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Inequality or skew in reproductive success (RS) is common across many
animal species and is of long-standing interest to the study of social
evolution. However, the measurement of inequality in RS in natural popu-
lations has been challenging because existing quantitative measures are
highly sensitive to variation in group/sample size, mean RS, and age-
structure. This makes comparisons across multiple groups and/or species
vulnerable to statistical artefacts and hinders empirical and theoretical
progress. Here, we present a new measure of reproductive skew, the multino-
mial index, M, that is unaffected by many of the structural biases affecting
existing indices. M is analytically related to Nonacs’ binomial index, B, and
comparably accounts for heterogeneity in age across individuals; in addition,
M allows for the possibility of diminishing or even highly nonlinear RS returns
to age. Unlike B, however,M is not biased by differences in sample/group size.
To demonstrate the value of our index for cross-population comparisons, we
conduct a reanalysis of male reproductive skew in 31 primate species. We
show that a previously reported negative effect of group size on mating
skew was an artefact of structural biases in existing skew measures, which
inevitably declinewith group size; this bias disappears when usingM. Apply-
ing phylogenetically controlled, mixed-effects models to the same dataset, we
identify key similarities and differences in the inferred within- and between-
species predictors of reproductive skew across metrics. Finally, we provide
an R package, SkewCalc, to estimate M from empirical data.
1. Introduction
The unequal distribution of reproductionwithin a group—a feature also known as
reproductive skew—is common across many animal societies [1]. In some cases, a
small same-sex fractionof apopulationobtains themajorityof reproductive output
(high reproductive skew),whereas in other cases reproduction ismore equally dis-
tributed across same-sex individuals (low reproductive skew) [2]. Skewedpatterns
of reproduction emerge in taxa as diverse as social insects [3], rodents [4], birds [5],
social carnivores [6,7], non-human primates [8], and humans [9].

The intensity of natural and sexual selection is tightly linked to levels of
variation in mating access and offspring production [10–12]. As such, effective
measurement of reproductive skew/inequality lies at the heart of building an
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empirical understanding of the dynamics of natural and
sexual selection [13–15]. Identification of the factors favour-
ing the emergence of reproductive inequality has also been
a key priority for understanding the evolution of social and
mating systems, as well as the dynamics of sex differences
in parental care and competitive traits [16]. The link between
reproductive skew and social behaviour, in particular,
has attracted much theoretical attention, motivating the
derivation of models aimed at explaining variation in repro-
ductive levelling within groups [2,13,17–21]. Moreover,
measures of inequality in reproduction, wealth, status, and
other fitness-relevant characters are emerging as a core focus
of comparisons between human and non-human social systems
[22–26], leading to more generalized explanatory models for
the structuring of inequality across animal societies, both
human and non-human [15]. In humans specifically, we are
starting to theorize and test models that dynamically link eco-
logical context and resource defensibility [27], marriage and
inheritance systems [28–30], and reproductive skew [31,32].

Although the topic of reproductive inequality has been
of continuing theoretical importance to evolutionary biol-
ogists and social scientists, the current toolkit available for
quantifying such inequality proves insufficient in practice,
and measurement problems have therefore generated much
debate [33–37]. Though the details of a given research ques-
tion may sometimes necessitate other kinds of measures,
researchers across fields as diverse as biology, anthropology,
and economics generally agree on the following desiderata
for comparative measures of skew/inequality: they should
be unitless [38], robust to variation in sample/group size
between study populations [39], control for the effects of het-
erogeneity in age or ‘exposure time’ to risk of reproduction
[35], and be related to standard measures of variance in
reproductive success (RS) [40]. Studies attempting to compare
the strength of natural selection across species [26], determine
sex differences in the intensity of sexual selection [15,41],
identify variation in the extent of reproductive skew across
groups/species [42–44], or uncover associations between cov-
ariates (such as group size) and reproductive skew [8,45] can
come to spurious conclusions if the inequality/skew measure
being used does not simultaneously meet these criteria.

Existingmeasures of reproductive skew generally trade-off
one desideratum for another. For example, the opportunity for
selection index [40], I, and its sampling adjusted counterpart
Morisita’s index [46,47], Is, are unitless, invariant to sample
size, and related analytically tovariance in RS, but are sensitive
to age-structure; I is even sensitive tomean RS [48]. In contrast,
Nonacs’ binomial index [35], B, accounts for age-structure,
but introduces a strong statistical bias based on sample/
group size that has gone largely unaddressed in the literature.
This issue is particularly problematic in cross-species (or cross-
cultural) comparisons where group size and/or sample
size can vary substantially. In short, despite the centrality
of reproductive inequality in a range of models across the
evolutionary sciences, there is still no reliablemeasure of repro-
ductive skew that permits rigorous comparative research to
evaluate the predictions of such models.

In this paper, we derive a newmetric of skew/inequality in
reproductive rate, and a Bayesian method of quantifying
uncertainty in thismeasure, froma simple set of first principles.
We then demonstrate that this metric meets the desiderata
described above. The rest of the paper runs as follows: in §2,
we outline the theoretical importance of comparative studies
of reproductive inequality/skew to central questions across
evolutionary biology, economics, and anthropology. In §3,
we introduce the multinomial index, M. In §4, we provide a
detailed mathematical derivation of M and then compare M
to several existing skew measures through the analysis of
270 000 simulated RS datasets with differing input parameters
for age-structure, group size,mean RS, and skew. This analysis
shows that M is unaffected by the statistical biases that have
affected other measures of skew. We also introduce an R pack-
age for calculating Bayesian posterior estimates of M, and
illustrate how skew estimates can be compared between popu-
lations while accounting for posterior uncertainty due to
differences in sample size and RS rate. Specifically, we draw
on census data from three small-scale human populations
with different marriage systems and population sizes to
show how Bayesian estimates of M appropriately disentangle
effect size and posterior credibility. In §5, we detail the analytic
relationship between M and other measures of skew, so that
researchers can draw on a large body of published skew esti-
mates and convert them into a standard and comparable
form. In §6, we conduct an illustrative phylogenetically con-
trolled, multi-level comparative analysis of skew in male
primates using previously published data. In §7, we conclude
by discussing the broad usefulness of the multinomial index
for future comparative research on reproductive skew and
other forms of inequality.
2. Skew in a comparative context
Biological populations can differ greatly in the level of inequal-
ity characterizing the distribution of reproduction across same-
sexed individuals [8]. In humans, reproductive inequality
often varies substantially among cultural groups [9], especially
as a function of marriage system and material wealth inequal-
ity. This topic has been of keen interest to evolutionaryminded
economists and anthropologists [28,29,49,50], who argue that
the coevolutionary rise of monogamy, reproductive levelling,
and highly unequal agrarian-state social structures constitutes
one of the most striking counter-examples to otherwise well-
accepted fitness/utility-based models of reproductive
decision-making, like the polygyny threshold model [51]. Res-
olution of this paradoxical empirical pattern may be explained
by norms for reproductive levelling [52–55] that enhance food
security, group functionality, and/or success in intergroup
competition [56–58], norms for monogamous partnering
[29,50,59–61], or the level of complementarity in returns to
biparental investment in humans [61,62]. Tests of such predic-
tions, however, require comparative datasets and unbiased
skew measures.

Beyond humans, Johnstone [2] and Kutsukake & Nunn [8]
argue that a large body of theory on reproductive skew predicts
clear relationships between inequality in reproduction and var-
ious social, ecological, and genetic factors—including
relatedness, ecological constraints on reproduction, and oppor-
tunities to suppress or control the reproductive activities of
other individuals. Differences in reproductive skew are thus
predicted to havewide-reaching consequences for the evolution
of biological characteristics (e.g. ornamentation [63], and testes
size [64]), as well as social and behavioural ones (e.g. stable
group size [65], effective population size [48], male tenure
length [1], sociality [66], and the patterning of violence [67]
and aggression [68]). To effectively test such theory, however,
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cross-species or cross-genera comparisons are often needed, but
they have also been relatively sparse (but see [1,8]).

In one of the widest-scale comparative studies of repro-
ductive skew to date, Kutsukake & Nunn [8] investigate
the cross-species patterning of reproductive skew in male
primates as a function of a suite of covariates. The data here
are strong: sex-specific reproductive behaviour has been well-
studied across primate species, and primates possess the requi-
site variation in social systems, mating systems, and ecological
setting needed to compare competing predictions [69]. How-
ever, even within a small clade like primates, estimating
differences in reproductive skew across species introduces
some unique challenges: differences in age-structure, group
size, and mean reproductive rate can preclude statistical com-
parisons based on existing skew metrics. In §6, we show how
biased skew metrics can confound inference in this compara-
tive study and others like it. To remedy these issues, we
introduce a new metric of reproductive skew—
the multinomial index,M—that will facilitatewider-scale com-
parative research.
0202025
3. A comparable measure of skew
(a) Definition
Assuming we have data on an RS measure, r, and some age or
‘exposure time’ measure, t, from a sample of N individuals,
then M(r, t) is defined as:

M(r, t) ¼ �M(r, t)� E[ �M(X, t)], (3:1)

where:

�M(r, t) ¼ N
R2

XN
i¼1

(ri � �ri)
2 (3:2)

and where:

X � Multinomial R,
t
T

� �
: (3:3)

Equation (3.1) defines M(r, t) to be the difference of the
observed estimate of �M(r, t) from its expected value if RS
were distributed as a multinomial outcome with the same
sample size, average RS rate, and exposure time vector.
Equation (3.2) then defines �M(r, t), an extension of the oppor-
tunity for selection [10,40], I, that adjusts for unequal exposure
time to risk of RS. R is the total number of offspring produced
by a sample of N individuals, T is the total exposure time con-
tributed by all N individuals, ri is the number of offspring
produced by individual i, and �ri ¼ (R=T)ti is the expected
number of offspring that individual i would have produced
at his or her age if reproductive rates were perfectly equal
within the group. Interpretation of M is similar to that of
B: M = 0 means that RS is distributed as expected under
a random multinomial model with equal RS rates, M > 0
means that reproduction is positively skewed and M < 0
means that reproduction is sharedmore equally than expected
under a random multinomial model with equal RS rates.

Like B [35,36], M accounts for variation in the amount of
time that individuals are at risk of reproducing and it remains
analytically related to other common measures of skew/
inequality (see §5). The analytic relationship between M
and these other measures should advance cross-population
analyses of reproductive skew by allowing researchers to
draw on a large published literature of skew values and com-
pare them within a standard framework. Advantageously—
and in contrast to B—M is not biased by differences in
sample or group size. This is important because, as we
show later, variation in group size has confounded past
efforts to compare reproductive skew across populations.

(b) Qualifications and interpretation
Despite its comparative robustness relative to existing
measures, M, is not universally applicable to all questions
about reproductive skew; specific skew indices should be
carefully chosen with respect to the scientific questions being
addressed [34,48]. Moreover—as is also true when using
other metrics—researchers using M must select sampling
frames, RS proxies, and exposure time measures that are
relevant to their research questions. When applied to observa-
tional data on fertility and age, M specifically measures
heterogeneity in fertility rates among individuals. If hetero-
geneity in fertility rates among living individuals is not the
target of inference, then inputs to M can be changed to
better address the research question. For example, by defining
the sampling frame to include only individuals of a given
cohort with completed reproductive histories—i.e. those
born in a given year and who are now either deceased or
post-reproductive—and then fixing exposure time to a con-
stant, M will reflect heterogeneity in fertility per unit
lifetime, rather than per unit year.

More generally, care should be taken regarding both
sampling frame and function inputs. RS data can be defined
as offspring ever produced—reflecting inequality in ferti-
lity—or as offspring recruited to reproductive age—reflecting
inequality in both fertility and recruitment. Data on age/
exposure time may be passed into M—so that M reflects
inequality in reproductive rate while living—or age/exposure
timemay be held fixed—so thatM reflects inequality in lifetime
RS. The subsets of data fed into M must also be considered—
e.g. should the data be limited to individuals from the same
birth cohort, or all individuals alive and of reproductive age
at a given point in time? If a complete census of individuals
is not constructed, estimates of skew might be impacted by
sampling design and/or dropout due to differential mortality
(see [48] for a review of possible issues). In short, estimates ofM
will reflect different quantities based on the choice of input
variables, sampling design, and other data inclusion criteria,
as is necessarily true of any existing or potential skewmeasure.

Inputs to M may also be purposefully modulated, and the
resultant M values compared, to learn more about the com-
ponents of skew. If, for example, fertility and adult
mortality are positively correlated due to trade-offs in
growth versus reproduction, exposure-time-adjusted M
would be higher than M calculated with exposure time
held fixed; exposure-time-adjusted M would detect that
high-mortality, high-fertility phenotypes reproduce at a
higher rate compared to low-mortality, low-fertility pheno-
types. Measuring M in both ways would unpack how the
components of reproductive inequality—i.e. differential
fertility, versus differential survival—vary across groups.
4. Derivation
Let R be the total number of offspring produced by a sample
of N individuals, and ri be the number of offspring produced
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by individual i, then R ¼PN
i¼1 ri. The share (or fraction) of the

total number of offspring produced by individual i is then
r̂i ¼ ri=R. Next, let ti be the amount of time that individual i
spends in the group (we will refer to this as exposure time
to risk of RS). The sum of the exposure time of all group
members is then T ¼PN

i¼1 ti, and the share (or fraction) of
exposure time attributable to individual i is t̂i ¼ ti=T. If all
individuals are present for an equal amount of time, then
t̂i ¼ 1=N, for example.

If the expected reproductive rate (or the probability of pro-
ducing offspring per unit time) were equal across individuals
in the group, the expected number of offspring produced by
individual i would be equal to �ri ¼ Rt̂i ¼ (R=T)ti. The follow-
ing expression thus measures the average squared deviation
of observed reproductive success from that expected if
reproductive rates were equal:

1
N

XN
i¼1

(ri � �ri)
2: (4:1)

Equation (4.1), however, depends on the unit of measurement
(i.e. squared mean reproductive success). This problem can
be fixed in a standard way (e.g. as with the I index) by normal-
izing by the square of mean RS, R2/N2. This results in the
‘raw’ or ‘uncorrected’ multinomial index, �M, which is the
normalized average squared deviation from proportional
reproductive success. This metric can be expressed equiva-
lently in many forms, including as a standardized
conditional variance, as we show in the step-by-step derivation
in electronic supplementary material, section 1:

�M(r, t) ¼ N2

R2

1
N

XN
i¼1

(ri � �ri)
2 (4:2a)

¼ N
XN
i¼1

(̂ri � t̂i)
2 (4:2b)

¼ N2

R2 [var(r)� var(Rt̂)] (4:2c)

¼ N2

R2 var(r)[1� corr(r, Rt̂)2] (4:2d)

¼ N2

R2 E[var(rĵt)]: (4:2e)

The standard normalization, however, leaves a negative
dependency between mean RS and �M (as is seen also with I
[48]), due to the fact that any sample estimate of reproduc-
tive inequality must increase as R decreases below N, even if
reproduction in the true generative model were described by
equal rate parameters. Refer to figure 1 for a visualization of
this behaviour.

This dependency can lead to measurement problems, since
�M values will differ due to sampling variation, especially in
small samples and in samples with low rates of RS (see similar
discussion in [48]). To generate a measure of skew unbiased by
mean RS,we first specify the form of the bias function and then
measure the expected offset of �M(r, t) from the bias to yield our
‘corrected’ metric, M. Let X have a multinomial distribution
with size parameter R ¼PN

i¼1 Xi and probability vector t̂.
Then E[ �M(X, t)] gives the bias—the expected level of normal-
ized variance in reproductive rate observed when the
underlying rate of reproduction across individuals is, by fiat,
actually equal.
To remove the bias introduced by sampling, we define:

M(r, t) ¼ E[ �M(r, t)� �M(X, t)]

¼ �M(r, t)� E[ �M(X, t)]:
(4:3)

M(r, t) measures the extent to which observed reproductive
skew differs from the level of skew expected under a genera-
tive multinomial model with equal reproductive rates. The
absolute measure of skew might be more relevant for some
problems—for example, if change in reproductive skew is
measured using full census data from a single population
over time, see [48]—so use of �M(r, t) or M(r, t) needs to be
based on context.

(a) The nonlinear effects of age
The basic derivation of M assumes that the risk of reproduc-
tion is independent of age—or equivalently, that all years in
the life course contribute equally to risk of reproductive
success. In some populations, especially human populations,
however, this assumption is likely to be violated. If we
assume that the relationship between age and expected repro-
ductive success over a time interval can be measured using an
elasticity parameter, β∈ (0, 1), where: E[rijai, bi] ¼ a(bbi � abi ).
Then we can write a more general definition for �M(r, t) as
�M(r, a, b, b), where ai is the age of individual i at first
observation and bi the age at death or censor. This is:

�M(r, a, b, b) ¼ N
XN
i¼1

r̂i � bbi � abiPN
j¼1 (b

b
j � abj )

 !2

: (4:4)

Empirically, the parameters of themodel—α and β—canbe esti-
matedonapopulation-by-populationbasisusing the samedata
needed to estimate M itself. In some cases, the conditional
expected value of ri given ai and bi may be a highly nonlinear
function of age, not well-modelled by either a simple propor-
tionality assumption or by a diminishing marginal returns
assumption. To generalize the effect of age to arbitrary func-
tional forms, we present a more robust Gaussian Process
estimation procedure in the electronic supplementarymaterial,
section 2, and include this model in the SkewCalc package.

(b) Bayesian inference
Both �M and M as expressed above are point estimates that do
not reflect the uncertainty inherent in their calculations. When
N is small, for example, estimates are less credible; down-
stream analysis of skew indices should account for such
uncertainty. To estimate the posterior probability distributions
of �M and M given a specific dataset, we provide a Bayesian
estimation procedure in the electronic supplementary
material, section 3. The SkewCalc package employs this pro-
cedure in R and estimates the relevant posterior distributions
from individual-level data on RS and exposure time using a
simple user interface. Vignettes are provided in the SkewCalc
package. Further software details are provided in the
electronic supplementary material, section 4.

Here, we illustrate both methods of estimating M—with
point estimates and through Bayesian inference—using data
taken from three human populations—polygynous Kipsigis
(n ¼ 848 males and 1239 females) [70], serially monogamous
Afrocolombians (n = 91 males and 142 females), and monog-
amous Emberá (n ¼ 25 males and 30 females) [71].
Figure 2(a) shows that M is structured as would be expected
given the marriage system—with male M values decreasing
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Figure 1. We analyse 270 000 simulated RS datasets to illustrate the effects of sample size (30 different levels), mean RS (three different levels), unequal exposure time (two
different levels), and reproductive skew (three different levels) on 10 indices of reproductive skew. We consider three levels of skew for each combination of the other
variables, and use 500 replicates per category combination to estimate a mean index value. In frame (a) we show the shape of three example Negative Binomial distributions
from which RS realizations are drawn. Mean RS is constant across the plotted skew categories. In the high skew category (black), there is elevated probability mass on both
low and high RS values, relative to the low skew category (blue). In the full simulation, we set the exponent of a rate scaling random effect (0.01 = low skew, 0.31 = mid
skew, and 0.61 = high skew) to modulate skew as illustrated here. The mean of the Negative Binomial distribution was defined using a rate per exposure time unit of 1.0 =
low, 7.0 = mid, and 20.0 = high. Sample size is modulated by randomly drawing n samples from each distribution. We then calculate each skew index using the n-vector of
sample RS outcomes. We also consider the effect of variation in exposure time, with Equal Exposure time resulting from use of equal and fixed exposure times, and Unequal
Exposure resulting from drawing exposure times from a uniform distribution. Frame (b) gives an example contrast between B and M. Mean RS is held constant within this
frame. For each level of skew (low = blue, mid = yellow, high = black), we draw a random sample of n RS outcomes and then calculate M and B on this vector of simulated
data. We repeat this process 500 times for each considered value of n and plot the results. The solid lines indicate average values. We see that—holding constant both mean
RS and reproductive skew—B is highly sensitive to sample size. For large samples, B is actually insensitive to reproductive skew, and goes to zero regardless of the actual
level of reproductive skew in the generative model; there is a structural bias in its mathematical definition. In contrast, M is sensitive to skew differences and is invariant to
sample size. As sample size increases, M can cleanly differentiate between skew levels. We repeat this same analysis in frame (c) for all other combinations of variables and
skew indices, but we plot only the mean trends. Specifically, we plot ‘Maximum mating proportion’ (MMP), λ, Q, B, I, I of RS rate, �M, Morisita’s Is, Waples’ ΔI, and M as a
function of sample size. The x-axis is plotted with log-transformed values, but labelled in natural units. Within each frame, the skew level is fixed. Colours are used to
illustrate the effect of mean RS. Line-type is used to illustrate the effect of exposure time differences. A useful comparative measure of skew will: (i) be invariant to sample
size (i.e. we should see flat horizontal lines within frames), (ii) be invariant to mean RS and exposure time changes (i.e. all lines should overlap within each frame), and (iii)
be sensitive to skew (i.e. the y-axis locations of the lines should vary across columns). We observe: (1) MMP and λ are sensitive to sample size, mean RS, and exposure time;
(2) Q is invariant to mean RS, but not exposure time or sample size; (3) B is invariant to exposure time and mean RS, but varies sharply as a function of sample size; (4) while
I and I of RS rate are invariant to sample size and can distinguish between levels of skew, they are sensitive to mean RS; (5) �M, like I, is invariant to sample size, and can
distinguish between levels of skew. It, however, remains sensitive to mean RS; (6) Morisita’s Is and Waples’ΔI are invariant to mean RS and sample size, but remain sensitive
to exposure time; finally, (7) M is largely invariant to sample size (except for small samples from highly skewed populations), invariant to mean RS, and largely invariant to
exposure time (except in highly skewed populations, where it still outperforms Morisita’s index and I of RS rate). (Online version in colour.)
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Figure 2. Frame (a): point estimates (blue bars) and posterior estimates (density distributions) of M for males and females in three human populations with
different marriage systems. For males, M distinguishes the polygynous Kipsigis from the serially monogamous Afrocolombians—a mean difference of 0.23
(90% CI: 0.01, 0.46)—and the monogamous Emberá—a mean difference of 0.32 (90% CI: 0.07, 0.58). However, despite male Afrocolombians and Emberá
having fairly distinct point estimates of M, a Bayesian approach suggests that it is hard to reliably conclude that there are skew differences between these popu-
lations given the relevant sample sizes—i.e. we see a mean difference of 0.08 (90% CI: −0.23, 0.42), where the posterior credible interval overlaps zero quite
heavily. Among females, reproductive skew is approximately constant across populations, but the posterior estimate of M is most precise in the Kipsigis where
population size is largest. Frame (b): posterior estimates of M for various simulated datasets, with various levels of skew and mean RS. Reproductive success
was drawn randomly from a Negative Binomial distribution with a mean rate per exposure time unit of 1.0=low, 7.0=mid, and 20.0=high. To alter skew,
we set the exponent of a rate scaling random effect to 0.01=low skew, 0.31=mid skew, and 0.61=high skew (as shown in figure 1a). Within each frame,
we see the posterior distributions of M for various levels of sample size. Posterior estimates of M map closely onto the point estimates of M, plotted as blue
bars. In general, we see that as the sample size increases, the posterior distributions narrow, reflecting more precise estimates of M. When the RS rate is
low, there is necessarily less RS data and thus greater uncertainty in M, which is reflected in wider posterior credible regions. (Online version in colour.)
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as marriage changes from polygynous, to serially monog-
amous, to monogamous—and that there can be substantial
population-level uncertainty inM. This clarifies the importance
of using Bayesian estimation methods to quantify and propa-
gate the uncertainty inherent in a given skew estimate
through all levels of analysis.

To investigate how posterior estimates ofM are affected by
sample size and RS rate, we simulate an array of datasets, and
calculate posterior and point estimates of M from each.
Figure 2(b) shows that the width of the posterior credible
region shrinks with increasing sample size and RS rate.
When sample size is small and/or RS events rare, skew is
harder to measure and posterior credible regions are wider.
5. Relation to other measures
(a) Standard variance measures
M is related to standard measures summarizing the second
moment of a distribution. If all individuals have equal
exposure time (i.e. ti = 1/N for all i), then:

�M ¼ sd2

mean2 ¼
var

mean2 ¼ cv2 ¼ w

mean
¼ I, (5:1)
where sd is the standard deviation, var is the variance, cv is
the coefficient of variation, w is Crow and Morton’s index
of variability [72], and I is the opportunity for selection
[10,40]. �M(r, t) is thus a generalization of I(r) to cases where
individuals have unequal exposure time to risk of RS.
(b) Nonacs’ B index
Using our previous notation, B [35,36] is expressible as:

B(r, t) ¼
XN
i¼1

(̂ri � t̂i)
2 �N � 1

RN
(5:2)

assuming that N in the second term on the right-hand side is
the same as N̂ ¼ 1=max(̂t) in Nonacs’ formulation. This will
hold approximately, as long as exposure time is not too
unequal, since 1=max(̂t) goes to N as t̂i goes to 1/N for all i.

A key drawback of B for comparison across groups is that
sample size, N, has a direct structural effect on B. To see why,
note that terms ĵri � t̂ij will be of order 1/N, so terms (̂ri � t̂i)

2

will be of order 1/N2. Assuming R and N are of the same
order, the first term in B (and thus B itself ) will be of order
1/N. Analysis of B as a function of sample size, holding the
underlying distribution of reproduction constant, confirms
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that B scales with the inverse of sample size (i.e. B∼ 1/N).
This is shown in figure 1.

M avoids this scaling issue while still allowing for
unequal exposure times across individuals. Nevertheless,
owing to their mathematical similarity, �M can be calculated
from B and vice versa:

�M(r, t) ¼ B(r, t)N þN � 1
R

: (5:3)
rg/journal/rspb
Proc.R.Soc
(c) Ruzzante’s Q index
Ruzzante’s [73] Q index of relative monopolization is concep-
tually related to B and M. If all individuals have equal
exposure time (i.e. ti = 1/N for all i), then:

�M(r, t) ¼ N
R
�
(R� 1)Q(r)þ 1

�
: (5:4)
.B
287:20202025
(d) Morisita’s Is index
Morisita’s [46,47] Is index is a sampling corrected version of I,
and is expressible as:

Is(r) ¼ N

PN
i¼1 r

2
i

� �
� R

R(R� 1)
¼ var(r)N2 þ R2 � RN

R(R� 1)
: (5:5)

If all individuals have equal exposure time (i.e. ti = 1/N
for all i), we can write M(r, t) in closed form as:
M(r, t) ¼ N2

R2 var(r)� N�1
R . So, we have:

M(r, t) ¼ (R� 1)
R

�
Is(r)� 1

�
(5:6)

and for large R, Is approaches equivalence to M(r, t) up to an
additive constant.

(e) Waples’ ΔI index
In work conceptually related to that by Morisita, Waples [48]
uses a population genetics approach to derive a measure of
skew, ΔI(r), based on a similar correction of I:

DI(r) ¼ I(r)� E[Idrift(r)] ¼ I(r)�N � 1
R

: (5:7)

For large R, Is, and ΔI are equivalent up to an additive con-
stant. When there is no age-structure or exposure time
variation across individuals, M is also equivalent to ΔI,
since under equal exposure time: M(r, t) ¼ I(r)� N�1

R . M is
thus a formal generalization of both Is(r) and ΔI(r) to cases
where exposure time is variable across individuals.

( f ) Gini coefficient
The Gini coefficient [38,39] of a variable with N observations
is half of the relative mean distance between observations. So,
if ti = 1/N for all i, the Gini coefficient of interest is:

Gini(r) ¼
PN

i¼1
PN

j¼1 jri � r jj
2RN

: (5:8)

Continuing with this assumption, �M(r, t) can be written as:

�M(r, t) ¼
PN

i¼1
PN

j¼1 (ri � r j)
2

2RN
: (5:9)

Comparing these expressions, we see that �M is similar to the
Gini coefficient, but uses squares instead of absolute values.
6. Re-evaluating comparative tests of skew using
the multinomial index

Mdoes not decrease structurallywith sample/group size as do
other skew/inequalitymeasures, such as λ [74], the ‘maximum
mating proportion’ (MMP) [8], and B [36]. This raises a ques-
tion as to whether previously observed associations between
group size and reproductive skew represent biologicallymean-
ingful phenomena or statistical artefacts. To find out, we
conduct a reanalysis of reproductive skew across populations
using data from Kutsukake & Nunn [8]—henceforth K&N.

K&N report male group size as the only reliable predictor
of mating skew among male primates. We took three steps to
re-evaluate K&N’s results. First, we examined univariate
associations between several skew measures—λ, MMP, B, and
M—with various demographic and reproductive variables
(Table 1 of K&N). Second, we repeated their multiple
regression analysis (Table 2 of K&N). Third, we repeated
their intra-specific analysis of skew in chimpanzees. Finally,
we developed a phylogenetically controlled mixed-effects
model [75,76]. This last model: (i) increases power by using
all data points instead of using species averages, (ii) estimates
and controls for intra-specific variation through species-level
random effects, (iii) estimates within- and between-species
effects of each predictor simultaneously, and (iv) uses Bayesian
methods to integrate over the uncertainty inherent in missing
data observations, rather than dropping rows with missing
covariates.

All data were taken from K&N’s supplementary materials,
andMwas calculated from B (as described in §5b). Our statisti-
cal work-flow would be improved by estimating posterior
distributions of M using individual-level observations and
then modelling this uncertainty in M as measurement error
in the comparative analysis; such individual-level data, how-
ever, are not yet available. A consensus phylogeny for all
species in the sample was downloaded from the 10ktrees
website Version 3 [77]. For steps 1 and 2, we followed K&N
in setting all branch lengths equal (to 1) and log-transforming
the data to meet the assumptions of their independent contrast
analyses; however, since B is sometimes negative, we did not
log transform it or M. Independent contrast analyses were
run using the crunch and brunch functions in the caper

package [78] implemented in R [79]. Instead of identifying
and excluding outlier contrasts by hand we relied on the
built-in ‘robust’ argument.

For the phylogenetically controlled mixed-effects models,
we used within-species centring by subtracting the species
mean from each data point [75]; the model thus includes
two slope estimates for each predictor, one for the species
mean, and one for the group-level offset from the species
mean. The model structure and fit diagnostics are described
in detail in the electronic supplementary material, section 7.

(a) Basic reanalysis
Sections 8.1 and 8.2 of the electronic supplementary material
present the univariate and multivariate associations between
various skew measures and demographic variables. MMP
and B show significant negative relationships with group
size. When restricting the sample in the multivariate analysis
to species for which all skew indices were available, all
measures except M show a significantly negative effect of
male group size on skew.
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K&N also reported step-wise multiple regression models
showing significant relationships between male group size
and both λ and MMP, and no relationships between the suite
of considered skew measures and female group size or
expected estrous overlap. We were able to reproduce these
results; moreover, our analysis finds no significant relation-
ship between M and male group size, female group size, or
expected estrous overlap, in comparable models. See electronic
supplementary material, section 8.3 for more details.
(b) Phylogenetic mixed-effects models
Phylogenetic methods and Markov Chain Monte Carlo soft-
ware have significantly improved in the years since the
original analysis by K&N; we use phylogenetically controlled
mixed-effect models [75] implemented in Stan [80] via brms

[81]. We extend the basic Stan models generated with brms

to deal with missing data. This allows us to make use of the
full content of the K&N dataset (n = 84 groups) and elimin-
ates the need to drop rows with missing predictors.
Additionally, we were able to use the full information content
of the phylogenetic tree by using numerical branch lengths.

We fit a set of nine phylogenetic models for each outcome
variable: λ, MMP, B, and M—one model was a multivariate
model with the full set of predictors, and the other eight
models included only a single predictor variable each—a
robustness check. Figure 3 summarizes the results of the
full set of these models.

In general, we find: (1) across skew indices, most predictor
variables are uncorrelated with observed male reproductive
skew. This is true for predictor variables expressed as
species-specific means (i.e. between-species effects; figure 3,
top frame) as well as for predictor variables expressed as
group-specific offsets from species-specific means (i.e.
within-species effects; figure 3, bottom frame). (2) MMP, λ—
and sometimes B—detect male group size as a key predictor
of male reproductive skew, at the species level and the
group-offset level, in univariate and multivariate models. M,
however, is not predicted by male group size. (3) MMP
and λ detect female group size as a key predictor of male
reproductive skew, at both the species level and the group-
offset level, but only in univariate models. M and B, however,
are not predicted by female group size. (4) At the between-
species level, all skew indices identify estrous duration as
a positive correlate of male reproductive skew, but the
reliability of the effect is attenuated when all predictors are
included in a multivariate model. Finally, (5) at the within-
species level, in both univariate and multivariate models,
all skew metrics suggest that higher copulation rates are
associated with lower levels of male reproductive skew.

We show thatM is capable of detecting skew and is associ-
ated with some of the same predictors as λ, MMP, and
B. However, since M is not structurally biased by group or
sample size, it allows for better comparisons of skew in
cross-species, cross-group, and cross-cultural contexts.

(c) Summary
Our re-evaluation of the study by K&N suggests that the
reported negative effect of male group size on male mating
skew in primates does not persist when M is used to measure
reproductive skew. In this comparative study ofmale primates,
sample size per group varied from n = 2 to n = 10 in 95% of the
data, with two cases each of n = 11 and n = 19. Because of this,
M and B are highly correlated in this set of data. Even so, as can
be seen from the simulations in figure 1, B is so sensitive to
changes in sample size for small n, that even over this limited
range, the adjustment from B to M removes the apparent
effect of male group size on reproductive skew. In other com-
parative studies, with larger ranges of sample size per group,
we would expect inferential contrasts between M and other
skew measures to be even larger.

7. Conclusions
The question of how to effectively measure skew/inequality,
both within and among species, is emerging as an important
and largely under-theorized question. Biologists [34] and
economists [39,82] have struggled to develop inequality indi-
ces that are reliable and robust in comparative contexts. In
this paper, we have addressed this issue by deriving and vali-
dating a newmeasure of reproductive skew that permitswider
comparative research.
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Despite the long-standing interest in reproductive skew,
many questions remain unanswered. The measure we have
presented and analysed here—the multinomial index, M—
provides a means of quantifying reproductive skew that
avoids many of the issues affecting existing indices. In particu-
lar,M is insensitive to variation in sample or group size, mean
RS, age-structure, and even diminishing or highly nonlinear
RS returns to age. It is also amenable to conversion to and
from other common measures of skew and inequality, includ-
ing Nonac’s B, while remaining robust in the face of variation
in the factors just listed.

To demonstrate the value of our index for cross-population
comparisons, we have presented a series of simulation checks
along with reanalyses of previously published comparative
data on reproductive skew in male primates. The results
indicate that some important empirical findings do not repli-
cate when statistical biases in existing skew measures are
analytically eliminated.

The multinomial index should prove useful in future com-
parative research on reproductive skew and other forms of
inequality, such as mating access. To facilitate such work,
we provide an R package, SkewCalc, for estimating M
from empirical data. We anticipate that future analyses
employing the multinomial index will allow broader and
more robust tests of theoretical models linking reproductive
inequality and its causes and consequences.
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