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ABSTRACT OF THE DISSERTATION

Time Series Data Mining Algorithms Towards Scalable
and Real-Time Behavior Monitoring

by

Alireza Abdoli

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2021

Dr. Eamonn Keogh, Chairperson

In recent years, there have been unprecedented technological advances in sensor technology,

and sensors have become more affordable than ever. Thus, sensor-driven data collection is

increasingly becoming an attractive and practical option for researchers around the globe.

Such data is typically extracted in the form of time series data, which can be investigated

with data mining techniques to summarize the behaviors of a range of subjects including

humans and animals. While enabling cheap and mass collection of data, continuous sensor

data recording results in datasets which are big in size and volume, which are challenging

to process and analyze with traditional techniques and software in a timely manner. Such

collected sensor data is typically extracted in the form of time series data.

Time series data is widely used in many domains and is of significant interest in

data mining. In recent years researchers have proposed various algorithms for the efficient

processing of time series datasets. The problem of time series classification has been around

for decades. There are two main approaches for time series classification in the literature,

namely, shape-based classification and feature-based classification. Shape-based classifica-
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tion determines the best class according to a distance measure (e.g., Euclidean distance).

Feature-based classification, on the other hand, measures properties of the time series and

finds the best class according to the set of features defined for the time series.

In this dissertation, we demonstrate that neither of the two techniques will domi-

nate for some problems, but that some “combination” of both might be the best. In other

words, on a single problem, it might be possible that one of the techniques is better for one

subset of the behaviors, and the other technique is better for another subset of behaviors.

We introduce a hybrid algorithm to classify behaviors, using both shape and feature mea-

sures, in weakly labeled time series data collected from sensors to quantify specific behaviors

performed by the subject. We demonstrate that our algorithm can robustly classify real,

noisy, and complex datasets, based on a combination of shape and features, and tested our

proposed algorithm on real-world datasets.
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Chapter 1

Introduction

In recent years, there have been unprecedented technological advances in sensor

technology, and sensors have become more affordable than ever. Sensors can be used to

greatly increase the number of individuals that can be tracked, while also expanding the

tracking period, in some cases to 24/7 monitoring. Consequently, sensor-driven data col-

lection is increasingly becoming an attractive and practical option for researchers around

the globe. Such collected sensor data is typically extracted in the form of time series data,

which can be investigated with data mining techniques to summarize the behaviors of a

range of subjects including humans and animals.

While enabling cheap and mass collection of data, continuous sensor data record-

ing results in datasets which are big in size and volume; consequently, such datasets are

challenging to process and analyze with traditional techniques and software in a timely

manner. Such collected sensor data is typically extracted in the form of time series data,

which can be examined with data mining techniques to quantify behaviors of the subject

1



under study.

1.1 Advances in Time Series Data Mining

Time series data is widely used in many domains and is of significant interest in

data mining. In recent years researchers have proposed various algorithms for the efficient

processing of time series datasets. The problem of time series classification has been around

for decades. There are two main approaches for time series classification in the literature,

namely, shape-based classification and feature-based classification. Shape-based classifica-

tion determines the best class according to a distance measure (e.g. Euclidean distance).

Feature-based classification, on the other hand, finds the best class according to the set of

features defined for the time series. These features measure properties of the time series

(e.g. autocorrelation, complexity, etc.).

1.2 Contribution

In this dissertation, we demonstrate that neither of the two techniques will domi-

nate for some problems (i.e. data is unlikely to yield to a single modality of classification),

but that some “combination” of both might be the best. In other words, on a single prob-

lem, it might be possible that one of the techniques is better for one subset of the behavior,

and the other technique is better for another subset of behaviors. We introduce a hybrid

algorithm to classify behaviors, using both shape and feature measures, in weakly labeled

time series data collected from sensors to quantify specific behaviors performed by the sub-

ject. We demonstrate, with an extensive empirical study, that our algorithm can robustly

2



classify real, noisy, and complex datasets, based on a combination of shape and features,

and tested our proposed algorithm on real-world datasets.

1.3 List of Publications

Below, comes the list of publications in Institute of Electrical and Electronics

Engineering (IEEE) and the Association for Computing Machinery (ACM), that will be

discussed throughout the chapters of this dissertation. I am grateful to the IEEE and ACM

for the opportunity to include the following works into my dissertation.

1. Abdoli, A., Murillo, A. C., Gerry, A. C., & Keogh, E. J. (2019, December). Time

Series Classification: Lessons Learned in the (Literal) Field while Studying

Chicken Behavior. In 2019 IEEE International Conference on Big Data (Big Data)

(pp. 5962-5964). IEEE.

2. Abdoli, A., Murillo, A. C., Yeh, C. C. M., Gerry, A. C., & Keogh, E. J. (2018, De-

cember). Time series classification to improve poultry welfare. In 2018 17TH

IEEE International Conference on Machine Learning and Applications (ICMLA) (pp.

635-642). IEEE.

3. Abdoli, A., Alaee, S., Imani, S., Murillo, A., Gerry, A., Hickle, L., & Keogh, E.

(2020, August). Fitbit for chickens? time series data mining can increase

the productivity of poultry farms. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery Data Mining (pp. 3328-3336).
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The course of this dissertation is shown in Figure 1.1. Initially, the data engineer-

ing part is discussed which involves setting up and installing sensors for data collection,

retrieval, and pre-processing (i.e., cleaning and preparation) towards downstream classifi-

cation algorithms. Simply put, data engineering refers to various algorithms working on

collected data to cleanse and divide data into 24-hour chunks and save the data back to the

disk.

Figure 1.1: Overview of topics to be discussed in this dissertation.

During the downstream processing, firstly the shape classification algorithm is dis-

cussed which works based on a distance measure (e.g., euclidean distance). Next, the supe-

rior shape-feature classification approach will be discussed which applies shape classification

for some behaviors, while utilizing feature classification, using statistical and mathematical

features, for classifying other behaviors. Then, the applicability of the shape-feature clas-

sification is demonstrated on chicken data to assess and monitor the overall health status

4



of chickens based on changes in the frequency and timing of the chicken behaviors. Finally,

the dissertation is concluded with the future works and research directions.

5



Chapter 2

Data Collection & Preparation:

Time Series Classification: Lessons

Learned in the (Literal) Field while

Studying Chicken Behavior
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2.1 Introduction

There was a time, not that long ago, when wearable devices were only the province

of humans. How far we have come since then. There are high-tech wearables available,

regardless of whether you’re a tiny insect [9], grasshopper or a significantly larger animal

like a cow. In between come the chickens which are a major source of high-protein and

low-fat food [45].

In recent years, there have been unprecedented technological advances in sensor

technology, and sensors have become more affordable than ever. Consequently, sensor-driven

data collection is increasingly becoming an attractive and practical option for researchers

around the globe. Such collected sensor data is typically extracted in the form of time series

data; which can be investigated with data mining techniques to summarize the behaviors

of the animals [4].

Time series data is widely used in many domains and is of significant interest in

data mining. In recent years researchers have proposed various algorithms for the efficient

processing of time series datasets. In this study, we use on-animal sensors to quantify

specific behaviors performed by chickens. These behaviors, e.g. preening and dustbathing,

are known or suspected to correlate with animal well-being.

2.2 How the Data Grows Big?

Big Data refers to datasets which are big in size and volume; consequently, such

datasets are challenging to process and analyze with traditional techniques and software

in a timely manner. Datasets are growing rapidly because of the advances in the sensor

7



technologies which enables cheap and mass collection of data. Big data size might range

from a few terabytes to zettabytes of data [22].

Big Data applications encompass different fields from computer networks to smart

healthcare/clinical devices [2][1] and retail industry. However, in order to interpret and

analyze the data it should be prepared and cleansed, so that the data can be used by

downstream algorithms such as clustering and classification algorithms. In this study, we

discuss data management techniques for on-animal sensors to quantify specific behaviors

performed by chickens.

2.3 Big Data in Poultry Science

Given the ever-increasing population of the world, the demand for such food

sources has been steadily growing. According to Food and Agriculture Organization of

the United Nations (FAO), Poultry is the world’s primary source of animal protein. Be-

tween 2000 and 2030, per capita demand for poultry meat is projected to increase by 271

% in South Asia, 116 % in Eastern Europe and Central Asia, 97 % in the Middle East and

North Africa and 91 % in East Asia and the Pacific [45]. In developed countries, there are

growing concerns about the ethical treatment of these animals; among which are housing

conditions and how the animals are managed and treated.

Arthropod ectoparasites reside on the surface of the body of chickens, causing

stress to the host, and potentially spreading to nearby chickens or other animal hosts [44].

Many of these ectoparasites, such as the northern fowl mite, adversely affect productivity

(e.g. laying eggs) and health of the chickens. They may also impact poultry behavior

8



and welfare. Understanding how the chicken behave (i.e. timing and frequency of chicken

behaviors) can help producers determine behavior abnormalities due to infestations and

deploy preventive and corrective control methods. We are not proposing that all chickens

be monitored, that is clearly unfeasible. Our system is designed as a tool to allow researchers

to assess the effects of various conditions on chicken health, and then use the lessons learned

on the entire brood.

Figure 2.1: (left) Axivity AX3 axis alignment (right) positioning of AX3 sensor on the back
of chicken.

2.4 Collecting Chicken Data

All chickens were housed and cared for in accordance with UC Riverside Institu-

tional Animal Care and Use Protocol. Data is collected from chickens by placing the sensor

on bird’s back. The sensor is placed on back of the bird to allow for high-quality recording of

various types of typical chicken behaviors, with the minimum interference and discomfort.

The Axivity AX3 sensor used in our study, weighs about 11 grams and is configured with

100 Hz sampling frequency and +/- 8g sensitivity which allows for two weeks of continuous

9



data collection with the battery fully charged. Figure 2.1 (left) shows the orientation of

Axivity AX3 sensor (right) shows placement of sensor on the back of the chicken.

Figure 2.2 (left) shows the Axivity AX3 sensor secured inside a plastic backpack

with a rubber band to allow placing the backpacks on the back of chickens (center) The

backpack ready to mounted on the chicken with color markers for facilitated human recog-

nition (right) shows placement of sensors on the back of the chickens. We used USB hubs

for mass charging of the sensors; which allowed for simultaneous charging of multiple sen-

sors towards saving human time and effort. After the sensors were fully charged the team

member Amy C. Murillo connected each sensor to a desktop computer and utilized the AX3

GUI software to setup the sensors to start collecting data at some predefined date and time.

Figure 2.2: (left) Axivity AX3 sensor secured inside a plastic backpack with a rubber band
wrist (center) The backpack ready to be mounted on a chicken with color markers for
facilitated visual recognition (right) Chickens wearing backpacks on their back. Photos
courtesy of Amy C. Murillo.

The overview of the processes to study chicken behavior and welfare is shown in

Figure 2.3. This workflow repeated for each of the readings. The description of the indi-

vidual processes is provided in the following:

10



Figure 2.3: The workflow to study chicken behavior and welfare.

1. The entomologist experts setup the sensors and make sure the sensors are fully charged

and then the backpacks are mounted on the chickens.

2. The sensors collect data for 7-9 full days per reading. The data is stored in the CSV

file format on the sensor’s internal memory.

3. The entomologist experts pickup the sensors from chickens and upload the chicken

data file (CSV file format) onto the Google Drive for facilitated accessibility and

availability of data for all team members.

4. Following successful upload of data onto the Google Drive.

5. Next, computer scientists proceed with the developed algorithm for cleansing and

preparation of chicken data (as in Figure 2.4) for further downstream processing (e.g.

classification, clustering and etc.).
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Figure 2.4: The slicer algorithm leverages the datastore in MATLAB and breaks the CSV
file into individual days.

6. Given the cleansed and well-formatted data, the computer scientists can proceed with

classification of the chicken behaviors. The classification results demonstrate the

timing and frequency of various chicken behaviors throughout the 24-hours.

7. The classification results (i.e. behavior counts and frequency) are provided to en-

tomologist experts so they can look for anomalies and irregularities in the chicken

behavior and welfare.

2.5 Algorithm For Managing Chicken Big Data

This section presents the algorithm developed for pre-processing and cleansing of

data collected from sensors mounted on chickens. The chicken data downloaded off the

sensors were into the format of single large CSV files per sensor holding data for the entire

reading period (i.e. 7-9 days). The files were as big as 3-4 GB per file (several terabytes

of chicken data); the large file sizes made them challenging to work with and process in

MATLAB. Also, the entomologist experts preferred to work on individual days basis. So,

an algorithm was developed to take in each CSV file and break it down into individual days.

Also, the CSV file format was pretty space-consuming, so the developed algorithm stored
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the individual days as MATLAB friendly MAT files. The most challenging part was to read

the CSV files into memory and slice it into individual days; however, as the CSV files were

large in volume, they would cause problems.

In order to overcome the large size of CSV files we utilized the Datastore concept

in MATLAB. The datastore essentially is a repository for collections of data that are too

large to fit in memory. A datastore allows you to read and process data stored in multiple

files on a disk, a remote location, or a database as a single entity. If the data is too large

to fit in memory, you can manage incremental import of data for further processing [22].

Figure 2.5: Three-dimensional chicken time series (the top/blue time series is X-axis; mid-
dle/red time series is Y-axis and bottom/yellow time series is Z-axis time series). The green
lines represent annotations of observed chicken behaviors captured on video.
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2.6 Chicken Behavior Classification

Given the data being cleansed and prepared, the computer scientist experts may

proceed with classification of chicken behaviors for each full day. The computer scientists

then provide the behavior counts to the entomologist experts so they can comment about

potential anomalies in the behavior count and intervene with preventive and corrective

actions. The classification of chicken behaviors throughout the day has been discussed in

[4]; in which computer scientists extracted a dictionary of well-preserved chicken behaviors

(i.e. pecking, preening and dustbathing) from a short video annotated chicken dataset, as

shown in Figure 2.5.

Then, used the dictionary of behaviors on the unseen datasets from other birds.

Following the classification of bird behaviors for every individual day the count and timing of

Figure 2.6: Temporal frequency of chicken behaviors (feeding/pecking, preening and dust-
bating) for the twenty-four hour chicken dataset.
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behaviors are reported by the classification algorithm. This helps the entomologist experts

to analyze the behavior count and timing and proceed with potential actions. Figure 2.6

shows the circadian plot on timing and frequency of a full-day dataset.

2.7 Conclusions

In this chapter, we discussed processes involved with big data management. The

suggested processes can be applied to any big dataset; while, this study applied the cleansing

and pre-processing algorithm to the chicken datasets to classify and quantify chicken behav-

iors towards studying chicken welfare. Further, the chapter briefly addressed classification

and visualization of chicken behaviors in a more intuitive way to the audience.
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Chapter 3

Shape-based Classification: Time

Series Classification to Improve

Poultry Welfare

16



3.1 Introduction

Domesticated birds, e.g. chickens, are a major source of food for humans; people

have been keeping birds for their eggs (laying chickens) and for their meat (broiler chickens)

for thousands of years [55]. Poultry farms are a major source of high-protein and low-fat

food.

Given the ever-increasing population of the world, the demand for such food

sources has been steadily growing. According to Food and Agriculture Organization of

the United Nations (FAO), poultry meat consumption around the world has climbed from

11 kg/person in 2000 to 14.1 kg/person in 2011 [53]; and it is predicted to continue for the

foreseeable future [45]. In developed countries, there are growing concerns about the ethical

treatment of these animals; among which are housing conditions and how the animals are

managed and treated [11].

Ectoparasites are a group of arthropods that reside on the surface of the body of

chickens, causing stress to the host, and potentially spreading to nearby chickens or other

animal hosts [42]. Many of these ectoparasites, such as the northern fowl mite, adversely

affect productivity (e.g. laying eggs) and health of the chickens [14]. They may also impact

poultry behavior and welfare [12]. Understanding how ectoparasites affect chicken behavior

can help producers determine when flocks are infested, to better deploy control methods

[43]. Traditional behavior studies have relied on direct or video observation of subjects.

However, this is time consuming, error-prone and subjective.

We argue that the use of on-animal sensors can help to increase richness and density

of observations [51]. Additionally, sensors can be used to greatly increase the number of
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Figure 3.1: (left) A chicken with an Axivity AX3 accelerometer worn inside a ‘backpack’
on the back of chicken (right) A seven-second snippet of chicken time series data collected
from the accelerometer.

individuals that can be tracked, while also expanding the tracking period, in some cases

to 24/7 monitoring. In recent years, there have been enormous technological advances in

sensor technology, and consequently sensor prices have decreased dramatically; this in turn

has made sensor-driven data collection a practical option. Recently, there have been various

studies on using sensors for collecting data in the context of livestock and poultry [54][46],

even flying insects have not escaped the efforts at digitally sensed monitoring [9].

Such collected sensor data is typically extracted in the form of time series data;

which can be examined offline with data mining techniques to summarize the behaviors of

the animals under study. Time series data is widely used in many domains and is of signif-

icant interest in data mining [25][30][36][14][48]. In recent years researchers have proposed

various algorithms for the efficient processing of time series datasets [58][27][17][33], even

in case of noisy data [28]. In this chapter, we use on-animal sensors to quantify specific be-

haviors performed by chickens. These behaviors, e.g. dustbathing, are known or suspected

to correlate with animal well-being.
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3.2 Studying Chicken Behaviors

Before moving on, we will take the time to ward off a possible misunderstanding.

We are not proposing that all chickens be monitored, that is clearly unfeasible. Our system

is designed as a tool to allow researchers to assess the effects of various conditions on chicken

health, and then use the lessons learned on the entire brood. Our particular motivating

example initiated with a study at UC Riverside to assess the effects of ectoparasites on

chickens. However, our methods can be used to determine the effects of any change in the

bird’s environment or diet. Our only assumption is that the change will manifest in changes

in the frequency or timing of the bird’s behavior(s).

3.2.1 Why is studying chicken behaviors at scale hard?

There are hundreds of studies on quantifying human body behaviors with sensors.

Such studies typically involve finding discrete well-defined classes of behaviors, and then

monitoring data for future occurrences of behaviors. One example is “step-counting” to

measure compliance with a suggested exercise routine. However, the task of studying chicken

behaviors is more difficult for the following reasons:

• In case of humans, the sensors can be easily placed on the extremities of the limbs

(i.e. smart-shoes or smartwatches); However, the placement of sensors on chickens has

been primarily restricted to the back of the birds, see Figure 1 (left), due to sensor

limitations and the welfare of animal. This provides only coarse information about

the bird’s behaviors.
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• The variability of human behaviors is well-studied, and it is understood what fraction

can be attributed to individual personality, mood and so forth, versus variability

in sensor placement [20]. More importantly, it is known how to account for this

variability. However, it is less clear how much variability exists in birds and how we

can best account for it.

• Creating a dictionary for a human subject is relatively straight-forward. During an

explicit training session, behaviors of interest can be acted out in a fixed order for a

fixed duration of time. Perhaps the most studied human motion time series dataset

is gun-point [19]. When recording that dataset, the actor’s behaviors were cued by a

metronome. Chickens are clearly not as cooperative, and many hours/days of video

recordings must be analyzed to create a behavior dictionary. Moreover, it is difficult,

even for an experienced avian ethologist, to define precisely where a behavior begins

and ends, thus we must be able to work with “weakly labeled” data.

In this chapter, we introduce a novel dictionary learning algorithm which can take

weakly labeled data in the format “there are a few pecks somewhere in this time period,”

together with some mild constraints “a preening behavior probably lasts between 0.3 and

1.5 seconds” and automatically construct a dictionary of behaviors. As we shall show, this

dictionary can then be used to classify unlabeled archives of bird behavior.

3.3 Related Work and Background

In recent works [56][8], sensors were used for classification of sheep behaviors; with

mounted sensors on ear/collar or leg of the sheep. Similar work has been performed for
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domestic bovines [54], and for various kinds of wild animals. In addition, there has been

some work on poultry behaviors using both sensors and human monitoring [40][7]. However,

this work is complementary to our efforts. They use statistical features of the accelerometer

(mean, entropy, etc.) to quantify periods of general behaviors, such as sleep, stand, walk,

etc. [7]. In contrast, we use the shape of the time series to precisely annotate very specific

and dynamic behaviors, such as individual instances of a single peck. By analogy with

human studies, this is similar to recognizing the difference between when someone having

lunch versus recognizing each individual bite. Both types of information can be useful for

various tasks. We begin by providing definitions and notation to be used throughout the

chapter.

3.4 Definitions and Notation

Definition 1: A time series T is a sequence of real-valued numbers ti : T =

[t1, t2, . . . , tn] where n is the length of T .

We are typically not interested in the global properties of time series, but in the

similarity between local subsequences:

Definition 2: A subsequence Ti,m of a time series T is a continuous subset of

the values from T of length m starting at position i. Ti,m = [ti, ti+1, . . . , ti+m−1] where

1 ≤ i ≤ n–m + 1

We can take any subsequences and calculate its distance to all subsequences in a

time series. An ordered vector of such distances is called a distance profile:
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Definition 3: A distance profile D is a vector of Euclidean distances between a

given query and each subsequence in the time series.

Figure 3.2 illustrates calculating distance profile (D). It is assumed that the dis-

tance is measured using the Euclidean distance between Z-normalized subsequences. In

Figure 3.2, the query Q is extracted from time series T. As can be seen, distance profile has

low values at the location of subsequences which are highly similar to the query Q. In case

the query Q is taken from the time series itself, then the value for the distance profile at

the location of query should be zero, and close to zero just before and just after. To avoid

such trivial matches an exclusion zone with the length of (m/2) is placed to the left and

right of the query location. The distance profile can be computed very efficiently using the

MASS algorithm [41].

Figure 3.2: Distance profile D obtained by searching for query Q (here the query is extracted
from the time series itself) in time series T.

22



3.5 Dictionary of Chicken Behaviors

3.5.1 Collecting and Preparing Chicken Data

All chickens were housed and cared for in accordance with UC Riverside Insti-

tutional Animal Care and Use Protocol A-20150009. Data is collected from chickens by

placing the sensor on bird’s back, as shown in Figure 3.1 (left). The sensor is placed on

back of the bird to allow for high-quality recording of various types of typical chicken be-

haviors, with the minimum interference and discomfort. The Axivity AX3 sensor used in

our study, weighs about 11 grams and is configured with 100 Hz sampling frequency and

+/- 8 g sensitivity which allows for two weeks of continuous data collection with the battery

fully charged.

From literature reviews , and conversations with poultry experts, we expect that

the following behaviors correlate with poultry health:

• Feeding/pecking: bringing the beak to the ground; striking at the ground.

• Preening: preening/grooming of the feathers by the beak; feathers may be drawn or

nibbled by the beak [16].

• Dustbathing: bird is in a sitting or lying position with feathers raised in a vertical

wing-shake [16].

For some fraction of the time series data collected, a video camera also recorded

the chicken activity (∼ 30 minutes). This provides ground truth to act as training data.

The sensor data was carefully annotated [21], based on the video-recorded chicken activities
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by team member Amy C. Murillo; it must be noted that even the most careful human

labeling of chicken behaviors can contain errors, especially false negatives.

More importantly, due to technical limitations it is difficult to synchronize the two

data sources to anything less than one-second variable lag, which is a long time relative

to a chicken peck (∼ 1/4 of a second). Thus, as shown in Figure 4, the annotations take

the form of a categorical vector (shown in green) that indicate that in the corresponding

region one or more examples of the corresponding behavior were observed. Such data is

often called “weakly labeled” data.

To reiterate, inspecting this video is very time consuming for a technician; we do

not propose to inspect all data this way, this is simply a one-time ground truthing operation

performed for a tiny fraction of the data collected.

3.5.2 Creating a Dictionary of Behaviors

Given that we have training/test data in the format shown in Figure 4, we are in a

position to attempt to automatically construct a dictionary of behaviors or query-templates.

A dictionary is a list of query-templates (behaviors) in the form of s1, s2, . . . ,

si; each query has a class (s1.class), a threshold value (s1.threshold) and axis (s1.axis)

properties, along with the query data points.

In principle, a single behavior could have two or more possible instantiations; just

like the number four has two written versions, closed ‘4’ and open ‘’, which are semantically

identical. Such a dictionary is called a polymorphic dictionary. Given our observations

of chicken behaviors, in this chapter we assume that there is a single way to perform a

behavior. However, generalizing the code to a polymorphic dictionary is trivial.
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3.5.3 Algorithms for Building the Chicken Behavior Dictionary

Our algorithm for building a dictionary of chicken behaviors works by searching

within annotated regions for highly conserved sequences (i.e. motifs). To give an intuition

for this, consider the analogue problem in the discrete string space. Imagine we are given

this data snippet, and we are told that the green region is a weak label for pecking.

Further suppose we are told that the length of the behavior is between 2 and 5

symbols. If we looked for conserved behavior of length 2, we would find that ‘be’ happens

six times. However, three of those occurrences are outside the annotated region, so this

cannot be a good predictor of the class. If we looked for conserved behavior of length 3,

we would find that ‘bes’ happens three times, and all of the occurrences happen within the

labeled region. This seems like a better predictor of the class. However, note that if we

expand to conserved pattern of length 4, ‘beso’ also happens three times within the labeled

region. Since we might expect that the longer pattern is more specific to the class, we

prefer it. Note that if we continue the search to patterns of length five, there are no highly

conserved patterns of this length.

In addition to time series T and the annotation labels Label, the algorithm takes

a range of lengths Len (equivalent to the values 2 to 5 in the example above). Algorithm 1

presents the pseudo-code for building a dictionary of behaviors.

Algorithm 1 ALGORITHM FOR BUILDING DICTIONARY

Input: Time Series T , researcher labels Label and length range Len

Output: List of query-templates (QueryList)

1: for QLen←− Len do
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2: for LblRegion←− 1 to length(Label) do

3: for Q←− Label(LblRegion, 1)to Label(LblRegion, 2) do

4: [K, dist, TP, FP ]←− NN(TTrain, TTrain(Qto Q + QLen− 1), Label)

5: QueryList←− [QueryList;Q,K, dist, TP, FP ]

6: end for

7: end for

8: end for

9: return QueryList

In Line 1 the range of query-template lengths to be tested is specified. Line 2

iterates over the annotated regions. In Line 3, a sliding window is initiated inside the

selected region from Line 2 with the specified length from Line 1. The selected query-

template, time series, label data are provided to the nearest neighbor similarity search

subroutine algorithm (TABLE II. ). The output result for the selected query-template is

added to the current list of query-templates (QueryList) in Line 6.

Algorithm 2 is a subroutine, which given the candidate query-template, time series

and label data calculates the similarity between the query-template and all subsequence in

the time series.

Algorithm 2 NEAREST NEIGHBOR SIMILARITY SEARCH ALGORITHM

Input: Time Series T , a query Q, and entomologist labels Label

Output: No. of True Positives TP , No. of False Positives FP and Distance value dist

1: D ←−MASS(T,Q)

2: [Ds, Didx]←− sort(D)
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3: Idx = 1, TP = 0, FP = 0, dist = 0

4: if (Label(Didx(Idx)) == True) then

5: TP = TP + 1

6: dist = Ds(Idx)

7: else

8: FP = FP + 1

9: end if

10: if (FP == 0) then

11: Idx = Idx + 1

12: else

13: return

14: end if

In Line 1, the candidate query-template and time series data are passed to the

MASS algorithm. MASS computes the similarity between query-template (Q) and every

subsequence in time series (T); and returns a distance profile D [41]. The distance profile

D is sorted in ascending order (Ds) and the indices of sorted values are stored in Didx in

Line 2.

In Lines 4 - 9, at each iteration, the algorithm takes a value from (Didx(Idx)) and

examines the corresponding value of Label(Didx(Idx)) to see if it is marked as a targeted

behavior. If it is marked as a behavior of interest, then the subsequence is a true positive

(TP) match and TP is increased by one (Line 5), otherwise, it is treated as a false positive

(FP) match and FP is increased by one (Line 8). We are interested in candidate query-
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templates which yield the highest number of true positive matches with no false positive

matches. Therefore, in Lines 10 - 14, we continue the search as long as no false positive

(FP) match is observed. It is worth noting that the distance (dist) mentioned in Line 6

of Algorithm 2 is the same as query-template threshold value in the behavior dictionary.

The threshold value serves as a measure of similarity when searching in unlabeled data

streams. In the case, a subsequence in the unlabeled data has a similarity value with the

query-template lower than the threshold it is classified as a matching subsequence.

3.5.4 How to use the Chicken Behavior Dictionary?

When monitoring the stream of time series data, we look for specific behaviors to

count, classify, and time-stamp. The stream of data is processed through a sliding window.

In case the similarity threshold is met for some query-template (behavior) in the dictionary,

then the sequence is matched and time-stamped as an instance of that behavior.

3.6 Empirical Evaluation

To ensure that our experiments are reproducible, we have built a supporting web-

site; which contains all data, code and raw spreadsheets for the results, in addition to many

experiments that are omitted here for brevity.

We provide evaluation results for the feeding/pecking, preening, and dustbathing

behaviors. The original dataset is split into mutually exclusive training and test datasets, as

illustrated in Figure 4. The training dataset is used for building the dictionary of behaviors,

while the test dataset is solely used for out-of-sample evaluation. As Figure 4 reminds us,
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the data is weakly labeled, meaning that every annotated region contains one or more of the

specified behavior. In addition, there are almost certainly instances of the behavior outside

the annotated regions which the annotator failed to label, perhaps because the chicken in

question was occluded in the video. However, we believe that such false negatives are rare

enough to be ignored. In addition, we do not know about the exact number of individual

instances of a behavior inside a region, complicating the evaluation. To address this, we

utilize the concept of Multiple Instance Learning (MIL) [6]; which assumes each annotated

region as a “bag” containing one or more instances of a behavior.

In this classification model, if at least a single instance of a behavior is matched

inside a bag, it is treated as a true positive. However, in case that no instances of the

behavior are detected inside the bag, then the entire bag is treated as a false negative.

Furthermore, in case an instance of behavior is mismatched inside a bag corresponding to

some other behavior, then it is treated as a false positive. Finally, if no mismatch occurs

inside a bag of non-relevant behavior, then the entire bag is treated as a true negative.

3.6.1 Feeding/Pecking Behavior

Feeding/pecking is perhaps the most familiar behavior in chickens. Figure 3.3

shows the query-template discovered by our dictionary building algorithm, along with

matching subsequences in the training dataset. Recall that subsequences located within

regions annotated as containing instances of feeding/pecking behavior are treated as true

positives (TP), whereas matches outside of regions annotated for feeding/pecking behavior

are treated as false positives (FP).
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Figure 3.3: Query-template for feeding/pecking behavior, (left) X-axis and (right) Z-axis
matching subsequences in the training dataset.

Figure 3.4 shows matching subsequences from the test dataset with true positives

shown in green and false positives shown in red. The reader will appreciate that the false

positives do look at lot like the true positives. As noted above, it is possible (and indeed

likely) that they really are true positives that escaped the attention of the human annotator.

Figure 3.4: The X-axis query-template and matching subsequences for feeding/pecking
behavior in the test dataset, (left) true positives (right) false positives. Note that the false
positives do appear to actually be true positives that were missed by the human annotator.

Given the positioning of sensor on the back of chicken, as shown in Figure ??

(center) and (right), when the chicken approaches its head to the ground, X-axis and Z-

axis are affected. As can be seen in Figure 3.3 (top), pecking behavior is manifested in

the form of a “valley” on X-axis (i.e. negative X-axis acceleration); at the same time as
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shown in Figure 3.3 (bottom), the pecking behavior is manifested in the form of a peak on

Z-axis (i.e. positive Z-axis acceleration). Further, given that Y-axis (i.e. lateral acceleration

towards left or right) is not as influential as X and Z-axis, therefore we omit the Y-axis for

this specific behavior. Figure 3.6 (top) shows the matching subsequences for running the

feeding/pecking query-template against the test dataset.

Table 3.1 provides the confusion matrix for the performance of feeding/pecking

query-template.

Table 3.1: Confusion matrix for feeding/pecking behavior

Classes Pecking Non-Pecking

Pecking 17 (TP) 7 (FN)

Non-Pecking 4 (FP) 43 (TN)

Accuracy =
TP + TN

TP + TN + FP + FN
= 71 %

Precision =
TP

TP + FP
= 81 %

Recall =
TP

TP + FN
= 85 %

Given the results above, our classification model has a 0.71 precision and 0.81

recall in matching instances of the feeding/pecking behavior. Overall, the classifier has 85%

accuracy for the feeding/pecking behavior, which compares very favorably to 70% default

rate (i.e., guessing every observed object as the majority class).
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3.6.2 Preening Behavior

Preening is the act of cleaning feathers, which is an important part of a chicken’s

daily activities. Preening is a grooming behavior that involves the use of the beak to position

feathers, interlock feather barbules (informally, “zip up” the feathers) that have become

separated, clean plumage, and remove ectoparasites. Figure 3.5 shows the query-template

for the preening behavior and the matching subsequences within the training dataset. Also,

Figure 3.6 (bottom) shows subsequences for running the query-template against a long test

dataset.

Figure 3.5: The Z-axis query-template corresponding to preening behavior along with
matching subsequences in the training dataset.

It is interesting to discuss the nature of the preening behavior before proceeding

to evaluation results. One might imagine that a flat region in the data is uninformative,

however a flat region directly after the pattern on the Figure 3.5 is informative. The bird

uses its beak to realign the feathers, and as can be seen in Figure 3.5, the act of preening

starts with moving the head (i.e. positive and negative Z-axis acceleration) and the rest of

the pattern is relatively flat which might imply movement of feather through the beak for
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Figure 3.6: Matching subsequences in the test dataset for (top) feeding/pecking behavior
on X and Z-axis (bottom) preening behavior only on Z-axis. KEY: green highlights indicate
true positives, and red highlights indicate false positives.

alignment purposes. Figure 3.6 (bottom) shows the matching subsequences for running the

preening query-template against the test dataset. Table 3.2 provides the confusion matrix

on the performance of preening query-template.

Given the evaluation results above our classification model has 0.91 precision in

matching preening subsequences; and 0.71 recall in matching relevant instances of the

preening behavior. Finally, the model has 93% overall accuracy in matching preening sub-

sequences compared to the 80% default rate (i.e., guessing every observed object as the

majority class).

Table 3.2: Confusion matrix for preening behavior

Classes Preening Non-Preening

Preening 10 (TP) 1 (FN)

Non-Preening 4 (FP) 56 (TN)

Accuracy =
TP + TN

TP + TN + FP + FN
= 91 %

33



Figure 3.7: Matching subsequence in the test dataset for dustbathing behavior, while this
behavior is much rare, our algorithm correctly found the instance. KEY: green highlightings
indicate true positives, and red highlightings indicate false positives (we do not have any
false positive matches here).

Precision =
TP

TP + FP
= 71 %

Recall =
TP

TP + FN
= 93 %

3.6.3 Dustbathing Behavior

Dustbathing is the act in which the chicken moves around in dust or sand to remove

parasites from its feathers. This tends to be the least common activity in chickens. As shown

in Figure 3.7 and Figure 3.8, dustbathing tends to be the most difficult behavior to search

for, since there were only two instances in the training dataset and only a single instance

in the test dataset. Table 3.3 presents confusion matrix for the dustbathing behavior.
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Table 3.3: Confusion matrix for dustbathing behavior

Classes Dustbathing Non-Dustbathing

Dustbathing 1 (TP) 0 (FN)

Non-Dustbathing 0 (FP) 70 (TN)

Given these evaluation results, our model has 1.00 precision in matching dust-

bathing subsequences and 1.00 recall in matching relevant instances of the dustbathing

behavior.

Accuracy =
TP + TN

TP + TN + FP + FN
= 100 %

Precision =
TP

TP + FP
= 100 %

Recall =
TP

TP + FN
= 100 %

Finally, the model has 100% overall accuracy in matching dustbathing subse-

quences compared to 99% default rate (i.e., guessing every observed object as the majority

class). Figure 3.8 shows subsequences for running the dustbathing query-template against

the test dataset.

3.7 Case Study: An Entire Day With A Chicken

In this section, we study the behavior of a chicken over the course of 24 hours and

run our chicken behavior dictionary against the day-long dataset. The data corresponds to

35



Figure 3.8: Matching subsequence in the test dataset for dustbathing behavior, while this
behavior is much rare, our algorithm correctly found the instance. KEY: green highlightings
indicate true positives, and red highlightings indicate false positives (we do not have any
false positive matches here).

11/22/2017 from midnight to midnight. The dataset is shown in Figure 3.9; and is of size

8,665,227 x 3 datapoints. The gray shaded regions correspond to midnight to sunrise (i.e.

06:28 AM) and the time artificial lights are turned off (i.e. 10:00 PM) to midnight.

Figure 3.9: Twenty-four hours time series chicken data.

We ran the dictionary of chicken behaviors against the twenty-four hours chicken

dataset. Figures 3.10 through 3.15 present the matching subsequences for feeding/pecking,
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preening, and dustbathing query-template behaviors in the 24 hours chicken dataset.

Starting with Figures 3.10 and 3.11, we show the matching subsequences in both

the original and Z-normalized space to justify our choice of working with the Z-normalized

representation [41]. Note that in the original space there are shifts in the mean that are

inconsequential, yet which would dwarf the Euclidian distance calculations [49].

Figure 3.10: The X-axis and Z-axis query-templates, along with matching Z-Normalized
subsequences for feeding/pecking behavior in the twenty-four hours chicken dataset.

Figure 3.11: The X-axis and Z-axis query-templates, along with matching Non-Z-
Normalized subsequences for feeding/pecking behavior in the twenty-four hours chicken
dataset.

Looking at Figures 3.12 and 3.13 for the query-template and matching subse-

quences for the preening behavior, it can be seen that the matching subsequences have

very high similarity with the query template at the beginning; however, we still see some

dissimilarities along the rest of the query-template which may correspond to nibbling of the
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feathers with the beak. Finally in Figures 3.14 and 3.15 the matching subsequences for the

dustbathing behavior are shown.

Figure 3.12: The Z-axis query-template and matching Z-Normalized subsequences for the
preening behavior in the twenty-four hours chicken dataset.

Figure 3.13: The Z-axis query-template and matching Non-Z-Normalized subsequences for
the preening behavior in the twenty-four hours chicken dataset.

The matching subsequences are fairly well conserved, however, not as well as the

Figure 3.14: The X-axis and Z-axis query-templates, along with Z-Normalized matching
subsequences for dustbathing behavior in the twenty-four hours chicken dataset.
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Figure 3.15: The X-axis and Z-axis query-templates, along with Non-Z-Normalized match-
ing subsequences for dustbathing behavior in the twenty-four hours chicken dataset.

feeding/pecking and preening behaviors. This can be due to the fact that dustbathing is a

relatively long (appx. 1.74 s) and a rare behavior. Figure 3.16 shows the frequency of each

behavior over the entire 24 hours, as computed with a one-hour long sliding window.

As expected, the feeding/pecking behavior has the highest overall frequency; peak-

Figure 3.16: Temporal frequency of chicken behaviors (feeding/pecking, preening and dust-
bating) for the twenty-four hour chicken dataset.
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ing between 11:00 AM and 15:00 PM. An interesting finding is that the chicken seems to

begin the day with a preening session starting just after dawn. A more unexpected finding

is that there is a “dip” in feeding that happens just after noon, and it seems to be replaced

with an uptick in dustbathing.

In the future, we will examine similar circadian traces to understand if this is

typical of all birds or indicative of an individual with an ectoparasite infestation.

3.8 Conclusion

In this chapter, we introduced an algorithm to learn a dictionary of behaviors from

weakly labeled time series data. We demonstrated, with an extensive empirical study, that

our algorithm can robustly learn from real, noisy and complex datasets, and that the learned

query-templates generalize to previously unseen data. While our study was motivated by

a pressing problem in poultry welfare, it could clearly be used to study cattle, goats, non-

human primates [39], or any other data source that presents itself as weakly labeled data.

In future and ongoing work, we plan to examine much larger datasets; corresponding to

several years of chicken data (recorded in parallel from multiple birds).
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Chapter 4

Hybrid Shape & Feature

Classification: Fitbit for Chickens?

Time Series Data Mining Can

Increase the Productivity of

Poultry Farms
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4.1 Introduction

Poultry farming refers to raising domesticated birds (e.g. chickens, turkeys and

ducks) to produce meat, eggs and/or feathers. Given the ever-growing world population

and the demand for nutritious food, the poultry are farmed in great numbers. There are

more chickens in the world than any other bird. Poultry meat and eggs contribute to human

nutrition by providing high-quality protein and low levels of fat [52].

In recent years, progress in sensor technologies have enabled practical deployments

in increasingly prosaic settings. Recognition of human activities has been approached in

various ways, among which the most practical and accurate are wearable sensors that are

attached to the subject [35]. Such collected sensor data is typically extracted in the form

of time series data; which can be investigated with a host of data mining techniques to

summarize the behaviors of the subject [4]. While there are hundreds of research efforts

in time series classification, most studies on time series have only been evaluated on the

highly contrived UCR Archive. In this work we show that real-world applications introduce

unexpected difficulties and challenges that have been largely “hidden” by the curators of

the UCR Archive (in fairness, the most recent version of the archive explicitly recognizes

and addresses the issue). The two main issues we address are:

• The shape vs. feature classification dichotomy: Most time series classification

research efforts solely rely on either shape based or feature-based techniques [17][40].

However, as we show in this work there exist problems for which some classes are

suited to just one of those paradigms, but some to the other. Thus motivated, we

propose a joint shape/feature classification algorithm which outperforms both sole
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shape and feature based methods in terms of classification accuracy.

• Learning from noisy and highly skewed real-world chicken data: Most time

series mining papers in the literature assume all classes are the same length, and the

data is strongly labeled (again, simply reflecting what data is available in benchmarks).

Figure 4.1: (top) A poultry farm with six chicken houses in Cullman County, AL USA hints
at the scale of poultry production (bottom) Chickens in a poultry house.

In contrast, our domain of interest has well-defined behaviors that differ in length

by almost an order of magnitude. Because of the two issues above, most algorithms in the

literature are either not defined for our practical problem-at-hand, or they perform poorly.
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4.1.1 Poultry Management and Welfare

The United States of America is the world’s largest poultry meat producer, with

18 percent of global output, followed by China, Brazil and the Russian Federation. Ap-

proximately 70 percent of chickens raised for meat globally are raised in intensive farming

systems. This includes the majority of chickens in the US, UK, and Europe, as well as

rapidly increasing numbers in developing countries [45], as shown in Figure 4.1.

If poultry are to achieve their genetic potential for meat or egg production, they

need an environment that meets their physiological requirements. This includes: (1) a

suitable physical environment in terms of temperature, humidity, air movement and the

surfaces on which they live; (2) adequate food and water; (3) minimal exposure to disease

causing organisms; and (4) avoidance of exposure to stress resulting from the physical and

social environment. The factors influencing these are determined largely by housing and

management. Consumers increasingly want to be sure that all animals being raised for

food are treated with respect and are properly cared for during their lives, and companies

involved in raising chickens for food are becoming increasingly responsive to the public’s

concern. They recognize that they have an ethical obligation to make sure that the animals

on their farms are well cared for. The chicken industry has come together on a specific set

of expectations that will ensure that the birds they raise are taken care of with the highest

standards starting at hatch [23].
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4.1.2 Challenges in Working with Chickens

There are hundreds of studies on quantifying human body behaviors with sensors

[50]. Such studies typically involve finding discrete well-defined classes of behaviors, and

then monitoring data for future occurrences of behaviors. One example is “step-counting”

to measure compliance with a suggested exercise routine. However, the task of studying

behaviors (activity recognition) in chickens is considerably more difficult than humans for

the following reasons, as outlined in Table 4.1 and discussed below:

Activity Humans Chickens

Sensor Placement Flexible Limited
Individual Variability Well-Studied Limited-Studies
Cooperativity High Limited to None

Table 4.1: Activity recognition trends in humans versus chickens

• In case of humans, the sensors can be easily placed on the extremities of the limbs

(i.e. smart-shoes or smartwatches); However, the placement of sensors on chickens has

been primarily restricted to the back of the birds due to sensor limitations and the

welfare of animal. This provides only coarse information about the bird’s behaviors.

• The variability of human behaviors is well-studied, and it is understood what fraction

can be attributed to individual’s personality, sex, body type, mood and so forth,

versus variability in sensor placement [20]. More importantly, it is known how to

account for this variability [34]. However, it is less clear how much variability exists

in birds and how we can best account for it [4].

45



• Creating a dictionary for a human subject is relatively straight-forward. During an

explicit training session, behaviors of interest can be “acted out” in a fixed order for

a fixed duration of time. For example, one of the most studied human motion time

series datasets is the UCR archives gun-point [19]. When recording that dataset, the

actor’s behaviors were cued by a metronome [17], to enable subsequent extraction

of the behaviors. Chickens are clearly not as cooperative, and many hours/days of

video recordings must be analyzed to create a behavior dictionary. Moreover, it is

difficult, even for an experienced avian ethologist, to define precisely where a given

behavior begins and ends, thus we must be able to work with “weakly labeled” data.

For example, our data may be labeled as “most of that eight seconds is comprised of

dustbathing” or “there are about twelve pecks in that ten second snippet”.

In this work, we introduce a novel shape/feature classification algorithm, which

can take such weakly labeled data together with some mild constraints “a preening behav-

ior probably lasts between 0.3 and 1.5 seconds” and automatically learns to classify the

behaviors.

It is important to note that we are not advocating placing sensors on every chicken

in the flock. This would clearly be prohibitively expensive and time consuming. Our claim

is that by studying the behaviors of a few sentinel birds, we can utilize the learned lessons

to improve the welfare for the entire breed. This idea is widely understood, so we will not

dwell on it further. See [18] and the references thereof.
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4.2 Related Work

As noted above, the many thousands of research efforts on classification of hu-

man behavior do not bear directly on the task-at-hand, thus we confine our discussion to

non-human animals. In recent works [56][8], sensors were used for classification of sheep

behaviors; with mounted sensors on ear/collar or leg of the sheep. Similar work has been

performed for domestic bovines [54] and goats [40], and for various kinds of wild animals.

There has been a work for monitoring of insects [9]. In addition, there has been some work

on poultry behaviors using sensors. However, this work is complementary to our efforts.

They use only statistical features (mean, entropy, etc.) to quantify periods of general behav-

iors, such as sleep, stand, walk, etc. [7]. In contrast, Abdoli et al. [4] used the shape of the

time series to annotate very specific and dynamic behaviors, such as individual instances of

a single peck. However, as we will show in a later section, relying solely on shape will result

in low accuracy, as some chicken behaviors (for example, preening) have highly conserved

values for some features, but are not expressed in well conserved shapes.

4.3 Data Acquisition and Cleansing

All chickens were housed and cared for in accordance with UC Riverside Institu-

tional Animal Care and Use Protocol. Data is collected from chickens by placing the sensor

on bird’s back. Placement of the sensor in this allows for high-quality recording chicken

behaviors, while the minimum interference and discomfort. We initially collected data using

the Axivity AX3 data logger sensor [3], shown in Figure 4.2 (left), weighing about 11 grams

and configured with 100 Hz sampling frequency and +/- 8g sensitivity which allows for two
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weeks of continuous data collection with the battery fully charged.

Figure 4.2: (left) Axivity AX3 data logger sensor used for batch processing mode (right)
MbientLab Meta Tracker (MTR) sensor used for online real-time processing mode.

As a data logger, the Axivity AX3 saves all acquired data to an internal memory

device which can only be accessed after the sensors are removed from the chickens. This

requires considerable human time and effort. On the other hand, diseases and abnormalities

might spread quickly throughout the chickens in the houses. Therefore, in order to provide

instantaneous access to the chicken data we utilized MbientLab MetaTracker sensors, shown

in Figure 4.2 (right), which are capable of wireless real-time data transmission through the

Bluetooth technology. In Figure 4.3 we show the logic model for our operations. The

workflow, as outlined goes from step 1 to 7.

Note that the workflow was supposed to be linear, steps 1 to 7. However, as

with most real-word deployments, as we approached step 7, the computer scientists in

our group saw opportunities to improve the quality of the data, and the entomologists

saw opportunities to monitor additional behaviors. Thus, we cycled through this workflow

several times on new cohorts of birds before converging on a commercially deployable system.

This also might be a good place to note why entomologists, and not directly bird experts,

are the main customers of our system.
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Figure 4.3: The workflow to study chicken behavior and welfare in online processing mode.

By far, the most important stressor of chickens, and most important vectors of

chicken diseases are insects and mites [18][12].

4.4 Definitions and Notations

We begin by providing definitions and notation to be used throughout the paper.

Definition 1: A time series T is a sequence of real-valued numbers ti: T =

[t1, t2, . . . , tn] where n is the length of T .

We are typically not interested in the global properties of time series, but in the

similarity between local subsequences:

Definition 2: A subsequence Ti,m of a time series T is a continuous subset of

the values from T of length m starting at position i. Ti,m = [ti, ti+1, . . . , ti+m−1] where

1 ≤ i ≤ n–m + 1.
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We will classify the time series using a combination of feature and shape measures.

Definition 3: The nearest neighbor (NN) classifier for a time series T is an

algorithm that for each query Q (i.e. subsequence) finds its nearest neighbor in T and

assigns Q that neighbor’s class.

In case of a shape-based classifier, the nearest neighbor is defined using either the

Euclidean distance (ED) or the Dynamic Time Warping (DTW) as the distance measure.

The distance between a query (i.e. an unlabeled exemplar) and all the other subsequences

in the time series is stored in an ordered vector called the distance profile (D).

Definition 4: A distance profile D is a vector of Euclidean distances between a

given query and each subsequence in the time series.

To avoid extracting redundant subsequence matches in distance profile we must

be aware of trivial matches:

Definition 5: Given a time series T , containing a subsequence Tp,m, if Tp,m

scores highly on any scoring function, then Tj,m will almost certainly score high on the

same function. These spurious high scoring subsequences are trivial matches.

To avoid counting trivial matches when finding matches to a query, we discard

some of the patterns using the concept of an exclusion zone, a standard practice [13].

While distance is the measure of similarity between two subsequences in a shape-

based classifier, the feature-based classifier finds similarity based on a set of features.

Definition 6: Given time series T and function X, the feature vector F will be the

value of X for every subsequence of T . Each feature vector F corresponds to a measurable

property of the time series.
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4.5 Methodology

The problem of time series classification has been around for decades. There are

two main approaches for time series classification in the literature, namely, shape-based

classification [28][33][32] and feature-based classification [38]. Shape-based classification de-

termines the best class according to a distance measure (e.g. Euclidean distance). Feature-

based classification, on the other hand, finds the best class according to the set of features

defined for the time series. These features measure properties of the time series (e.g. auto-

correlation, complexity, etc.) [5].

4.5.1 Shape versus Feature Classification

As noted above, researchers typically use either shape-based or feature-based tech-

niques for classification of time series. However, deciding which classifier is the best for the

problem at hand is a difficult problem to solve. There are three obvious possibilities.

• One of the two techniques dominates for all problems. However, an inspection of the

literature, or a little introspection convinces us otherwise. There are clearly problems

for which one of the two approaches is much better on all classes [5].

• On a problem-by-problem basis, one of the techniques dominates. For example, per-

haps for electrocardiograms shape is the best, but for electroencephalograms feature

is the best. This seems to be the implicit assumption of most of the community [24].

• On a single problem, it might be possible that one of the techniques is better for one

subset of the classes, and the other technique is better for another subset.
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Given this third possibility, it is clear that neither of the two techniques will

dominate for some problems, but that some “combination” of both might be the best.

We have observed that the task of classifying chicken behavior from accelerometer

data is unlikely to yield to a single modality of classification. The pecking behavior has

highly conserved shape. Whereas the preening and dustbathing behaviors do not have a

stereotypical shape, but are recognizable using several features, including “complexity” and

“frequency” [24].

4.5.2 Chicken Behavior Classification

From literature reviews [37][12], and conversations with poultry experts, we expect

that the following behaviors correlate with poultry health:

• Feeding/pecking: bringing the beak to the ground and retrieving a morsel of food.

• Preening: grooming of the feathers using the beak.

• Dustbathing: sitting or rolling in the dirt.

In particular, birds infected with ectoparasites are expected to do more preen-

ing/dustbathing [18]. Table 4.2 details the combination of shape and features we used for

classifying pecking, preening and dustbathing behaviors. In case of the pecking behavior

the shape works well, however, to distinguish and ward off noisy subsequences that look

like pecks we further applied standard deviation and complexity features. The dustbathing

behavior (likewise preening) does not have a well-conserved shape. So, we utilized features

to classify their instances. Given the intense nature of the preening and dustbathing be-

haviors the “complexity” feature is useful to distinguish the aforesaid behaviors from other
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behaviors [10]. Moreover, to further classify between preening and dustbathing instances

we applied the power spectral density feature which provides discrimination to distinguish

these behaviors [24]. Note that although we used the complexity feature for the pecking,

preening and dustbathing, we learn different thresholds for each behavior class.

As can be seen in Table 4.2, the length for pecking behavior instances is assumed

to be constant, while the length for the instances of preening and dustbathing instances

can vary from 0.3 of a second to 8 seconds. The shape-based classification will not work

well for preening and dustbathing and we should utilize features (i.e. complexity and power

spectral density).

Behavior Length Shape Feature

Pecking Constant (ED) (SD, CMP)
Preening Variable X (SD, SPD)
Dustbathing Variable X (SD, SPD)

Table 4.2: Shape-Feature Classification for Chicken Behaviors. Keys: ED = Euclidean
Distance, SD = Standard Deviation, CMP = Complexity, SPD = Spectral Power Density.

We are now in a position to discuss the proposed combined shape-feature algo-

rithm.

4.5.3 Proposed Approach

1. Propose a set of useful features and shapes, allowing the possibility that different

classes may best be distinguished with different subsets of shapes and features.

2. Calculate the shape-vectors and feature-vectors, given the identified set.

3. Learn relevant thresholds for every class (given the user’s class-dependent tol-
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erance for false positives/false negatives).

The algorithms outlined above have two subroutines outlined in Table 3. Individual

elements are motivated and explained in the following subsections.

Propose a set of useful features and shapes: The user will provide a set of

shapes and features for every class. These suggested shapes and features can come from

domain experts or visual inspection of the time series by the user. The choice of which

features to use is beyond the scope of this paper. Fulcher et al. [24] presented a library of

over 9,000 features that can be used to quantify time series properties including the classic

features such as min, max, standard deviation, periodicity etc.

Calculate shape and feature-vectors: We are given a time series, the set

of classes describing the time series and the set of shapes and features describing each

individual class. The classification process involves calculating shape-vector and feature-

vector(s), based on the proposed set of shapes and features, for every class.

Set relevant thresholds for every class: For each class, we need a threshold

that best defines our relative tolerance for the false positives vs. false negatives. The

thresholds can be either manually adjusted by the user (static) or learned through a feedback

loop (dynamic), assuming ground truth labels are available. In the dynamic case, the user

may inspect the results produced by multiple runs of the algorithm and choose the threshold

setting corresponding to the most desired point on the ROC curve.

Algorithms 3 and 4 show calculation of shape and feature vectors for pecking,

preening and dustbathing behaviors. The typical shape of an instance of pecking behavior

is shown in Figure 8. Note that, in principle, a single behavior could have two or more
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possible instantiations; just like the number four has two written versions, closed ‘4’ and

open ‘4’, which are semantically identical. We call such behaviors a polymorphic behavior.

Our algorithm allows for having multiple instances of shapes for the same class, so we can

account for instances which belong to the same class but differ in shape.

Algorithm 3 ALGORITHM FOR COMPUTING SHAPE-BASED AND FEATURED-

BASED PROFILE FOR PECKING BEHAVIOR

Input: Train Data T , Query Q and Label L

Output: Pecking Locations, thelocationofpeckinginstances

1: // Calculate Distance Profile

2: [distV ector, ind]←− sort(distanceProfile(T,Q))

3: // Calculate Standard Deviation Feature

4: [stdV ector]←− std(T, 100)

5: [stdV ector]←− applyThreshold(stdV ector, L)

6: // Calculate complexity feature

7: [cplxV ector]←− sum(abs(diff(T )), 100)/stdV ector

8: [cmplxV ector]←− applyThreshold(cmplxV ector, L)

9: // Combine shape-vector and feature-vectors

10: Pecking Locations = distV ector&stdV ector&complexityV ector

In line 2, the distance profile (Definition 4) of the shape-based query for pecking

behavior is calculated and sorted in ascending order. Essentially, the subsequences most

similar to the query Q are prioritized as likely candidates. In [4] the authors attempted to

classify just with shape, however, given technical limitations of time series data (noisy data
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and etc.) and fast-paced nature of pecking behavior (lasting for one fourth of a second)

the authors had to set a conservative threshold to avoid misclassifications of real chicken

pecks and noisy data that look similar to pecks. In this study, we mitigate this issue

with combined shape-feature classification. Standard deviation and complexity are the two

suggested features to distinguish a real peck from similar noisy data.

In line 4, we calculate the standard deviation over the time series T with a sliding

window of one second (data was recorded at 100Hz). Next, in line 5, stdVector is passed to

applyThreshold function which tests different thresholds given the label L and finds the best

threshold for the feature vector. Similarly, in line 7, the complexity feature is calculated

over the time series with a sliding window of one second. cmplxVector is passed to the

applyThreshold function to obtain the threshold yielding the best classification results for

the feature complexity. Given the distance profile (distVector), standard deviation vector

(stdVector) and complexity vector (cmplxVector), in line 10, we combine the shape-feature

vectors using logical operations so that noisy data are filtered by standard deviation and

complexity features.

Table 4 shows the steps for classification of preening and dustbathing behaviors

using the complexity and power spectral density features. In line 2 the complexity feature

is calculated over the time series. In line 3 cmplxVector and class labels L are passed to

applyThreshold so that the best threshold for the preening and dustbathing classes are

found.
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Algorithm 4 ALGORITHM FOR COMPUTING FEATURED BASED PROFILE FOR

PREENING AND DUSTBATHING BEHAVIOR

Input: Train Data T , and Label L

Output: Dustbathing Locations, Preening Locations, the location of dustbathing and preen-

ing instances

1: // Calculate Distance Profile

2: [distV ector, ind]←− sort(distanceProfile(T,Q))

3: // Calculate Standard Deviation Feature

4: [stdV ector]←− std(T, 100)

5: [stdV ector]←− applyThreshold(stdV ector, L)

6: // Calculate complexity feature

7: [cplxV ector]←− sum(abs(diff(T )), 100)/stdV ector

8: [cmplxV ector]←− applyThreshold(cmplxV ector, L)

9: // Combine shape-vector and feature-vectors

10: Pecking Locations = distV ector&stdV ector&complexityV ector

Figure 4.4 depicts the complexity feature vector which as demonstrated in the

figure helps with distinguishing preening and dustbathing behaviors from other classes.

Returning to Algorithm 4, following the calculation of complexity feature vector, we identify

the regions corresponding to either preening or dustbathing behavior.

In line 4, we initiate a for loop and for every distinguished region from the com-

plexity feature we calculate the power spectral density function over that region, as shown
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Figure 4.4: The complexity feature vector for distinguishing preening and dustbathing
instances from other classes. Note that the feature (blue) tends to peak at location marked
as positive with the vector of class labels (red).

in Figure 4.5. The main benefit of the spectral power density is to differentiate between

preening and dustbathing instances. Next, we account for the area under the curve (AUC)

of the power spectral density of every instance, and the value of the AUC helps to classify

between preening and dustbathing instances.

Following discussion of the shape-feature based classification algorithm we will

initially provide extensive evaluation results for a labeled chicken dataset. Next, we will

demonstrate that the proposed classification algorithm generalizes well to unforeseen chick-

ens for which we do not have any labels of any kind.
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Figure 4.5: The power spectral density feature vector for distinguishing between preening
and dustbathing instances.

4.6 Experimental Evaluation

To ensure that our experiments are reproducible, we have built a supporting web-

site; which contains all data, code and raw spreadsheets for the results. Initially we present

the results for the training/test dataset, shown in Figure 4.6, and then we proceed to a case

study of utilizing the shape-feature based classification algorithm to recognize healthy and

unhealthy chickens based on the behavior count throughout the day.

4.6.1 Performance Evaluation

The original dataset is split into mutually exclusive training and test datasets, as

illustrated in Figure 4.6. For some fraction of the time series data collected, a video camera

also recorded the chicken activity (approximately 30 minutes).

This video recording provides ground truth to act as training data. The sensor

data was carefully annotated [21], based on the video-recorded chicken activities; it must
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Figure 4.6: Three-dimensional chicken time series (the top/red time series is X-axis; mid-
dle/green time series is Y-axis and bottom/blue time series is Z-axis time series). The
purple lines represent annotations of observed chicken behaviors captured on video; the
height of each annotated region represents a distinct behavior.

be noted that even the most careful human labeling of chicken behaviors can contain errors,

especially false negatives.

As shown in Figure 4.6, the annotations (purple) take the form of a categorical

vector that indicate that in the corresponding region one or more examples of the cor-

responding behavior were observed. Such data is often called “weakly labeled” data. In

addition, there are almost certainly instances of the behavior outside the annotated regions

which the annotator failed to label, perhaps because the chicken in question was occluded

in the video. However, we believe that such false negatives are rare enough to be ignored,

and moreover, our algorithm is not very sensitive to mislabeled data.

We do not know the exact number of instances of a class inside a region. As noted

above, the labels are of the form “there are about ten pecks in that six seconds snippet”.

To address this issue, we utilize the concept of Multiple Instance Learning (MIL) [6]. MIL
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assumes each annotated region as a “bag” containing one or more instances of a class. If

at least a single instance of a class is matched inside a bag, it is treated as a true positive.

If no instances of the class are detected inside the bag, then the entire bag is treated as a

false negative. In case an instance of class is mismatched inside a bag belonging to some

other behavior, then it is treated as a false positive. Finally, if no mismatch occurs inside

a bag of a non-relevant class, then the entire bag is treated as a true negative.

Next, we investigate the utility of our algorithm for separating distinct chicken

behaviors. A healthy chicken is expected to display a set of behaviors [7]. In this work, we

only considered pecking, preening and dustbathing behaviors. Pecking is perhaps the most

familiar behavior in chickens which may be performed tens of thousands of times each day.

Figure 4.7: The shape of a chicken peck, used as the query for creating a shape-based model
for classification of pecking behavior.

Figure 4.7 shows the typical query-template we used for creating the shape-based

model for the pecking behavior. Given the query in Figure 8, we calculate the distance profile

(see definition 4) for the training dataset. Then, we calculate feature vectors and separate
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pecking and non-pecking instances based on calculated distances and feature vectors with a

high degree of confidence. The classification of training dataset for pecking behavior based

on shape-feature algorithm is shown in Figure 4.8. Table 4.3 presents the confusion matrix

for the classification of pecking behavior in the test dataset.

Figure 4.8: The shape-feature classification for the pecking behavior in rose pink. For clarity
only the X-Axis is shown in blue with the annotation video from the video in purple.

Table 4.3: Confusion matrix for pecking behavior

Classes Pecking Non-Pecking

Pecking 25 (TP) 4 (FN)

Non-Pecking 2 (FP) 40 (TN)

Accuracy =
TP + TN

TP + TN + FP + FN
= 86 %

Precision =
TP

TP + FP
= 92 %

Recall =
TP

TP + FN
= 91 %
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Given the results above, our classification model has 86% precision and 92% recall

in matching instances of the pecking behavior. Overall, the classifier has 91% accuracy for

the preening behavior, which compares very favorably to 70% default rate (i.e., guessing

every observed object as the majority class).

The preening behavior does not have a well-conserved shape. Thus, we should turn

our attention to features. Similarly, we calculate the complexity feature vectors for the train-

ing dataset. Next, based on complexity feature vector we separate preening/dustbathing

from non-class (i.e. pecking and noisy data) instances. Finally, we use spectral density fea-

ture vector to differentiate between preening and non-preening (i.e. dustbathing) instances

as shown in Figure 4.9 and Figure 4.11. Table 4.4 presents the confusion matrix for the

classification of preening behavior in the test dataset.

Figure 4.9: The shape-feature classification for the preening behavior in rose pink. For
clarity only the X-Axis is shown in blue with the annotation video from the video in purple.

Table 4.4: Confusion matrix for preening behavior

Classes Preening Non-Preening

Preening 14 (TP) 0 (FN)

Non-Preening 0 (FP) 57 (TN)
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Accuracy =
TP + TN

TP + TN + FP + FN
= 100 %

Precision =
TP

TP + FP
= 100 %

Recall =
TP

TP + FN
= 100 %

Given the results above, our classification model has a 100% precision and recall

in matching instances of the preening behavior. Overall, the classifier has 100% accuracy

for the preening behavior, which compares very favorably to 70% default rate.

Figure 4.10: The shape-feature classification for the preening behavior in rose pink. For
clarity only the X-Axis is shown in blue with the annotation video from the video in purple.

Table 4.5: Confusion matrix for dustbathing behavior

Classes Dustbathing Non-Dustbathing

Dustbathing 1 (TP) 0 (FN)

Non-Dustbathing 0 (FP) 70 (TN)
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Accuracy =
TP + TN

TP + TN + FP + FN
= 100 %

Precision =
TP

TP + FP
= 100 %

Recall =
TP

TP + FN
= 100 %

Table 4.6 presents the confusion matrix for the classification of dustbathing be-

havior in the test dataset. Given these evaluation results, our model has 1.00 precision

in matching dustbathing subsequences and 1.00 recall in matching relevant instances of

the dustbathing behavior. Finally, the model has 100% overall accuracy in matching dust-

bathing subsequences compared to 99% default rate (i.e., guessing every observed object as

the majority class).

Figure 4.11: The shape-feature classification for the preening behavior in rose pink. For
clarity only the X-Axis is shown in blue with the annotation video from the video in purple.
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4.6.2 A Critical Lesion Study

Our fundamental claim in this work is that using a combined shape/feature modal-

ity is superior in some domains, including the domain-at-hand. There is a very simple way

to demonstrate this. We can repeat the previous experiments twice, once using only shape,

and once using only features. Everything else remains exactly the same. Table 8 shows the

results, which confirm the superiority of our more expressive approach.

While dustbathing is easy to recognize with either modality, a feature-based ap-

proach has difficulty with pecking, and a shape based-approach has difficulty with preening.

As the only difference in these three experiments are the allowed modalities, thus we can

attribute our success to more general algorithm.

Table 4.6: Shape-feature classification for chicken behaviors

Classification Activity Precision Recall Accuracy

Shape
Pecking 0.71 0.81 0.85
Preening 0.91 0.71 0.93

Dustbathing 1 1 1

Feature
Pecking 0.60 0.77 0.77
Preening 1 1 1

Dustbathing 1 1 1

Shape-Feature
Pecking 0.86 0.92 0.91
Preening 1 1 1

Dustbathing 1 1 1

4.6.3 Case Study: A Day of Chicken Life

Up to now, we trained and tested the proposed shape-feature based classification

algorithm on labeled data. However, as we mentioned early in this study, we believe that

the lessons learned with the short (labeled) dataset can be generalized to other chickens
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that were not previously seen.

We start by looking into classifying a day of data for a single chicken, as shown

in Figure 4.12. Most animals have a daily recurrent pattern of activity called a “Circadian

Rhythm”. We examine the existence of such pattern in Figure 4.12. As can be seen in the

figure, there are not many activities before sunrise and after artificial lights went off at 10

pm.

Figure 4.12: Shape-Feature based classification of a 24-hour of chicken data. The gray
regions denote nighttime.

This makes sense as chickens are visual creatures and quickly fall to sleep with a

lack of light. Next, we go one step further and we put the classification results into work

to differentiate between healthy and sick chickens based on the frequency (count) of the

behaviors.
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4.6.4 Case Study: Healthy vs. Sick Chickens

Diseases are of particular importance due to the heavy economic losses they cause

in poultry production [42]. Rapid detection and diagnosis allow for decreasing the costs

associated with the disease. In this section, we will use our feature-shape algorithm to

recognize unhealthy chickens to combat the spread of diseases in poultry.

We look into two 24-hour days of chicken data for all the chickens. Given the field-

inspection and manual verification by entomologist researchers, we know that the chickens

were all healthy on the first day and all were sick (infested with ectoparasites) on the other

day. The aim is that the shape-feature classification results can help to distinguish between

healthy and sick chickens with an acceptable confidence.

We start by looking at the histogram for the distribution of the number of pecking

Figure 4.13: The histogram for distribution of the number of pecking behaviors in healthy
(blue) and sick (red) chickens.
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behaviors for all the chickens when they were healthy (blue) and sick (red), as shown in

Figure 4.13. As evident in the figure the peck counts for healthy and sick chickens have

some overlaps.

Next, we proceed to inspecting the distribution of the number of preening behaviors

for all the chickens when they are healthy (blue) and sick (red). As shown in Figure 4.14 the

distribution of preening counts for healthy chickens is skewed to the left of the histogram

while the distribution of the preening counts for sick chickens is concentrated at the center

and right side of the histogram. This shows that the shape-feature classification algorithm

can distinguish between sick and healthy chickens based on the preening count with a good

confidence.

Figure 4.14: The histogram for distribution of the number of preening behaviors in healthy
(blue) and sick (red) chickens.

Finally, in Figure 4.15, we look into the distribution of the number of dustbathing

behaviors for healthy (blue) and sick (red) chickens. It is obvious that the distribution of

dustbathing for healthy chickens is mostly accumulated at the left side of the histogram.
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Figure 4.15: The histogram for distribution of the number of dustbathing behaviors in
healthy (blue) and sick (red) chickens.

Whereas the distribution of the dustbathing count for sick chickens is spread over at the

center of the histogram.

In overall, the pecking behavior seems to provide an acceptable confidence for

distinguishing healthy and sick chickens. The preening and dustbathing behaviors show

great confidence towards differentiating between sick and healthy chickens.

It is fair to say that our proposed method is expressive since the only difference

between our algorithm and the other two methods (i.e. shape-based classification and

feature-based classification) is the way we combined those two possibilities. Nothing else

has changed. Therefore, we can attribute any success only to the increased expressiveness

of the proposed method.
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4.7 Conclusion

we introduced an algorithm to classify behaviors, using both shape and feature

measures, in weakly labeled time series data. We demonstrated, with an extensive empiri-

cal study, that our algorithm can robustly classify real, noisy and complex datasets, based

on a combination of shape and features, and tested our proposed algorithm on real-world

datasets. Our ideas are currently been evaluated with a large-scale field trial involving hun-

dreds of birds. While our study was motivated by a pressing problem in poultry welfare, it

could clearly be used in other realworld data problems. For example, oil and gas production

is telemetry-rich endeavor. Moreover, it features all the elements we mentioned that make

our poultry problem so difficult. In particular:

• Data is often only weakly labeled. For example, the ultimate Key Performance In-

dicator (KPI) may only be obtained once a shift by taking a physical sample and

measuring some metric. If it is bad, we get only a weak label such as “sometime in

the last eight hours something bad happened”.

• The duration of different classes can be at different scales, for example foaming might

happen in minutes, whereas clogging may take hours or longer.

• Different classes may best manifest themselves in just one of the shape or feature

modalities. For example, foaming is typically recognized (at least by eye) in feature

space, whereas sticking-valve is recognized in shape (as a “step pattern”).

Thus, we believe that our observations and algorithms may be more generally

applicable as researchers move beyond the toy problems used in the UCR archive.
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Chapter 5

Conclusions
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In this dissertation we demonstrated that neither of the shape-based or feature-

based approaches will be perfect for all classification problems. On a given problem, it

might be possible that shape classification is better for some subset of the behaviors, and

the feature classification technique is better for other subset of behaviors.

Next, we introduced the hybrid shape-feature classification algorithm to classify

behaviors, using both shape and feature measures, in weakly labeled time series data col-

lected from sensors to quantify specific behaviors performed by the subject. We demonstrate

that our algorithm can robustly classify real, noisy, and complex datasets, based on a com-

bination of shape and features, and tested our proposed algorithm on real-world datasets.

As the main case-study of this dissertation, we applied the proposed shape-feature

classification approach on chicken data. The course of this dissertation was in the following

order:

• Chapter 1 briefly discussed abundance and technological advances in sensing tech-

nologies, which in turn allowed for mass volume data collection. Given the capability

to collect excessively large amounts of data, the importance of efficient and scalable

time series data mining algorithms was emphasized.

• Chapter 2 explained the data engineering efforts towards setup, installation and col-

lection of data from data-logger and real-time sensors. Next, the efforts were focused

on transferring collected data to the cloud storage and subsequently data cleaning and

preparation tasks were discussed.

• Chapter 3 presented shape-based classification which utilized euclidean distance mea-

sure to look for similar subsequences towards the task of time series classification.
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• Chapter 4 was dedicated to the novel hybrid shape-feature classification approach.

The superiority of the shape-feature classification approach lies in the fact the some

behaviors (e.g., smooth and repetitive behaviors) are better classified based on their

shape, while other behaviors (e.g., complex and fast behaviors) are better classified

based on various mathematical and statistical features. Next, we applied the shape-

feature classification approach on terabytes of chicken data and suggested correlation

between timing and frequency of behaviors and the overall health status of the chick-

ens.

• Next, the utility of the proposed shape-feature classification approach was demon-

strated on human activity data, to emphasize wide range of data on which the shape-

feature approach could be employed.
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