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Abstract In this paper, we discuss generalized mixture models and related
semi-supervised learning methods, and show how they can be used to pro-
vide explicit methods for unknown class inference. After a brief description of
standard mixture modeling and current model-based semi-supervised learning
methods, we provide the generalization and discuss its computational imple-
mentation using three-stage expectation–maximization algorithm.

1 Introduction

Semi-supervised learning methods based on mixture models seek to improve
classification results for known classes by using both labeled and unlabeled
data (see for instance Dean et al. 2006). Although the resulting known-class
inference is improved, it does not provide a solution for detecting unknown
classes. At present, most methods for detecting unknown classes are based on
ad hoc likelihood and goodness-of-fit comparisons to tentative known classes,
and fail to provide explicit unknown class inference through either probability
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statements or hypothesis tests. Semi-supervised learning methods are of great
interest to the computer science, engineering, and statistics communities among
others. For a good review and survey of literature see for instance Zhu (1996)
and Miller and Uyar (1997).

The problem of detecting unknown classes is becoming increasingly more
important in areas such as biology, medical diagnostics, and various defense
applications. For instance, from a medical diagnostic perspective, the ability to
dynamically detect new diseases or variations in pre-existing diseases is critical
to reliable diagnosis, research, treatment, and patient recovery. Unknown class
inference is critical to national defense as well as civilian law enforcement capa-
bilities since adversaries are continually developing technologies to counter
existing target recognition and tracking methods based on the known classes.

In most semi-supervised learning applications, one starts with a complete set
of data X, which is a combination of labeled data and unlabeled data. Here,
labeled data would mean that the class membership information, cx is com-
pletely given as in the case of fully supervised learning. Class labels may be
known through human inspection, experimental construction, or even infer-
ence from a learning algorithm. Let Xl represent the set of labeled data

Xl = {(x1, cx1), . . . , (xNl , cxNl
)}

where each pair consists of a vector observation, xi, and the class label associ-
ated with the observation, cxi . Note, there is a total of Nl labeled data points.
On the other hand unlabeled data may result from new data points (and/or data
points randomly omitted for validation and testing purposes) which have yet
to be analyzed or classified. As such, their class labels are unknown, hidden, or
missing. Let Xu represent the set of unlabeled data

Xu = {(xNl+1, m), . . . , (xN , m)}
where each pair consists of a vector observation, xi, and an indicator, m, that the
observation is unlabeled or the class label is missing. Including these (N − Nl)

unlabeled data points, the complete set thus consists of the combined data
X = {Xl, Xu} for a total of N data points. Writing f (x|θ) for the density function
(which is typically assumed to be either univariate or multivariate Gaussian in
most cases), one can write the log-likelihood of the observed data for a standard
mixture model with M components with weights αk as

log LM(�|X) =
∑

x∈Xl

M∑

k=1

I(cx = k) log(αkf (x|θk))+
∑

x∈Xu

log
M∑

k=1

αkf (x|θk). (1)

Here, the summation over the labeled data only contributes to the overall
log-likelihood when the labeled data point originates from the appropriate
generating component or class (see Dean et al. 2006; Miller and Uyar 1997).
This is an extension of the standard mixture model and the parameter space
consists of � = {α, {θk}M

k=1}. In this scenario, the concept of a class is, typically,
synonymous with a mixture component.
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These models are lacking in some critical respects which the generalized
mixture models (GMMs), which we describe in the next section, remedy. In
the above description, the data are defined in such a way which only implicitly
account for the fact that individual data points are either labeled or unlabeled.
This information is contained in the class labels which are either cx or m. How-
ever, we can explicitly define a random variable which indicates the presence or
absence of a label. Let L ∈ {l, m} where l and m denote the label is present or
absent, respectively. In doing so, we have a larger set of data for which a gener-
alization of Eq. (1) is needed. Although some of the previous semi-supervised
methods provide an ad hoc discussion of unknown class inference, they do
not investigate or explore new class discovery via probabilistic or statistical
inference—what we would like to do more explicitly.

2 Generalized mixture models

Much like conventional semi-supervised learning methods, GMMs are con-
structed to handle a combination of both labeled and unlabeled data. General-
izing standard semi-supervised mixture models begins by incorporating a label
presence or absence random variable, L ∈ {l, m}. As before, let X = {Xl, Xu}
be the combined labeled and unlabeled data. The Nl labeled data points now
are a triple of the vector observation, the label indicator, and the class label so
that

Xl = {(x1, l, cx1), . . . , (xNl , l, cxNl
)}

and the unlabeled set of data remains the same set of pairs

Xu = {(xNl+1, m), . . . , (xN , m)}

where m represents the fact that the class labels are missing or unlabeled.
Generalized mixture models explicitly seek to explain the additional label

presence/absence information by way of model formulation. This information
is a critical component which allows for explicit, probabilistic unknown class
inference. To explain this information, GMMs allow for different types of mix-
ture components. These components differ in how they generate labeled and/or
unlabeled data points.

1. Predefined components. These components exclusively represent known
classes. Predefined components generate data which are both labeled and
unlabeled where we assume that the data labels, when missing, are missing at
random (see Miller and Browning 2003; Little and Rubin 1987). The impli-
cation is that unlabeled data can originate from a known class. Note that
more than one predefined component can represent a single known class.

2. Non-predefined components. These generate data which are exclusively
unlabeled. As such, these mixture components will represent either the
outlier regions of known classes or possibly unknown classes.
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Let M be the number of mixture components in a GMM and let Mk denote
the kth mixture component for k = 1, . . . , M. Let Cpre denote the subset of
components which are predefined components and the remaining subset of
non-predefined components denoted by Cpre. The mechanism by which GMMs
explain the label presence/absence information is by probabilistically quanti-
fying the rate at which a generic, predefined component will generate labeled
data. Let Mg denote a generic, predefined component and P(L = l|Mg ∈ Cpre)

be the rate or probability a predefined component generates labeled data. Note,
this probability is the same for all predefined components such that this prob-
ability is “tied across all components” which are predefined as in Miller and
Browning (2003). (Although one can extend this to allow for the label pres-
ence/absence probability to be specific to each class or component, clearly it is
more messy and we will avoid doing that.) Since non-predefined components
exclusively generate unlabeled data, P(L = l|Mg ∈ Cpre) = 0.

For class representation, let Pc denote the set of all known classes where
cx ∈ Pc for all of the labeled data. We allow for a probabilistic (or soft) owner-
ship of known classes by predefined components. Predefined components are
probabilistically associated with the set of known classes through a probability
mass function (pmf),

{P(C = c|Mk, L = l), c ∈ Pc}Mk∈Cpre .

For specific labeled data points, we have P(C = cx|Mk ∈ Cpre, L = l). Let αk
be the component weight which reflects the amount of data the components
probabilistically owns. For now, let f (x|θk) be a generic multivariate density
function. Let

vk =
{

1 if Mk ∈ Cpre

0 if Mk ∈ Cpre

where the {vk} indicate each component as predefined or non-predefined. With
this notation, the log-likelihood of the observed data for a model with M com-
ponents is

log LM(�|X) =
∑

x∈Xl

log

(
M∑

k=1

vkαkf (x|θk)P(L = l|Mg ∈ Cpre)

× P(C = cx|Mk ∈ Cpre, L = l)

)

+
∑

x∈Xu

log

(
M∑

k=1

vkαkf (x|θk)P(L = m|Mg ∈ Cpre)

+ (1 − vk)αkf (x|θk)

)
. (2)
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Given suitable amounts of data as well as the number of components, M, the
parameters which must be learned in Eq. (2) are:

� = {{αk}M
k=1, {θk}M

k=1, P(L = l|Mg ∈ Cpre), {P(C = c|Mk, L = l ),

c ∈ Pc}Mk∈Cpre , {vk}M
k=1}

= {�EM, {vk}}.

Standard mixture models are usually discussed in the context of unsupervised
learning using only unlabeled data, Xu (cf. Hastie et al. 2001; McLachlan and
Krishnan 2004). In this situation, the only contribution to Eq. (2) comes from
the summation over the unlabeled data. Although GMMs do not preclude the
existence of known class model components, most methods do not hypothesize
such model components a priori. As such, there are no predefined components
and vk = 0, for all k = 1, . . . , M. The result is that Eq. (2) simplifies to

log LM(�|Xu) =
∑

x∈Xu

log

(
M∑

k=1

αkf (x|θk)

)

which is the standard mixture model used for model based clustering of unla-
beled data points. With this example, one can see that GMMs are a generalized
version of standard mixture models. Comparable simplifications occur when
the data are restricted to only having a set of labeled data, Xl. We now turn our
attention to estimating � in Eq. (2).

3 Semi-supervised learning

One existing method for estimating the model parameters is based on maxi-
mum likelihood. For fixed M, we use a generalized expectation–maximization
(EM) algorithm (Miller and Browning 2003). The generalized EM algorithm
consists of two steps: (a) choose the component natures, the {vk}, to maximize
Eq. (2) given all other parameters, �EM, are held fixed and then (b) use EM to
estimate �EM given the {vk} are held fixed. As with EM, we are guaranteed to
have non-decreasing log LM(�|X). However, EM does not always guarantee
convergence to global optima (McLachlan and Krishnan 2004).

3.1 Estimating the component natures

Depending on the size of the model as indicated by M, there are two ways to
choose the component natures. If M is not too large, then one can enumer-
ate all possible 2M combinations of the component natures (each component
nature either 0 or 1) and select the combination which maximizes log LM(�|X)

in Eq. (2). For large M, this strategy grows exponentially with M and is sim-
ply not feasible. A sub-optimal alternative (yet still having the property of a
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non-decreasing LM) is an iterative “one at a time” selection of the component
natures (Miller and Browning 2003; Frame and Miller 2005). We cycle through
the component natures and choose a single vk to maximize log LM(�|X) given
all other component natures are held fixed. This is done for all the {vk} and this
cyclic choosing is repeated until no more changes are made. Call this updated
set of component natures {vk}(t+1). The following EM method only uses the
{vk}(t+1) by defining the set of predefined and non-predefined components.

3.2 EM for the remaining model parameters

Recent technological advances have made expectation–maximization the stan-
dard maximum likelihood estimation (MLE) method for estimating the param-
eters of a mixture model (McLachlan and Krishnan 2004; Hastie et al. 2001).
Expanding the EM framework for GMMs entails estimating and updating the
label presence/absence probability, P(L = l|Mg ∈ Cpre), and the probability
mass function over the known classes for the predefined components

P(C = c|Mk, L = l), c ∈ Pc, Mk ∈ Cpre.

The EM algorithm treats the observed data as incomplete. The needed missing
information identifies which component generates each of the the labeled and
unlabeled data points. Let Vxk be the latent indicator variable which indicates
this information

Vxk =
{

1 if x ∈ Mk
0 if otherwise

where we require data to originate from a single component. With the {Vxk}
known, one can define a log-likelihood for the complete set of data

log LC(�EM|X, {vk}, {Vxk})
=

∑

x∈Xl

∑

k∈Cpre

Vxk log(αkf (x|θk)P(L= l|Mg ∈ Cpre)P(C=cx|Mk ∈ Cpre, L= l))

+
∑

x∈Xu

∑

k∈Cpre

Vxk log(αkf (x|θk)P(L = m|Mg ∈ Cpre))

+
∑

x∈Xu

∑

k∈Cpre

Vxk log(αkf (x|θk)). (3)

EM uses the complete log-likelihood in two distinct steps:

1. Expectation (E-step). Take the expected value of the complete log-likeli-
hood given the current set of parameter estimates is held fixed. The expec-
tation yields an expression with the expectation of the latent variable for
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each sample. This step is the “ownership” step where we seek to find the
probability of components owning a data point.

2. Maximization (M-step). Given the probabilistic association structure
developed in the E-step, the M-step finds parameter estimates for the
remaining parameters in the model which maximize the complete
log-likelihood.

3.2.1 E-step

In the E-step, we have the expectation of the complete log-likelihood with
respect to the latent variable, Vxk using �(t) = {�(t)

EM, {vk}(t+1)} which gives

EVxk [log LC(�EM|X, {vk}, {Vxk})].

Since the Vxk are binary, one is left to solve

E[Vxk|x ∈ Xl, �
(t)] = 1 · P(Vxk = 1|x ∈ Xl, �

(t)) + 0 · P(Vxk = 0|x ∈ Xl, �
(t))

= P(Vxk = 1|x ∈ Xl, �
(t))

and E[Vxk|x ∈ Xu, �(t)] follows similarly. Let P(Vxk = 1|.) = P(x ∈ Mk|.) for
notational convenience. It is easy to show with Bayes rule that these probabili-
ties are given by

P(x ∈ Mk|x ∈ Xl, �
(t))

=

⎧
⎪⎨

⎪⎩

αkf (x|θk)P(C = cx|Mk ∈ Cpre, L = l)∑
k′ ∈Cpre

αk′ f (x|θk′ )P(C = cx|Mk′ , L = l)
if Mk ∈ Cpre

0 if Mk ∈ Cpre

(4)

and

P(x ∈ Mk|x ∈ Xu, �(t))

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αkf (x|θk)P(L = m|Mg ∈ Cpre)∑
k′ ∈Cpre

αk′ f (x|θk′ )P(L = m|Mg ∈ Cpre) + ∑
k′ ∈Cpre

αk′ f (x|θk′ )
if Mk ∈ Cpre

αkf (x|θk)∑
k′ ∈Cpre

αk′ f (x|θk′ ) + ∑
k′ ∈Cpre

αk′ f (x|θk′ )
if Mk ∈ Cpre

(5)

which are, essentially, the probability the Mth
k component generated a data

point, x. Let E[log LC] abbreviate the complete expression for the expected
complete log-likelihood. If we substitute E[Vxk|x ∈ Xu, �(t)] with P(x ∈ Mk|.)
we have
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E[log LC] =
∑

x∈Xl

∑

k∈Cpre

P(x ∈ Mk|x ∈ Xl, �
(t)) log(αkf (x|θk)

×P(L = l|Mg ∈ Cpre)P(C = cx|Mk ∈ Cpre, L = l))

+
∑

x∈Xu

∑

k∈Cpre

P(x ∈ Mk|x ∈ Xu, �(t)) log(αkf (x|θk)

×P(L = m|Mg ∈ Cpre))

+
∑

x∈Xu

∑

k∈Cpre

P(x ∈ Mk|x ∈ Xu, �(t)) log(αkf (x|θk)). (6)

3.2.2 M-step

To best demonstrate the M-step, we assume that f (x|θk) is an r-dimensional
multivariate normal distribution with mean vector and covariance matrix

(μ
k
, �k) = θk

say. In a model with M components, we are left to maximize E[log LC] with
respect to the remaining parameters

�
(t+1)
EM =

{
{αk}M

k=1, {θk}M
k=1, P(L = l|Mg ∈ Cpre),

{P(C = c|Mk, L = l), c ∈ Pc}Mk∈Cpre

}

using the probability structure generated in the E-step. For each component
k = 1, . . . , M, we have

α
(t+1)

k =
∑

x∈Xl
P(x ∈ Mk|x ∈ Xl, �(t)) + ∑

x∈Xu
P(x ∈ Mk|x ∈ Xl, �(t))

N
(7)

μ(t+1)

k
=

∑
x∈Xl

xP(x ∈ Mk|x ∈ Xl, �(t)) + ∑
x∈Xu

xP(x ∈ Mk|x ∈ Xl, �(t))
∑

x∈Xl
P(x ∈ Mk|x ∈ Xl, �(t)) + ∑

x∈Xu
P(x ∈ Mk|x ∈ Xl, �(t))

(8)

and the update for the covariance matrix follows similarly. These updates are
natural extensions of the updates for the standard mixture model. The αk reflect
the amount of data owned by each component and μk are weighted averages
as with standard mixtures. We must also update the label presence/absence and
the class ownership probabilities for the predefined components. Updates of
these probabilities are

P(C = c|Mk ∈ Cpre, L = l)

=
∑

x∈Xl:cx=c P(x ∈ Mk|x ∈ Xl, �(t))
∑

x∈Xl
P(x ∈ Mk|x ∈ Xl, �(t))

, c ∈ Pc, Mk ∈Cpre (9)
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and

P(L = l|Mg ∈ Cpre)

=
∑

x∈Xl

∑
k∈Cpre

P(x ∈ Mk|x ∈ Xl, �(t))
∑

x∈Xl

∑
k∈Cpre

P(x∈Mk|x∈Xl, �(t))+∑
x∈Xu

∑
k∈Cpre

P(x ∈ Mk|x∈Xu, �(t))

(10)

which rely on the probability structure generated in the E-step. The class prob-
abilities in Eq. (9) reflect the amount of labeled data from each class which are
owned by each of the predefined components. The label presence/absence prob-
ability in Eq. (10) reflects the amount of labeled data owned by all predefined
components.

The general outline of the semi-supervised learning method is as follows:

1. Learn the {vk} via cycling through them one at a time. Pick the individual
value of vk which maximizes log LM(�|X) and repeat this process until no
changes occur any more. Denote the updated set of component natures as
{vk}(t+1).

2. Use �(t) = {�(t)
EM, {vk}(t+1)} and do EM learning until sufficient convergence

has been achieved. Denote the updated set of parameters as

�(t+1) = {�(t+1)
EM , {vk}(t+1)}.

3.3 Model selection

Up until this point, we have developed GMMs based on the assumption that
the number of components, M, is known. In this section we briefly describe how
one can estimate the number of components in the mixture model. When fitting
a standard mixture model with a learning method such as the generalized EM
algorithm, the standard method by which M is selected is by BIC

BIC = 1
2

log(N)

M∑

k=1

Pk − log LM(�|X)

where N is the number of data points, Pk is the number of parameters com-
pletely specifying component k, and log LM(�|X) is the log-likelihood of a
model specified by M components.

Computationally, choosing M this way is quite inefficient and time consum-
ing. It requires that, for each value of M, models are extensively learned with the
pre-described semi-supervised learning method. To reduce the computational
burden, M should be bounded above by the number of components which are
supported by the size of the data. Putting a lower bound on the number of com-
ponents is to assume that each known class should be represented by at least
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one component and consider at least one potential component for a possible
unknown class.

Even with such restrictions, the number of possible models to explore can
still be numerically overwhelming. One way to overcome this is to “overesti-
mate” the number of components and then reduce the model size by a single
component at a time (see e.g. Miller and Browning 2003). Such methods face
problems such as how to best/optimally choose the component to eliminate
(and thus, redistribute the ownership of associated data points and updating of
model parameters). These methods typically do not produce reduced models
which are “subsets” of the original larger model and rely on BIC evaluations to
determine if the reduced model is better.

4 Inference and classification

We now consider the merit of GMMs for the purposes of inference. First, GMMs
predict if an unlabeled sample belongs to a known or unknown class. Given a
known class inference, GMMs can be used to predict which known class the
unlabeled sample comes from (see Miller and Browning 2003).

The a posteriori probability that an unlabeled sample belongs to an unknown
class is given by

P(Mg ∈ Cpre|x ∈ Xu) = 1 −
∑

k∈Cpre

P(x ∈ Mk|x ∈ Xu, �(t)) (11)

where P(x ∈ Mk|x ∈ Xu, �(t)) is given in Eq. (5). Values of P(Mg ∈ Cpre|x ∈ Xu)

greater than 0.5 suggest that the sample originates from an unknown class.
Given a known class inference for an unlabeled sample is made, the a

posteriori known class probability is given by

P(C = c|x ∈ Xu, �(t))

=
∑

k∈Cpre
αkf (x|θk)P(C = c|Mk ∈ Cpre, L = l)

∑
k∈Cpre

αkf (x|θk)
, c ∈ Pc. (12)

Unlabeled samples are assigned to the class for which this probability is the
largest.

5 Implementation

In this section, we discuss the computational implementation in relation to an
original application. Since it is nearly impossible to evaluate the unknown class
detection and inference capabilities in a real-time application, we use statisti-
cal cross-validation methods to achieve this. To assess unknown class detection
capabilities, we use a leave-one-out method whereby sequentially removing an
entire class temporarily. In removing each class, we are able to simulate an
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unknown class, do unknown class discovery, and evaluate the ability of the
learning method to find the unknown class. This process is repeated for all of
the classes and the summary characteristics are compiled. Also, we provide
standard errors (SE) of reported characteristics via Monte Carlo simulation
where unlabeled (testing) samples are drawn at random from the available
known classes. In reality, the situation is far different from the scenario we pres-
ent here. In operational circumstances, all available labeled/known data is used
in conjunction with new data we wish to learn about and classify. The results
cannot be evaluated until human inspection and insight is used to determine if
the automated classification process has succeeded.

To evaluate the machine learning process, we consider several summary char-
acteristics. The first summary statistic is a classification matrix (often called a
confusion matrix) which describes how the samples in each class are classified
according to the possible classes available in the database. There are three
summary statistics we use to evaluate the performance.

• P(CC|Known). Given unlabeled samples are classified as belonging to a
known class and are truly known, this is the probability that it was correctly
classified (CC) to its known class. The error of classifying a known as an
unknown is summarized in the next metric.

• P(Unknown|Known). Given unlabeled samples belong to a known class,
this is the probability they are misclassified as unknown.

• P(Known|Unknown). This is the opposite error. Given unlabeled samples
are unknown, this is the probability that they are misclassified as known. Pre-
cisely which known class is irrelevant. However, this information is available
in the confusion matrix.

For each of these characteristics, we also provide an SE for the average of
these statistics. The SE is estimated from the variability in the Monte Carlo
simulations used. An example of such characteristics is found in Table 2 and an
example of the classification matrix is found in Table 3.

Using BIC, the number of components for each class is chosen independently
of one another. Then, all of the class-model components are merged into a sin-
gle model. This final model is learned in the presence of all labeled data. This
allows for the model components to change class associations and alter model
parameters.

Semi-supervised learning extends this by learning unknown class model com-
ponents based on the unlabeled data. Initially, this is done independently of the
known class components. The components learned using unlabeled data are
tentatively associated with the unknown class. Since the unlabeled data may
contain data whose class membership is not unknown, we stress these compo-
nents are tentatively associated with the unknown class. During the final learning
process, all model components are merged together and semi-supervised learn-
ing is done with the complete set of unlabeled and labeled data. Unlabeled,
known data points can become probabilistically associated with known class
components via Eq. (5). This allows for unlabeled data points to be classified
as known and to a particular known class. Also, these known class components
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are allowed to change/update their parameters based on these unlabeled data
points. This is how known class inference can be improved in semi-supervised
learning. The remaining unlabeled data points (those which are not associated
with known class components) stay associated with the unknown class. This
allows for further unknown class refinement via updating of the non-prede-
fined components based, hopefully, only on the unlabeled data points which are
unknown.

6 Applications

As stated in the introduction our motivation for these methods came from
from the perspective of (a) defense applications and (b) medical and biometric
imaging applications. In this section, we show how the GMM’s can be used in
each of these scenarios to provide accurate identification or classification and
reliable unknown class discovery and inference. We first discuss the example of
classifying vehicles and then the application to bio-image informatics.

6.1 Vehicle recognition using hyperspectral data

This machine learning strategy and classification tool was used for classifying
ground vehicles and unknown class inference in military applications (see e.g.
Frame and Miller 2005). Since 2003, it has been used for Homeland Security
applications and urban surveillance problems. In classical military Automatic
Target Recognition (ATR) applications, many of the vehicle types are known
and do not vary, even in large Areas of Interest (AOIs) for wide-area-automated
surveillance applications. Now that paradigms are shifting towards being able
to track and recognize civilian vehicles, even in small AOIs such as cities and
small urban environments, being able to detect unknown vehicles is critical.
For civilian vehicle recognition problems, there are substantially more vehicle
manufacturers, makes, models, and variations than those for traditional military
suppliers. The chance that particular vehicle types, models, and/or configura-
tions are in an a priori known set of classes is highly unlikely. Being able to
detect unknown or new vehicles is critical to the mission of Homeland Security
and other domestic law enforcement agencies.

The vehicle recognition example that we consider uses hyperspectral data.
In our example, there are three known vehicle types. The vehicles are a black
Honda Civic, a red Pontiac Sunfire, and a silver Chevy Venture. Since the
vehicles are of different colors, we would expect good classification results
as well as good unknown class inference results. For these data, we run two
experiments. The first experiment is a traditional, fully supervised learning
paradigm. In this situation, full knowledge of the known classes is assumed
and no unknown class discovery/inference is done. The second experiment is
the desired unknown class discovery/inference using semi-supervised learning.
In the semi-supervised case, we are actively looking for an unknown class. We
evaluate the ability to detect unknown classes while not classifying truly known,
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Table 1 Classification matrix
for the supervised learning
case, P(CC|Known) =
0.9045, Standarderror(SE) =
0.0113

Truth Classified

Black Honda Red Sunfire Silver Chevy

Black Honda 0.7988 0.0018 0.1994
Red Sunfire 0.0022 0.9978 0
Silver Chevy 0.0643 0.0177 0.9180

unlabeled testing samples as unknown. For each class, there is a total of 130 or
120 samples. Since this does not present a rich data environment to utilize large
mixture decompositions, we restrict the maximum number of components to
represent each class to three components.

Table 1 contains the classification matrix for the supervised learning case.
As we would expect, the data are classified quite well with the exception of
the error which occurs in classifying the black Honda Civic as a silver Chevy
Venture. The average rate of correct classification is about 90% with a small SE
of about 1%. In these results, the only major mis-classification error is the afore-
mentioned black Honda Civic classified as silver Chevy Venture. The reason
for this is that although these colors are distinctly different to the human eye, a
close inspection of the hyperspectral band data reveals that this data is rather
similar. In fact, they seem to be almost indistinguishable as indicated in the
graph in Fig. 1. The black lines are the feature vectors for the black Civic and
the green lines are the features for the silver Chevy. It is clear that there is
considerable overlap between the classes. With this consideration in mind, the
error rate of 20% may actually seem rather small.

Tables 2 and 3 are the results for the semi-supervised case. From these results,
it should be clear that unknown class discovery is working as we would like.
When the data classes are unknown, our method discovers this almost 100%
of the time. When known, unlabeled samples are classified into a known class,

Fig. 1 Hyperspectral
features: Black–Black Civic,
Red–Red Sunfire,
Green–Silver Chevy



36 S. J. Frame, S. R. Jammalamadaka

Table 2 Summary metrics for the semi-supervised learning case

P(CC|Known) P(Unknown|Known) P(Known|Unknown)

Average 0.9554 0.1471 0.0009
SE 0.002 0.09 0.055

Table 3 Classification matrix for the semi-supervised learning case

Truth Classified

Black Honda Red Sunfire Silver Chevy Unknown

Black Honda 0.6651 0 0.1214 0.2135
Red Sunfire 0.0002 0.9940 0.0003 0.0055
Silver Chevy 0.0067 0 0.7618 0.2315
Unknown 0.0008 0 0.0002 0.9991

they are correctly classified at a higher rate that when using standard fully
supervised learning methods alone (0.09554 for semi-supervised versus 0.9054
for fully supervised). This increase is clearly not due to random deviation since
the SE is in fact smaller (0.002 vs. 0.01). In fact, this is empirical evidence to
suggest that the use of unlabeled samples in the learning process can improve
known classification rates.

The drawback of the semi-supervised learning process, at least with these
data, is that known, unlabeled data points are classified as unknown at a rate of
approximately 0.1471 on average across all leave-one-out classes. For example,
this misclassification rate is as high as 0.2315 for some vehicle classes. This is a
result of the leave-one-out method when either the Honda Civic or the Chevy
Venture are removed as an unknown class and the other class remains as a
known class. In this situation, there is an unknown class which has a strong
association with the respective known class allowing for the erroneous clas-
sifications. Still, this demonstrates that we can confidently identify unknown
classes when they are present.

6.2 Bio-image informatics application

Researchers at the Neuroscience Research Institute (NRI) at the University of
California, Santa Barbara, have various research programs that produce large
numbers of biological digital images and related experimental data. The Infor-
mation Technology Research (ITR) program to study Bio-Image Informatics
is a collaborative effort funded by the National Science Foundation. For this
analysis, we address one of the many components of this research effort.

One goal of the project is to study the effects of retinal detachment, reat-
tachment, and any treatments that can be used. GMMs can be used to help
understand differences between classes defined by normal retinas, length of
retinal detachment, length of detachment, and the use of treatments. However,
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Fig. 2 A normal retina image

here we only address the classification problem as a precursor to future medical
diagnostic systems.

Retinal images are images of a cross-section or slice of a retina from a sub-
ject. The image is obtained with confocal microscopy or some other device. An
example is found in Fig. 2. Generally, the subjects used in these experiments
are small animals such as cats. Many feature extraction methods have been and
are being developed to represent the retinal images. In the example we present
here, we use a feature vector which represents the texture of the retina.

Gabor Filter analysis provides one method of developing feature vectors
which capture the textures within images (see e.g. Manjunath et al. 2006). For
instance in retinal images, we are looking for textures which capture the cur-
vature, shapes, and contours of the cellular structures in different layers of the
retina.

For this analysis, we focus on two classes defined by the normal retina (Nor-
mal) and 7 days of detachment (7 days). Since the set of comparable data is
limited to only 29 and 27 samples for the respective classes, we must limit the
maximum number of components to represent each class to 3. With such limited
data, we expect to have high SE in correct classification rates. Table 4 is the
classification matrix for this example.

For this experiment, the average correct classification rate is P(CC|Known) =
0.7779 with an SE of 0.1449. This is to be expected since the data is very limited
and we do not have rich enough data to learn and represent each class. As
more and more images come on stream, we expect this method to do better

Table 4 Confusion matrix:
normal retina vs. 7 days of
detachment

Truth Classified

Normal 7 days

Normal 0.64 0.36
7 days 0.07 0.93
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in classification and more importantly to identify unknown classes (like for
instance an outlier, whose genesis can then be traced and investigated more
carefully in the lab). For instance, a normal retina misclassified as one which
is detached for 7 days poses a serious problem and allows doctors to conduct
more tests and inspect the patient more thoroughly. This example highlights
that GMMs are designed for large, rich data sources which contain representa-
tive feature vectors. As a medical diagnostic tool used for diagnosing problems
with the retina, this example illustrates that the GMMs are capable of detecting
undesirable medical conditions with good success.

7 Remarks

Representation of an image as a feature vector is clearly a very crucial and
critical first step in both the examples we presented here. This is an area where
an iterative interaction between the engineers who extract the features and the
statisticians who use them for further analysis, is important.

The GMM presented in this paper assumes that components own classes in
a probabilistic way. A subtle variation on this is to allow classes to own compo-
nents in a deterministic way. This involves a slightly different parameter space,
as well as a different EM method to obtain the parameters. A Bayesian/MCMC
learning method needs to be developed and implemented for this alternative
formulation, which is under investigation.
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