1
Qc(w N (Zk+1’zk>
® Z o e
k+l (z , 7 )
k+17 k+1
z eV T/ 7
z = (z. . - B - .= P Nz, =z 2
k+1 “ker - 11 Beved/ o7 )

where
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o3

There is practically no difference in the number of operations

required, but we only need storage Ior the vectors ;g; whereas
using Ea. (3.24) to (3,27) we store the v, and w_. However, we
require the Cholesky factor of B. The direct scheme in Eq.
(3.24) to (3.27) is preferable because there are no difficulties

when B is ill-conditioned oy non-negative definite,.

]

3.5 Computational Aspects

In the preceding sections the algorithm was described to
perform Secant steps in orvder to shift into the vicinity of the
next unknown root, Then the iteration for the vector is started,
The final eigenvalue is obtained by adding the Rayleigh correc-
tion to the shift, Alternatively, one may calculate the root in
a Secant iteration to high precision and obtain the vector in one
or two inverse iterations, The greater efficiency of one method
over the other depends largely on the work involved in a Secant
step and in an inverse iteration,

¥Figure 4 shows the number of inverse iterations equivalent
in operations to one Secant step. In practical structural
analysis the half bandwidth is seldom smaller than 20 or 30, and
then inverse iteration is already considerably cheaper than
triangular factorization. After the jump, we may need, if many,
8 inverse iterations to find the final Rayleigh correction and

the eigenvector, At a small, practical bandwidth, the operations
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required would be eguivalent to about two factorizations., There-
fore, the strategy for starting inverse iteration is economical,

We may also consider using a Rayleigh quotient shift after
the first inverse iterations, However, once the vector has
settled down to some precision, final convergence is usually
rapid and another factorization would not pay.

To check convergence we calculate in each iteration the
current eigenvalue approximation

(k+1)
i

Qe
A :u+p(xk+) k=1,2,.,,

1
and a relative tolerance

‘X§k+1)”"X§k)l

(k+1) L (D
t = DY 0,0
i K(k”‘) SRS ¥
i
(k+1) | g . . . . e s
where Xi is the new approximation obtained in the k'th itera-

(k+1)

tion. We say that convergence has been reached once
smaller than a prescribed tolerance,
Error bounds on the eigenvalues are easily obtained in the

iteration. Let £ be the last iteration, then we evaluate

(A - uB) §z+1 = B x,
and

‘ (x /BX,)

o7 = T

g1 8% ,0)

and have with O positive

where  is the current shift and Ki is the exact eigenvalue of

Av = ABv [57,
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Note that in practical examples p(uk) can be much larger
than the overflow of the machine and that therefore a scale
factor is used in the evaluation of the polynomial values,

In order to find the largest eigenvalues in Eq. (2#20)’ i.e,

Bv = MAv

the solution scheme is modified in an obvious way to iterate from
the right to» . In this case we use o= \\BK‘/%lA , where
}IA is the smallest eigenvalue of A and l‘B“ is any convenient
norm of B, We only need an approximation for xlA obtained from
a few inverse iterations on A, If ul < %n we need to increase
the shift until all pivots in the triangular factorization of

(B - MlA) are negative,

3.6 Av = ABv with B Diagonal and Non-Negative Definite

We are particularly interested in the case B diagonal with
some zero diagonal elements, Assume that we have t zero diagonal
elements in B, Instead of Eq. (3.1) consider the equivalent
problem

Bv = MAV (3.29)
where W = 1/\ and A is positive definite. By simple substitution
we find that Eq. (3.29) is satisfied with the eigenvalues
%i = 0 i =1,...,t and the corresponding eigenvectors v, = ej
where i = 1,..,.,t and the j are selected to correspond to the
zero diagonal elements in B. It follows that in Av = ABv we have
t infin?te elgenvalues, Physically an infinite eigenvalue
represents an infinite frequency which arises because zZero mass

has been associated with a degree of freedonm,
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In the algorithm developed no difficulty at all arises in
finding the lowest eigenvalues and corresponding vectors in
Eg. (3.1) when B has zero or small diagonal elements, If, instead,
a program 1s used which transforms the generalized eigenvalue
problem into the standard form, Eq, (3.,2), it is necessary to
have large enough diagonal elements to preserve numerical

stability.

3,7 Programs SECANT and SECANTD

Both programs use the algorithm described in this chapter
to calculate the smallest eigenvalues and associated vectors in
the problem Av = ABv, Program SECANT was written for the case B
banded and SECANTD for the case B diagonal non-negative definite,
To obtain programs which calculate largest eigenvalues and
corresponding vectors in the problem Bv=#u Av only a few modifi-
cations are necessary.

The programs have been established as efficient in-core
gsolvers, During execution both matrices A and B together with
the iteration vectors are in high speed storage, Therefore the
maximum system size that can be analyzed is governed by the high
speed storage available, As was pointed out the determinant
search technigque ig most efficient on systems with small band-
width, -in which case on a reasonable size computer the order of
the matrices can be large,

The calling parameters, storage requirements together with
the program listings are given in Appendix II, ©Note that SECANTD

is called by program MODES described in Chapter 5,
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4, EIGENVALUE ANALYSIS USING A SUBSPACE
ITERATION TECHNIQUE

4.1 Introduction

In the previous chapter an algorithm was developed which
uses factorizations and then vector inverse iterations to find
sequentially eigenvalues’and corresponding vectors, If the
bandwidth of the system 1is large, a triangular factorization is
much more costly than a vector inverse iteration, In this case
an algorithm which uses primarily vector iteration and only a
few factorizations altogether is more economical, Such algo-
rithm is presented in this chapter, The technique used 1is a
subspace iteration on operators A and B simultaneously. First
the theory is presented, Then various numerical problems
encountered in the solution are discussed, The main difficulty
is the selection of the starting subspace, Various schemes have
been considered, and a very simple but effective way is now used
in the programs. For the solution of the small generalized
eigenvalue problem in the subspace iteration, a generalized
Jacobi method, iterating directly on both operators is used,

Program SSPACE is introduced which finds the smallest eigen-
values and associated vectors, but has also been used with small
modifications to calculate all eigenvalues in a specified inter-

val, Example analyses are given in Chapter 6,

4,2 A Subspace Iteration Algorithm for the Generalized
Eigenvalue Problem

We want the smallest eigenvalues and corresponding vectors of

the problem
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Av = ABv (4.1)
when B is positive definite or diagonal non-negative definite.
The basic idea is the simultaneous iteration with a number of
vectors, Let Xk store p iteration vectors after k iteration
steps, then we could solve

-1
= = 1,2,... .2
Axk+1 BXk Rk+1 k T (4.2

whe re RI%I is an upper triangular matrix which ensures that the
4 -
vectors in Xk+l are B-orthogonal,
We recognize Egq, (4.2) as simple inverse iteration with

Gram-Schmidt orthogonalization. Provided the starting vectors

in Xl are not deficient in the eigenvectors corresponding to

xl to ’Ap and xl < }‘2 = ,., £ Ap < )\p+1 we have

-5 : ~» k =+ o
Xk v Rk A as

where

AV = BVA

and

A

The i'th column in Kk converges to the i'th eigenvector with a

A A
~1 i .
rate of max iy ’ 3 . This convergence rate results from

i 1+l

ot

the Gram-Schmidt orthogonalization of the iteration vectors from

the left to the right. We note a disadvantage of the iteration

®

If, for example, the first column is not very rich in v but

1’



the third column is, then in this iteration no advantage is
taken of it,

We should be able to do much better than in Eq, (4.2).
Assume that the starting vectors in Xl span the p-dimensioconal
least dominant subspace, but are not eigenvectors, A good
iteration scheme would find in this case the eigenvectors in a
single step, However, using Eg. (4.2) the number of iterations
needed depends on how rich the individual starting vectors are
in their final corresponding eigenvectors and on the convergence
rates,

In order to improve upon the iteration scheme in Egq. (4,2)
we need to realize that we are actually iterating with a p-
dimensional subspace, Let the columns in Xk span the space
denoted by &k, then

8k+1 = &C!Ax =By ; v € Sk} (4.3
Furthermore, the same sequence of subspaces as by Egq. (4.2) is

also generated using

.Axk“*_l = BX (4.4)

This seems to contradict the fact that in this iteration each
column in Xk+1 is known to converge to the least dominant eigen-—
vector, Actually there is no contradiction, Although in exact
arithmetic the Xk+1 generated by the rules in Egs, (4.2) and (4,4)

span the same subspaces, the X in Eq. (4.4) become a poorer

k+1
and poorer basis, The Gram-Schmidt orthogonalization in Eq, (4.2)

preserves numerical stability in generating an orthogonal basis

in each subspace,
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Our aim is to find in Sk 1 a basis of vectors which are
+

much closer to the eigenvectors sought than the columns in

Xk 1 in Eg. (4.2), The following algorithm gives an improved
74

convergence,

ol - 7 i e €
For k = 1,2,,., , iterate from Kk to Kl
X = 4.5
AX, .y = BX, (4.5)
Find the projections of the operators A and B onto 8k+1
A - X5 A% (4.6)
k+1 k+l k+1
T —
= X BX 4.7
Bk+1 k+1 k+1 ( )

Solve for the eigensystem of the projected operators

A = 4,
Ak+1 Qk+1 Bk+1 Qk+1 Ak+1 (4.8)

Find an improved approximation to the eigenvectors

X = X Q

4.9
k+1 k41 ( )

k41

where then

Ak =+ N Xk -+ V as k -+ «
The better convergence rate is immediately observed by re-

ferring to the extreme case discussed with Eq.(4.2) on page 42,
In this case the above algorithm yields in one step the p least

dominant eigenvectors, This is obvious because we actually solve the eigen-

value problem of A and B in the least dominant p-dimensional subspace,
Rutishauser used a different subspace iteration algorithm

[127, but his convergence analysis is applicable to the above

scheme, It shows that the asymptotic convergence rate of the

i'th vector to an eigenvector is Ki/kp where the iteration is

+17

performed with p vectors. Although this is an asymptotic
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convergence rate, 1t indicates that the vectors corresponding to
the lowest eigenvalues converge fastest, Also, a high conver-
gence rate can be obtained by using many more vectors than

there are eigenvectors required., Multiple eigenvalues do not
decrease the convergence rate as long as Kp < Ap+l’

In practice we are much interested to know what happens
already in the first few iterations. Referring to Section 2.2
we identify Egs. (4.6) to (4,9) as a Ritz analysis with the
vectors in §£+1 as the Ritz functions. Therefore the eigenvalues
in Ak+1 are stationary points in conformity with Rayleigh's
minimum principle and they are upper bounds on the eigenvalues
%1 to Xp, Also, we recall that in a Ritz analysis the lower
eigenvalues are approximated best [13],

As was pointed out already, the same sequence of subspaces
is generated using either of the three iteration schemes., How-
ever, the number of operations required in one step using Eq.
(4.2), Eq. (4.4), or Eqs. (4.5) to(4.9) are different. There-
fore, a combination of all three schemes has been implemented.

A number of subspace iterations have been presented by
different authors. Originally, in 1957, Bauer proposed a
bi-iteration method for solving AV = Av with arbitrary matrix
A [147. Rutishauser specialized the idea to the case A symmetric
[127]. Jennings introduced a simultaneous iteration method, in
which he calculated a linear prediction matrix, to predict
better vectors from the current iteration vectors [15][16][17 ].

The algorithm in Eq. (4.5) to (4,9) has the advantage that

it gives a direct solution of the generalized eigenvalue problem,
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and we have a clear geometric understanding of the solution
procedure, In this section only theory was presented, But, in
my opinion, the value of an algorithm can only be judged after

exposure of all its numerical problems.

4,3 A Generalized Jacobi Iteration for the Problem Av = ABv

In Eq. (4.8) we calculate the eigensystem of the projected

operators, The problem may be restated as

Av = ABv (4.10)
where A and B are full matrices of order p and B is positive
definite,

We observe two features, In the first calculation of the
operator projections, B in Eq. (4.10) may be quite ill-conditioned,
This can be the case in the analysis of building frames (see
Section 6,5)., Secondly, we note that as the iteration vectors
approach the eigenvectors, A and B in Eq. (4.10) tend towards
diagonal form,

If B = SST, then the problem in Eq. (4,10) is equivalent to

s tas™) ") = asTw (4.11)
Efficiently, S is taken as the Cholesky factor of B, in
which case S :'Ee If B is well-conditioned with respect to inver-
sion, then this is a very stable process. However, when B is
ill-conditioned, this process is itself ill-conditioned, We know
that as B becomes semidefinite, the system has very large eigen-—
values, However, as Xn = 1YE_1AE”T\‘ the elements in'i”lAi’T are

then very large and the eigenvalues of normal size are determined

inaccurately.
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We may also find a matrix S using the spectral decomposition
. . 2.7 . : .

of B, i.e,, B = RD'R , in which case S = RD. This has an advan-
tage if B is ill-conditioned, because the ill-conditioning of B

. -1 -7

is now concentrated in the small elements of D. In 5 AS only
those rows and columns corresponding to the small elements in D
will have large elements, and the eigenvalues of normal size are
more likely to be preserved,

A small example on which both transformations break down,

although the finite eigenvalue can be well determined, is given

by

2 1 2 0

A = ;B::

1 2 0 0

solving
2-2h 1
. 3 _
det . , = 0 gives )\1—4, ()\2 o)

In the programs developed a different solution is used which
avoids a factorization of B and takes advantage of the fact that
A and B tend towards diagonal form [18], Consider the case
n = 2 as in the standard Jacobi iteration

53 ik %5 ik
A = ; B = (4,12)

. b .
Ak j Ak P Pk

Our aim is to find the two B-orthonormal vectors which also

diagonalize A, The columns in V, where
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V = (4,13)

completely determine the directions of these vectors, The
coefficients o and vare obtained from the condition that the
. T T .

off-diagonal elements in V AV and V BV shall vanish . We note that
in general, the diagonal elements in VTBV are not unity because
the columns in V are eigenvectors which are not B-orthonormalized,
The eigenvalues are the ratios of the diagonal elements in

T T .

YV AV and V BV, The equations for ¢« and VY are

+ Ya 0 (4,143

i

aa ., + (1 +QVY) a,
JJ .

jk kk

ob 3 =
33 + (1 +av) bjk + ybkk 0 (4,15)

Tf A and B are scalar multiples we set ow = 0 and obtain

-8

. )

Y o= ~¥L~, In the general case let
“kk

kk kk Pdr T P 2k
‘. a,. b, -
dJ Jjj ik Ji Jk

233 "kk kk Pij

o]
w |

R £
bl X
then
) — —
X = ax akk ajj 0
az —
. _a a 4akk ajj
1,2 2 4

where we use the absolutely larger value of x,
In general,we know that this congruence transformation is

possible provided one of the operators is positive definite, Note
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corresponding analogy between Fas, {(4.14) and (4,15),

Let us the method to solve the small example above, In

P O
this case

E 1 0]
YV o=
and
3
e O 2 0
. 2 ;
VAV = VBV =
. O 2 0 0
hence

The eigenvalue problem Av = ABV with matrices of order larger
than two can now be solved in a similar way as the standard
elgenvalue problem when rotation matrices are used, For example,
we may reduce A and B simultaneously to tridiagonal form and then
use a determinant search technique to find the eigenvalues,

In the subspace iteration programs the method is used in

form of a Jacobi iteration on 4 and B ﬁimuitanuously; This way
we take advantage of the small off-diagonal elements in A and B
as the pumber of subspace iteryations increases,

The Jacobi iteration on A and B can be implemented in wvarious
ways, One may simply zero the off-diagonal elements sequentislly,
i%reﬁp@ctive of how small they are already, But it is more effi-
cient to use a threshold iteration, in which the elements are
only zeroed, if they are in magnitude larger than the current

threshold,



Physically, in the diagonalization we want to reduce the
coupling between the generalized degrees of freedom i and j. A

measure of the coupling is given by the coupling factors

The iteration iz most

aefficient if we aunnihilate first the most
the smaller coupling, until the diagonal forms have been reached,

The following natural scheme is used in the programs:

L,
foudn
s

Initializme the threshold for the k'th sweep
(i1Y ¥For all (3,13 with i < j calculate the coupling
factors and apply a2 transformation il either is
larger than the threshold,
{iii) Caleculate new eigenvalue estimates.
{(iv) Compave the new eigenvalue estimates with those from
the previous sweep, 1T the change is too large,
start the next sweep, Before convergence is accepted,
check if all coupling factors are smaller than the

tolerance on the eigenvalue

In (i) we need to make a decision what threshold should be used,

P
ad

If we want to have the coupling factors smaller than 10 after

about six iterations, it is reasonable to use as the threshold

-2k N . . . .
10 . In (iv) it may be that the relative change in the eigen-

)

~1%2
value estimates are smaller than 10 , but the iteration con-
tinues until the coupling factors are also small enough, Note, in
(ii) we only need the square of the coupling factors and compare

it with the square of the threshold tolerance, but this still re-

gquires six multiplications st each check, We could use



a,./a and {(b. /a where
¢ i / m> A 13/lm)’

e .

1Y 1%
a ==) a ., b ==, b  and would only need two multiplications
m vl il m pl. 1l

i i
at each check, However, in example analyses, convergence was not
reached as fast, It is important to use the coupling factors as
thresholds because the diagonal elements in A and B, calcul ated

in the subspace iterations can vary significantly, For example,

in the subspace iteration analys of the frame in Section 6,5,
the largest ratio of the diagonal elements in B is in each
iteration about 1()4 or more.

Considering the numerical stability of the method, we
realize that V is not an orthogonal matrix. Therefore, element
growth could occur in A and B. This element growth has never
been observed but would have to be counteracted by normalizing
the elements in B after each sweep,

Note that if the method is used on the standard eigenvalue

problem, we find @ = - ¥ and recognize V as a multiple of the

Jacobl rotation matrixz, where

cosh = lm§ , sing = Y 5
N/;;V 1Y

4.4 Selection of Initial Transformation Vectors

The choice of the initial transfomation vectors in Xl is
most important, If these vectors are already close to eigen—
vectors, convergence can be obtained in a few iterations., On

the other hand, when the starting subspace spanned by the vectors

is only a poor approximation to the least dominant p-~dimensiocnal
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subspace, many iterations are required and the algorithm can
become expensive,

Therefore, whenever we have starting vectors which quite
well approximate the eigenvectors sought, these vectors should
be used in Xl" In this case, the algorithm is ideally suited
for solution, In practice, this may arise for instance in
dynamic optimization. As the structure is modified in small
steps, the eigensystem of the previous structure would be a good
approximation to the eigensystem of the new structure. Some-
times it may be difficult to judge if good transformation vectors
are known, But the conventional Ritz analysis in which load
patterns are specified (see Section 2,2) the component mode
synthesis and related methods summarized by Uhrig, can all be a
'good' Tirst subspace iteration [37.

Assume that we do not have by previous experience or
analysis 'good' transformation vectors, Consider the problem of
chooging the sgtarting subspace using the operators A and B only,
i,e, the columns in Xl shall be established by the computer using
only the elements in A and B,

One way of solution would be to find X, from two operators A’

1
and B’ which have a least dominant p~dimensional subspace close to
the one of A and B. Naturally, we would like to find A’ and B and
its eigensystem with little effort, Different possibilities can
be investigated,

In the component mode synthesis we establish the vectors in

X1 from eigenvectors of a number of pairs of smaller operators
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have to be solved for, as we now assume, then this procedure is
very expensive, Furthermore, it is difficult if not impossible
to have the computer establish adequate pairs of operators A’
and B,

A different scheme could be used, in which we reduce the
order of the eigenvalue problem, The operator B’ is obtained by

lumping the elements in B into q diagonal positions, where

p < g << n, The other coordinates are eliminated and the
a-dimensional eigenvalue problem is solved. This procedure was
described in Section 2.2 as static condensation of the massless
degrees of freedom. It was pointed out’that it is a subspace
iteration on the operators A and Bf, where the vectors in

B X1 of Eq, (4.5) are unit vectors with entries at the g-coordi-
nates, We should expect to obtain a better solution using the
same starting transformation vectors but performing a subspace
iteration on the operators A and B,

Suitable operators A’ and B’ may also be obtained by reducing
the bandwidths of A and B, If the bandwidths can be reduced to
very small, then the solution for the transformation vectors is
economical, ‘Assume that B is diagonal, so that we are only con-
cerned with the reduction of the bandwidth in A, Physically, a
bandwidth reduction means a lumping of stiffness, which can hardly
be carried out adequately without the analyst specifying it,
Otherwise a model may be analyzed which in no way resembles any

more the original model of the operators A and B,
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It is more direct to start immediately iterating with the

operators A and B. The following seemed to be a good scheme,

We use inverse iteration starting with a vector having +1 at

each coordinate to find the first transformation vector. We
repeat the same iteration to find all other transformation vec—
tors, but the iteration vector is now orthogonalized to the
transformation vectors already accepted., FEach time the iteration
is stopped once the eigenvalue estimate changes by less than a
tolerance., The defect of this scheme is the following, 1If the
tolerance for accepting an iteration vector is very high, then

we virtually solve the eigenvalue problem in an expensive way,

On the other hand, if the tolerance is low, then the iteration
vector may be an approximation to an eigenvector which we do not
want to find. Therefore, the starting subspace is not 'good' and
may even be orthogonal to one of the required eigenvectors, Also,
we need at least three to four inverse iterations for each
transformation vector, 1In terms of operations this is approxi-
mately equivalent to three subspace iterations.

The final conclusion is that it is best to start directly
with subspace iterations on the operators A and B. The following
vectors in R =B Xl, which represent the right hand side in Eq.
(4.5), have been found most effective, The first vector in R is
simply the diagonal of B. The other vectors are unit vectors
with +1 at a coordinate with a large ratio bii/aii' The algo-

rithm below describes how R isg established,
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c ESTABLISH STARTING THANSFORMATION VECTORS
DO 200 I=1,N
200 R(I,1}=B(1)
IFP (NC,EQ,1) GO TO 295
ND=N/NC

DO 210 I=1,N

210 W{I)=B{1)/A(1)
DO 220 I=1,N
DO 220 J=2,NC

220 R(I,J)=0_0

{==N-ND
DO 240 J=2,NC
RT=0,0
DO 260 I=1,L
IF (W(I),LT,RT) GO TO 260
RT=W(I)
TJ=T
260 CONTINUE
DO 280 I=L,N
IF (W(I).LE,RT) GO TO 280
RT=W(I)
IJ=1
280 CONTINUE
W(IJ)=0,0
Le==L~ND
240 R{(IJ,T)=1,

295 CONTINUE

In the algorithm N = order of matrices, NC = number of transfor-
mation vectors and A and B are stored as one-dimensional arrays,
The physical reasoning for the selection of these starting
or load vectors is as follows, ‘First of all, not to miss a mode
all mass degrees of freedom are excited in the first vector, The
other vectors must be linearly independent and should excite
points of maximum mass and flexibility. Also, for better conver-
gence the unit entries in the second to last vector should not
be clustered together very much, These ideas are also used in
the block iteration solution (see Chapter 5), but the algorithm

used in that case (normally) reads A and B only once into core,



Observe that in exact arithmetic, we may replace a vector
by any linear combination of the others and itself and we still
have the same starting subspace,

Referring to Section 2,2 we need to note how closely related
this first subspace iteration i1s to a static condensation
analysis. Assume that we would use only unit vectors and that we
had lumped the mass at the coordinates at which the unit loads
are applied, then the static condensation analysis would give the

same results as the first subspace iteration,

4,5 Numerical Aspects

There are various numerical questions which needed a thorough

investigation in the implementation of the subspace iterations,

4.5,1 Dimension of Subspace

As mentioned already there is advantage in using more
iteration vectors than there are eigenvectors required. The more
vectors we take, the larger the initial subspace we span and the
higher the ultimate convergence rate of an iteration vector,
Therefore, we iterate with g vectors when we want to find the p
least dominant eigenvectors, ( > p. It is most important in the
iteration that we obtain monotonic convergence of p vectors to
the eigenvectors sought, Assume that our starting subspace is
almost orthogonal to one of the p eigenvectors, Then for many
iterations we may have no approximation to that eigenvector,

But suddenly it appears and rapid convergence to the required

eigenvector is obtained,
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A reasonable number of iteration vectors is given by

q = minf2p,pss] (4,.16)

With this formulaz we do not Use an excessive number of iteration
vectors, we allow for multiple roots and the dimension of the

subspace is large enough to expect monotonic convergence,

4.5.2 Convergence

An advantage of the subspace itervation over vector inverse
iteration with shifting followed by matrix deflation is that
high precision in the eigenvalues and vectors is npot required for
numerical stability (see Section 3.2). In practice, we are
probably satisfied with 5 to § digit accuracy in the elgenvalues,

In the iteration new eigenvalue approximations are only ob-
tained when the projections of the operators are calculated,
Assume that in the iterations (k-1) and k we calculate eigenvalue

, Gs+1)

k .
approximations Xf ) and respectively, then we also find

‘x§k+1) B x?k)i
i i ]

“t"(k*ql) = ; >\_(i) = 0,0 (4.17)
i X(k) i
i
, “ L o . (k1) ) .
All those eigenvalues for which ti is smaller than a pres-

cribed value, which we call RTOL, are said to have converged,
The subspace iteration is stopped once the required p
eigenvalues have converged or the maximum number of iterations,
NITEM, has been carried out, NITEM naturally must depend on the
eigenvalue accuracy asked Tor, The maximum which RTOL should

probably take is 10“‘{3 and then we may use NITEM = 12,



4.5.3 Check Calculations

The starting subspace described in Section 4.4 has bheen very
satisfactory for obtaining monotonic convergence. In the example
analyees used always all required eigenvalues and vectors were
approximated monotonically with incressing accuracy, A different
starting subspace spanned by only unit coordinate vectors was
not as 'good’, 1t happened in some analyses that a required
eigenvalue was missing.

In general we can make sure that we found the lowest p eigen-
values using the eigenvalue separation theorem (see Section 3.3,2),
A factorization must be carried out at a shift to the right of
the p'th eigenvalue obtained in the iteration, In order to know
where the check can be applied it is necessary to establish

pounds for the 'exact eigenvalues A .
i

L (41 441
Let }i +1) be the eigenvalue approximation and vi ) be

the orthonormalized vector obtained in the last iteration, Assume

that B is positive definite, then we have

r. = (A %g’gﬂ)B) vg’“‘) ;o Moo= (I“,,B"l"r_, )1
i i i i i i
and
i i i i i

1f B is diagonal non-negative definite we could consider the prob-
jem Bv = MAv instead (see Section 3,6). These error bound calcu-
jations can be rather expensive, and in practice we probably

don't need exact error bounds, For the check we may also use a

conservative estimate for a region in which A, lies, given by
i



10 7y < )_i ) (1+10 ) (4,19

LD 10y < a0 107
1

where only the lowest eigenvalues which all have reached conver-

T

nce should be included,

N

4
¢

1t is now necessary to evaluate upper bounds on eigenvalue
clusters (Fig. 5). A check can be applied at any one of these
bounds, Assume that in ¥Fig. 5 at E one eigenvalue 1s missing but
none at F. Then we could use the interval from ¥ to E in ancther

subspace iteration in which all eigenvalues in this interval are

calculated,

4.5.4 Shifting

The lowest eigenvalues converge first in the iteration,
T+ seems reasonable to try and shift after the first iterations in
order to speed convergence of the higher eigenvalues, The main
danger is to shift too far to the right and lose convergence to
the lower eigenvalues. On the other hand a very small and there~
fore conservative shift does not give a significant increase in
the convergence speed of the higher eigenvalues, A reliable and
good shift can only be determined once the eigenvalue spectrum 1is
known approximately. All required eigenvalues need have settled
down before shifting. But then convergence is reached in the
next subspace iterations and an additional factorization is

uneconomical,

4.,5,5 Operation Saving

Once the lowest pl, pz < p, eigenvalues have converged,

we may like to stop iterating on the corresponding vectors, This
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way we would save the inverse iteration on pz vectors and we
would not include them in the calculation of the new right hand
side in Eq. (4.9), However, this can only be done once the space
spanned by the rest of the vectors is orthogonal to the space
spanned by the pﬁ vectors, Numerically, this means that the
off-diagonal elements in the pg first columns of Bk+1 in Eq,

(4,.7) must be very small, 1In general , convergence for all p

cigenvalues to RTOL=10"% is obtained before this condition is reached,

4,6 Operation Count

The triangular decomposition of A before the subspace itera-

1 2 3
tion is started requires (5 nn% +~§t1mA) operations, Recall that

one operation equals one multiplication which nearly always is
followed by an addition, and that m, and mB are assumed to be
full,

We now need to distinguish between three iteration schemes
(a) simple inverse iteration of all vectors, (b) inverse itera-
tion followed by Gram~Schmidt orthogonalization and (¢) inverse
iteration followed by the calculation of the projections, 1In
the first two iteration methods we do not calculate eigenvalue
estimates, The simple inverse iteration is used only once or
twice and we do not normalize the iteration vectors, Table 1
summarizes the steps in éach iteration and the corresponding
number of operations. Terms involving the bandwidths only have
been neglected,

We note that for m “~ g we need in all three schemes about

the same number of operations, But when A and B have small or
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Operation count
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iterations a, b and c,
NUMBER OF OPERATIONS
METHOD CALCULATION U RA N
m o= W, o= mo=m ;m_ = 0
A B AR
(a) B
Simple AXk+1::Yk ng {(2m+1) ng {2m+1)
Inverse
cerati Yy . = BX Zm+1
Tteration Xk%l BXK+1 ng { 2m+1 ) ng
TOTAL Zng (Zm+1) 2ng (m+1)
() B
Inverse AX = Y ng (2m+1) ng { 2m+1)
) k4l k
ITteration
yith Gram- v = BX Zm+1
% th‘ ram Ek+1 BXR+1 ng (2m+1) ng
Schwmidt _ -1 ng ng
iRt A al~— 4 =Y e {14 3 {3 -
Orthogonal Teet T a1 e 5 (3a+3) 5 (Ja+3)
ization - .
TOT! 2 Zm+ T + A0 2 C2q + 1
TOTAL nq(Zm+ 2q + %) ng(m+ gq + L
(c) _
Iteration AXp{l =Y ng { Zm+1) ng (2m+1)
Using ) - ) nq ng
Jjectior ~%7 nq 29 (g
Projection Ak+1 el Yk 5 {(g+1) 5 (g+1)
of
Operators Yk+l»'BXk+1 na(2m+1) ng
T
=t ng ng
= Y {q+ —
Brear ™ fes Vet 7 () 7 (D)
3
= \ 0 ) negllected ...
Ak+1Qk+1 Bk+1Qk+1[k+l @ &
Y ~”§ Q n 2 -
k+1 7 Tk+1l k4l 4 na
TOTAL Zng (Zm4g + %) 2nq(m+q+-% )




medium bandwidth a combination of a, b and ¢ can be significantly
more economical, In program SSPACE (see Section 4.8) we perform
first subspace iterations using a and b and then we iterate with
¢ to obtain elgenvalue estimates,

Consider first the case B diagonal., To give some meaning to
the number of operations required in an eigenvalue solution, we
define variables o and WT‘ Let « be the number of factorizations

equivalent in operations to a subspace iteration ¢, hence

2
o - 2amt 29 2 84 (4.20)
m o+ 3m

We note that ¢ is independent of n, Let QT be the total number
of operations in terms of factorizations required for the sub-
space iterations,

QT = @ X {total no, of iterations for convergence) (4.213

Assume that we use Eg. (4.16) for the’relation between p and g,
and that we want about five digit accuracy in the eigenvalues,
Then, by experience, we need approximately 8 subspace iterations,
Figures 7 and 8 show for this case the relation between @T and m
for different values of p, The same information is also given for
the case mB = mA, In this comparison of Central Processor opera-
tions it is assumed that we elther perform an in-core solution, or
that arrays are transferred in large blocks. 1In thisg case the
CP time spent in tape reading and writing is negligible [16],

We may now say that the complete eigenvalue solution involves
the initial factorization of A, the factorizations given in Figs,

7 and 8, which account in terms of operations for the subspace
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iterations and the final check calculations, When k subspace

iterations are needed instead of eight, we merely use the in-
formation in Figs, 7 and 8 times k/8. This will be the case

when we have already excellent starting vectors from a previous
solution, or when we want the eigenvalues to full wmachine
precision,

The operation count shows that with larger m about twice as
many operations are required when B is banded, We also note that
when m is large the operations required in the subspace iterations
are of the order of a factorization, But when m is small the
eigenvalue solution is equivalent to many factorizations, A good
figure to remember is that with m = 320, g = 10 and mB = O the
subspace iterations are about equivalent to one factorization.

. X : 32
An approximate formula for m being large and mB = 0 18 QT = ?;q ,
where we observe that for m large the only significant operations
are the vector inverse iterations,

Using the determinant search technique we may require an
average amount of operations equivalent to about 6 to 8 factoriza-
tions in order to calculate each required eigenvalue, A large
system with a small bandwidth has probably a handwidth between

40 and 60, We note that a subspace iteration solution is then

already cheaper but not excessively,

4,7 Calculation of Eigenvalues and Vectors 1in an Interval

The subspace iteration algorithm was implemented to find all

eigenvalues in an iterval {_ to mr(Pig,G). We use the eigenvalue

B

separation theorem at [ and MB to find how many eigenvalues and

T
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corresponding vectors need be caleculated. Then we sshift to the
midpoint of the interval MM and start the iteration,

In the algorithm we iterate with p vectors when we want to

find p eigenvalues between HB and MT' The ultimate convergence
., R . . M i T
rate of the i'th iteration vector 18 max vww~m~‘ , \?'**fm\ )
A [ T
B M T M

where X% and XT are the eigenvalues at bottom and top end next

to the interval., We note that convergence can be slow for eigen-
values near the upper and lower end of the interval., To speed
convergence for those eigenvalues we can wait until an eigenvalue
has settled down, We then shift to it and use inverse iteration
on the corresponding vector to obtain the eigenvalue to high
precision. This means that we need more factorizations than in
the iteration for the lowest eigenvalues, and in general this
iteration is more expensive,.

Apart from the slower convergence there are additional
numerical difficulties in this solution.

Although rare it can happen that an iteration vector is
oscillating in the space which is orthogonal to
the space sgpanned by the p eigenvectors sought, Because the
operator (A MMMI” is indefinite, the oscillating iteration vec-—
tor can give a Rayleigh quotient which lies in the interval con-
sidered, However, this is detected when we calculate error
bounds using Eg. (4.18),

Assume that we want to find p eigenvalues and that W is an

eigenvalue of multiplicity s, where p -~ 8, As the shift is on
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the eigenvalue, each of the iteration vectors will converge
immediately to an eigenvector in the s-dimensional subspace and
the iteration will fail, This will seldom occur and we can
detect it because the last s pivot elements in the triangular
factorization will be very small., But p _may be near an eigen-
value and the iteration process will have difficulty to converge,

It may happen that W _ or MT is an eigenvalue, then we do not

B
need to iterate for it in the subspace iteration,

Assume that we want to calculate the smallest eigenvalues
from zero to a cut-off, Then we may find how many eigenvalues
are smaller than the cut-off, say p, and use the subspace itera-
tion with g vectors and shift equal to zero,

It is ohvious how to calculate the largest eigenvalues in
By = ®Av, We merely need to shift to by = HBH/llA, where KlA

is the smallest eigenvalue of A and HBH is any norm of B (see

Section 3.5},

4,8 Program SSPACE

Program SSPACE uses the subspace iteration technigque pre-
sented to evaluate the smallest eigenvalues and associated vectors
in the problem Av = ABv when B is banded or diagonal non-negative
definite, During execution both matrices A and B together with
the iteration vectors are in high speed storage, The program was
used for the study of the algorithm, It is written flexibly so
that any combination of the three different subspace iteration

schemes in Table 1 can be used, A few wodifications are necessary

to obtain a program which finds eigenvalues and corresponding



vectors in an interval or to calculate the largest eigenvalues

in the problem Bv = H Ax

The calling parsmeters, storage reguirements and a listing

the program are given in Appendix

S
[
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5, PROGRAM MODES

5,1 Introduction

The programs presented so far all have a capacity restric-
tion, In the solution matrices A and B together with iteration
vector arrvays need to fit into high speed storage, If much
high speed storage is available, large systems can be analyzed,
Computers have been growing continuously, but currently, even
when a large computer is available, there are systems to be
analvzed which are too large for an in-core solution, In
general, Tor structural engineering problems the lowest eigen~
values and vectors of large systems are required,

In this chapter a program is presented which evaluates the
lowest eigenvalues and vectors of systems that may or may not
be solved in high speed storage, Program MODES solves the eigen-
value problem for B diagonal and non-negative definite, This is
the most common requirement in structural enginering, The
program has been used with SAP [19], but could easily be coupled

to any other program which generates the matrices A and B,

5.2 Program Operation

It is assumed that metrices A and B are stored on tapes in
block form {(Fig, 9),

If only one block is used, program SECANTD is called for an
in-core solution., In this case, it is assumed that we have either
a large system with small bandwidth and SECANTD is appropriately

e

used, or we have a small system with larger bandwidth, Then the
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eigenvalue solution is still not very costly and we have the

advant wwe of getting the eigenvalues one-by-one to high precisi
with error bounds,

Kl more blocks than one are used p ram SSPATER is called

carrvied out, In each sub-

and a subspace iteration
space iteration, the projections of A and B are calcoculated., As
wos indicated in Section 4.6 little more operations ave reguired
using this subspace iteration instead of inverse iteration
followed by Gram-5Schmidt orthogonalization, The advantage is
that we obtain eigenvalue estimates in each iteration., Alsc, in
a Gram-Schmidt orthogonalization much tape handling would be
necessary, At convergence a Sturm Sequence check can be per-
formed to ensure that all the regquired eigenvalues have been
calculated,

For best program efficiency the algorithm for the facitoriza-
tion of A and for the vector iterations need be optimized, For
details 1 =shall refer to the program in Appendix 11, but the main

operations are outlined on a small example in the next sections.

5.3 Block Factorization of A

Matrix A is factored into LDL using simple Gaussian

elimination (Eg, (3.10) with y = 0,03, Naturally, we work only

on the upper band of A (Fig, 9), Let initially element (i,j) of

the upper band of matrix A be stored in a, In the algorithm

the elements in a, | are changed until finally a 1 = and
1,3 1, id

a., . =4 .  where i = 1,,.,,0n and j = 2,....,m +L, We say
i,J j+i-1,1 ! ’ J ? A y

that a block has been reduced if all zkm to be stored in the



calculated anc

saeiated row

ope

the

The here 18 oy

canizaltion using bloo It ds Lo demonstrate s dgo-
rithm by considering a swall exampls Figure Y rAN A
and its storage in the algorithm, where NEQ=14, MBAND:=5,

Theo will have twe

and NEQR=35, DT OETram

of

each

There are main in

storage,

steps

of the first

the

is reduced, Consider reduction

which is

1

We

block note

that its
carried

(i)

another

step
reduction
the

out in

bl

First

Block, in

is kept

affects two

foliowing three

ock 1 is reduced

the sxample we

mao e

in high

operati

as far

evaluate

blocks,

speed
The
ong .,

5 it

a

orage

reduct

doos

not

ion

affect

s, o= @, . - a. | (i=1,,..,4)
2,0 2,7 1,341 ’

whe re urrent element to evaluate new ol

in a, .
i

3

e w ok g

)

o~

=t

1,542

A P
1,3
Bg o 7 fg T T E, Gi=1,...,4
3. 3, ag 4 2,3+
2
¥
2,
2.0
a, . D2
Z,2 a, ;




-3
[

{(1i) Block 2 is now called into core and we evaluate

ere,

We change the elements in block 2 and finally have stored multi-

L, A . F ) a4, a. 4, .. and a
57 72,37 72,47 2,57 73,27 73,3 Y34

pliers in a. a.
(iii1}) Block 2 is stored on temporary tape and block 3 is
called into its storage area, The elements in block 3 are
changed as in {(ii) and the block is stored on temporary tape
behind block 2,
Block 1 has been reduced and is stored on tape., We call

block 2 into its storage aresa and carry out its reduction

analogously,

in (1) we calculate the bandwidth at each row and we take
account of the variable bandwidth in (i}, (ii) and (iii). Also,
a change in the elements of s vow is skipped if the multipliery

4. is zero,
1]

5,4 Block Vector Iteration

Consider Egq, (4.5) which can be written as

5

LOL' X = Y
where X = X and ¥ = BX. ., We first reduce the vectors in Y to
k+1 k
obtain

T I
L X =D 1L 1Y

and then solve for ¥ by a back-substitution.
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5. LXAMPLE ANALYSES

6.1 Introducition

The aim in this chapter is

ram solutions in the ane

structures, These include a box givder, a dam, a plane frame and

Y
I}
o
[N

a three dimensional building frane, Al
could have been larger, but then more counputer time would have bheen

-

uged in the analyses without much changing the scolution ol

teristics. The programs used arve given in Appendix IT1.

in the subspace iteration sclutions the s subspace

was generated as described in Section 4.4, Convergence was

& ¥ - .w€, = ; [ g 5
reached for RTOL = 10 (see Section 4.5.2), The total time
used in the subspace iteration solution always includes the ini-

tial factorization of matrix A and the final Sturm Sequence check.

Referring to Bection 4.6 the sequence of subspace
performed in SSPACE was a,b,a,b,c,c,¢,.... Program SSPACER iz
called from MODES and performs only iterations c .

In program SECANT and SECANTD convergernce was reached fo
full word precision. Reference is made to program BANEIG 11,
which is the latest version of BANEIG [7]. All analyses were
carried out using the CDC 6400 on the RBerkeley Campus with a
maximum storage of 1300005 and a 48 bit mantissa in floating

point arithmetic.

6.2 Analysis of Cantilever Box

The finite element idealization of the box is shown in



Fig., 10. The segments of the box had originally 28 degreses o

£

freedom, but the 8 rotational degress of freedom were condense

out hefore assemblage., A lumped mass formulation was used in
the analysis., The order of the stiffnese. was 100 and the maxi-~
mum half bandwidth 19,

The swallest eigenvalues of the system together with the
solution times taken by the different prograws arve given in

oy

2., For SECANTD the total time used is just the sum of the

operation times for each eigenvalue., In BANEIG I1 the e

vectorg of the deflated systen veed still be transformed and this
time is added,

B (41ly . - ;

Table 3 gives the value Ty in Eg. (4.17) calculated
by program SSPACH, We note that after 6 iterations we
had convergence, Also, as was found when INTVAL was used, we
had anproximations to all 8 smallest eigenvalues,

Program INTVAL is a version of SSPACE to calculate sll
eigenvalues in an interval (see Section 4.7). The program was

used to find the eigenvalues between 0.0 and 10.0 and then between

10,0 and 40,0. 1In both analyses the program performed seven ime

the iterations a, b and then used the iteration ¢, in whict
eigeﬁvalug approximations are obtained. In order to find the
lowest 4 eigenvalues, two iterations ¢ were performed. In the
calculation of the higher eigenvalues individual vector itera-
tions were carried out on two vectors after the second iteration
¢ and then convergence was reached in one more iteration c.

In this analysis SECANTD is faster than BANEIG II and as fast
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bandwidth in

the smallest 4

the iteration ti

shown

tors and we obtained approximations to the smallest &

at this small bandwidth SECANT is

SEPACE. Note that BANEIG 11 could not be

5.4 Analysis of Dan

Figure 11 shows the finite element ideslizetion of the daw

with the three-dimensional clement used.

wag considered to calculate the symmetric

£

of The system was 213 with maximum half handwidth

mass formulation was used with masses at all deg

Table 5 gives the 11

iteration times by programs Shl D, BANE

S9PACE.  In this example,

i morve efficient, but not excessi

once used to analyze the dam for the lowest 6
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results we know that at convergence in thisz analysis we

nyg to the

rsis of plane Frame

a U=story high and 10-bay long

frame was analy:

3

The details of the frame are given in ¥ig, 12, The stiffress

7 and maximum half bandwidth 29, and

matrix,of order 29
lumped mass matrix were genersted by program SAP [181. We note

that zero mat

ses were assocliated with the rotational degrees of
freedom and BANEIG 17 could not be included in the comparison,
To calculate the 3 smallest eigenva

ves program SECANTD

performed an in-core solution and SSPACER used 3 blocks in o

subspace iteration. The eigenvalues with the iteration times are

given in Table 6. Referring to Table 3 we note the relatively
fast convergence of the subspace iteration.

A Ritz analysis wilh five transformation vectors obtained

by applying unit loads into the y-direction at levels 1,2,3.,4

and 3 gave ki = 00,6113, A, = 7.320, *», = 30.08. We should note
. i ]

that ihe projected operator B (the geoneralized mass matrix) is
i -

quite ill-conditioned with respect to inversios because the unit

conditioning ig algo present in the first subspace iteration in

SSPACER.

6.6 Avpalysis of Three-Dimensionsl Building Frame

The complex building frame shown in Fig., 13 was analyrzed

using program SSPACEB. At each joint beams are spanning into the
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CP time used

in the analysis of the plane frame

n o=

297,

m_ =29, m = 0
( A)n;w«; B 3

PROG RAM

. 089541

frard

<o | A, T5.02695, . 1 3, =16.5878.
3

TOTAL

SECANTD

12,30 18.24

39.60

calculated

together Zea g

3

TARLE 7

CP time used

in the analygsis of the building frame

= 468,

{(m ) =155, m_ = 0
‘A max B

86

PROGRAM

TIME [sec]

?\1 =0.41537, .

W= 0.54930. .
P

%, =0.78606. .

wt

A, =1.0325..

TOTAL

SSPACER

calculated together

159.59
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convergence
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Conclusions from Example Analvses

The analyses

i85 more economica

small bandwidth,.

could also analyz

efficient,

confirm that

1 than the
Further,

e,

the

subspace
on those

the determinant

determinant
iteration on

examples which

search

twice

the eigenvalues

systems

technigue was

ag much

eigenvalues

the third

sought,

search technique

with

BANEIG 17T

as

In the subspace iterations we alwayvs obtained monotonic
I Y

ciated vectors,

convergence to the required eigenvalues and associs

The starting subspace wags described in Section 4.4 and Eq.

was used for the

were needed for c

dimengion of

onvergence

the

to RTOL =

subspace, About

10~ in Eq.

(4.186)
& dterations

(4.17).



TALLE 81

Bigenvalue approximations calculated in

the analysis of the

building

NO OF
TTERATION

EIGENVALUE

APPROXIMATIONS

0.5206

0, 92007

1.329

1.869

4,320

296.7

ov]

0.4117

7992

1.675

1.676

3.004

4,666

194.9

0.4154

0.5493

L7864

1.035

1.498

2,210

2,395

)

. 656

4 " " 0.786111.02311.488]2.0081{2,20313,463

5 " " " " 1.48711.97102.27212.432

- a1 1 11 iy I B - .

6 1,96212.268(3.415

7 " v " b T11.959(2,26613.403
iy 7 i i T 1%

3.391

o
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Note that, as in Table 8 the eigenvalue approximations calculated

4

to the 'exact’ eigenvalues of

in each ite ion are upper bounds

value corresponding vectors, If we put p equal to the
number of elgenvalues solved for in the analvses, we obiain the
times reported in the previcus tables, Of the determinant sesrch
technique and the subspace iteration analysis only the one which

ig preferably used is included. The estimates for arn in-core

Householder-QR-Inverse iteration solution given in the table have

1 obtained by extrapolating the values in Table 1 of RBeference
L, using that it is an n  Dprocess, The largest problem solved in
[1] on the CDBC 6400 was n = 100, Using the method it is assumed
in Table 9 that we solve for all eigenvalues and only the required

eigenvectors. Naturall all these time estimates can only be

approximate

At the end of Section 2,2 it was described that we want to
consider an eigenvalue problem as large if it is wmuch cheaper
to solve for only the required eigenvalues than to caleculate
simply all, Table 9 shows that the cantilever box and the dam
example are in this sense not large problems, However, the
other three problems are certainly large, Note that the plane
and building frame could not be analyzed using BANEIG or the QR
method. Also, because of the very small bandwidth, the determinant
search solution of the Sturm-Liouville problem is estimated to be
more economical than the Householder-Qh~Iinverse iteration solution

even if all eigenvalues and vectors are required,



TABLE 9: Estimated times in sec for solution of p eigenvalues

and corregponding vectors in example analyses

METHOD

DETERMINANT SUBSPACE

EXAMPLE oo .
BANE 16 QR SEARCHF*

CANTILEVERDG . e o
’ o225 p 18.340.28 p 1.3 p
BOX

STURM -
NOT %

LIOUVILLE NOT 1460422

CROBLEN POSS IBLE )

| 2
[}
o]

DAM 30.6 p 177.042.7 p 23.7 p

PLANE NOT NOT

13.2
FRAME POSS IBLE POSS IBLE p

BUILDG. NOT NOT
FRAME POSS IBLE POSSIBLE

s
time taken for transformation to standard eigenvalue problem
has been neglected,

k&
only the walgorithm which is preferably used is included

in the cowmparison.




Consider the example of the building frame to compare with

the Information given in Fig, 8. in this case Table 9 shows that

Y 6

ey

the subspuace iterations for one eigenvalue are in operations

to one factorization, In Tig, 8 we would need

1 3% 7 F o
apout ¢

ndwidth about 80 to obtain

to use as an equivalent full half

iton estimate, The actual half bandwidth of the

the same ope:

system varied between 59 and 155 with many zeros within the

i

band, so that the esgtimate of 80 i: reasonable,

We should also note that to calculate in the determinant
search solutions an eigenpair (Xiyvi)§th@ nunber of required fac-
torizations varied between 1 and 8 and the number of inverse
iterations varied between 2 and 12, The average number of

factorizations and ipnverse iterations was five,
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7. SUMMARY AND CONCLUSIONS

Programs have been developed for the solution of a few

ralues and

,m

sociated vectors in the ceperalized eigen-

value problem Av = MBv, when the order of the matrices ig large,
We were concerned with the problem as it arises in structural
analygis when matrix A is positive definite. Two different
techniques have been implemented, & determinant search slgorithm
and a subspace iteration which both solve the generalized eligen—

value problem directly without & transformation fo the standard

In the past determinant search techniques have generally
been considered inefficlent because many factorizations are
needed. In this rescarch an algorithm has been developed which
on practical problems in terms of speed is as efficient as
latest routines available. However, the advantages are that B
can be diagonal non-negative definite or banded., Also, high
accuracy in the eigenvectors is not reguired for numerical
stability of the iteration process. 1In dynamic analysis, the case
B diagonal with zero or small elements iz very important, but no
direct efficient sclution routine was available. 1f in the
determinant search solution B is banded little extra work is
reguired, Therefore, the eigenvalue problem in consistant mass
formulation is not much more expensive than in a lumped wmass
analysis.

The determinant search technidue isg used best as an in-core

1

solver on systems with small to medium bandwidth. For systems



with large bandwidth an efficient subspace dteration algorithm

his algorithm was to my knowledge not

snted before. The iteration is carried out on both Opera-

Lors A o B 1eously The start subspace i

The small generaliz

ad
N

automatic

ally from the elements in A and }

nvalue problem obtained when the projections of 4 and B are

calenlated is solved using a generalized Jacobi iteration method,

This method iterates on both operatiors simultaneously taking

£

advantage of the fTact that they tend towards diagonal form in the
subspace 1terations, Also, the projection of B may be ill-
conditioned with respect to ioversion without introducing numer-

ical difficulties. After ctonvergence of the subspace iteration

a2 Bturm Jequence check can be performed to assure that the re-

quired eigenvalues have been found. The algorithm was used to
find the smallest eigenvalues and corresponding vectors or to
calculate all eigenvalues in a specified interval. As in the
determipant search solution, matriz B may be banded or diagonal
non-negative definite. Alsc, eigenvalues need not be found 1o
high precision,

In order to estimate the cost of the eigenvalue solution
the number of factorizations equivalent to the subspace itera-
tions have been presented. In example analyses about 8 itera-
tions were required for convergence to about 5 digit accuracy,
In terms of operations this means that with B diagonal the sub-
space iterations regquired to find the 5 smallest eigenvalues and

corresponding vectors are equivalent to about one factorization
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320

i

s of the algorithms have been

cample analveses, In the subsps

ined monotonic converge

lve for the smallest

small modifications, the

algorithms may slso be used to find the larg :nvalues in

the problem Bv = uAv ar:

in bifurcation buckling,

the conventional Ritz analysis, which includ the

static condensation analvsis, to obtain the smalle igenvalues

and associated vectors we have no idea of how accurate the solu-
tion approximates the 'exact' required eigensystem. In fact, it
may well be that an important ecigenvalue and corresponding vector
is not approximated at al!l. The main aim in this research was

to provide programs with which we can solve efficiently to the
required precision for the eigenvalues and corresponding vectors,
and to give costl estimates. Naturally, the cost to golve accu-
rately for the eigensystem must be higher than a very approximate
analysis,

For practical application the important program is MODES
I D i 2

3

which solves for the smallest eigenvalues and associsted vectors
when B is diagonal non-negative definite and matrix A has any

size and bandwidth. The program could be modified to solve the

generalized eigenvalue problem when B is banded and for the



solution of buckling problems.
in this dissertstion the eigenvalue problem Av = ABv was
considered when both matrices are symmetric and at least A is

positive definite. The important and very freduent

occurring in practice in which this eigenvalue problem needs to

lusion we

be solved have been discussed in Chapter 2. 1In con

should wmention the quadratic eigenvalue problem

=~J
o
—

(x QZ /Al Aﬂ) X {

which can also be reduced to the form Av = ARV, In Eg. (7.1) A?§
A} and A are symmetric and most commonly positive definite
‘ o

matrices of order n. This eigenvalue problem arises in dynamic

v
ot
pon]
&
ek
et

iysis of structures when non-proportional damping is present,
in which case C* in RHa. (2.5) is not diagonal [207,
To iddentify the eigenvalue problem as a problem of form

Av = JBv, we rewrite Eq. (7.1) as

0 A 4 A 0 3%
(] O
= 3 (7.2)
AO it Y v WAZ 7

where we observe that A and B are not positive definite. The
solution routines developed in this research are therefore not
applicable,

The solution of the quadratic eigenvalue problem yields 2n
complex eigenvalues and Ccorresponding eigenvectors, Efficient
algorithms for this problem are available when the order of the

matrices is small [5]. WMuller's method of successive quadratic



interpolation can be applied in a determinant search technigue

2
to find the zeroes of the function p(N) = det ()™ A + XA1+ A D). When
O

0
the complete eigensystem is wanted, Egq. (7.2) is conveniently

written in the form of the standard eigenvalue problem

0 I x X
. = A (7.3)
-1 -1
HAZ Aﬂ NAIZ Al Y ¥

Thisg has the disadvantage of working with a matrix of order Zn,
but we can now use the efficient QR algorithm for nonsymmetric
natrices,

Currently, in practice the order of the eigenvalue problem
is usually small,but larger systems may need to be solved. In
this case only some eigenvalues and corresponding vectors may be
required. Then in future research we could extend this work
and develop efficient solution routines which calculate
only the few required eigenvalues and corresponding vectorg in
Eq. (7.1), when the order of the matrices is large. These
algorithms should also give in this case a much more ecohomical

sclution than to solve simply for the complete eigensysten.
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APPENDIX I

SOLUTION OF SMALL SYMMETRIC EIGENVALUE PROBLEMS

Solution techniques for small eid

genvalue problems of the
form Av = v have now veached a relatively high standard of
efficiency. Although there are many different wmethods aveil-
able, we only peed to choose between a few procedures for the
practical solution of an eigenvalue problem. The aim in this
script is to present briefly these methods of solution and at
the same time also recall to the reader some background theory.
Naturally, no complete treatment is possible. For reference

see (5] [11].

1.1 Pacts from Linear Algebra

We consider the eigenvalue problem
Av = v {1)
where A is a symmetric real matrix of order n. It is the
representation of a linear transformation in an n-dimensional
vector space after having chosen a basis. There are n scalars
for % with corresponding vectors which satisfy Bg. (1). The

scalars are eigenvalues and are the zeros of the polynomial

p{(d) = det (A~ A1), where
L= Iyl = |a

It can be shown that all eigenvalues are real and that there

. . T
are n orthonormal eigenvectors vV, meaning v, v = 6i'
1 i3 1]
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( = Kronecker delta). The eigenvectors are bases of fhe

spates corvesponding to the eigenvalues. The dine

space is equal to the multiplicity of the corresponding

igeonvalue, The bases in multiple dimensicn elgensy

ol
Y

ot unigque., We note that fTor an the action of the

operator A is simply scalar multiplication.

The n solutions to Eg, (1) may be written as

where A = diag (). ) and the columns of V are the eigenvectors,
i :
Using the orthonormality of the eigenvectors we ohtain

vr AV = A (3)

A = “%v’/\,_‘a/;‘j 4)

in BEq. (3) we periorm a change of basis using an orthog-
onal similarity transformation. A represents the same linear
transformation as A but in the basis of eigenvectors, Eguation
(1) shows that A is completely defined once we know the eigeat-
values and corresponding eigenvectors.

As an example consider the discretization of s continuwum

by "finite elements’'. The resulting n equilibrium equations are

R o= Ku
in which ¥ is a linear transformation which transforms general-

ized displacements into generalized forces. The hasis in the

n-dimensional space is formed by the n clement displacement

functions, which are associated with n generalized force and
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displacement coordinates. These are listed in vectors R and u,

respectively. Each point in the space represents a displacement
configuration of the continuum., If a different basis is chosen,
the same linear transformation is repregented by a different
matrix. In particular, if we can choose the elgenvectors as
a basis, then K is diagonal and the solution of the equilibrium
equations is triviasl, In general, the eigenvectors are not known
a priori, but the idea is used in the Finite Strip Method [217.
In practice, requirements for eigenvalues and vectors vary.
We may want a few or all eigenvalues and similarly only a few

or all eigenvectors,

1.2 BSolution Techniques

We note that any algorithm for calculating eigenvalues is
an infinite process. This follows because, in general, the
roots of polynomials of degree greater than four cannot be calcu-
Tated without iteration. Basically, there are three different

groupings for methods of sclution.

I.2.1 polynomizl Iterations

A polynomial root finder could be used once the coeffi-
cients of p () have been solved for. ’This technidque has proved
unstable, because small errors in the coefficients of the poly-—
nomial give large errors in the eigenvalues, On the other hand,
we can use the polynomial implicitely as in a determinant search
technique and obtain stable and reliable procedures (see Chapter

3).



In the power method we find an eigenvalue and the associ-

ated vector, Let x, be an arbitrary vector, then the i

feod

ig defid

X, = AX k=1,2,3,,., (5)

In practi is normalized to have unit length. This
1 4

Xk%ﬂ

does not affect a convergence study, as an eigenvector ig only

defined by its direction. Let

.
—

then

]
<
]
Ui
e
s
&
#

A
. . . . n-1
The iteration comverges ultimately with a rate |m§fww towards
7

the eigenvector corresponding to Rﬂ’ When kﬁmlis nearly equal to
hy We get slow convergence, In case xﬂ 17 A the diteration

will give a vector in the subspace spanned by vn and V. .4+ But

4
ES R

when l% = ‘Xn\ and ) # )% we do not converge to an elgen—
n- 5!

nml‘ -1

vector,
To obtain an approximation to XT once we have an approximate
E

elgenvector Xy We enter Eg. (5) with “Xk““ = 1.0 and calculate
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Clos v related to inverse >ration,
defined by
Ax = i Z,.. (6)
K1 k ’
or .
X, o= A X,
K1 i

The dominance of the elgenvalues is now reversed and con-

vergence is linear with the rate ‘; towards igenvector

corresponding to }j*

In numerical caleunlations we can sneed up convergence by
I & 3

suitaeble origin shifts. We note that the operator (A - I} has

the eigenvalues Al~»uy XZ'MUJ,O«; XnM«u’ Let

e ul = max l}\_‘ - U"
i 1

and i}‘ - M! = m;in iki - LL%

S

then for the shifted operator the power method and the inverse

iteration converge with the ratios

respectively. In inverse iteration as pogets close to %0 we

obtain better convergence., But in the power method, the con-

vergence rate ig hounded., For instance, assume that . >0 for
g ’ 5

o
ot

i then for best convergence towards the eigenvector corre-
Ay A

. . 1 -1
sponding to Ar’ we use = g
H

in the inverse iteration can be much in-

o
il
o

The convergence ra
creased by choosing the Ravieigh quotient as the shift, The

Rayleigh quotient of a nonzero vector v is defined as

jv,Av)
{v,v)

P(v) =
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v, the distance beitween Av and wv expressed as

minimized when = p(v),

it v iz a fivst order approximation to an eigenvector, then

approximation to the
n
o

o

Namely, asgsume v =

w, V., where

jot

o
=
:
o
o
)
“
it
Pl
!Y
-
o
o
=
o

T2 ) kY

8 N P 3 3 o ” S 4 Ay

{v) (/\,F ) »i), (1 + /
-

In the inverse iteration different strategies can be
followed. We may apply s Rayleigh quotient shift only a few
times or we may shift in each iteration. In this case we have

the Rayleigh quotient iteration, defined as

A~ Y x = 3 ‘
Ao PO Dy =5 4 (

0
A

whe re £1 is chosen to have “X} 1\[ = 1, Under conditions
< <+

(P(x, ), x ) converges in the limit cubically to an eigenpair
k k

{227, Essentially this follows because in Eg. (68) the eigenvector

converges linearly but is here used in each iteration to obtain

a second order approximation to the eigenvalue and shift

. a
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:nvalue A, and its vector v, have heen

that an ef

iteration towards ancther eigenval:

we need

to deflate either

A stable matrix deflation can be carried out by find:

ronal matrix P whose fivst column

the calculated eigen-~

and A has all the rom

nvalues of A,

A vector deflation is simply carried out by orthogonalizing
the iteration vector to the calculated eigenvector. Using the

Gram-5chmidt process we have

and xy+1 not Xl ] is obtained in the algorithms of Hgs, (5), (6),

and {(8). in the Rayvlieigh guctient iteration it can be suffi-

cient to orthogonalize only X]’
The vector iteration techniques above are only economical

when a few eigenvalues and vectors are required., But inverse

iteration is used efficiently to find eigenvectors when the

eigenvalues have been calculated by some other procedure, for

example by the QR iteration.

1.2.3 Transformation Methods

T

Eg. (3) suggests to find transformation matvrices which by

successive application transform A into diagonal form. In this
PP

)



iteration each transformation must be a similari

tion

vils

ty transforma-

the same eigenvalues as 4 . Particularl

rrity transformati

A simple and very reliable transformation method i

Jacobi iteration. it gives at the same time the

elgenv

5 the

alue

65

and an orthonormal set of eigenvectors., When the off-diagonal

elements are small it is also efficient.

The iteration is defined as follows

where

and the P! are Jacobl rotation matrices,
<

F2 i
1 | !

cos ~sing

sing cos 8

. ) (k)
The angle € is selected to zero the element a

©
k) 7
23(')

an 08 = A
tan 26 = :qujq(k)

“4s “mwm

The eigenvectors are simply the product of

matrices used in the transformations. In practi

in Ak

o~

the orthogonal

ce, we

need

s

E=8

o
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wme for zoeroing elements and we need a

convergence riterion

(see

A very efficient and probably regarded as the best method

tfor jinding matrix is
ks

Hous

Inverse iterati

)
Py
s
o
jo
o]
P

hree solution steps:

1. #iouscholder transformations are used

matrix to tridiagonal form,

2. QR iteration yields the eigenvalue

. Using inverse iteration the eigenvectors of the fri-

diagonal matrix are calculated and transformed to the eigen—

vectors of A,

The reduction to tridiagonal form invelves (n-2) ortho-

gonal similarity transformations

e
i
s
>
!
e
1%
H
i
AN
.

{
e
ey
-

.

V"J
G
g

where

5= T (1
¥ I %v\ivk .

—

e
o
2

We congider the case k = 1, which is typical., Let

and ! T



where obviously A i
- 11
ol orde

16}

a

matrix of order (nh-1), w, i8 a vector
then

, = T o
: P.TA., P
! 1 il
The vecior w. i s

determined from

whoere we

can

(14
i
use wither + or ~ to avoid cancellation,.
sonetrically, we reflect a 1 1y
W, where w, 18
1

determined in
coordinate

such

n the hyperplane orthogonal to
in the

way that only the first
new vector in nonzeroc

We only need to solve
w. and

from B

B,
can use

(14) for a multiple of

ren (d21) }1]“/ Ll
Note that

-

: do not nesd P, but only wle e equiva~
1
lent steps for k = 2,...,n~2 are obvious,

Consider now the QR iteration on a general symmetric

matrix
A = QR

process

where Q is an orthogonal and R an upper triangular matrix,
factorization could be obtained by applying the Gram-Schmidt
ss to

This
the columns of A. We

then form

RO = Q' AQ
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and carried out an orthogonal similarity transformation on A,
Ion the QR slgorithm this process is repeated
A, = QR (15)

RO ko= 1,2,.,. A, = A {16)

where

£ + A oas 4w
By A as k

It can be shown that the QR iteration ig intimately rvelated to

the probably more familiar inverse iterat iton, We have

]

S0, 0, .0 A Q...0

A4 (
Skl i 9

k

5
¥
i
ot
fon
i
ot

s
=

then

Noting that

we get

Assume that A is nonsingular, then

Equating columns on both sides

_ -k T
Pk E = A sk E {(17)



-

where K consists of the last p columns of T,

Tnve

iteration on p vectors can be defined as

where 1. dis a lower triangular matrix chosen so that

Lt can pbe determined using the Grav-Schmidi process on

tion vectors from the last vecior to the fivst. Hoenoe

{19)

74 - A h'e T » T e T
A - A i, o= 1 ETPE i,
k o ko k 1 k

Eg. (17) wayv be written as

P E=A  ES (20)

JJ
b
s
ad
-
W

®

ot

where 8 consists p columns and rows of . Using

/k X o= and (P E)’ 7Y e ; .
L% I and (P, ) (Pk E} =1, we get

and

If we chooge ¥ = R}

because they are the Cholesky
o

factors of the same positive definite matrix.
Congidering Fqs. (19) and (20}, we have shown that the inverse
iteration algorithm defined in Eg. (18) 4if started with ¥ = E
:

rields vectors X} which are the last p columns in Pz of
i : k

et
-
P
o
O
o
)
p
jey]

algorithm.

In QR with shifts Egs. (15) and (16) are

A Tt = 9 Ry

Arar T OB ot k=1,2,... Ay = A

and the Rayleigh guotient iteraliocn corresponds to by equal to

the {(n,n) element in Ak .
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In practice, QR is applied to tridiagonal matrices.

cion {15) rewritten is

is obtained as a product of Jacobl rotation matrices

subdiagonal elements in A

.".».k “

Ortega and Kailser

explicit formulae which relate the elements in

Ak‘l to the elements in Ay [5]. Once the eigenvalues have been
<+ k
caleulated to full machine precision, we calculate the eigen-

vectors of the tridiagonal matrix. Two steps of inverse itera-
tion at shifts egqual to the eigenvalues are sufficient to obtain
he corregsponding eigenvectors, These vecltors nee 0 be trang-
t ponding eigenvectox Tt ctors need to 1 tran

formed with the Householder transformations used to obtain the

sigenvectors of the original matrix.
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COMPUTER PROGRAMS

SECANT

SSPACE

MODES

110



PI.1  Program SECANT

The program useg the determinant search technique described

and correspond-

in Chapter 3 1o evaluate the smallest

positive definite and B can be banded positive definite or
diagonal non-negative definite,
The program ig called with the parameters:

crder of matrices A and B

e
11
1

NMAX = number of rows in storage blocks of matrices A and B

MA = half bandwidth of A including diagonal

e

b=

i

e
i

half bandwidth of B including diagonal

NROOT = number of required eigenvalues

NC = storage is provided for NC eigenvalues and vectors,
Assume, for example, that the last eigenvalue lies in a
clugter, Then the program wmay want to calculate it
together with other close eigenvalues, The program stops
when no more storage for eigenvalues and vectors is

available,

o
v

-

torage:

i

A (NMAY , MA) matrix A

matrix B

B(NMAX ,MB) =

VV(N,NC) = elgenvectors

ROOT (NC) = eigenvalues

TIM{NC) = iteration times used
NITE(NC) = number of iterations

ERRVLANC) = lower bounds on eigenvalues
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FRERVR(NC) = upper hounds on eigenvalues
WWIN NCY, VIR)Y, W(N) and MAXA(N) are working arrays,

The total storage required is

NF(MA + MB + 2FNC ¢+ 3) + 5FNC
One working tape is used, The program calls the following sub-
routines:
BANDET - performs the triangular factorization at a shift, the
calculation of the determinant and the vector iteration,

MULT - carries out array multiplications,

The tolerances used are set up for the CDC 6400 with a 48
bit mantissa in floating point arithmetic., The eigenvalues are
caleulated to about 12 digit precision, Note that the logical
variable ERRBD needs to be set [ FALSE, if B is diagonal with zero
elements, and that in this case program SECANTD is slightly more

efficient (see Appendix 11.3).
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11.%2 Program S5PACE

Program SSPACE uses the subspace iteration technigue des-
cribed in Chapter 4 to calculate the smallest eigenvalues and

< csponding vectors in the problem Av = :ABv, Matrixz A is

assumed o be positive definite and B can be banded positive
deflinite or diagonal non-negative definite,

The program is called with the parameters:

N = order of matrices A and B

NMAX = pumber of rows in storage blocks of matrices A and B

MA = half bandwidth of A including diagonal

M = half bandwidth of B including diagonal

NROOT = number of reguired eigenvalues

NC = min {Z*NRQOT? NROOT«%S} and is initialized in the program
Storage:

A(NMAX ,MA) = matrix A

B(NMAX ,MB) = matrix B

T(N,NC) = eigenvectors
EIGV(NC) = elgenvalues

R(N,NC), W(N), MAXA(N), TT(N), AR(NC,6NC), BR(NC,NC), VEC(NC,6NC),
RTOLV{(NC) and D(NC) are working arrays,
The total storage regquired is

N¥(MA + MB + 2*FNC + 3) + NC*¥(3™NC+ 3)
Two working tapes are used, The program calls the following
subroutines:
BAN - performs the triangular factorizations and vector

iterations



Ca
2

JACOBL ~ solves the small generalized eigenvalue problem (the

listing is given with MODES),

H

TIGRAM calls BAW to perform vector iterations and orthoncormalizes

the iteration vectors using the Gram—-Schmidt process,

H

MULT ~ carries out array wmultiplications (the listing is given

with SECANT),

i

ERRAN ralculates error bounds on the eigenvalues and performs
Sturm Sequence checks, If an eigenvalue is missing, the
program finds an interval in which the wmissing eigen-
value lies, ERRAN can only be called when B is positive

definite and then the logical variable CHECK must be

set [TRUE,.

The tolerances used are set up for the CDC 6400 with a 48
bit mantissa in floating point arithmetic, Referring to the
listing given and Table 1 the program performs the following
sequence of subspace iterations: a,b,a,b,c,c,c....

This sequence is changed by adjusting the variables INVM, INCR,
IIG and NGR., The eigenvalues are calculated to about 5 digit

precision,
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I1.3 Program MODES

Program MODES calculates the
clated vectors in the problem Av =
definite and B is diagonal non-negativ

any order and bandwidth, It is ass

smallest eigenv

ABv, when ma

7

alues and asso-

rix A is positive

e definite, Matrizx A may have

umed that A and

B are stored

in blocks on tapes NSTIF and NMASS, respectively Chapter 5),
The program is called with six parameters:

NEG = order of matrix A

MBAND = half bandwidth of A including diagonal

NBLOCK = number of blocks

NEQB = number of equations per block

NF = number of required eigenvalues and associated

eigenvectors
MroT = total blank common storage area specified., The program

stops at the beginning of

needed,

execution if mo

For storage a blank common arez COMMON A(MTOT) is

storage used in each subroutine is

dynamically all

re storage

specified,

ocated from

is

The

this area, Therefore, MTOT must be the maximum of the storage

needed in any one of the subroutine

Six tapes are specified in the

NSTIF = stores initially matrix
NMASS = stores matrix B
NRED = stores the reduced matri

NL,NR,NT = working tapes

Tapes NRED, NL, NR and NT are not u

s used,

program,

A

x

sed when NBLOCK



|

A1l tolerances have been set for the CDC 6400 with a 48 bit

mantissa in floating polnt arithmetic,

Tf NBLOCK = 1 program SECAWNTD is called. This program uses
the determinant search technigue descrvibed in Chapter 3. In

this case the total storage required is NT(MBAND + 2%NC + 4) 4+ 5¥FNC,

where NC = N¥F 4+ NIM, The parameter NIM has been set egual to 3

and allows the calculation of 3 wmore eigenvalues than required

(see Appendix TI.1). SECANTD calculates the eigenvalues to about

12 digit precision,

When NBLOCK -~ 1 program SSPACEB is called to calculate the
required elgenvalues and vectors using the subspace iteration ¢
in Table 1. SSPACEB calls the following programs:

DECOMP - factorizes (A - B} which is read from tape NSTIF, where
W is the shift,

Required storage: NEQB  (2*MBAND + 1)

INVECT - generates the initial transformation vectors,

Required storage: NEQOBY(NV+1) + NV, where NV = min (2%NF,
NF + 8),

REDBAK - does the vector reductions and back substitutions,
Required storage: NEQB*(MBAND + 2¥NV + NVFNTB+1) + 2%NV,
where NTB = ((MBAND ~ 2)/NEQB) + 1,

EIGSOL - calculates the projections of A zand B, calls JACOBI to
solve the small generalized eilgenvalue problem, checks
for convergence and calculates either B times the new
transformation vectors or the orthonormalized eigen-
vectors,

Required storage: NVF¥(3*NV + 2*NEQB + 3) + NEQB,



128

SCHECK -

shift u for the Sturm Seguence check and puts

on tape NSTIV,

Reguired storage: NEOB¥(MBAND + 1) + B*NV,

Seguence check

o

g not carrvied out 1f we set the log

i

o
€
&3]

SPACER equal fto |, FALSE,. At convergence,

SEPACER has calculated the eigenvalues to about

5 digit precigion

For solution we peed at least min {12,*1\3'1*‘, NE + 8} nonzero diagonal

alements in B, Svstems of order smaller than about 100 should be

analyzed using NBLOCK = 1

&
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