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Vision-language modeling is a crucial subfield of AI that focuses on jointly learning and repre-

senting image and text data, often using one modality to enhance understanding of the other. In

cognitive science, humans use their visual system to grasp deep aspects of a concept, such as shape

and size, while language helps them understand its semantics. Similarly, a machine can gain a bet-

ter understanding of the world by utilizing multiple modalities, providing deeper insights compared

to learning from a single modality. VL modeling is widely explored in the general domain, thanks

to the vast image-text data available online and extensive annotated VL datasets. There are several

strong VL models in the general domain, such as CLIP, which perform well on various tasks. How-

ever, in low-resource domains with limited data or dense knowledge areas, like the medical field,

the data shortage hinders the development of robust multimodal models with reliable performance,
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especially where model reliability is critical. My research goal is to study the underlying capability

of Vision-Language and Language Models and to develop innovative approaches to enhance their

usage for low-resource domains such as the medical domain.
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CHAPTER 1

Introduction

In the field of Artificial Intelligence (AI), it’s become clear that understanding multimodal data -

such as text, image, and video - is a crucial yet challenging task. While researchers have made

significant strides in understanding text data in natural language understanding and image data in

computer vision, combining the two has become a focus of attention in recent years. The benefits

of developing an AI model that can understand both images and text are numerous, as one modality

can help improve the understanding of the other. This has spurred interest in building multimodal

models that can process information from multiple sources simultaneously.

The field of visual-language (VL) involves numerous tasks, including but not limited to classi-

fication and generation. In classification tasks, a model learns to predict the probability of multi-

modal data belonging to various classes. In generation tasks, the model learns to take either vision

or language data as input and generate an output in the other modality format. Visual question an-

swering (VQA) is an example of a multimodal task, in which a model is presented with an image

and a question related to the image, and is expected to generate an appropriate answer. Such tasks

have received considerable attention in the research community due to their potential for enabling

intelligent systems to process and understand multimodal information.

The advent of deep learning techniques, coupled with the availability of large annotated datasets

and computational power, has enabled AI models to achieve high accuracy and performance. How-

ever, in domains where a significant amount of annotated data is not available, such models tend
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to perform poorly. This makes the development of data-efficient AI models a major challenge that

requires further attention.

During my PhD, I have focused on learning-based low-resource VL models and tasks, with a

primary focus on scenarios where the limited availability of annotated data is the main bottleneck.

Specifically, I explored building VL and language models for tasks such as few-shot visual question

answering (VQA), disease diagnosis, and information extraction. By addressing these challenges,

we aim to contribute to the development of more efficient and effective AI models that can operate

in low-resource environments.

In Chapter 2, we review Computer-Aided Diagnosis (CADx) systems [GS08]. CADx offers

significant benefits for disease diagnosis, including improving the quality and consistency of pre-

dictions and reducing medical errors, as they are not prone to human error. While most research

focuses on the medical image-based diagnosis, such as chest X-ray (CXR) images [AU19, AA19,

AM18], radiology reports contain crucial information, such as patient history and previous studies,

which are difficult to detect from the image alone. Hence, VL models that take both images and

text as input have the potential to improve the accuracy of CADx, and several attempts have been

made in this direction [WPL18, ZCS19, LWL20]. However, training V&L models with limited

annotated data remains a significant challenge.

In Chapter 3 we go through the Few-shot learning in Visual question answering (VQA). VQA

is a vision-language task that requires a model to answer a question based on an image. Various

methods have been proposed for this task [LYL20, LYY19, LBP19], but they all rely on a large

amount of training data. These models are typically large-scale and require extensive training

to perform well. When there is a scarcity of data, the models can become ineffective, and their

performance can suffer greatly. While some models have been developed for the few-shot scenario,

they may require a large capacity or a massive corpus in a specific data format.

In Chapter 4, we revisited foundational Vision-language models. In the context of multimodal
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clinical AI, there is a growing need for models that possess domain-specific knowledge, as existing

models often lack the expertise required for medical applications. We take brain abnormalities as

an example to demonstrate how to automatically collect medical image-text aligned data for pre-

training from public resources such as PubMed. In particular, we present a pipeline that streamlines

the pre-training process by initially collecting a large brain image-text dataset from case reports

and published journals and subsequently constructing a high-performance vision-language model

tailored to specific medical tasks.

Finally, in Chapter 5, we Explored large language models (LLMs) for medical application.

LLMs demonstrate remarkable versatility in various NLP tasks but encounter distinct challenges

in biomedical due to the complexities of language and data scarcity. We investigates LLMs ap-

plication in the biomedical domain by exploring strategies to enhance their performance for the

Named Entity Recognition (NER) task.
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CHAPTER 2

Multimodal Representation for Disease Diagnosis

Systems for Computer-Aided Diagnosis (CADx) provide significant advantages in disease detec-

tion by enhancing the accuracy and consistency of diagnostic outcomes and offering an additional

review to minimize errors in medical judgments [GS08]. While the majority of research has con-

centrated on image-based diagnostics, including chest X-ray (CXR) imaging [AA19, AM18], it is

important to note that radiological reports frequently include critical textual information, such as

patient history and previous examinations, which are not immediately apparent from images alone.

Additionally, integrating both textual and visual data in diagnostics aligns more closely with the

methods used by human medical experts. Thus, V&L models that utilize both image and text

inputs could potentially enhance the precision of CADx systems.

The scarcity of labeled data in healthcare complicates the application of V&L models. Labeling

medical data demands the involvement of trained professionals, making it a costly endeavor. While

recent initiatives have introduced large-scale, automatically labeled datasets for specific medical

tasks like chest X-rays [WPL17, JPG19], these datasets tend to be of lower quality and can nega-

tively impact model performance. Moreover, datasets of this nature are not broadly available for

many medical applications, making the training of V&L models with minimal annotated data a

significant obstacle.

Recent advancements in the field have introduced pre-trained V&L models as a strategy to min-

imize the necessity for labeled data in training precise models for specific tasks [LYY19, TB19a,

4



CLY20]. These models initially undergo training on extensive datasets of image captions, employ-

ing self-supervision techniques such as the masked language model loss, where parts of the input

are concealed and the model is tasked with predicting the hidden words or image sections from the

available context 1. The learned parameters from these pre-trained V&L models are subsequently

transferred to initialize and fine-tune models for particular downstream applications. In many V&L

tasks, it has been observed that pre-training in V&L significantly enhances performance. However,

a significant issue arises when these standard pre-trained V&L models are employed in the med-

ical field: there is a substantial gap between the general (source) and medical (target) domains.

This discrepancy renders the typical pre-training and fine-tuning approach far less effective within

the medical sector. Thus, there is a necessity for domain-specific adaptations. Particularly, V&L

models often depend on object-focused feature extraction techniques like Faster R-CNN [RHG16],

which are trained on non-medical data to recognize common objects such as cats and dogs. Un-

fortunately, this means that unusual patterns found in medical imagery, such as anomalies in X-ray

images, may not be detected by these models optimized for everyday visuals.

To address this challenge, we introduce BERTHop, a transformer-based V&L model tailored

for healthcare settings. BERTHop enhances the V&L model’s visual encoder through the inte-

gration of PixelHop++ [CRY20], employing a fully unsupervised approach that drastically mini-

mizes the dependency on annotated data [RMA21]. PixelHop++ is adept at deriving image fea-

tures across various frequency bands, which is particularly advantageous for detecting anomalies

at multiple levels, allowing the transformer to better correlate these findings with the textual in-

put. Additionally, BERTHop mitigates issues related to domain disparity by incorporating a pre-

trained language encoder, BlueBERT [PYL19], a variant of BERT [DCL18] specifically trained on

biomedical and clinical text corpora.

1part of the input is masked and the objective is to predict the masked words or image regions based on the
remaining contexts
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2.1 Related Work

Transformer-based V&L models Drawing from the achievements of BERT in NLP, a range of

transformer-based V&L models have emerged [LYY19, CLY20, TB19a]. Typically, these models

employ an object detector, initially trained on the Visual Genome [KZG17], to capture visual ele-

ments from images. Subsequently, a transformer processes these visual features alongside textual

input. Like BERT, these models undergo pre-training on extensive datasets of image-text pairs,

using a similar mask-and-predict strategy.

Models of this nature are utilized across various V&L tasks[ZPZck, LGR20, CCL20]. Nonethe-

less, the effectiveness of knowledge transfer from these pre-trained models hinges on the similarity

in data distributions between the source and target domains, or alternatively, the availability of sub-

stantial data for the target domain to ensure successful knowledge transfer.

V&L models in the medical domain Several V&L frameworks have been developed for an-

alyzing chest X-rays (CXR) to diagnose medical conditions. Among these, TieNet integrates a

CNN-RNN structure with multi-layer attention mechanisms, creating a unified model for V&L

tasks specifically aimed at disease diagnosis. It employs a ResNet-50 base, initially trained on

generic visual data, combined with an RNN to merge V&L data effectively. This model relies

heavily on a substantial dataset, ChestX-ray14, for domain-specific adaptation, which restricts its

utility in broader applications. In contrast, Li et al. [LWL20] explored the adaptability of renowned

pre-trained V&L models by adjusting them using datasets like MIMIC-CXR [JPG19] and OpenI.

These models, originally crafted for general use and trained with extensive data, exhibit decreased

effectiveness when fine-tuned with limited specialized data. This approach is referred to as VB w/

BUTD in the subsection 2.3.2).

PixelHop++ for visual feature learning PixelHop++ was initially developed as a substitute for

deep convolutional neural networks, specifically tailored for feature extraction in image and video
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Figure 2.1: Our model architecture is introduced for diagnosing diseases from chest X-rays (CXR).
Initially, a PixelHop++ model paired with a "PCA and concatenation" module is employed to create
Q feature vectors. Subsequently, these vectors, integrated with language embeddings, are input into
a transformer pre-initialized with BlueBERT.

processing within environments with limited resources. This model operates on multiple levels,

producing output channels that encapsulate varying frequencies of an image. Demonstrated to be

particularly effective with small datasets, PixelHop++ has been employed in diverse scenarios such

as distinguishing gender through facial analysis [RWG20], recognizing faces [RWH20], identify-

ing deep fake content [CRG21], and applications in healthcare [LXY21]. To our knowledge, this

research marks the inaugural integration of PixelHop++ with DNN architectures. While using only

PixelHop++ features as inputs to a transformer model (without textual input) tends to lag behind

other vision-centric models like ChexNet [RIZ17], our model leverages the attention mechanism

to merge visual features extracted from PixelHop++ with linguistic embeddings, enhancing the

correlation between these two modalities.
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2.2 Approach

Our model draws inspiration from VisualBERT’s design, employing a unified transformer to amal-

gamate visual and textual embeddings. As depicted in Fig. 2.1, our methodology begins with the

application of PixelHop++ to derive visual features from the X-ray images. Following this, the

associated radiology report is transformed into subword embeddings. Subsequently, a combined

transformer is utilized to analyze the interplay between these two modalities and identify underly-

ing alignments.

2.2.1 Visual encoder

We contend that utilizing visual feature extraction methods from general-domain object detectors,

specifically the widely-used BUTD [AHB18] model in various V&L tasks, proves inadequate for

the medical field. This method underperforms in identifying medical anomalies within X-ray im-

agery. This shortcoming stems from the fact that such anomalies, crucial for accurate diagnoses,

do not conform to typical object characteristics and are often overlooked by detectors designed for

general usage. Additionally, the absence of a comprehensive annotated dataset for training disease

anomaly detectors exacerbates this issue [SRG16].

We suggest utilizing PixelHop++ [CRY20] for learning visual features without supervision in

the healthcare sector, given its proven effectiveness on limited datasets. PixelHop++ determines its

model parameters using a closed-form solution, avoiding the need for back-propagation [RMA21].

By employing PCA to derive parameters, PixelHop++ efficiently captures image features across

different frequencies autonomously. Drawing inspiration from deep neural network architectures,

PixelHop++ is structured in multiple layers, with each layer composed of one or more PixelHop++

units, followed by a max-pooling layer.

Consider a scenario where we possess N training images, each with dimensions s1 × s2 ×
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d. Here, d equals 1 for grayscale images and 3 for color ones. These images are input into a

PixelHop++ unit at the initial stage of the framework. The primary aim of this stage is to devise

orthogonal projection vectors, or kernels, which are adept at isolating robust features from the

input data. Multiple PixelHop++ units might be present at each tier of a PixelHop++ structure.

During the initial phase in a PixelHop++ unit, a window of size w × w × d slides across the

image with a stride of s. This action extracts and flattens patches from each image, represented

as xi1, xi2, ..., xiM , where xij denotes the jth flattened patch of the ith image, and M signifies the

total number of patches derived from each image.

Subsequently, these gathered patches are employed to derive the kernels for the PixelHop++

unit. The kernels are developed as follows:

• The primary kernel, termed the DC kernel, functions as an average filter: 1√
n
× (1, 1, ..., 1),

where n is the length of the input vector. This kernel calculates the average of each input

vector.

• Subsequent to the mean calculation, PCA kernels are applied to the residual data to produce

AC kernels. The foremost k kernels are those that optimally represent the residual variation.

Following this, each patch projection onto the kernels adds a constant bias to the result. In this

transformation using a PixelHop++ units kernel, each series of patches, xi1, xi2, ..., xiM , produces

a singular output channel. For instance, at the model’s first level, the PixelHop++ unit outputs one

DC channel and w × w × d− 1 AC channels.

The final procedure involves pruning the model to eliminate underperforming channels. This

decision is based on the "energy ratio", which compares each kernel’s explained variance to the

overall training data variance. This ratio serves as a pruning criterion. An energy threshold, E, is

set, and channels are pruned according to the following criteria:
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• Channels with an energy ratio below E are removed due to their negligible data variation

along the respective kernel.

• Channels exceeding the E threshold are retained and passed to the next model level for

further compression.

At every subsequent model level beyond the first, each intermediate channel output from a

PixelHop++ unit is directed into another separate unit within the same level.

2.2.2 In-domain text pre-training

In BERTHop, the textual input from diagnostic reports significantly influences the transformer

model’s focus on relevant visual cues within its attention mechanism. Authored by a specialist

radiologist, the report details both typical and atypical findings under the "finding" section, and

incorporates critical patient data like medical history, affected body areas, and previous diagnostics

in the "impression" section. This report’s linguistic style diverges considerably from the usual pre-

training datasets used for BERT, such as Wikipedia and BookCorpus, or visual-linguistic (V&L)

models trained on datasets like MSCOCO and Conceptual Captions. Consequently, we suggest

employing BlueBERT [PYL19] as the foundational architecture in BERTHop to more effectively

assimilate the nuances of the report text. While text-only pre-training has often shown limited

benefits [TB19a], in the context of the medical field, leveraging a transformer initially trained

on specialized text corpora is a straightforward yet potent strategy. This method addresses the

significant gap often overlooked by previous approaches, which typically initialize transformers

with models trained on broad image-text datasets for V&L tasks [LWL20].

2.3 Experiments

We conduct an assessment of BERTHop using the OpenI dataset and contrast its performance with

various established models. Additionally, comprehensive analyses are undertaken to ascertain the
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contributions of the visual encoder and the transformer initialization to the model’s effectiveness.

2.3.1 Experiment setup

Our research utilizes the OpenI dataset, which includes 3,996 individual patient reports paired

with 8,121 images. This dataset features 14 prevalent thoracic conditions. Initially, we standardize

the dimensions of all images to 206 × 206 and employ a three-tier PixelHop++ system for ex-

tracting features without supervision. Subsequently, Principal Component Analysis (PCA) is con-

ducted on the outputs from PixelHop++, and the resultant vectors are amalgamated to construct

a feature set, Q, where each feature vector, vi, belongs to a D-dimensional space, thus forming

V = [v1, v2, ..., vQ] where vi ∈ RD.

In the case of BERTHop, the dimension D is established at 2048. For our experimental con-

figuration, we set Q to 15, though this can be adjusted based on the PixelHop++ models out-

put channel breadth and the PCA components used. The transformer architecture is supported

by BlueBERT-Base (Uncased, PubMed + MIMIC-III) from Huggingface [WDS19], a prominent

transformer framework. With the amalgamated visual features and textual embeddings, the trans-

former is trained using a subset of 2,912 image-text pairs from the OpenI dataset. Our training

parameters include a batch size of 18, a learning rate of 1e − 5, a maximum sequence length of

128, and the employment of Stochastic Gradient Descent (SGD) with a momentum of 0.9 over 240

epochs.

2.3.2 Main results

BERTHop was developed using the OpenI training dataset and assessed on its test set. The evalua-

tion of BERTHop and other baseline models was conducted using the Receiver Operating Charac-

teristic (ROC) and Area Under the Curve (AUC) metrics, utilizing the AUC function from scikit-

learn [BLB13] as illustrated in Fig. 2.2 b). A comparison of BERTHop’s performance with other

existing approaches is detailed in Fig. 2.2 a). The findings reveal that BERTHop surpasses the
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a) b)
Figure 2.2: a) Our model demonstrates superior diagnostic performance for thoracic diseases on
OpenI when compared to three other techniques. Specifically, BERTHop exceeds the performance
of models like VB w/ BUTD trained using comparable datasets. (b) The ROC curve for BERTHop
illustrates its effectiveness across all 14 thoracic diseases.

previous state-of-the-art model, TieNet, in diagnosing 11 out of 14 thoracic diseases, recording

an average AUC of 98.23%. This score exceeds the performance of VB w/ BUTD, TNNT, and

TieNet by 14.37%, 12.83%, and 1.73%, respectively. It is important to note that despite TieNet

being trained on the significantly larger ChestX-ray14 dataset, which includes 108,948 training

examples, BERTHop has been trained on a dataset that is 9 times smaller.

2.3.3 In-domain text pre-training

We further investigate the influence of different transformer backbone initialization on model per-

formance by pairing it with different visual encoders. The results are listed in Table 2.1. First,

we find that the proposed initialization with a model pre-trained on in-domain text corpora (Blue-

BERT) brings significant performance boosts when paired with PixelHop++. Initializing with

BlueBERT gives a 6.46% performance increase compared to initializing with BERT. Second, when

using BUTD, the model is less sensitive to the transformer initialization and the performance is

generally low (from 83.09% to 85.64%). In contrast to other V&L tasks [LYY19], general-domain

V&L pre-training is not instrumental. The above findings suggest that for medical V&L appli-
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Visual Encoder BUTD PixelHop++

Transformer Backbone VB BERT BlueBERT BERT BlueBERT

Atelectasis 0.9247 0.8677 0.8866 0.9890 0.9838
Cardiomegaly 0.9665 0.8877 0.8875 0.9772 0.9896

Effusion 0.9049 0.8940 0.9120 0.9013 0.9432
Mass 0.6428 0.7365 0.7373 0.8886 0.9900

Consolidation 0.7870 0.8766 0.8906 0.8949 0.9671
Emphysema 0.8565 0.7313 0.8261 0.9641 0.9971

AVG 0.8386 0.8309 0.8564 0.9177 0.9823

Table 2.1: Effect of the transformer backbones when paired with different visual encoders. When
using BUTD features, the model becomes insensitive to the transformer initialization and the ex-
pensive V&L pre-training brings little benefit compared to BERT. When using PixelHop++, the
model benefits significantly from BlueBERT, which is pre-trained on in-domain text corpora.

cations, in-domain single modality pre-training can bring larger performance improvement than

using pre-trained V&L models from the general domain, even though the latter is trained on a

larger corpus. The relation and trade-off between single-modality pre-training and cross-modality

pre-training are overlooked by previous works [LYY19] and we advocate for future research on

this.

2.3.4 Effectiveness of BERTHop with different dataset scales

To demonstrate the effectiveness of BERTHop on datasets of different scales and justify our de-

signs, we experiment to compare BERTHop with its two variants: (1) In PH_BERT, we replace

BlueBERT with BERT. We compare BERTHop with PH_BERT to show how a domain-specific

BERT model helps to improve performance in medical applications. (2) In BUTD_BlueBERT, we

replace the visual encoder PixelHop++ with the general visual encoder of BUTD.

We randomly select fractions of the training set of OpenI to train these three models and com-

pare their performance on the entire test set of OpenI. Figure 2.3 illustrates that the performance

of BERTHop is consistently better than the other two settings.
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Figure 2.3: Avg AUC of three settings with different percentages of training data. BERTHop
remains effective with different dataset scales.

2.3.5 Visualize abnormal regions identified by BERTHop

We visualize PixelHop++ output channels of BERTHop to probe whether it can effectively capture

abnormal regions in CXR images. In this study, we asked two radiologists to annotate pathol-

ogy regions of a few examples related to different diseases. As shown in Figure 2.4, some output

channels can successfully highlight the abnormalities in CXR images. This is since PixelHop++

extracts image representations at different frequencies which is beneficial for abnormality detec-

tion.

2.4 Discussion and Conclusion

Our research introduces a multimodal model that simultaneously processes X-ray imagery and

clinical text with high efficiency and performance. Diverging from standard V&L models that

employ object detectors for visual data extraction, we employ PixelHop++, a highly efficient unsu-

pervised encoder. Our evaluations demonstrate PixelHop++’s robustness and emphasize the critical
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Fibrosis Emphysema Consolidation

Figure 2.4: On the top, we mark the pathology regions annotated by two radiologists (the yellow
circles and lines); on the bottom, we visualize the visual features from BERTHop (brighter colors
means higher feature values). BERTHop can successfully highlight the abnormal regions identified
by expert radiologists.

role of appropriate transformer pre-training, offering crucial perspectives for future model devel-

opment. We advocate for the adaptation of this methodology in medical fields where annotated

data is scarce. We contend that BERTHop significantly enhances accuracy in medical diagnosis,

potentially reducing errors.
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CHAPTER 3

Few-shot Visual Question Answering

In this chapter, we study Few-shot visual question answering (VQA). VQA is a task where the

model is asked to answer a question given an image. There are several types of questions e.g.

yes/no questions, color questions, quantity, and conceptual questions. The model has to have an

up-to-the-mark and detailed representation of the image while understanding the question which is

in text form to be able to answer the question properly. Therefore, training such a model which has

several components is significantly tricky and challenging. For the answer, we expect the model to

either select an answer from a list of candidate answers (multiple choice) or generate the answer

as a sequence of text (open-ended). The latter is more challenging and has recently got more

attention in the AI community. There are many proposed Vision-Language (VL) models for this

task all requiring large datasets for high performance while their performances are close to random

choice when few training data are available. We are interested in the scenario when few data is at

hand and how large language models could ease the problem as they are few-shot learners [].

Pre-trained language models have shown impressive performance on a range of tasks by learn-

ing from large-scale text corpus [RNS18, RWC19, YDY19]. Recent studies find that some of

these language models can be used to perform in-context learning out-of-the-box, i.e., adapting to

a task by conditioning on a few demonstrations in context without any gradient update [BMR20,

MLZ22], which is highly desirable.

In VL modeling, in-context learning is less explored and only a handful of models are proposed
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to perform in-context learning mainly by limiting the amount of deviation of a pretrained large-

scale language model from the language space and translating visual inputs to language embedding

space. They either require a large capacity [TMC21, ADL22] or a giant corpus consisting of in-

context learning examples [ADL22, LLW24, KSF23].

In this work, we explore whether we could enable in-context learning in VL tasks without re-

sorting to extreme scale-up. We study an interesting hypothesis: can we transfer the in-context

learning ability from the language domain to the VL domain? To elaborate, not every language

model exhibits excellent in-context learning ability; recent studies [MLZ22] show that one could

explicitly train language models to perform in-context learning, by training the model on multiple

tasks with in-context few-shot examples, a process that resembles meta-learning. Thus, an intrigu-

ing query arises: when a language model is first meta-trained to perform in-context learning, can

it be transferred to perform in-context learning for VL tasks better?

A remarkable observation in our study is the utilization of a meta-trained language model as

the transformer encoder-decoder and the mapping of visual features to the language embedding

space. This innovative approach led to the development of our proposed VL model (we name it

MetaVL). Impressively, our experimental results demonstrate that MetaVL surpasses the baseline

model’s performance, even when MetaVL is designed to be 20 times smaller in size.

This study makes three main contributions: 1) To the best of our knowledge, this is the first

attempt to transfer the meta-learning knowledge for in-context learning from single-modality to

multimodality. 2) We propose a VL model, MetaVL, which outperforms the baseline in in-context

learning while having a much smaller model size. 3) Through extensive experiments on VQA,

GQA and OK-VQA, we demonstrate the in-context learning capability of MetaVL and analyze its

components.
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3.1 Related work

3.1.1 In-context learning in VL

Frozen [TMC21] is the first attempt for in-context learning in multimodality by leveraging a frozen

GPT-like language model as the language backbone and mapping visual features to the language

embedding space. Frozen sheds light on the feasibility of benefiting from the frozen LMs in VL

modeling to learn a new task from a few examples in context. MAGMA [EBW21] is another

encoder-decoder architecture for VL pre-training which showed that adding adaptor blocks be-

tween the frozen language model layers could further improve the performance for VL tasks in a

few-shot scenario. Other recent works [YGW22, ADL22, ZAI22] follow the similar principle as

the previous works to tackle in-context learning in VL modeling and achieve superior results by

leveraging extremely large-scale models.

In this paper, we study a problem overlooked in prior work: we delve into the possibility of

enabling in-context learning for VL tasks without relying on extensive scalability. Our focus lies

in exploring the hypothesis: Is it feasible to transfer the in-context learning capability from the

language domain to the VL domain?

3.1.2 Meta-learning in language modeling

Large-scale language models have shown the capability to be trained on a new task if properly

prompted with in-context examples, i.e., in-context learning. In this learning strategy, the language

model is asked to generate the desired output, e.g., an answer in the question-answering task,

which is prompted by a few data examples along with their corresponding supervision sampled

from the training split, and the language model learns the task in context without performing any

gradient updates. Although such training is highly data-efficient, its performance is far behind

supervised fine-tuning. Therefore, inspired by [VD02, EP04, FAL17, Rud17], MetaICL [MLZ22]
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Figure 3.1: The training steps of MetaVL including meta-training the language encoder-decoder
(above) and mapping the visual features into the language embedding space while keeping the
meta-trained language encoder-decoder frozen (below).

proposes training the model for in-context learning as a kind of meta-learning. MetaICL meta-

trained a gpt language model on a diverse set of natural language tasks and datasets and showed

that meta-training a language model in an in-context learning manner could significantly improve

the in-context learning capability of the language model for a new task.

3.2 Approach

In this section, we first explain the existing meta-training procedure for language modeling and

then introduce our proposed method for in-context learning in VL.
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3.2.1 Meta-training in language modeling

MetaICL has shown that a language model that is meta-trained on a diverse set of tasks in an

in-context learning setup is a strong few-shot learner. To meta-train an auto-regressive language

model, in each iteration, a meta-learning task is randomly chosen from a collection of diverse meta-

training language tasks, and k+1 data-label examples are randomly sampled from its training split.

Then, the model is supervised by the concatenation of (x1, y1, x2, y2, ..., xk+1) which will be fed

as a single input to the model for predicting the label (yk+1) as the training objective, i.e., the

meta-training step aims to maximize:

P (yk+1|x1, y1, · · ·, xk, yk, xk+1) (3.1)

During inference, the same in-context setup (k examples from the training) are sampled from

a target dataset to be used as the (x1, y1)(x2, y2) · ··, (xk, yk)(x) and given to the model to predict

the label y. The meta-trained language model trained on a diverse set of natural language datasets

has shown good performance for an unseen task when few data are given in context [MLZ22].

MetaVL has three main submodels including a meta-trained encoder-decoder and is being

trained using Prefix Language Modeling (PrefixLM) [WYY21]. In the following, we discuss each

submodel in detail.

3.2.2 Visual encoder and visual prefix.

The visual encoder is defined as a function Ve(x) that takes an image of x and outputs visual

features. We extract the feature grid before the pooling layer n × Dv where n is the number of

feature maps and Dv is the feature size of the visual encoder. Then, the output features can be

viewed as a sequence of n visual tokens representing the image.

The visual encoder is followed by the visual prefix module that is defined as Vp(x) ∈ Dv ×Dl
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which maps the visual features to language embedding space. This module is seeking to properly

project the visual tokens into language tokens.

During the VL training, the parameters of both of these modules are trainable and are learned

with different learning rates by back-propagation guided by the frozen language model.

3.2.3 Language encoder-decoder

The meta-trained language encoder-decoder is used as the LM backbone and is frozen during the

VL training process so the meta-trained language model preserves its few-shot capabilities. The

language encoder encodes the text into text tokens represented by t1, t2, ..., tm. Then, given the

multimodal tokens (image and text) as U = v1, v2, ..., vn, t1, t2, ..., tm the decoder is trained to

reconstruct the corresponding text with a standard language modeling objective to maximize the

following likelihood:

L(U) =
m∑
i=1

logP (ti|v1, ..., vn, t1, ...ti−1; θ) (3.2)

After the VL training, for learning a new VL task in-context, given a few examples from a new

task with a new format, we concatenate k sampled data-label pairs from the training split along

with one data from the val/test split to construct the prompt and feed it to the model for predicting

the desired output. The entire process is visualized in Fig. 3.1.

3.3 Experiments

3.3.1 Datasets and Baseline

We use the dataset proposed in [MLZ22] as the meta-training dataset for the language model and

the COCO dataset [LMB14] as the VL training dataset for MetaVL. The evaluation experiments

are conducted on three datasets including VQA [AAL15], OK-VQA [MRF19], and GQA [HM19].

Frozen leveraged an internal GPT-like language model with 7 billion parameters as the backbone

of their proposed model. As their model is not publicly available, we trained Frozen with GPT2-
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Medium as the frozen language model and consider it as our main baseline (FrozenA) due to its

model size. We also train a frozen with GPT-J 6B (The most similar GPT to Frozen) language

model and obtained a close performance to the original Frozen model and use it as our second

baseline denoted by FrozenB.

3.3.2 Training and evaluation setting

Initially, We meta-train a GPT2-Medium LM on a collection of 142 meta-training language datasets

with a learning rate of 1e-5 and a batch size of 8 using the setting named as “HR→LR with in-

structions (all)” where datasets with equal or greater than 10,000 training examples are used as

meta-training tasks and the rest of the datasets are used as target tasks. The training is done on

8 NVIDIA RTX A6000 for 80,000 steps which took ∼ 6 hours. Then, we train MetaVL on the

training split of COCO where we use a learning rate of 5e-5 and 2e-6 for the visual prefix and

visual encoder, respectively, while the rest of the model parameters are frozen. We use a batch

size of 32 and trained MetaVL using 4 NVIDIA RTX A6000 for 8 epochs which take ∼ 48 hours.

Inference time depends on the numebr of shots varies from 2-5 hours for 0-3 shots on 5000 test

examples. Our visual encoder is CLIP-RN50x16 [RKH21] with a feature grid size of 144 × 3072

and our visual prefix is an MLP layer with a dimension of 3072 × 768. For in-context evaluation

on VQA datasets, we randomly pick a specific number -n- of sampled data-label pairs, known as

shots, from the training set and feed them to the model in-context followed by a single data from

the val/test set. Fig. 3.4 provides some illustrative examples for the evaluation process.

To conduct the evaluation, we utilize a subset of 5,000 instances from the val/test dataset due

to computational constraints. The generated output from the model is then compared against the

expected answer, as established in previous studies. In cases where an exact match is not achieved,

we employ a technique to identify the most closely related answer from a set of candidate answers

(The set can be defined as a unique list of all answers in the training dataset). This involves comput-
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ing the cosine similarity between the output’s embedding and each candidate answer’s embedding

achieved by Sentence BERT [RG19].

We then compare the selected output with the corresponding answer to determine the match.

The training datasets for VQA, OK-VQA, and GQA contain approximately 3,000, 4,200, and

3,000 distinct answers, respectively. Furthermore, we performed an additional round of human

evaluation on model’s output without matching, and the findings are summarized in the appendix

(Table 2). The human evaluation on a separate test set of 2000 examples aimed to delve deeper into

instances where the model’s output, while accurate, didn’t precisely match the provided answer.

Three such examples are presented in Fig 3.2, where the initial evaluation did not consider the

prediction as correct, but it was deemed correct in the subsequent evaluation setting.

Question: Which famous 
brothers invented these?

Question: Where can the 
brand be purchased?

Question: How do you 
score in this game?

GT: homerun
Model completion: 
by hitting a home run
Selected answer: 
home run

GT: store
Model completion: 
you can buy it at a store
Selected answer: 
store bought

GT: wright
Model completion: 
the wright brothers 
Selected answer: 
wright brother

Figure 3.2: Three examples of VQA cases which The model’s output, although correct, slightly
differs from the ground-truth and selected answer from the candidate set.
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FrozenA FrozenB MetaVL

LM size 375M 7B 375M

Automatic evaluation
VQA 18.63 34.07 33.12

OK-VQA 3.17 11.97 9.60
GQA 13.86 25.76 31.96

Human evaluation
VQA 16.68 - 35.09

OK-VQA 6.41 - 19.22
GQA 19.96 - 38.29

Table 3.1: The performance of MetaVL compared with two baselines on 3-shot in-context learning.
We report the performance of our re-implemented Frozen models.

3.3.3 Results and analysis

3.3.4 Quantitative analysis

To evaluate MetaVL, we consider three common visual question-answering datasets including

VQA, OK-VQA, and GQA. We compare MetaVL results with the mentioned two baselines in

Table 3.1 for 3-shot in-context learning based on both automatic and human evaluation. According

to the results, the performance of Frozen improves as its model size increases while MetaVL

achieved competitive results in all three tasks. To further analyze how many image-text pairs are

required to enable In-context learning for the VL task, we have trained MetaVl with 50 percent of

training data and the results show that the performance slightly dropped but the model preserved

its capability to learn from in-context data (Table 3.3).

3.3.5 The effect of the number of in-context shots

According to Figure 3.3, in almost all settings, the performance of MetaVL is improving by in-

creasing the number of shots which shows the model is gaining knowledge from the data in context.

This result further gives us an illustration of the model’s capability to learn from the in-context ex-

amples supporting that MetaVL is benefiting from the meta-learning knowledge for in-context

learning. The numbers on the graph are summarized in Table 3.2.
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Figure 3.3: Automatic and human evaluation Accuracy of MetaVL and Frozen, w/ and w/o adap-
tors with 0-3 shots of in-context data.

3.3.6 The effect of having adaptor layers in LM

MAGMA claims that adding trainable adaptor layers and letting the LM slightly be trained during

the VL training process is beneficial for in-context learning. Compared with Frozen, in addition

to being trained on an x8 larger set of VL datasets, MAGMA also includes the training splits of

the target datasets to its training set, while Frozen is adapted to an unseen new task in-context (in-

context learning). We evaluated this method by adding adaptor layers to both Frozen and MetaVL

and denoted the corresponding models by Frozen w/adap and MetaVL w/adap, respectively, in

Fig. 3.3. Our results demonstrate that having a fully frozen language model in MetaVL could

better preserve the in-context learning ability of the language model. It is also noticeable that

adding adaptor layers improves the zero-shot performance of Frozen. We hypothesize that this

improvement is due to getting a better vision and language alignment by letting both vision and
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model FrozenA w/ adap FrozenA MetaVL w/ adap MetaVL
n-shot 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Automatic evaluation

VQA 28.72 18.98 14.23 7.60 12.94 14.92 18.11 18.63 31.98 30.03 30.01 29.96 31.6 32.01 32.89 33.12
OK-VQA 7.36 6.30 3.98 2.34 2.91 3.02 4.04 3.30 10.94 9.97 10.32 10.92 9.58 9.30 9.55 9.60

GQA 22.62 15.44 12.96 6.54 8.80 10.81 12.17 13.86 29.12 28.31 27.78 26.74 30.10 30.05 31.32 31.96

Human evaluation

VQA 25.49 15.66 16.70 11.53 8.79 13.62 15.31 16.68 28.20 26.61 26.12 26.01 30.24 31.33 33.89 35.09
OK-VQA 6.70 6.04 3.88 2.56 4.67 4.71 4.94 6.41 14.67 9.97 9.01 9.24 14.72 13.95 17.95 19.22

GQA 30.01 14.72 8.92 5.59 6.18 15.85 19.07 19.96 33.74 32.09 31.81 31.58 35.08 37.65 38.03 38.29

Table 3.2: Accuracy of MetaVL and Frozen, w/ and w/o adaptors with 0-3 shots of in-context data.

MetaVL MetaVL50%

Automatic evaluation
VQA 33.12 30.32

OK-VQA 9.60 7.56
GQA 31.96 27.77

Human evaluation
VQA 35.09 34.02

OK-VQA 19.22 18.19
GQA 38.29 35.66

Table 3.3: The performance of MetaVL was evaluated using the complete CoCo training dataset as
well as a subset containing 50 percent of the CoCo training data. The experimental results indicate
that even with the reduced training data, MetaVL maintains its capacity for in-context learning,
albeit with a slight decrease in performance.

language submodels be involved in the alignment process.

3.3.7 Qualitative analysis

We provide some qualitative examples to better illustrate the performance of MetaVL for in-context

learning in different VQA tasks. Some positive and negative examples are provided in Fig. 3.4 and

Fig. 3.5 respectively, which show the output of MetaVL for 3-shot in-context learning.

3.4 Limitations and Conclusion

While we have shown the potential of transferring in-context learning ability from a language

model to VL tasks, the experiments in this paper are limited in two aspects. (1) We considered only
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the VQA task, which is limited in scope. It is unclear whether our method generalizes to other VL

tasks. In fact, as most tasks in the VL domain take the form of visual question answering, it is less

well-defined what would “cross-task generalization” entail in VL, compared to in NLP where (2)

Due to computational limitations, we experiment with only a moderate-sized LM. It is unclear the

performance of our method after scaling up.

We investigate the feasibility of transferring meta-learning knowledge for in-context learning

from resource-rich single modality to multimodality. We have shown that by leveraging a meta-

trained language submodel in a vision-language model, we can transfer the ability of “learning to

learn” in-context to VL and it results in a strong VL few-shot leaner. With extensive experiments

on three common VL datasets, we have shown that the in-context learning performance of our

model, MetaVL, is superior compared with the baseline even when the size of our model is 20

times smaller.
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Answer: concrete Answer: yes Answer: texting

Question: What color is 
the girl's hair?

Answer:

Support set Meta-test set

Brown.

Model Completion

Question: What are the 
motorcycles sitting on? 

Question: Is 
this in the wild? 

Question: Is this in the wild? 

GT: brown

Answer: left Answer: car Answer: texting

Question: On which side 
of the photo is the 
wreath?

Answer:

Support set Meta-test set

On the 
left.

Question: Is the catcher to 
the right or to the left of the 
umpire that is wearing pants?

Question: What is the vehicle 
that is pulled by the bike that 
is parked in the road?

Question: Is the pillow 
to the left of the 
mirror?

GT: left

Answer: old Answer: honk Answer: denim

Question: This bear is 
native to what continent?

Answer:

Support set Meta-test set

Antarctica.

Question: What is special 
about the sports items in 
the case?

Question: Penalty for what? Question: What is this 
jacket made of?

GT: antarctica

a)

b)

c)

Model Completion

Model Completion

Figure 3.4: Qualitative examples of in-context learning from three datasets: a) VQA, b) OK-VQA,
and c) GQA. For each example, there is also a task induction sentence of “please answer the
question.”.
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in a tree.

Please answer 
the question

Answer: phone Answer: no Answer: neither

Question: How many train cars 
can you see in this picture? 

Answer:

Support set Meta-test set

5

Model CompletionTask Induction

Question: What is on the 
wall next to the toilet?

Question: Is there a 
stop sign?

Question: Did the woman 
come from playing tennis or 
is she going to play tennis?

a)

Please answer 
the question

Answer: smoothie Answer: party Answer: duck

Question: The cat is 
eating a fruit that 
grows mainly where?

Answer:

Support set Meta-test set Model CompletionTask Induction

Question: What type of 
drink?

Question: What type of 
function is going on?

Question: What kinds of 
birds are these? 

GT:
['costa rica', 
'costa rica', 
'costa rica', 
'costa rica', 
'south', 
'south', 
'tropic', 
'tropic', 
'south 
america', 
'south 
america']

b)

Support set Meta-test set Model CompletionTask Induction

c)

Please answer 
the question

Answer: yes Answer: white Answer: couch

Question: Is the blue car to the 
right or to the left of the device 
in the middle of the picture?

Answer:

the right.

Question: Is the chair in the 
top part of the photo?

Question: What is the 
color of the ipod? 

Question: Which kind of 
furniture is black?

GT:
['7', 
'6', 
'2', 
'7', 
'7', 
'7', 
'7', 
'7', 
'6', 
'7']

GT: left

Figure 3.5: MetaVL failure examples from a) VQA, b) OK-VQA, and c) GQA.

29



CHAPTER 4

Foundational Biomedical Multimodal modeling

Readily available open-access datasets in the broad domain [LMB14, SDG18] have enabled the

development of vision-language (VL) models. Typically, researchers pre-train VL models on large

image-text data and then fine-tune them for specific downstream tasks. Such a pre-training/fine-

tuning paradigm is highly effective for tasks with limited data and therefore is a standard approach

for various downstream applications.

On the other hand, the medical domain presents unique challenges due to the scarcity and

complexity of its data [BI21]. Pre-trained models, trained on general domain datasets, often ex-

hibit reduced effectiveness when applied to a medical domain with limited data, as observed in the

cases of chest x-ray analysis [WZZ23b, MRL22] and Alzheimer’s disease detection [CHW23].

Furthermore, domain-specific data suitable for pre-training is notably limited. Although sev-

eral domain-specific medical Vision-Language (VL) datasets do exist, such as MIMIC [JPG19],

CheXNet [RIZ17], and datasets for Alzheimer’s disease [PAB10], their creation requires substan-

tial manual curation, involving significant labor and time. Besides, they are presented for specific

domains and their knowledge is not transferable to other medical domains.

In this paper, we take the brain disease domain as an example and propose an automatic

pipeline for extracting image-text pairs for pre-training a VL model for specific medical domains.

The pipeline first collects raw image-text pairs from medical sources like PubMed and prepares

aligned image-text pairs which can be leveraged for VL pre-training. There are two main chal-
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Angiographic findings of cerebral flow. 
(A) Magnetic resonance angiography 

shows stopping of left middle cerebral 
artery (arrow). (B) Left internal cerebral 

artery angiography reveals abrupt 
cessation of left proximal middle 

cerebral flow (arrow).

Caption 
Parser

Angiographic findings of 
cerebral flow. (A) Magnetic 

resonance angiography 
shows stopping of left 
middle cerebral artery 

(arrow). 

Angiographic findings of 
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(arrow). 
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internal cerebral artery 
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proximal middle cerebral 

flow (arrow).

Angiographic findings of 
cerebral flow. (A) 

Magnetic resonance 
angiography shows 

stopping of left middle 
cerebral artery (arrow). 

Angiographic findings of 
cerebral flow. (B) Left 

internal cerebral artery 
angiography reveals 

abrupt cessation of left 
proximal middle cerebral 

flow (arrow).

Object 
Detector

Matching

Caption 
Parser

Matching

Figure 4.1: Our main pipeline for matching subfigures/subcaptions. The object detector outputs
subfigures while the caption parser parses the caption into subcaptions simultaneously. Then, the
module called ’matching’ provides us the subfigure/subcaption pairs for the pre-training

lenges with the data we collected. First, medical data in both image and text form inherently pos-

sess a complex nature [HYK18]. Moreover, image-caption pairs sourced from PubMed literature

and journals often incorporate subfigures and subscaptions, introducing additional intricacies that

can pose formidable challenges for the pre-training of VL models. Therefore, there is a unique

challenge in medical VL pre-training where we care about the fine-grained alignment between

subfigures/subcaptions. Our pipeline is equipped with subfigure/subcaption aligning designed to

enhance multimodal learning. The letters in subfigures and subcaptions are often referred to as

"subfigure labels" or "subcaption labels." are used to identify the alignment between subfigures

and subcaptions.

Getting the aligned image-text pairs from our pipeline, we pre-train a VL model, BLIP [LLX22],

on both the original collected data and processed data to analyze the effectiveness of our pipeline.

We consider quantitative and qualitative intrinsic evaluations including image-text retrieval and at-

tention visualization. We have observed that the model pre-trained on the processed data has a bet-

ter multimodal understanding. We believe that our pipeline can be used for other domain-specific

medical applications such as Prostate Cancer Diagnosis or Alzheimer’s Disease Prediction.
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Our work has three main contributions. We identified the challenge in medical VL pre-training

by taking brain disease as an example. We built a pipeline that collects domain-specific medical

image-text pairs followed by a module for matching subfigures/subcaptions. We release the dataset

which is suitable for pre-training a VL model for brain diseases upon the acceptance of our work.

Lastly, we pre-trained a VL model (BLIP) [LLX22] on our dataset, and with quantitative and

qualitative analysis, we demonstrate that our pre-trained dataset and model are useful for building

VL models in the medical domain.

4.1 Related Work

4.1.1 Vision-Language Learning.

Large-scale VL pretraining has demonstrates impressive performance for various VL tasks [LBP19,

TB19b, SZC19, LYY19]. Early works in this direction use off-the-shelf object detectors to extract

objects [AHB18] and feed the region features into a modality fusion module [SZC19, TB19b,

CLY20, LYL20, ZLH21]. End-to-end training methods have been proposed to be efficient and

effective alternatives to object detector-based models [KSK21, LSG21, DXG22] because of their

ability to unleash the power of vision encoders. While state-of-the-art VL models have achieved

impressive performance, many of them are mainly focused on general-domain VL tasks such as

visual question answering and image captioning, and it is unclear whether the pre-trained repre-

sentations can be helpful for medical tasks.

4.1.2 Medical-Domain VL Learning.

Multi-modal learning in the medical domain is of great significance due to the presence of med-

ical images, text notes, and electronic health records. While there are a few medical-domain

datasets and models being proposed [EMD23, LYW21], many of them are focused on CLIP-style

models [RKH21] trained with contrastive objectives, neglecting to investigate more effective VL
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training methods in a large-scale setting. In addition to this line of work, (author?) [ZHY22]

introduce the mmFormer, a novel Transformer-based approach, for accurate brain tumor segmen-

tation from incomplete MRI modalities, achieving significant improvements in segmentation per-

formance compared to state-of-the-art methods on the BraTS 2018 dataset. (author?) [LZZ23]

present PMC-OA, a large-scale biomedical dataset with 1.6M image-caption pairs from PubMed-

Central’s OpenAccess subset. Using this dataset, the PMC-CLIP model achieves state-of-the-art

results in image-text retrieval and classification tasks, addressing data scarcity issues in the biomed-

ical domain. In this work, we adapt the advanced techniques in the general domain VL learning to

the medical domain and demonstrate its effectiveness.

4.2 Data collection and processing

In this section, we explain the details of our pipeline for processing the data collected from PubMed

and pre-training the vision-language (VL) model.

4.2.1 Image-caption pairs.

Out of 9,371 journal papers from 1,021 various journal titles like "Brain tumor research and treat-

ment" and "BMC Medical Imaging" dated from 1937-2018, We collected image-caption pairs from

PubMed and filtered them by only scraping "case reports" with both types of image and text data.

Pairs are additionally filtered by the keyword "brain" that appears in the corresponding caption

assuming that both the image and caption are brain-related data. We collected 22,795 data ini-

tially and pre-trained the BLIP model on image-caption pairs as our baseline. Other data from

the medical domain can be collected following our procedure to build another domain-specific VL

model.
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4.2.2 Fine-grained alignment.

Due to the presence of subfigures and subcaptions in a significant portion of collected images ( 43

percent of data ), there is a unique challenge in their usage for the pre-training process and follow-

ing the pre-training schema of existing VL models (taking the entire image and entire caption as

image-text pairs) could lead to a low-performance model. This is because the model may strug-

gle to match subcaptions and subfigures, which is not the issue in general domain VL datasets.

Additionally, in numerous images within the dataset, subfigures exhibit significant distribution

variations, possibly stemming from diverse sources such as MRI scans, surgical cameras, or simu-

lation visualizations (as exemplified in Fig. 4.2). Presenting the complete figure and caption to the

model could potentially lead to misguidance, as it may focus on image portions less pertinent to

the caption and subcaptions. Moreover, the complexity of medical terms in clinical notes and ab-

normal regions in images poses a significant challenge to the model’s understanding. To overcome

these challenges, we developed a pipeline shown in Figure 1 where we used an object detection

model [TC17] to identify subfigures in the images while simultaneously leveraging an NLP tool

[TSP21] to parse captions into subcaptions. With these two steps, we were able to convert the col-

lected image-caption pairs into 39,535 subfigure/subcaption pairs. However, matching subfigures

and subcaptions was another challenge in training the VL model. We utilized an OCR tool1 to

detect the small characters in the subfigures commonly referred to as "subfigures labels" that are

most likely the letters we can use to match with subcaptions. If the detected text does not match

with any of the "subcaption labels" or does match with two or more of them, we pair the subfigure

with the entire caption. Then aligned subfigures/subcaptions pairs are used for pre-training the

model.

1google OCR: https://cloud.google.com/vision/docs/ocr
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Figure 4.2: An example data from the dataset where each subfigure comes from a different source
and Providing the model with the entire figure and its accompanying caption could potentially
result in misdirection, causing it to emphasize image areas that are less relevant to both the caption
and subcaptions.

4.2.3 Pre-Training and Evaluation

We trained the BLIP model on the processed data with a learning rate of 1e-5 for 60 epochs, using

Adam as the optimization algorithm and Masked Language Modeling (MLM) [DCL18], Image-

text matching (ITM) [CLY20], and Image-text contrastive (ITC) [RKH21] as the pre-training ob-

jectives. We evaluated the pre-trained model on qualitative and quantitative intrinsic tasks in-

cluding image-text retrieval. Image-text retrieval evaluates the model’s ability to retrieve the cor-

responding text/image from a pool of data given an image/text. We also conducted qualitative

analysis by visualizing the attention map of some important medical terms and their relationship

with abnormal regions.

4.3 Experiments

4.3.1 Quantitaive evaluation

Our pre-trained model for image-text matching is evaluated to assess its ability to match an image

to its corresponding caption. To perform this evaluation, we evaluate the model performance for
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Val Test

i2t@1 i2t@10 t2i@1 t2i@10 i2t@1 i2t@10 t2i@1 t2i@10

Only PT
Raw data 18.04 48.36 21.51 51.98 17.37 47.65 19.58 39.86

Processed data 36.9 69.88 38.4 69.04 36.94 69.37 37.40 69.58

PT + FT
Raw data 24.6 60.47 27.13 59.14 24.45 59.4 26.1 58.7

Processed data 38.22 72.09 39.98 69.56 36.52 72.62 36.38 70.1

Table 4.1: Image-text retrieval results for the BLIP model pre-trained/fine-tuned (PT for only pre-
training and PT + FT for pre-training plus fine-tuning) under two different schemes: following
existing VL models and our pipeline.

image-text retrieval tasks as an intrinsic evaluation. In this task, we test how well our model can

retrieve the corresponding caption given an image and a pool of all captions, and vice versa. We

evaluate our model’s performance in two settings: ’@1’, where we determine the percentage of

val/test dataset where the corresponding image or caption is the top 1 retrieved data; and ’@10’,

where we determine the percentage of data where the corresponding image or caption is among

the top 10 retrieved data. Our results which are summarized in Table 4.1 validate our pre-trained

model’s capability for VL modeling. Additionally, we conducted pre-training experiments with

varying proportions of the available data, ranging from 25 to 100 percent, and assessed the impact

on our image-text retrieval performance. As depicted in Figure 4.3, our model exhibited a steeper

performance curve, indicating its increased learning capacity as more data became available. In

contrast, the baseline performance appeared to saturate and reach a plateau. This observation

underscores the effectiveness of our pre-training pipeline in enhancing a model’s learning capabil-

ities.

4.3.2 Qualitative analysis

As part of our qualitative analysis, we employ attention maps to visualize the model’s focus on

some important medical terms, such as ’aneurysm’representing abnormal blood vessel outpouch-

ingwithin the associated images and ’cerebral artery’ a condition where there is a deviation from
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Figure 4.3: The plot visually demonstrates the dynamics of image-text retrieval performance across
varying proportions of pre-training data. Our model results reveal a notable increase in learning
capacity as more data becomes available, while the baseline exhibits characteristics that suggest a
form of saturation.

the normal, healthy state of arteries. In Fig. 4.4 and 4.5, we present the model attention map for

both the baseline and our pre-trained model concerning the terms ’cerebral artery’ and ’aneurysm’

respectively where ’aneurysm’ is divided into subtokens. The upper heatmaps correspond to the

baseline, while the lower ones depict the outputs of our pre-trained model. The attention maps

demonstrate that our model emphasizes the relevant areas.

4.4 Discussion and Conclusion

Our study is centered on the creation of a pre-training dataset for domain-specific medical vision

language models, utilizing a VL dataset sourced from PubMed and a pipeline for VL modeling.

Our approach has been evaluated through intrinsic task assessments, demonstrating its effective-

ness in constructing data-efficient VL models for the medical field. Our model has surpassed the

performance of standard VL training methods, further validating the efficacy of our pipeline. Our

proposed pipeline helps build powerful multimodal AI models which could be used for various
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Figure 4.4: The visualization of the attention of the "cerebral artery" on the corresponding image.
It is evident that ours highlighted the abnormal region more specifically.
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Figure 4.5: The visualization of the attention of the "aneurysm" on the corresponding image. It is
evident that ours highlighted the abnormal region more specifically.

tasks like diagnosis, drug discovery, and information extraction.
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CHAPTER 5

Large Language Models in Biomedical domain

LLMs such as GPT4 have demonstrated exceptional capabilities across diverse tasks and domains

[EEA23, DSD23, DLD22]. These models could have a revolutionary impact on healthcare; how-

ever, their integration into medical research and practice has been slow [ZZG23, VMV23, NKM23]

and it is crucial to examine the unique challenges presented by the biomedical field that contribute

to this discrepancy. Specifically, LLMs encounter challenges in medical Information Extraction

[GMW22, MBH21] due to the scarcity of high-quality biomedical data in their pretraining, and

the need for a nuanced comprehension of the text for this task [GZU23]. Medical entities can

have multiple synonyms and abbreviations, complicating their recognition by models [GGM21].

Furthermore, context sensitivity is even more critical in the biomedical compared to the general

domain. The specificity of entity types and the complexity of their interrelations necessitate a level

of background knowledge that standard prompts may fail to provide. LLMs are primarily exposed

to vast amounts of generic text data limiting their effectiveness in managing the intricate nuances

of medical language [KKS23, KM23].

In this paper, we concentrate on NER, a foundational task for various applications such as

recruiting patients for clinical trials, searching biomedical literature, or building models that predict

the progression of disease based on free-text notes.

In our initial analysis, we broaden the scope of TANL [PAK21] and DICE [MTW22], two text-

to-text formats initially proposed for model training, adapting their use to prompt design specifi-

39



cally for biomedical NER. Our findings reveal that the relative effectiveness of the resulting prompt

pattern varies based on specific dataset characteristics. Subsequently, we investigate the impor-

tance of example selection via In-Context Learning (ICL) and demonstrate the value of nearest

neighbor example selection using pre-trained biomedical text encoders when performing biomed-

ical NER. Our study reveals the importance of meticulously designed prompts in the biomedical.

Strategic selection of in-context examples yields a marked improvement, offering ∼ 15 − 20%

increase in F1 score across all benchmark datasets for biomedical few-shot NER. A key question

that arises in the deployment of LLMs concerns the comparative advantage of closed-source LLMs

versus open-source ones. In our third study, we shed light on this question by presenting an assess-

ment of performance and cost across various experiments. Furthermore, we explore the integration

of external medical knowledge to refine LLM capabilities [GXG23, ZSC24]. Leveraging the in-

sights gained from these techniques, we present a novel data augmentation method incorporating a

medical knowledge base, e.g., UMLS [Bod04], which substantially improves zero-shot biomedical

NER. Leveraging a medical knowledge base, our proposed method, DiRAG, inspired by Retrieval-

Augmented Generation (RAG), can boost the zero-shot F1 score of LLMs for biomedical NER.

5.1 Background and Preliminaries

5.1.1 Prompt engineering

Prompt tuning [WFH23, LAC21, DHZ21] as its own research field shows that skillfully crafted

prompts can significantly enhance LLM understanding for complex tasks [LBM21, KHM23, WP21].

Researchers have explored different prompt formats for IE tasks with LLMs [WZZ23a, GMW22,

WSL23] including more work around knowledge insertion for prompt augmentation [SBT24,

CJC23] Another type of prompting is ICL [BMR20], where LLMs use a limited set of "input-

output" pairs within the prompt along with a query input as demonstrations of what the task output

should be. In this realm, (author?) [LSZ21, MLH22, GWG23] demonstrated that choosing tar-
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geted in-context examples over random sampling leads to more accurate model responses.

5.1.2 Named Entity Recognition

GPT-NER [WSL23] was one of the first methods to incorporate a unique symbol to transform

the sequence tagging task into text generation via ICL with GPT-3 [BMR20], achieving perfor-

mance on par with fully supervised baselines. Following this work, (author?) [GMW22, MBH21]

showed that LLMs are not skilled few-shot learners in the biomedical domain. However, recent

advancements, such as GPT-4, have increased LLM performance on many tasks [TJY24, HLZ24,

NKM23] including in the biomedical domain [HCD24]. In the direction of knowledge distillation

from LLMs [WZZ23a, GZU23], (author?) [ZZG23] presented UniNER, a targeted distillation

technique coupled with instruction tuning to develop an efficient open-domain NER model. Our

research draws from these works and explores the capabilities of LLMs for biomedical NER, em-

ploying prompt design, strategic ICL example selection, and data augmentation via an external

knowledge base to enhance performance.

5.1.3 Problem definition

Assume data samples are represented as (X,Y ) and the goal is to develop a model, denoted as

f : (X×T ) → Y , where X signifies the input set, T represents a predetermined set of entity types,

and Y denotes the set of entity types. The task is to predict the entity type of each input word

among the set T. We followed the standard practice of using the F1 score for evaluation purposes

in both mention/token-level analyses.

5.1.4 Datasets

We used three biomedical NER datasets with different entity types: I2B2 [USS11] which includes

test, treatment, and problem entities, NCBI-disease [DLL14] consisting of the disease entity, and

BC2GM [STA08] containing the gene entity.
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I2B2: I2B2 is a collection of annotated clinical records that are used primarily for Clinical

NER.The task involves identifying clinical terms such as medical problems, treatments, and tests

from patient records. The dataset typically includes a large number of annotated clinical narratives

that are de-identified to protect patient confidentiality. This makes it a rich resource for training

and testing NER models.

NCBI-disease: This dataset is specifically curated for disease name recognition and normal-

ization in biomedical texts. It comprises abstracts from PubMed annotated for disease mentions

and linked to the NCBI disease database. The corpus is relatively smaller compared to i2b2 but is

densely annotated, providing high-quality, fine-grained annotations of disease entities, which are

crucial for models aimed at medical literature.

BC2GM: This dataset focuses on the recognition of gene and gene product mentions in PubMed

abstracts that is a suitable dataset for biological NER. The BC2GM dataset is extensively annotated

to include a wide range of gene and gene product mentions, reflecting the complex and varied ways

these entities are referred to in scientific literature.

5.2 Influence of Input-Output Format

Recent studies demonstrated the importance of prompt engineering for various tasks [WZO23,

GLC23, NLZ23]. We studied the influence of input-output format by adapting TANL [PAK21]

and DICE [MTW22] for biomedical NER. In TANL, the task is framed as a translation task which

involves augmenting the text by tagging entity types for each word directly within the text. The

method is exemplified in Fig 5.1, showcasing how the text incorporates entity types.

Then, the generated output is decoded into the BIO format [RM99] for the assessment. In

the refined DICE format, the input-output format involves adding a description for each entity

type in a template following DEGREE [HHB21]. Given an input text and corresponding labels,

the desired output should be the input followed by the phrase "entity type is <entity_type>. <en-
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Blood type O+ , antibody negative , rubella immune , RPR nonreactive 

, hepatitis B surface antigen negative , group beta Strep positive .

[test]

[problem] 

[ Blood type | test ] O+, [ antibody | test ] negative, [ rubella | test ] 

immune, [ RPR | test ] nonreactive, [ hepatitis B surface antigen | test ] 

negative, [ group beta Strep positive | problem ].

[test] [test] [test]

[test]

in
pu

t
ou

tp
ut

Figure 5.1: TANL input/output format for NER task.

tity_description>. entity is <entity>" for each class label, e.g., test, treatment, and problem in the

I2B2 dataset. Then, we expect the model to output the same template filling out the <entity> with

the corresponding entities in the given text as demonstrated in Fig 5.2. For the entity types with no

matched entities in the sentence, the output returns <entity> token in the output. Examples for the

NCBI-disease and BC2GM datasets are presented in Appendix ??.

[problem] 

[treatment]

He has a recent history of dyspnea on exertion on exertional chest pain which has increased over 

the last several weeks and is relieved by sublingual nitroglycerin . 

[problem] 

Entity type is problem. A health-related issue, condition, symptom, or disease. Entity is dyspnea [SEP] 

exertional chest pain. Entity type is treatment. A medical intervention, therapy, procedure, or 

medication. Entity is sublingual nitroglycerin. Entity type is test. A diagnostic examination, laboratory 

test, imaging study, or other medical investigation. Entity is <entity>.

in
pu

t
ou

tp
ut

Figure 5.2: DICE input/output format for NER task.

Our experiments in Table 5.1 reveal that neither format consistently outperforms the other;

rather, the effectiveness of each format varies depending on the complexity of the dataset and

model size. To maintain consistency in the rest of our experiments, we opted for the TANL format,

in which the input-output relationship exhibits a more straightforward pattern.

5.3 In-Context Examples Selection: A Key to Improving ICL Outcomes

In-context examples can be randomly chosen from the training set; however, researchers have

demonstrated that the performance of ICL depends on the order and similarity of ICL examples to

the test samples [LSZ21, MLH22, GWG23]. (author?) [LSZ21] presented Knn-Augmented in-

conText Example selection (KATE). KATE identifies in-context examples selectively using nearest
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Model input-output format I2B2 NCBI-disease BC2GM
M/T M/T M/T

GPT-3.5-turbo
DICE 41.2 /50.0 45.3 /62.0 43.3 /55.6
TANL 52.9/59.7 46.5/51.3 39.1/50.8

GPT-4
DICE 58.8/70.1 68.1/77.8 57.1/67.9
TANL 61.9/73.5 67.5/70.0 56.4/69.6

Table 5.1: TANL vs. DICE format with GPT-3.5-turbo/GPT-4 . The superiority of any single
format varies with the complexity of the dataset and model size.

neighbor search on example embeddings, leading to better performance than random example se-

lection. We tested KATE on TANL formatted examples with 16-shot ICL using four different LM

encoders (w/o fine-tuning) to produce example embeddings. We used MPNET [STQ20] for its

popularity and performance on sentence embedding benchmarks [RG19] , SimCSE [GYC21] for

its documented performance as an alternative to standard sentence transformers, and BioClinical-

BERT [AMB19] and BioClinicalRoBERTa [GMS20] for their dominance on clinical data tasks

[LHM23].

Our results summarized in Table 5.2 show that strategic in-context example selection via KATE

outperforms random selection. BioClinicalRoBERTa achieved the best results among all example

encoders tested. The strong performance of BioClinicalBERT and BioClinicalRoBERTa under-

scores the importance of using LM encoders pretrained on biomedical text when applying KATE

for biomedical NER.

5.4 In-Context Learning or Fine-Tuning?

Within the scope of LLMs for biomedical applications, an essential question is whether to prompt

a closed-source LLM via ICL or fine-tune an open-source one. Comparing two different LLMs

employing divergent strategies is not straightforward. To provide some insight into this dilemma,

we examined two key factors, performance and cost, for biomedical NER, and present a detailed
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Model KATE vs RS I2B2 NCBI-disease BC2GM
M/T M/T M/T

GPT-3.5-turbo (ICL)

RS 52.9/59.7 46.6/51.3 39.1/50.8
BioClinicalRoBERTa 66.1/77.4 68.0/77.7 61.6/72.5

BioClinicalBERT 67.0/78.9 67.6/78.8 60.9/72.0
MPNET 65.3/76.7 63.7/76.7 59.1/70.0
SimCSE 65.2/76.1 61.6/76.1 57.8/68.8
[HCD24] 49.3/ - - -

GPT4 (ICL)

RS 67.7/73.5 62.6/70.0 59.2/69.6
BioClinicalRoBERTa 81.2/88.4 79.3/88.3 72.4/80.7

BioClinicalBERT 81.7/88.1 79.3/88.0 71.9/79.4
MPNET 80.7/87.5 79.8/87.4 71.1/80.2
SimCSE 79.6/86.6 77.3/86.5 69.9/77.9
[HCD24] 59.3/ - - -

BioBERT fully supervised - /87.3 - /89.1 - /83.8
BioClinicBERT fully supervised - /87.7 - /89.0 - /81.7

BioClinicRoBERTa fully supervised - /89.7 - /89.0 - /87.0

Table 5.2: 16-shot ICL for Random example selection (RS) vs. KATE method Vs MLMs with
Mention/Token-level (M/T) analysis. KATE significantly outperforms random sampling in all set-
tings, and LMs pre-trained on biomedical text outperform general domain encoders.

analysis under various experiment settings. This comparison offers valuable perspective into the

right strategy given the task and dataset attributes. For fine-tuning, we used LoRA [HSW21].

Details can be found in Appendix ??. The cost of fine-tuning comes from training an LLM on

a large labeled dataset while the cost of ICL mainly comes from calling an API for each input

query. For 16-shot ICL experiments, we calculated the cost based on the number of processed

and generated tokens considering the average text size based on current LLM API pricing.1 The

estimated cost for the entire test set of each benchmark dataset considering the input text, prompt,

and generated text size using the TANL format is summarized in Table 5.3. Referring to the

OpenAI API for fine-tuning pricing, we also estimated the cost for fine-tuning LLama2-7B which

is summarized in Table 5.3. Interestingly, for the I2B2 dataset, GPT-3.5-turbo with a much cheaper

cost outperforms fine-tuning Llama2-7B.

1https://openai.com/pricing
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response
User 

prompt

User 

prompt

There was no electrographic evidence of seizure activity noted .

+input

There was no electrographic evidence of seizure activity noted .

There was no electrographic evidence of seizure activity noted .

[test] [problem] 

FP FP FP TP TP

TPTPTPTP

response

{

'electrographic evidence of seizure activity', 'problem’

}
Given a passage, your task is to 

extract all entities and identify their 

entity types from this list: test, 

treatment, problem. The output 

should be in a list of tuples of the 

following format:{'entity 1', 'type of 

entity 1', ...]} 

{

'electrographic evidence’: 'test’ 

, 'seizure activity', 'problem’

}+ augmented 

input

User 

prompt

+input

Given a passage, your task is 

to extract all tokens that could 

potentially be a medical entity. 

The output should be in a list of 

the following format: ['entity 1', 

'entity 2', ... ].

seizure activity is a finding which is discovered by direct observation or measurement of an 

organism attribute or condition, including the clinical history of the patient

w
/o

D
iR

A
G

w
/D

iR
A

G

Figure 5.3: An overview of Dictionary-Infused RAG

Model I2B2 NCBI-disease BC2GM
M/T M/T M/T

Performance

GPT-3.5-turbo w/ KATE 67.0/78.9 68.0/78.8 61.6/72.5
GPT4 w/ KATE 81.7/88.4 79.3/88.3 72.4/80.7

Llama2-7B 61.2/76.2 80.4/91.3 68.1/75.1

Cost (T+I)

GPT3.5-turbo w/ KATE ($0.35) ($0.11) ($1.34)
GPT4 w/ KATE ($10.42) ($3.12) ($40.13)

Llama2-7B ($47.85+$7.4) ($23.5+$1.2) ($69.7+$12.9)

Table 5.3: Analysis of ICL vs fine-tuning LLMs: assessing performance and cost (Training + In-
ference) implications. Fine-tuning LLama2 exhibits superior outcomes on NCBI-disease, whereas
GPT-4, enhanced by KATE using a biomedical encoder, achieves more favorable results on both
the I2B2 and BC2GM datasets.

5.4.1 PEFT setting of Llama for fine-tuning

We fine-tuned Llama2-7B on the entire training set of each dataset for three epochs and maintained

a batch size of 16, learning rate of 2e-4, and cap the maximum sequence length at 512, truncating

any sequences that exceeded this limit. The LoRA dropout rate is adjusted to 0.1, and the LoRA

α and rank parameters are also set at 16 and 32 respectively. The training was done on 4 NVIDIA

Tesla V100 GPUs for approximately 24, 12, and 63 hours for I2B2, NCBI-disease, and BC2GM

respectively.
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5.5 Dictionary-Infused RAG - DiRAG

5.5.1 Few-shot Vs. Zero-shot

We introduced both few-shot and zero-shot settings to comprehensively evaluate the versatility and

generalization capabilities of our study across different levels of data availability. While it’s true

that the performance in the zero-shot setting is generally lower compared to the few-shot setting,

this approach offers valuable insights into the model’s behavior when no training examples are pro-

vided. The zero-shot setting, leveraging techniques like Retrieval-Augmented Generation (RAG),

demonstrates the model’s potential to utilize pre-existing knowledge embedded in its parameters

and external sources effectively. This is particularly important for scenarios where labeled data is

scarce or unavailable, making zero-shot learning a critical area of study to ensure broader appli-

cability of the model in real-world applications. Moreover, the inclusion of both methodologies

allows us to highlight the performance trade-offs and strengths of the model under different in-

structional paradigms, contributing to a more robust and nuanced understanding of its capabilities.

5.5.2 DiRAG

Retrieval-Augmented Generation (RAG) [LPP20] is a technique to enhance the capabilities of

LLMs by integrating external information or knowledge into the generation process. This method

involves retrieving relevant documents from a large corpus and providing this external knowledge

in the input context to improve the quality and relevance of the generated text. Inspired by RAG,

we developed a new method, DiRAG, to utilize UMLS as an external resource to augment the

input data for the biomedical NER task. The process with detailed prompts is visualized in Fig

5.3, while an expanded view of the UMLS component is depicted in Fig 5.4. Unlike traditional

RAG techniques that rely on embedding similarities to retrieve relevant documents, our approach

initially employs the LLM to tackle a more straightforward task: identifying all words that could
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Model I2B2 NCBI-disease BC2GM
M/T M/T M/T

UniversalNER [ZZG23] 40.4/ - 60.4/ - 47.2/ -
[RNC23] w/ GPT-3.5 - 33.4 / - 32.0 / -

[HCD24] w/ GPT-3.5-turbo 39.3/ - - -
[HCD24] w/ GPT-4 52.6/ - - -

GPT-3.5-turbo w/o DiRAG 41.9 /54.7 38.2 / 49.4 38.6 / 28.7
GPT-3.5-turbo w/ DiRAG 43.0 / 55.7 44.7 / 50.0 30.45 / 22.5

GPT-4 w/o DiRAG 46.3 / 59.1 55.7 /60.5 52.1 / 58.4
GPT-4 w/ DiRAG 53.1 /62.8 61.0 /66.2 51.1 / 55.0

Table 5.4: Zero-shot NER with GPT models w/ and w/o DiRAG vs. SOTA. DiRAG improved
zero-shot NER significantly for I2B2 and NCBI-disease datasets for both GPT models. Results
with confidence intervals are in the appendix.

potentially qualify as medical named entities. Then, we look up each selected word in an external

knowledge base, e.g., UMLS to augment the input data with useful information such as term def-

inition. Then, we call the LLM with augmented input text. The process is visualized in Fig 5.4.

We tested the approach on zero-shot NER and compared it with SOTA in Table 5.4. Our proposed

approach enhanced the performance of both GPT versions on the I2B2 and NCBI-disease datasets

significantly. DiRAG with GPT-4 achieved SOTA for zero-shot NER. Our approach proved in-

effective for the BC2GM dataset due to the nature of the UMLS knowledge base which is pre-

dominantly tailored to medical terminology rather than biogenetics. We expect our approach to

outperform GPT-4 on BC2GM with a more relevant knowledge base.

5.5.3 UMLS detail

In Fig 5.4, we visualize the process by which potential words suggested by the LLM are searched

within the UMLS and demonstrate how the input is augmented to enhance zero-shot prompting in

LLMs.
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User 

prompt

Given a passage, your task is 

to extract all tokens that could 

potentially be a medical entity. 

The output should be in a list of 

the following format: ['entity 1', 

'entity 2', ... ].

nausea is An unpleasant sensation in the stomach usually accompanied by the urge to 

vomit. Common causes are early pregnancy, sea and motion sickness, emotional 

stress, intense pain, food poisoning, and various enteroviruses.

[‘Nausea', ‘Pleuritic chest pain']

She awoke with nausea on the day of admission and pleuritic chest pain .

Search UMLS for sematic type 

and definition with exact match

[problem] [problem] 

Augment to 

the original 

prompt+input

Figure 5.4: UMLS search. The GPT model is prompted for a simpler task of identifying all words
that could potentially be a named entity. Then, the retrieved information from UMLS will augment
the original input text for recalling the LLM

5.6 Conclusion

Our study is centered on the creation of a pre-training dataset for domain-specific medical vision

language models, utilizing a VL dataset sourced from PubMed and a pipeline for VL modeling.

Our approach has been evaluated through intrinsic task assessments, demonstrating its effective-

ness in constructing data-efficient VL models for the medical field. Our model has surpassed the

performance of standard VL training methods, further validating the efficacy of our pipeline. Our

proposed pipeline helps build powerful multimodal AI models which could be used for various

tasks like diagnosis, drug discovery, and information extraction.
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CHAPTER 6

Conclusion

In the field of vision-language models, especially in low-resource settings such as the biomedical

domain, this dissertation has tackled unique challenges and proposed innovative methodologies to

enhance model performance and applicability. Recognizing the scarcity of labeled data and the

specific needs of medical contexts, our research has been directed toward creating reliable models

capable of functioning with limited inputs while maintaining high accuracy and reliability.

In Chapter 2, we investigate the application of VL models to the diagnosis of diseases from

chest X-rays. Traditional VL models often underperform in the medical domain due to significant

differences between general and medical imagery and text. In response, we developed BERTHop, a

model that integrates enhanced visual representations with robust language understanding capabil-

ities, demonstrating a notable improvement in diagnosis accuracy as evidenced by its performance

on the OpenI benchmark dataset.

In Chapter 2, we extends the concept of in-context learning from large language models (LLMs)

to vision-language models. This study addresses the challenge of enabling VL models to adapt

through few-shot learning strategies, traditionally seen in LLMs. By transferring in-context learn-

ing abilities from language-only to multimodal models, we significantly enhanced the flexibility

and reduced the model size necessary for effective performance on tasks like Visual Question An-

swering.

In Chapter 3, we focus on the pre-training of vision-language models specifically for identify-
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ing brain abnormalities. By creating a tailored dataset from public medical texts and imagery, we

pre-trained a model that not only understands medical visuals and texts in conjunction but also ad-

dresses unique challenges such as the correlation of subfigures to subcaptions. This approach not

only improved model performance but also provided new insights into the automated processing

of complex medical data.

In Chapter 4, we explore the application of LLMs to Named Entity Recognition (NER) in

the biomedical field. Despite the complexity and specialized knowledge required in this domain,

our strategically designed prompts and incorporation of external biomedical knowledge through

DiRAG significantly enhanced the performance of LLMs on biomedical NER tasks, pushing the

boundaries of what is possible with zero/few-shot learning in this critical area.

Throughout these chapters, we’ve seen that while advanced machine learning models offer

substantial benefits to biomedical applications, challenges such as data scarcity and the need

for domain-specific adaptations remain prevalent. This research contributes valuable methodolo-

gies and insights to the fields of machine learning and biomedical informatics, proving that with

thoughtful adaptation, cutting-edge AI technologies can significantly enhance their performance

across different applications from classification tasks such as disease diagnosis or biomedical NER

to generation tasks such as question answering.
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