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a b s t r a c t

Scientific evidence for intelligence in donkeys could expose their historical unmerited cognitive derog-
atory status. Psychometric testing enables quantifying animal cognitive capabilities and their genetic
background. Owing to the impossibility to use the language-dependent scales that are widely used to
measure intelligence in humans, we used a nonverbal operant-conditioning problem-solving test to
compute a human-analogous IQ, scoring the information of thirteen cognitive processes from 300
genetically tested donkeys. Principal components and Bayesian analyses were used to compute the
variation in cognitive capabilities explained by the cognitive processes tested and their genetic param-
eters, respectively. According to our results, IQ may explain over 62% of the cognitive variance, and 0.06
to 0.38 heritabilities suggest that we could ascribe a significant proportion to interacting genes
describing the same patterns previously reported for humans and other animal species. Our results
address the existence of a human-analogous heritable component and mechanisms underneath intel-
ligence and cognition in probably one of the most traditionally misunderstood species from a cognitive
perspective.

� 2019 Elsevier Inc. All rights reserved.
Introduction

Donkeys’ unmerited conception of problematic behavior curi-
ously came into the scene at the same age in which the species was
probably enjoying one of the most productive times for their
functionality. During the Egyptian pharaonic times (Navas et al.,
2016; Rossel et al., 2008), donkeys were not just herded for milk
or meat production but were also usually ridden by the most
notable personalities (Alkhateeb-Shehada, 2008; Bar-Oz et al.,
rant from funding agencies in
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2013), which provided them with a distinguished role in society.
Superstition-conjoined consequences together with their psycho-
logical misunderstanding relegated this animal to become one of
the most cognitively detracted species of all times, as reported by
the derogatory references found in several languages and cultures
worldwide (Bough, 2010; Estaji and Nakhavali, 2011; Gregory,
2007; Way, 2014). This context has indirectly translated into don-
keys facing one of their most worrying endangerment situations
nowadays as a consequence of their lack of functionality (Navas
et al., 2017b).

Assisted therapy has stepped into the functional scene of don-
keys as it has been reported to facilitate effective recovery of
spontaneous communication in people with affective and
emotional disorders because of their empathic nature (Borioni
et al., 2012), which may rely on the way they use their cognitive
abilities to interact with humans (Sudekum Trotter and Baggerly,
2018). Increasing the scarce information relative to interindividual
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variability in cognition in equines (donkeys and horses) and their
hybrids through research (Osthaus et al., 2013) may open a new
path toward finding equine-specific genes (Momozawa et al.,
2005b) involved in assisted therapyedesirable behavioral traits,
increasing the profitability of selection strategies aimed at devel-
oping potential therapeutic lines, or providing knowledge that
could be used to model or understand the underlying biological
mechanisms behind cognitive processes in other species such as
humans.

The historical interest in animal intelligence and cognitive
learning processes was highlighted by the letters to the editor un-
der the topic Intelligence in animals published by the Nature Journal
from 1883 to 1904. This scientific context, based on the unavoidable
relation established to related human characters, led to the defi-
nition of the general factor of intelligence or g. According to Deary
et al. (2010), more than a century of empirical research provides
conclusive evidence that a general factor of intelligence (g) exists,
despite some claims to the contrary (Herrmann and Call, 2012).
From their review, we could infer that g partially accounts for 40% to
more than 50% of the differences in the performance between in-
dividuals on a given cognitive test (Locurto et al., 2013; Reader et al.,
2011), and composite scores (intelligence quotient [IQ]) based on
different tests are frequently regarded as estimates of individuals’
standing on g. Other authors such as Kamphaus and Frick (2005)
and Frick et al. (2010) suggest that the terms IQ, general intelli-
gence, general cognitive ability, general mental ability, and intelli-
gence are often used interchangeably to refer to this common core
shared by cognitive tests.

Matzel and Sauce (2017) state that the rationale for most psy-
chometric tests is roughly based on Spearman’s (Spearman, 1904)
observation that performance on a wide range of cognitive tasks is
correlated and, as such, can be reduced to a single index of aggregate
performance across a battery of diverse tests. That is, the more
familiar term intelligence quotient (IQ) is used in humans as it
summarizes the correlations observed between the scores of a
particular individual on a wide range of cognitive abilities compared
to the skills that such individuals must possess considering their
chronological age (Reader et al., 2011). In the normal population, g
(one of the existing psychometric constructs that summarize the
correlations among different cognitive tasks in individuals) and IQ
(what you score on a cognitive test from individuals) are roughly 90%
correlated. Such a strong correlation enables using IQ as a stan-
dardized score of tests designed to measure g, with a high level of
accuracy, and vice versa (OpenStax, 2014).

The influence of language on intelligence has been reported to
be one of the most determining factors setting human and animal
cognition apart (Dennett, 1994). There appears to be no evidence to
date that nonhuman species understand recursion (Corballis,
2007). Because animals lack recursion (and human language is
recursive), animals lack language (Premack, 2007). Traditional tests
put a premium on language skills, making it necessary to develop
and assess intelligence through nonverbal tests, for instance, those
used in children with language difficulties or disabilities (DeThorne
and Schaefer, 2004). In contrast to widely verbal or language-
dependent scales used in humans, animals’ cognitive ability
assessment relies on interactive and observational tools focusing on
the ability of the animals to interact with environment and every-
thing on it through innovation, habit reversal or inhibition, social
learning, or the responses to known and unknown stimuli.

Among other issues (Kaufman, 2018), two of the criticisms
usually targeted at attempts to test for nonhuman g address the
difficulty of developing standard tasks to be implemented across
species and the presence of species specializations (Proops et al.,
2009). Furthermore, leaving experimental conditions to assess
species in their environment (Miklosi, 2015; Miklósi and Kubinyi,
2016) can be a challenging experience, especially when these spe-
cies lack human-primate behavioral resemblance or mice in-depth
knowledge of cognition genomics (Plomin, 1999).

Although these problems are lessened in studies in which
comparisons are made among very similar species (Proops et al.,
2009), literature rarely contrasts distant species. However, these
difficulties could be overcome by implementing an extrapolation
method. The quantification of cognitive capabilities in humans can
be performed by considering tests of a very different nature but
which assess the same underlying cognitive processes (Eysenck,
2018). Although tests measuring for the ability of individuals at
specific cognitive processes may differ in what is measured and
how, they commonly report a single psychometric construct per
individual (Saklofske et al., 2017).

Only few examples of research involve cognitive processes from
a genetic perspective, for instance, humans (Darst et al., 2015), mice
(Galsworthy et al., 2005), or primates (Hopkins et al., 2014). Thus,
research in the field still relies on phenotypical perspectives and
rather suggests the genetic structure behind such processes than
quantify it (Horowitz, 2014). In this context, human-nonhuman
species extrapolations are rare (Anderson et al., 2017). g has
proved to be responsible for 47% to 60% of the individual genetic
variance in cognitive ability measures in nonhuman species such as
primates (Locurto et al., 2013; Reader et al., 2011). This percentage
of explained variability is similar to the fraction of variance
explained by IQ reported for humans (40%-50%) (Kamphaus and
Frick, 2005). Some studies have reported the existence of large
interspecific (Osthaus et al., 2013) and intraspecific (Baragli et al.,
2011) variation in cognitive processes in donkeys; no wide-scale
populational study has been carried out, and despite being sug-
gested (Proops et al., 2012), the genetic background behind them
remains unexplored yet.

Therefore, the present research aims to develop a human-
analogous animal IQ score and to study the populational variation
and the inheritance patterns described in donkeys. The use of
extensively genetically tested pedigree information can provide us
with contrasting evidence to the popularly attributed dual
misconception between intelligence and stupidity in donkeys. This
approach seeks to respond to traditionally raised questions about
the practical application of equine behavior and genetics affecting
cognition and related factors (Hausberger, 2002) and also allows us
to contrast the population distributions of donkey and human
intelligence.

Materials and methods

Study sample and study background

The Andalusian donkey breed is currently recognized as an en-
dangered autochthonous breed by the Spanish Official Catalogue of
Livestock Breeds. Safeguard actions applied to this breed include
the official recognition in the studbook of the breed and its
breeding program, which took place on 26 December 2012. The
whole pedigree file included 1017 Andalusian donkeysd272 jacks
and 745 jenniesdborn between January 1980 and July 2015. The
current Andalusian donkey population consists of 914
donkeysd246 jacks and 668 jenniesdborn from January 1980 to
July 2015. The effective population size based on the individual
inbreeding rate (NeFi) (�SD)was 17.81�8.45, whereas based on the
individual coancestry rate (NeCi) (�SD), it was 41.88 � 2.56 (Navas
et al., 2017b). Direct records included the information of 300
Andalusian breed donkeys (78 jacks and 222 jennies). As the age
range was not normally distributed (P < 0.05 Shapiro-Francia W0

Test of normality), we used minimum, Q1, median, Q3, and
maximum to describe the age range in our sample. The minimum
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age was 0.27 months, Q1 age was 29.76 months, median age was
77.04 months, Q3 age was 129.07 months, and the maximum age
was 270.40 months. Such wide age range was considered because
the test battery used to assess cognitive processes was suitable for
all animals included in the study and given the fact that we evaluate
an endangered breed fromwhich the information belonging to each
individual is indispensable. The donkeys in the sample were the
progeny of 93 jacks and 253 jennies. Parentage tests for eachmating
had been performed with 24 microsatellite molecular markers
recommended by the International Society of Animal Genetics
providing extensive indirect information on genetically tested
pedigree from 724 ancestors.

Behavioral record registration

Before carrying out the behavioral assessment, we conducted a
telephonic interview to survey the experience of the owners of the
donkeys in the study to define the traits comprising the clusters to
consider in themodel.We interviewed owners about their donkeys’
inherent cognitive abilities, the tasks that they should routinely
accomplish on their farms, and the training/education methodol-
ogy (or learning methods) owners regularly apply for their donkeys
to learn such skills/tasks. Based on the answers the respondents
gave, thirteen traits that were frequently alluded to during the in-
terviews were chosen for evaluation (Supplementary Table S1). We
discarded the rest of the features because of the anecdotal occur-
rence of their use or because they were redundant behavioral trait
concepts that were merely labeled differently.

We organized the information derived from the interview for
the thirteen behavioral traits in two clusters. The “cognition” cluster
comprised seven traits that were directly related to nonspecific
cognitive processes related to the ability of donkeys to perceive
information from their environmental situation. The “intelligence”
cluster comprised six traits related to cognitive processes or mental
capacities of the donkeys to retain information from the
Table 1
Definition of the thirteen cognitive processes comprising the intelligence and general co

Cluster Cognitive process Definition

Intelligence Concentration The animal collaborates during the assessmen
and does not get distracted by the environme

Curiosity The animal is interested in the novel stimuli
presented and moves toward them.

Memory The animal remembers the stimuli being pres
Stubbornness The donkey rejects following the requests of

Docility The donkey easily follows the orders of the in
Alertness The animal shows a vigilant or alert status fo

on the stimulus around.
General

cognition
Dependence The donkey is comfortable when separated fr

main herd
Trainability Ability of the animal to be trained into the fu

of the tests
Cooperation The donkey cooperates with its handlers duri

daily tasks
Emotional
stability

The animal is not predictable from one to ano
stimulus

Perseverance The animal is patient when completing sever
sequential tests.

Get in/out of stables The animal shows no problem when leaving
entering its housing facilities.

Ease of handling The animal shows sympathy toward humans

Definitions and clustering criteria accessed from Navas et al. (2017a,b) and Sparrow and
a Addressed as cognitive processes in literature themselves.
b Addressed to involve several underlying cognitive processes in literature.
environment as knowledge to be applied toward adaptive re-
sponses within a specific context (Table 1). Table 1 defines each
cognitive process or trait assessed and the human extrapolation.
We translated these categorical traits into different linear scales, in
which the donkeys scoring 1 meant they presented the lowest
extreme behavioral pattern, and 5, the highest extreme one. We
show the thirteen intelligence- and cognition-related traits
considered and a detailed definition of the scores present in the
scale in Supplementary Table S1.

We set the definition of the cognitive processes included in the
study, defining the scales to measure them and establishing the
possible nongenetic factors that may be exerting a modulating
effect, by relying on the protocols in Momozawa et al. (2005a) and
establishing their analogies with human cognitive processes
(Navas et al., 2017a) (Figure 1, Table 1, and Supplementary
Table S1). The thirteen cognitive processes were divided into
seven direct on-field general cognitive processerelated traits and
six specifically related to intelligence cognitive process traits, ac-
cording to principal component analysis (PCA) criteria, as
described in Navas et al. (2017a). The standardization and devel-
opment of the tests and scales was described in a previous stage of
the study (Navas et al., 2017a; Navas González et al., 2018b) and is
summarized in Figure 1. Statistical verification that tests being
used are in fact measuring the constructs they are intended to
measure and whether they can do so with internal reliability was
performed in two previous studies (Navas et al., 2017a; Navas
González et al., 2018a).

We registered all records describing the cognitive ability of the
donkeys during the development of a six-stage operant condi-
tioning test (Figure 1). The same trained appraiser registered all the
information concerning the four behavioral variables for all the
stages and animals. The donkeys were each given a maximum of
450 seconds to complete the operant conditioning test (75 seconds
per phase and treatment implemented). No additional time was
provided for the donkeys to complete the test.
gnition clusters studied in donkeys and their human analogy

Human analogy

t session
nt.

Attention (Moran, 2011)a

being Curiosity (Kidd and Hayden, 2015)a

ented. Memory (Goshen and Yirmiya, 2007)a

the assessor. Cognitive rigidity (Buzzichelli et al., 2018)/
decision-making (Secchi and Bardone, 2009)b

structor. Docility/decision-making (Secchi and Bardone, 2009)b

cusing Alertness (Oken et al., 2006)a

om the Separation anxiety (Littenberg et al., 1971)b

lfillment Cognitive training (Sternberg, 1981)b

ng the Cognitive cooperation (Wilson et al., 2004)a

ther Anticipation (Roca et al., 2011; Murphy et al., 2015)/
predictability (Namikawa et al., 2013)b

al Patience (Wang and Ruhe, 2007). Related to decision-making.
Patience is studied as a decision-making problem, involving the
choice of either a small reward in the short term, against a more
valuable reward in the long term (Coutlee and Huettel, 2012)b

or Fear (Hofmann, 2008)/cognitive appraisal (Folkman et al., 1986)/
coping (Lazarus and Folkman, 1984)b

. Cognitive empathy (Smith, 2006)/attitudes toward animals
(Taylor and Signal, 2005; Sharp et al., 2006)b

Davis (2000).



Figure 1. Operant-conditioning behavioral test to assess for the thirteen cognitive processes in the study. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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Operant conditioning behavioral test

The operant conditioning behavioral test was carried out in an
open area to which the donkeys were previously accustomed to (it
was part of the area over which the donkeys performed their daily
activities). We exposed each animal to six reinforcement treat-
ments consecutively, one at each of the six stages within the op-
erant conditioning test. At each phase, handler A and handler B
used each of the six different reinforcement treatments to lead the
donkeys to cross over an oilcloth lying on the floor. These
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treatments could comprise unknown elements (the animal was not
familiar to them) or known factors (to which the animal was
already familiar). These elements could be visual (elements fell
within the visual areas of the donkeys) and/or acoustic (elements
generated sounds, i.e., “motivator” or claps, although they may or
may not fall within visual areas) and were presented to the donkeys
from different positions (from the front or from a rear position al-
ways at 2 meters away from the animals). A cameraman (handler C)
simultaneously videotaped the experiences (1080 p, 50 Hz, shutter
speed: 1/250 seconds) to assess the donkey’s performance after the
field experiences and to test for intraobserver discrepancies. The
cameraman (handler C) controlled timing. We show a detailed
description of the operant conditioning test in Figure 1 and Navas
González et al. (2018b).

Test and scoring system reliability

We did not note intraobserver discrepancies as all the scores
obtained on the field matched those obtained after reviewing the
tapes again. We run a Cohen’s k test at a preliminary stage of the
study to test for interobserver reliability and determine if the three
appraisers’ judgment agreed on the scores of 50 individuals (16.67%
of the total sample) for the score at the thirteen cognitive processes
assessed. Cohen’s k determined whether the repeatability of the
model was enough to delete the effect of the appraiser from the
model, providing a measure of the accuracy of scoring of the ap-
praisers. Then, 95% confidence intervals (95% kappa CI) were
computed according to 95% kappa IC ¼ k � 1.96 SEk, where SEk ¼
[(po(1-po)/n(1-pe)2]0.5 with the Crosstabs procedure of SPSS Sta-
tistics for Windows, version 24.0, IBM Corp. (2016). This pre-
liminary analysis aimed at testing for the reliability of the scoring
system, which proved to be highly reliable as there was highly
statistically significant perfect agreement between the three ap-
praisers’ judgments when scoring for the thirteen cognitive pro-
cesses tested during the development of the operant conditioning
test. There was highly statistically significant and from substantial
to almost perfect agreement among the three observers of the
preliminary test for repeatability for all the traits. We present the
results for this preliminary study in Supplementary Table S2.

Donkey’s intelligence quotient (IQ)

In human terms, mental age scores how an individual performs
intellectually for a particular cognitive process, compared to the
average performance that should be expected for that individual for
that same cognitive process at its current chronological age (Gerrig
and Zimbardo, 2002).

Current human IQ tests set the median raw score of the norming
sample as IQ 100, i.e., when chronological and mental ages are
equal or when a particular individual can reach the score that
would be expected to reach considering its chronological age (Hunt,
2010). Then, each standard deviation (SD) unit from this value is
scored up or down at increasing or decreasing intervals of 15 IQ
points (Gottfredson, 2009). We computed the mean score obtained
by the donkeys in the population under study at the multiphased
operant conditioning test (Supplementary Videos 1-6) for each of
the thirteen cognitive processes (scored 1 to 5) to develop an
analogous animal scale. Then, using the variation reported for
humans as a reference (Hunt 2010), we focused on the highest
mean score in the scale (from 1 to 5) that was reached on average by
any donkey of the lowest age level possible for each cognitive
process (Figures 2 and 3). Then, we set such score as the average
range (IQ 100), addressing the mental age at which a donkey, in
particular, would be expected to reach that score for that specific
cognitive process. This score set the starting point from which to
move up or down in the scale from 1 to 5 (Table 2 and
Supplementary Table S1) to set the IQ categories above the average
(above average and very superior) (Figure 3). Quantitatively, we
made these increases/decreases following 15-point intervals per SD
unit.

To extrapolate the results to humans, when this mental age
matched the chronological age of a particular donkey, we consid-
ered its IQ to be within the average range and thus analogous to
human IQ 100. We classified the donkeys below this score at which
the mental age was equal to the chronological age to be below the
average IQ range (Figure 3). Overestimation of individuals very
below or above the average is likely to occur because of the donkeys
being able to succeed in reaching the highest average level (5) for
the different processes at very early ages.

The mental age of each donkey, hence IQ, was computed as the
average of the mental ages or IQs reported for all of the thirteen
cognitive skills for each animal. We calculated IQ through the
following mathematical equation: IQ ¼ (mental age/chronological
age) � 100 (NCME, 2017).

Variance in problem-solving multistage cognitive test

A PCA was carried out to compute the variation in IQ explained
by the cognitive processes tested.

Humans’ and donkey’s IQ distribution comparison

We compared humans’ and donkeys’ IQ distributions through
the calculation of polynomial regression equations (2nd order) and
R squared (R2) values as shown in Figure 2 and compared through
an analogous scale in Figure 3. To score the difference between
distributions, we calculated the percent of explained SD or the
percent by which the SD of the errors is less than the SD of the
dependent variable, following the equation suggested by Nau
(2014):

Percent of explained SD ¼ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
p

Þ*100, with R2 being R
squared.

Genetic analysis, predicted breeding values, and descriptive statistics
(PBV Bayesian accuracies)

Our study aimed at obtaining estimators for fixed effects and
covariates, variance components, heritabilities, and breeding values
for cognitive processerelated traits in Andalusian donkeys, through
single record mixed animal model procedures, as all the characters
were scored only once in the lifetime of the individual through
Bayesian multivariate analyses using the Multiple Trait Gibbs
Sampling for Animal Models package (MTGSAM) (Van Tassell and
Van Vleck, 1995). We obtained a single chain of 550,000 cycles,
discarding 50,000 (burn-in), and using thinning intervals of 200
cycles to retain sampled values, which reduced the lag correlation
among thinned samples. The convergence criteria used implied the
change in the log-likelihood of the function in successive iterations
and were less than 10�10. Gibbs sampling procedures enable
building and saving a random number or the total number of
samples of variances obtained in the iterative process (2058 solu-
tions in our case). Then, for each sample of variances saved, the
genetic parameters could be calculated and assessed to obtain
descriptive statistics such as mean, SD, variance, and standard er-
rors, which could provide us with a perspective of the existing
variability. Univariate analyses were carried out to compute the
heritability of each trait to avoid the distortion that could be caused
by the effects of epistasis among features (calculated then within
residual variance). Then, bivariate analyses were used to calculate
the correlations between each possible combination of the thirteen



Figure 2. Donkey sample and human population IQ distribution graphic, R squared, and polynomial regression equation (second order). (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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characters assessed to quantify such possible epistatic effects
through genetic correlations. From a genetic perspective, the ge-
netic correlation between two traits is the correlation between the
genetic influences on a trait and the genetic influences on a
Figure 3. Distribution of humans’ and donkeys’ IQ and human-donkey IQ extrapolation, fr
color in this figure legend, the reader is referred to the Web version of this article.)
different trait estimating the degree of pleiotropy or causal overlap
between both traits, whereas phenotypic correlation is a measure
of the strength (consistency, reliability) of the relationship between
performance in one trait and performance in another trait. On the
equency representation, and scale description. (For interpretation of the references to



Table 2
Mental age ranges (in months) in Andalusian donkeys for the thirteen cognitive processes studied

Cluster Items/scores 1 2 3 4 5

Intelligence Concentration Below average Below average Average 3 17
Curiosity Below average Below average Below average Average 21
Memory Below average Below average Average 3 17
Stubbornness Below average Below average Below average Average 27
Docility Below average Below average Below average Average 27
Alertness Below average Below average Below average Average 3

General cognition Dependence Below average Below average Average 3 21
Trainability Below average Below average Average 3 38
Cooperation Below average Below average Below average Average 17
Emotional stability Below average Below average Below average Average 27
Perseverance Below average Below average Below average Average 3
Get In/Out of Stables Below average Below average Below average Below average Average
Ease at Handling Below average Below average Average 3 17

The average level was set at the mean score reached for each cognitive process at the age range of �1 month.

Table 3
Results of the principal components analysis for the 300 Andalusian donkeys

Cluster Cognitive process PC1 PC2

Cognition Trainability 0.898 �0.114
Intelligence Stubbornness 0.894 �0.190
Cognition Ease at handling 0.889 �0.045
Intelligence Memory 0.888 �0.117
Cognition Cooperation 0.883 �0.111
Cognition Emotional stability 0.861 �0.109
Intelligence Docility 0.860 �0.047
Intelligence Concentration 0.851 �0.073
Intelligence Curiosity 0.753 �0.085
Cognition Dependence 0.727 0.075
Cognition Perseverance 0.711 0.400
Cognition Get in/out of stables 0.590 0.426
Intelligence Alertness 0.210 0.875
Eigen value 8.162 1.216
% Variance explained 62.781 9.357

The loadings and percentage of variance explained for each principal component
(PC) with an eigen value >1 are shown. Loadings >0.6 are in bold.
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contrary, environmental correlations describe the relationships
between the environments affecting two traits. The relationship
between phenotypic correlations and their components is defined
through rP ¼ rG þ rE.

Then, we estimated predicted breeding values (PBVs) and sys-
tematic deviation for all animals in the relationship matrix. We
calculated Bayesian PBVs directly with the MTGSAM software
(Supplementary Table S3). To assess the accuracy of PBVs, we
calculated the posterior distribution of each parameter sampling
uncorrelated realizations from the Gibbs chain with the PULLDAT
application of the MTGSAM software. We thinned the chain of
samples until the correlation of adjacent samplings was approxi-
mately 0 to assess the distribution, calculate mean, SD, variance,
and standard error of breeding values (Supplementary Table S4).

The multitrait animal model equation used for the analyses is as
follows:

y ¼ Xbþ Zaþ ε;

where y is the vector of records for cognitive processerelated traits,
b is the vector of fixed effects to be estimated and X is the corre-
sponding incidence matrix relating records to fixed effects, a is the
vector of breeding values to be determined and Z is the corre-
sponding incidence matrix, and ε is the vector of residuals. In this
case, the fixed effects considered in vector b were assessment year
(3 levels: 2013, 2014, 2015), sex (2 levels: male and female), and
husbandry system (5 levels: intensive, semi-intensive, semi-
extensive, contest, and extensive) plus the linear and quadratic
effect of age at scoring as a covariable, as age could be expected to
affect the ability of the individuals to solve out multistage problem-
solving cognitive test to correct for its possible distortion. The
variation coefficient for age in our sample is 0.73, which was based
on the population’s age distribution depicted in Navas et al. (2018).
This population distribution may compromise the evaluation of our
sample in more narrowly defined age ranges as they may not be
representative of the whole population because of the unequal
distribution of animals among the groups.

We chose the previously described combination of fixed effects
as the bivariate correlations found between at least one of the fixed
effects and each of the thirteen cognitive processerelated traits
were statistically significant (P < 0.05). A previous analysis was
carried out to describe the effects and levels included in this model
(Navas et al., 2017a).

The analyses included the relationship matrix of animals with
direct records related through at least one known ancestor,
considering the 1,017 animals in the historical pedigree. Consid-
ering the lack of previous experiences for cognitive and intelligence
traits in donkeys, we used the phenotypical variance of each char-
acter and the existing phenotypical correlations between each
possible pair combination for the estimation of the starting point to
seek for the convergence of additive genetic variance component
(multiplying them by 0.2). Then, we did the same for residual var-
iances (multiplying them by 0.8) and genetic and phenotypic cor-
relations to obtain specific variance components and estimates of
fixed and random effects for each trait in multivariate analyses. The
standard errors of genetic correlations were derived directly from
the MTGSAM analyses. After the analyses reached convergence and
we obtained genetic parameters, we estimated PBVs for all animals
in the relationship matrix and we obtained fixed effect estimates.

Results

Donkey’s intelligence quotient (IQ)

Table 2 and Supplementary Table S5 show themental age ranges
and descriptive statistics for each of the thirteen cognitive pro-
cesses studied. Human (University of Minnesota, 2015) and donkey
IQ distributions, polynomial regression equations (2nd order), and
R squared (R2) values are shown in Figure 2 and compared through
an analogous scale in Figure 3. The percent of explained SD for
donkeys’ IQ was of 27.62%, whereas for humans, it was 33.23%.

Variance in problem-solving multistage cognitive test

The PCA revealed two components whose eigen values were
higher than 1 (Table 3), which together explained 72.14% of the
cognitive variation between donkeys. However, the eigen value of
the second component (PC2) was only slightly higher than 1. The
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first principal component (PC1) had strong positive loadings for all
the cognitive processes studied, suggesting that donkeys scoring
high on this factor show signs that may be indicative of better
cognitive performance. The PC1 explained 62.78% of the cognitive
variation. The second principal component (PC2) had weak nega-
tive loadings for all cognitive processes except for alertness and
perseverance, and they only explained a 9.36% of the cognitive
variation. We show a summary of the results for the PCA of the 300
donkeys assessed in Table 3.
Genetic parameter assessment

For the studied variables, the highest estimate of additive ge-
netic variance was obtained for stubbornness, which also accoun-
ted for the highest phenotypic variance (Table 4), whereas the
lowest additive genetic variance estimates were obtained for
alertness and perseverance.

We show estimates for variance components for all cognitive-
and intelligence-related traits in Table 4. For all estimates of h2, the
SE was 0.01, indicating the high accuracy of the estimated
parameters.

We show genetic and phenotypic correlations and heritability
estimates for all the cognitive processes in Table 4. Our estimated
heritabilities ranged from0.06 for dependence to 0.38 for the ability
of the donkeys to enter or leave their stables. Phenotypic correla-
tions (rP) among all the seven general cognitive processerelated or
six specific cognitive process intelligence-associated traits were
positive and from low to strong, with 0.12 (of alertness with
dependence) being the lowest and 0.81 the strongest correlation
(between memory and trainability) (Table 4). Genetic correlations
(rG) were generally positive and ranged from 0.11 to 0.97. However,
all the correlations between alertness and the rest of traits except
for those with dependence, emotional stability, perseverance, and
the ability to get in/out stables were negative and from low to
strong (�0.35 to �0.85), which were the lowest ones as well.
Overall, the poorest correlation both phenotypically and genetically
was obtained for alertness, whereas we got the strongest one for
emotional stability (Table 5). The standard error for the pheno-
typical and genetic correlations was around 0.01 for all parameters
(Table 5).
Predicted breeding values and descriptive statistics (“PBV Bayesian
accuracies”)

The results for the estimates of PBVs ranged between �1.60 and
0.50. We show a summary of the descriptive statistics of the
Table 4
Estimated genetic ðs2aÞ, phenotypic ðs2pÞ, and residual ðs2e Þ variances for intelligence
and general cognitive processes in Andalusian donkeys, obtained from univariate
analyses

Cluster Cognitive process s2a s2p s2e

Intelligence Concentration 0.2574 0.9022 0.6448
Curiosity 0.1218 0.7636 0.6418
Memory 0.0487 0.7012 0.6525
Stubbornness 0.1537 1.1456 0.9919
Docility 0.0856 0.7103 0.6247
Alertness 0.0617 0.3041 0.2424

General cognition Dependence 0.1806 0.8523 0.6717
Trainability 0.1845 0.8753 0.6908
Cooperation 0.0815 0.8057 0.7242
Emotional stability 0.1304 0.6973 0.5669
Perseverance 0.0534 0.5298 0.4764
Get in/out of stables 0.1882 0.4949 0.3067
Ease at handling 0.0874 0.8925 0.8049
breeding values obtained for each cognitive process sorted by sex in
Supplementary Table S3. The dispersion measures (“PBV Bayesian
accuracies”) of the PBVs for each of the thirteen cognitive processes
estimated after Gibbs sampling procedures are shown in
Supplementary Table S4.

Discussion

Our results suggest that donkeys’ IQ similarly follows the
gaussian distribution found in humans’ IQ, although the curve is
moderately deviated to the left (Figures 2 and 3). This is also shown
by the polynomial regression equations (2nd order) and R squared
(R2, determination coefficient or percent of explained variance)
values that only differ by 0.0781 (7.81%). R2 SD for donkeys’ IQ was
only 5.61% lower than that of humans’ IQ, suggesting CIs may
overlap.

Standard deviations are measured in the same units as the
variables and hence directly determine the widths of CIs. Nau
(2014) suggests that a 5% decrease in R2 would increase the error
SD by about 10% in relative terms. This begins to rise to the level of a
perceptible widening in CIs, which means both IQs may distribute
similarly with human IQ CIs being slightly narrower; hence
humans’ IQ values are more accurate.

Results indicate that the highest sample percentage (97%) that
falls under 15-125 IQ in donkeys corresponds to a narrower IQ
range in humans (70-130 IQ). However, when we extrapolated the
results (Figure 3), we found more dissimilar sample percentages,
that is, sharper differences between donkey individuals. Therewere
donkeys that had IQ of 130 because of the nature of the cognitive
processes. Some of these processes, such as getting in/out stables,
were likely to be already significantly developed in very young
animals, which slightly distorted the results for animals in the very
lowest or highest IQ range.

In human psychometrics, individuals’ scores are positively
correlated across tasks assessing several cognitive domains, with a
general factor typically accounting for 40%-50% of total variance
(Deary et al., 2007; Plomin, 2001). We found from low to strong
significant positive correlations between almost all cognitive pro-
cesses, loading positively on the first component of PCA (PC1) and
extracted with an eigen value >1. PC1 captured almost 63% of
donkeys’ variance in cognitive performance, which has also been
reported for primates for which g has proved to be responsible for
47%-60% of individual genetic variance in cognitive ability (Locurto
et al., 2013; Reader et al., 2011) and about 55%-60% of individual
variance in cognitive ability in mice (Locurto and Scanlon, 1998).

Plomin (2001) suggested that “cognitively complex” tasks pre-
sent higher g loadings. Thus, low g loadings are consistent with the
suggestion that certain cognitive processes may not be a good
measure of animal cognitive ability (Boogert et al., 2011) because
prior experience may have influenced their learning performance.
In addition, the positive cognitive process intercorrelations could
provide further evidence that animals’ previous knowledge may
not affect these abilities (Boogert et al., 2011). Our findings are
consistent with those byWoodley Of Menie et al. (2015) on the fact
that those cognitive abilities being more g-loaded would be more
heritable and present larger additive genetic and phenotypic vari-
ance values (Tables 2 and 3).

Heritabilities suggest cognitive processes are complexly and
moderately inheritable in donkeys. Heritabilities are generally
moderate and similar to those for cognitive processes in literature
and slightly higher than similar processes’ estimates reported in
other species, even more, whenwe consider the low standard error
(higher accuracy) obtained, considering the limited sample size.
Darst et al. (2015) obtained similar heritability values of 0.10 to 0.64
(standard error of the mean ¼ 0.12 to 0.15, respectively) for
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cognitive traits in human siblings with a parental history of Alz-
heimer’s disease.

The only existing animal examples are those in mice by
Galsworthy et al. (2005), who reported a heritability upper limit
value ranging from 0.34 to 0.42. The PCA of thirteen cognitive traits
carried out in the study by Hopkins et al. (2014) reported herita-
bility values for g in chimpanzees of 0.012 to 0.538. This value
remarkably improved after retesting the animals for two consecu-
tive years (0.624 � 0.242), suggesting that repeated measures may
considerably improve the results obtained. This value was notice-
ably higher for h2 and had a much higher standard error than our
results did, but it is a controlled, laboratory study. Early attempts
aiming at clarifying behavioral hereditary and additive components
involving interaction factors (sex, age, breed, and handling condi-
tions) suggest that, even with little environmental variation, indi-
vidual genetic variation occurs (French, 1993; Hausberger et al.,
2004; Wolff and Hausberger, 1996).

The low standard error in the heritabilities and correlations
addresses the efficiency of the model used to study the genetic
background of cognitive processes. Low to moderate heritabilities
and high standard errors cited in the literature suggest that scien-
tists are unable to infer accurate and suitable models to study the
genetic fraction of total variation in behavioral traits.

The negative genetic correlation between alertness and most of
the traits measured reflects the pattern of donkey behavior where
extremely alert donkeys are not prone to be curious about external
stimuli and unlikely to approach these stimuli. These donkeys were
also difficult to handle or educate, uncooperative, less likely to
concentrate and memorize the task introduced, and tended to
display freezing coping strategies as highlighted by the negative
correlations with stubbornness and docility. These values suggested
that alertness is an independent trait (Table 3).

A negative genetic correlation between a pair of traits that holds
a positive phenotypical correlation, for example, alertness with
other cognitive processes (Table 5), has traditionally been attrib-
uted to countervailing environmental effects to which the animal
adapts (Sgro and Hoffmann, 2004). Behavioral plasticity (Mery and
Burns, 2010) accounts for such ability of organisms to change their
behavior as a result of the exposure to certain stimuli. In this way,
training, learning, or education can condition the expression of
specific cognitive processes translating into phenotypical changes
that differ from the genetic basis underlying.

A high phenotypic correlation linked to a high underlying ge-
netic correlation enables the successful selection of the individuals
with strong concentration skills while visually selecting for those
animals that display better memory skills, are more stubborn, more
easily trainable, more willing to cooperate and easier to handle. By
contrast, if we aimed at selecting for more curious donkeys, wemay
only choose those displaying better memorizing skills, stubborn,
and easier to train individuals. When selecting for donkeys for their
memorizing skills, we indirectly select for individuals who
concentrate easily, that are more curious, more stubborn, more
docile, more easily trainable, more cooperative, more emotionally
stable, and easier to handle.

While phenotypically selecting for stubborn animals, we may
genetically select for animals that concentrate better, are more
curious, have better memorizing skills, are more docile, coopera-
tive, and easier to train and handle. Animals more easily engaging
an alertness status will be less curious as well, both from a genetic
and phenotypic perspective; thus, we should promote indirect se-
lection strategies to select for one of both.

The low to moderate genetic correlations for dependence to-
ward the owner with the rest of processes suggest that it is not a
good criterion to follow to visually select donkeys for any other
cognitive ability. However, more trainable and cooperative animals
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will genetically be more prone to concentrate better, be more
curious, have better memorizing skills, be more stubborn and
docile. Moreover, the more stubborn the donkeys are, the more
emotionally stable they are. Perseverance has no quantitatively
important correlations and is not useful in the selection of other
cognitive processes.

The ease at which animals enter their stables or leave them is
moderately related to how stubborn the animal is. This evaluation
may be affected by the nature of donkeyswhere freezing, avoidance
of potentially stressing factors and return to a safe place are
preferred behaviors. Ease of trainability in these donkeys correlated
with cooperation, ease of concentration, and docility. The correla-
tions we have found suggest remarkable synergism between most
of the cognitive processes, as reported in chimpanzees (Hopkins
et al., 2014). Visscher et al. (2008) reported a 0.5 to 0.8 human IQ
heritability range, attributing the IQ-related traits’ moderate-to-
high standard error to the narrow range of sibling identity by
descent.

From this finding, we can infer the fact that although the genes
controlling for some behavioral traits may be topographically close
or these traits may be features of the same cognitive process
(enabling a simultaneous selection for both), some behavioral traits
may be controlled by genes located at different loci or should be
attributed to very distant cognitive processes (compelling to carry
out an inverse selection strategy). Therefore, adding more data to
the sample may reveal more reliable and independent personality
components with higher heritabilities and may help to outline the
relationships established between traits. Some traits may be under
strong genetic control, but the particular population studied may
have no genetic variation as a result of selection, also resulting in
low heritability values. The values for additive variance enable the
selection of individuals according to their cognitive abilities. Don-
keys that may present a better cognitive development may poten-
tially make the most of the elements present in their environments
as well as may make educational or training plans easier and more
effective, both regarding the money expended and the time
devoted by a trainer/educator to get the donkey achieving the
progress intended, and hence are more profitable.

Although we may be able to collaterally assess cognitive pro-
cesses developed during the fulfillment of standardized tests, there
are drawbacks. For instance, the likelihood of measuring a super-
ficial behavior component, other behavioral elements, or the pos-
sibility of testing the owner’s ability to educate donkeys instead of
specific traits may translate into the moderate heritability values
and standard errors found.

The use of well-defined and objective criteria assessed through
proper standardized tests by a few well-trained judges reports
typically much higher heritabilities. High correlations may suggest
such skills may have been split into too numerous pieces or over-
lapping among cognitive traits involving more than one cognitive
process and the cognitive process themselves individually. There-
fore, reanalyzing data may reveal more reliable and independent
personality components with higher heritabilities. Still, our results
provide some of the first evidence that an analogous factor to hu-
man g may underpin cognitive performance in donkeys and ac-
count for a similar distribution in the human population.

Conclusions

Our results suggest that donkeys could be considered somehow
intelligent animals when comparatively scoring them based on an
analogous human scale. However, we do not intend to assert that
some donkeys may account for a higher IQ than humans compared
through the same scale. The cognitive processes and methods to
score themwidely differ from one species to another. Furthermore,
the more complex the cognitive development of the species being
tested is, the more complex these methods should be (Gómez,
2005). However, a remarkable variation among donkeys is found,
that is, there are donkeys which are more intelligent than others,
and the present methodology enables quantifying such differences.
The remarkably similar phenotypical distribution and inheritance
patterns described in asses [compared to birds (Shaw et al., 2015),
or other mammals (Hopkins et al., 2014), including humans (Hunt,
2010; Mortensen et al., 2005)] may suggest intelligence could be
ascribed to a similar scientific background or even be supported by
a similar genetic structure to the one widely studied in humans.
Such finding lays the basis for future research to deepen in the field
of animal cognition. Our results suggest that donkey’s cognition
heritable mechanismsmay be attributed to human’s similar genetic
background. This study opens the door to selection and breeding for
better cognitively performing animal generations. Our methodol-
ogy comprises a novel approach to the animal intelligence contro-
versy, using a standard human-applied method to score individual
intelligence quotient.
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