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Abstract Here we show that a mathematical model
of the human sleep cycle can be used to obtain a
detailed description of electroencephalogram (EEG)
sleep stages, and we discuss how this analysis may aid in
the prediction and prevention of seizures during sleep.
The association between EEG data and the cortical
model is found via locally linear embedding (LLE), a
method of dimensionality reduction. We first show that
LLE can distinguish between traditional sleep stages
when applied to EEG data. It reliably separates REM
and non-REM sleep and maps the EEG data to a low-
dimensional output space where the sleep state changes
smoothly over time. We also incorporate the concept
of strongly connected components and use this as a
method of automatic outlier rejection for EEG data.
Then, by using LLE on a hybrid data set contain-
ing both sleep EEG and signals generated from the
mesoscale cortical model, we quantify the relationship
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between the data and the mathematical model. This
enables us to take any sample of sleep EEG data and
associate it with a position among the continuous range
of sleep states provided by the model; we can thus
infer a trajectory of states as the subject sleeps. Lastly,
we show that this method gives consistent results for
various subjects over a full night of sleep and can be
done in real time.

Keywords Sleep · Sleep staging · Sleep scoring ·
Seizure · Locally linear embedding ·
Electroencephalogram · Cortical model ·
Mesoscale · Mean-field

1 Introduction

The standard method of sleep scoring involves cate-
gorization of electroencephalogram (EEG) data into
five separate stages (Niedermeyer and da Silva 2005).
However, the discrete nature of these stages limits their
utility as analytical and predictive tools. For example,
in a study of human epilepsy, it may be observed that
a seizure occurred during stage 2 sleep. This prompts
further questions: Was the subject descending to deeper
stages of sleep or arising from them? How quickly
was the subject moving through each stage? Was a
transition imminent when the seizure occurred?

The use of a mathematical model of the human
sleep cycle may allow us to answer such questions by
providing a continuous spectrum of sleep states, ranging
from REM to the deepest slow-wave sleep. If the model
can be directly associated with human sleep EEG data,
it will be possible to track the subject’s state to identify
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the stage as well as changes in sleep depth and proxim-
ity to transitions. Ideally, this would be done in real-
time, where the state is continuously determined as
the subject sleeps. The process must be consistent over
various subjects and robust to non-standard sleep cycles
and periods of waking.

Here we utilize a technique called locally linear
embedding (LLE) to make this connection between a
model of the human sleep cycle and EEG data. First,
we present a model of the human cortex with subcor-
tical inputs represented by added driven noise, and we
describe the associated mathematical representation of
the sleep cycle (Section 2). We then introduce the tech-
nique of locally linear embedding (Section 3) and show
that it provides the ability to distinguish between sleep
stages when applied to EEG data (Section 4). These
results demonstrate reliable separation between REM
and NREM sleep data and provide a smooth temporal
progression through the various stages of sleep. We
also present the concept of strongly connected compo-
nents as a method of outlier rejection for EEG data
(Section 3.2) and introduce a method for automatic
selection of LLE parameters (Section 4.3). Then, by
performing LLE on a hybrid data set containing both
sleep EEG and signals generated from the mathemat-
ical model, we are able to integrate the EEG and the
model (Section 5). This allows us to take any sample
of sleep EEG data and determine its position within
the continuous range of sleep states provided by the
model. We show that this method provides consistent
results for various subjects over a full night of sleep, and
it could be done online as the subject sleeps.

2 Mean-field cortical model

2.1 Background and mathematics

Mean-field models of the cortex are well-suited to the
study of brain states described by EEG signals, includ-
ing sleep. The variables in these models, representing
quantities that are averaged over the millimeter scale,
are comparable to the mesoscale measurements of
EEG electrodes. More specifically, we choose a cortical
model developed most recently in Liley et al. (2002)
and Steyn-Ross et al. (1999, 2003). In addition to sleep,
it has been used to model epileptic seizures (Kramer
et al. 2005), anesthesia (Steyn-Ross et al. 2004; Bojak
and Liley 2005), and the transition to seizure due to
application of anesthetic agents (Liley and Bojak 2005).

Here, we use the dimensionless formulation of the
model as described in Kramer et al. (2007), with two
parameters �hrest

e and L added to represent neuromod-

ulators that regulate the natural sleep cycle, as was done
in Steyn-Ross et al. (2005):
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The model contains two groups of equations: one
that describes the evolution of the excitatory popu-
lation (Eqs. (1), (3), (5), (7)) and one that governs
the inhibitory population (Eqs. (2), (4), (6), (8)). Each
variable is a function of dimensionless space (x̃) and
time (t̃), and the subscript denotes its association with
the excitatory or inhibitory population. For example, in
the excitatory population, the mean soma potential is
represented by h̃e, while Ĩie is the input current from
population i to population e. The synaptic currents are
functions of local input, e.g. Nβ

e S̃e where

S̃e

[
h̃e

]
= 1

1 + exp
[
−g̃e

(
h̃e − θ̃e

)] ; (9)

this function converts the potential of the excitatory
population into a mean firing rate. Synaptic currents
are also affected by long-range corticocortical input φ̃e

and subcortical stochastic inputs such as �̃1, which we
define to be a function of zero-mean Gaussian white
noise ξ1:

�̃1 = αee

√
Pee ξ1

[
x̃, t̃

]
. (10)
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Here αee is a constant that determines the variance of
the stochastic input. Please refer to Table 1 for further
descriptions of all variables and parameters.

For completeness, we will include the full model in
our simulations; however, it should be noted that a
reduced version would suffice in this case. For example,
we will utilize only the temporal evolution of variables,
so it would be possible to convert the model to a sys-
tem of ODEs by removing the spatial derivatives from
Eqs. (7) and (8). In addition, the subdivision of local
excitatory inputs, represented by Nβ

e S̃e[h̃e] in Eqs. (3)
and (4), is unnecessary. Making these changes would
perhaps reduce the computation time for numerical
solutions to the model, but we would not expect them
to affect the results.

For the purpose of modeling sleep, we will focus on
the parameters L and �hrest

e and the variable h̃e. The
parameters represent the actions of neuromodulators
adenosine and acetylcholine (ACh) that aid in the reg-
ulation of the human sleep cycle. Adenosine reflects
the activity of the homeostatic drive to sleep, which is
modulated by various somnogens. The ACh input into
the cortex is a measure of the activity of the various
brain stem controllers of sleep. Note that we have not
specifically modeled the complex intrinsic interactions
between the various brain stem nuclei. In this paper,
we are primarily concerned with the interaction of their
neuromodulator output with the cerebral cortex and
thus model their effects only as extrinsic alterations in
ACh.

In general, adenosine acts to reduce the resting po-
tential of excitatory cells, thus making them less likely
to fire; ACh does the opposite by raising the resting
potential. These changes are represented in the model
by �hrest

e , which adds directly to the resting potential
of the excitatory population (disguised as a “1” in the
dimensionless equations). In addition, ACh decreases
the amplitude of the excitatory postsynaptic potential,
effectively reducing the synaptic gain. In the model,
this corresponds to a reduction in the effect of synap-
tic currents Ĩee and Ĩei; therefore, the parameter L is
multiplied by these quantities to simulate a change in
synaptic gain. Lastly, as was done in Steyn-Ross et al.
(2005), we take the mean excitatory soma potential h̃e

to be representative of cortical activity; we will compare
this variable to EEG measurements using locally linear
embedding.

2.2 Model of the human sleep cycle

The mechanisms underlying human sleep and waking
are complex; for recent, detailed reviews of the brain
stem and hypothalamic control of sleep in thalamo-
cortical systems see Fuller et al. (2006, 2007), McCarley
(2007), Rosenwasser (2009), Saper et al. (2005a, b). In
summary, the wakeful state may be characterized by
high levels of activity in aminergic, cholinergic, orex-
inergic and glutamatergic neuronal populations in the
brain stem and hypothalamus. The overall effect is to
maintain the thalamo-cortical neurons in a depolarized,

Table 1 Dimensionless variables and parameters of the SPDE cortical model

Symbol Description Typical value

h̃e,i Spatially averaged soma potential for neuron populations –

Ĩee,ei Postsynaptic activation due to excitatory inputs –

Ĩie,ii Postsynaptic activation due to inhibitory inputs –

φ̃e,i Long-range (corticocortical) input to e and i populations –

t̃ Time (dimensionless) –

x̃ Space (dimensionless) –

�e,i Influence of synaptic input on mean soma potential 4.6875 × 10−4, 0.0105

h0
e,i Reversal potential 0, 1.0938

Te,i Neurotransmitter rate constant 12.0, 3.6

λe,i Inverse length scale for corticocortical connections 11.2, 11.2

Pee,ei Subcortical input from excitatory population 25.0, 25.0

Pie,ii Subcortical input from inhibitory population 25.0, 25.0

Nα
e,i Number of distant (corticocortical) connections from excitatory populations 3710, 3710

to e and i populations
Nβ

e,i Number of local synaptic connections from e and i populations 410, 800

g̃e,i Slope at inflection point of sigmoid function S̃e −29.021, −19.347

θ̃e,i Inflection point for sigmoid function S̃e 0.91406, 0.91406

Values for the dimensional parameters were taken from Wilson et al. (2006), with the exception of γi which was chosen to be 90s−1.
The dimensionless parameters were then calculated as described in Kramer et al. (2007)
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active, and continually firing state. These excitatory
neurons also inhibit activity in various gamma-amino-
butyric-acid(GABA)ergic cell populations, particularly
in the ventro-lateral pre-optic area (VLPO), basal fore-
brain, and in the reticular nucleus of the thalamus.
With the build up of homeostatic and circadian pressure
to sleep (possibly mediated by various activity-
dependent somnogens such as adenosine), the wake-
active neurons are inhibited, which then allows the
sleep-promoting neurons of the VLPO to start firing
and trigger the transition from wakefulness to NREM
sleep. This results in quiescence of the aminergic,
orexinergic, and cholinergic brain-stem neuromodula-
tor centers; which in turn allows hyperpolarization of
the cortico-thalamic systems and hence the burst firing
patterns characteristic of slow wave sleep. If these
neurons are only moderately hyperpolarized, the EEG
is dominated by the sleep spindles and K-complexes
characteristic of stage 2 sleep. With more profound
hyperpolarization the EEG is dominated by the delta
waves of stages 3 and 4 (Steriade and Amzica 1998;
Steriade and Timofeev 2001). This progressive slowing
of the dominant frequency is captured by measures
such as the permutation entropy index (Olofsen et al.
2008). The transition from NREM to REM sleep is as-
sociated with cortico-thalamic depolarization caused by
activation of cholinergic and glutamatergic brain stem
systems (mainly in and near the pedunculo-pontine
tegmentum). The neuromodulatory environment of
REM sleep differs from the wakeful state in that the
amines and orexinergic systems are inactive in REM
sleep, but active in the wakefulness; however, this dis-
tinction is not explicit in the present model.

Mathematically, we follow Steyn-Ross et al. (2005),
where the representation of the sleep cycle is based on
changes in neuromodulators L and �hrest

e . In order to
visualize this, we look at steady-state solutions of he

(without stochastic input) as L and �hrest
e are varied;

these solutions create what we will refer to as the “sleep
manifold” (Fig. 1). Notice that, for most parameter
values, there is only one steady state solution. However,
in certain cases, there are three solutions (two stable
and one unstable), causing the manifold to fold over on
itself. This fold is seen on the left side of Fig. 1. In this
model, the top branch of solutions on the manifold is
intended to be representative of REM sleep. Starting
at this point, we can imagine that during sleep, there
is a gradual descent to deep slow-wave sleep by fol-
lowing a trajectory down the right side of the manifold
where there is only one steady state solution. This hap-
pens in a smooth continuous manner. Then the quick
transition from slow-wave sleep to REM is simulated
by a jump across the fold from the bottom branch

Fig. 1 The manifold of steady states in he from the mesoscale
cortical model, hereafter referred to as the “sleep manifold.”
The parameters L and �hrest

e represent the actions of adenosine
and acetylcholine, neuromodulators that vary over the course of
the human sleep cycle. The manifold has two stable solutions
on its left side; a jump from the bottom solution to the top
solution represents the fast transition between NREM and REM
sleep. However, the slow transition from REM to NREM occurs
smoothly down the right side of the manifold, where there is only
one set of solutions

of solutions to the top branch. This mimics the rapid
transition from deep sleep to REM that is observed
in human EEG recordings. This process of gradually
moving from REM to NREM sleep and then quickly
jumping back to REM represents one sleep cycle in the
model.

This model has been previously studied. Steyn-Ross
et al. (2005) calculated the EEG total power, fractions
of high and low power, and correlation time exhibited
by the model at the transition from slow-wave sleep
to REM; it was found that they qualitatively matched
both human clinical sleep recordings and cortical mea-
surements from a cat. The model was also studied in
two spatial dimensions to investigate stable oscillatory
states similar to slow-wave sleep, and it was shown that
a transition from one state to another can occur due
to stochastic fluctuations (Wilson et al. 2005). Lastly,
Wilson et al. (2006) interpreted the k-complex as a tran-
sient shift from a stable low-firing state to an unstable
high-firing state and used this model to demonstrate the
mechanism by which the transition may occur.

Because we are interested in comparing this model
directly to human EEG recordings, we will use the
sleep manifold as a way to generate model “EEG-
like” signals. We will choose values of L and �hrest

e ,
find the numerical solution of the model for a given
length of time, convert the dimensionless h̃e to mV, and
downsample it to match the EEG recordings. By doing
this for many different values of L and �hrest

e we can
obtain representative signals of every sleep stage.
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It has previously been argued that h̃e cannot be di-
rectly compared to measurements from cortical surface
or scalp electrodes because those measurements are
based on extracellular current flow, as opposed to the
soma potential. This is important for the modeling of
certain cortical phenomena; for example, in performing
simulations of feedback control for the suppression of
epileptic seizures, the value of the electrode measure-
ment is fed directly back to the cortex to affect h̃e,
with little or no time delay (Lopour and Szeri 2010). In
that case, the relationship between h̃e and the electrode
measurement at any given time is very important. How-
ever, in the present analysis of EEG data using LLE, we
are only interested in matching scaled features of the
data that are calculated over 30-second intervals. We
will not attempt to compare the temporal progression
of h̃e directly to the EEG data. The previous work
mentioned above has demonstrated a correspondence
between h̃e and sleep EEG data with regard to these
general features, so we feel confident in using it for
our analysis without the addition of a scalp electrode
model.

3 Locally linear embedding (LLE)

Locally linear embedding is a method of nonlinear
dimensionality reduction that was originally introduced
in Roweis and Saul (2000). It is useful for visualizing
high-dimensional data sets as they would be embedded
in a low-dimensional space, and it can often uncover
relationships and patterns that are masked by the com-
plexity of the original data set. It has been used to ob-
tain maps of facial expressions and classify handwritten
digits (Saul et al. 2003), as well as discriminate between
normal and pre-seizure EEG measurements (Ataee
et al. 2007). Here we will use LLE to characterize sleep
EEG data and the numerical solutions of the cortical
model. By embedding both in a two-dimensional space,
we will be able to associate traditional EEG sleep
stages with the continuous spectrum of states provided
by the model.

3.1 The algorithm

Let us begin with a high-dimensional data set stored
in a matrix X of size D × N, where each column Xi

represents one of the N D-dimensional data points.
Then the LLE algorithm consists of three steps:

1. Calculate the nearest neighbors of each data point
Xi in the D-dimensional space. This can be done in
several ways; for example, we might choose the k

closest points based on Euclidian distance, or we
may choose only the points within a sphere of a
given radius.

2. Determine the best reconstruction of each point
using only its nearest neighbors. Mathematically,
this takes the form of a least squares minimization
problem:

min
W

N∑
i=1

∣∣∣∣∣∣
Xi −

k∑
j=1

WijX j

∣∣∣∣∣∣

2

, (11)

where k represents the number of nearest neigh-
bors. Our goal is to choose the weights W that
best reconstruct the original data points in the D-
dimensional space, based on the criteria of least-
squared error. Because we use only the nearest
neighbors, we must have Wij = 0 if X j is not a
neighbor of Xi. In addition, we guarantee invari-
ance to translations by enforcing

∑
j Wij = 1. Note

that the minimization can be calculated individually
for every i.

3. Compute the low-dimensional output vectors Yi.
These are chosen to provide the best global re-
construction using the weights W from the previ-
ous step. Again, this can be formulated as a least
squares minimization:

min
Y

N∑
i=1

∣∣∣∣∣∣
Yi −

k∑
j=1

WijY j

∣∣∣∣∣∣

2

. (12)

Here we are making the assumption that the
weights that give the best reconstruction in D di-
mensions will also be the optimal weights in the
lower-dimensional space. In this case, the N min-
imization problems are coupled by the elements of
Y, so they must be solved simultaneously.

A detailed description of the algorithm and several
examples are provided in Saul et al. (2003). In addition,
a Matlab implementation of LLE is available on the
authors’ website (Roweis and Saul 2009); it was used to
generate all results presented here.

As a simple example, consider using LLE on a
known 3D manifold (Fig. 2). In this toy example, the
underlying manifold is known (although normally this
would not be the case), and we recognize that it has
only two dimensions, despite living in 3-dimensional
space as shown in Fig. 2(a). The data set X consists
of a random sampling of points from the manifold
(Fig. 2(b)), and the LLE output for a reduction to two
dimensions is displayed in Fig. 2(c). Here we see that
LLE successfully unravels the manifold and uncovers
its true 2D nature.
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(a) (b) (c)

Y
1

Y
2

Fig. 2 A simple example of LLE, where three dimensions are
reduced to two. (a) The underlying manifold, which lives in 3D
space but has only two dimensions. In a typical LLE problem, the
shape of this manifold is unknown and has too many dimensions
to visualize easily. (b) A sampling of points from the manifold,
which serves as the input to the LLE algorithm. (c) The result
of applying LLE to the data set in (b). Note that in the Y1 −
Y2 output space, the manifold has been flattened to reveal its
two principal dimensions. This figure was generated using the
“scurve.m” code from the LLE website (Roweis and Saul 2009)

A possible source of confusion with locally linear
embedding is the interpretation of output dimensions
such as Y1 and Y2. Unlike linear methods such as
principal component analysis, LLE does not provide a
description of the output vectors in terms of the original
D dimensions. The elements of Y are chosen to give
the best local reconstructions based on a global min-
imization problem; this means that the interpretation
of Y is different for every data point, and it cannot
be described by a simple combination of the original
dimensions.

3.2 Strongly connected components

The use of the LLE algorithm is based on the assump-
tion that the entire data set lies on the same manifold
in high-dimensional space. If more than one manifold
is present, the locally linear reconstructions will no
longer be accurate (imagine, for example, a point with
nearest neighbors located on two separate manifolds).
Therefore, before using LLE on a data set, we must
verify this assumption.

The mathematics and terminology of directed graphs
allows us to accomplish this task (Tarjan 1972). Note
that when we calculate the nearest neighbors in the first
step of the LLE algorithm, we create a directed graph
based on the data points. For example, suppose there is
a data set of seven points, and we have determined that
point 2 is a neighbor of point 1, point 5 is a neighbor
of point 2, etc. This can be depicted by arrows drawn
from each point to its neighbors (Fig. 3). Then we can
define a strongly connected component as a group of
points where the arrows created by nearest neighbor

1

5

2

6

3

4

7

Fig. 3 An example of a directed graph generated by nearest
neighbor associations. Here point 2 is a neighbor of point 1,
point 3 is a neighbor of point 7, etc. In this case, the directed
graph forms two strongly connected components: points 1, 2, 5,
and points 3, 4, 6. In analyzing this data set, we would use LLE
separately on each of these components and would remove point
7, which is not strongly connected to any other point

associations allow for travel from every point in the
group to every other point in the group (Tarjan 1972).
When a group of data points is strongly connected, this
indicates that they lie on the same manifold (Saul et al.
2003).

The example in Fig. 3 has two strongly connected
components: points 1, 2, 5, and points 3, 4, 6. However,
the two groups are not strongly connected together; one
can move from the first group to the second through
the connection between 4 and 5, but there is no way
to get from the second group to the first. Point 7 is not
strongly connected to any other point. Therefore, to use
LLE on this sample data set, we would remove point
7 and use the algorithm separately on each strongly
connected component.

There are several ways to identify the strongly con-
nected components of a data set. The most traditional
method involves an algorithm based on depth-first
search of the directed graph (Tarjan 1972). An alter-
native method relies on analysis of the eigenspace that
results from the LLE calculations (Polito and Perona
2001). It is also true that choosing the nearest neighbors
in a different manner or increasing the value of k can
change the structure of the strongly connected com-
ponents. However, for the purposes of this study, we
used the MATLAB function dmperm on a matrix con-
taining the nearest neighbor associations for the data
set. This function, based on the Dulmage-Mendelsohn
decomposition, permutes the rows and columns of a
matrix to put it into block diagonal form; by including
the fact that every point is a neighbor with itself, we
can guarantee that this permutation will be symmetric.
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As output, dmperm provides the new order of rows
and columns and identifies the blocks of the permuted
matrix, where each block represents one strongly con-
nected component within the data.

A remark about principal component analysis
(PCA) is in order. This is perhaps the most common
mode of dimensionality reduction, and it has also been
used in the analysis of sleep EEG data (Gervasoni et al.
2004; Jobert et al. 1994; Corsi-Cabrera et al. 2000).
However, PCA places the greatest importance on the
directions of largest variance and relies on the assump-
tion that the data is best reconstructed by a linear
combination of the original measurements. While we
tried PCA and achieved reasonable results, the nonlin-
ear nature of the sleep manifold suggests that a more
sophisticated solution is necessary. In addition, the con-
cept of nearest neighbors on which the LLE algorithm
is based enabled improvement in the separation of
different sleep stages (see Section 4.4), and it played
a crucial role in defining the quantitative relationship
between the EEG data and mathematical model, as is
discussed in Section 5.2.

4 LLE applied to sleep EEG data

Before examining the connection between EEG data
and the mathematical model of the sleep cycle, we will
first discuss the results of applying LLE to sleep EEG
only. After introducing the data sets and our methods,
we show that LLE can separate EEG data by sleep
stage and provide a continuous representation of sleep
depth.

4.1 Sleep EEG data

The EEG data used for this analysis was obtained from
the Sleep-EDF database (Kemp 2009), which is part of
the PhysioBank online resource of physiologic signals
for biomedical research (Goldberger et al. 2000). We
used four data sets (sc4002e0, sc4012e0, sc4102e0, and
sc4112e0), each one consisting of a European data
format (EDF) file and a file containing the hypnogram
data. They were converted to ASCII format and then
imported into Matlab.

The data were gathered in 1989 from healthy males
and females between the ages of 21 and 35. Recordings
were obtained over the course of one full day and
include horizontal electrooculogram (EOG), two chan-
nels of EEG (Fpz-Cz and Pz-Oz sampled at 100 Hz),
submental-electromyogram (EMG) envelope, oro-
nasal airflow, and rectal body temperature. However,
we used only the data from the Fpz-Cz EEG electrode

pair in our analysis. The hypnogram data was generated
via manual scoring according to Rechtschaffen & Kales
using the two channels of EEG. For more details on the
subjects, recording methods, and sleep staging, please
see the full description in Mourtazaev et al. (1995).

4.2 LLE input based on EEG features

In order to use the EEG as an input to the LLE func-
tion, we need to define our high-dimensional data set.
We do this by dividing the signal into non-overlapping
windows and calculating both statistical and frequency-
based features for each one. Therefore each window
becomes one high-dimensional data point, where the
dimension equals the number of features. Because the
data was scored using 30-second epochs, this was a
natural choice for the window length. Thus, if we have
100 minutes of EEG data and we calculate six features,
we will input 200 six-dimensional points into LLE and
seek the embedding in two dimensions.

We start with a pool of 17 features and use various
subsets to perform the LLE analysis. An algorithm
for the automated choice of feature combinations is
discussed in Section 4.3. The 17 features are as follows:

Power in different frequency bands This group of
five features consists of total power in the delta (up
to 4 Hz), theta (4–7.5 Hz), alpha (7.5–12 Hz), beta
(12–26 Hz), and gamma ranges (above 26 Hz).
Total power This is the total power in all five fre-
quency bands.
Statistical measures These include variance, skew-
ness, and kurtosis. Whereas the variance captures
the spread of the data and is always positive, skew-
ness is a measure of the asymmetry around the sam-
ple mean, i.e. negative skewness indicates that more
data points lie below the mean than above. Kurtosis
is a measure of how prone the distribution is to
outliers; a signal with high kurtosis has infrequent
large deviations from the mean.
Spindle score The spindle detector identifies seg-
ments of the EEG signal where the difference be-
tween consecutive points changes from positive to
negative five times in a row, thereby creating two
peaks and two troughs. The lag parameter τL defines
the number of sample points spanned by each rise
or fall within the sought-for spindle, so it can be
adjusted to search for these motifs at lower frequen-
cies. We set τL = 5, which allows for detection of
8–12 Hz spindles in data sampled at 100 Hz (with
the maximum response occurring for spindles at 10
Hz), and we used a minimum threshold of zero. The
overall spindle score indicates the percentage of the
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signal that was classified as spindle activity. Matlab
code for this function is provided in McKay et al.
(2010).
Permutation entropy Similar to the spindle score,
the permutation entropy (PE) identifies motifs
in the EEG data, such as peaks, troughs, and slopes.
The PE has its maximum value when there is an
equal distribution of all motifs and its minimum
value when only a single motif is present. In this way,
it is a measure of the “flatness” or “uncertainty” of
the signal. Here we use the composite permutation
entropy index (CPEI), which combines the PE with
τL = 1 and τL = 2 with a minimum threshold level.
In our study, we set the threshold at 1% of the inter-
quartile range of the EEG data. Further descriptions
of this measure and an associated MATLAB func-
tion can be found in Olofsen et al. (2008).
The CPEI has been found to be a good measure of
anesthetic depth, and the motif-based methods used
for permutation entropy and spindle detection are
generally robust to noise. This is demonstrated in
Olofsen et al. (2008), where the CPEI is calculated
for both a time-varying signal and the same signal
with added white noise of various magnitudes. As
mentioned above, the noise threshold for PE is
built into the calculation. These reasons (and the
availability of published MATLAB code) led us to
choose motif-based methods over more common
parametric measures.
Properties of log power These four features are
based on the log of the power spectral density
(PSD), as obtained by Welch’s method. First, we
omit the delta and alpha peaks and calculate the
slope and offset of a linear fit. We then determine
the maximum value of the PSD above the linear
estimate in the alpha range (8–17 Hz) and the max-
imum value of the PSD in the delta range (0.5–4
Hz). These values will generally be large when a
prominent peak is present. The code for generating
these features was based on a Matlab function found
in Leslie et al. (2009).
Power fractions The low power fraction is obtained
by summing the power in the delta and theta ranges
and dividing by total power. Similarly, the high
power fraction is calculated by summation of the
power in the beta and gamma ranges and dividing
by total power.

After the initial calculation, each feature was divided
by its root mean square (RMS) value.

The selection of a subset of features from this list
may seem like a difficult task. It is certainly an impor-
tant one—the use of all 17 features or a “nonsensical”

subset will give poor results. However, it is worth not-
ing that there are many combinations that result in a
satisfactory separation between sleep stages in the LLE
embedding. While each one may be slightly different,
there will be a large number of high quality with respect
to discrimination.

4.3 Automated ranking of feature sets

When we apply LLE to the EEG data, there are essen-
tially only three choices that we must make:

1. How many nearest neighbors should we include?
In other words, what is the value of k? The LLE
embedding will be stable over a range of values;
we generally expect that k will be greater than the
number of output dimensions and smaller than the
original number of dimensions D (Saul et al. 2003).

2. What should be the dimensionality of the LLE out-
put space? A nice property of the LLE algorithm
is that each dimension is preserved as additional
dimensions are added. Therefore, if we look at the
results in two dimensions and do not achieve the
desired mapping, we can add a third dimension
without affecting the first two.

3. Which combination of features should we use? Em-
ploying all 17 features in our LLE analysis does not
guarantee good separation between sleep stages
because some of the features may not show con-
sistent variation as the sleep depth changes. In
addition, some features, such as the variance and
the power in the delta band, show similar trends;
we may achieve better results by eliminating these
redundancies.

In this section, we focus on the last of these questions.
While we were able to identify many effective fea-

ture combinations through educated guesswork, we
wanted to evaluate the utility of LLE as a method of
sleep staging by identifying the best possible results.
In this case, the “best” results are those that provide
a large separation between sleep stages, especially be-
tween REM and deep slow-wave sleep. Because testing
each combination of the features is an onerous task, e.g.
choosing six features from a pool of 17 results in 12376
combinations, we developed an algorithm to evaluate
the results automatically. It first identifies two groups
of points: those marked as REM in the hypnogram
and those determined to be stage 4. It then tracks two
parameters based on the separation between those two
groups of data points as they are embedded in the LLE
output space.
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We first measure the percent separation between
REM and stage 4, calculated as

ai = 100 · er f
(√

0.5
μ4 − μREM

σ4 + σREM

)
, (13)

where μ and σ are the mean and standard deviation,
respectively. This is based on the assumption that the
best separation occurs when the distance between the
means is large and the total standard deviation is small.
We perform this calculation in both the Y1 and Y2

directions and combine those measurements using the
2-norm to obtain the first parameter:

A =
√

a2
Y1

+ a2
Y2

. (14)

The second parameter B uses the concept of nearest
neighbors to evaluate separation; for example, if the
stage 4 data points have only other stage 4 points
as nearest neighbors, then we can infer that they are
completely separated from the other sleep stages. More
specifically, it measures the number of stage 4 points
with REM points as nearest neighbors and divides that
by the total number of stage 4 points. If the stage 4
group is isolated, we will have B = 0.

We determined the values of A and B for all possible
combinations of six features. There were 267 feature
sets where A exceeded a threshold of 90% separation
in each direction: A >

√
902 + 902. We then identified

the 267 feature sets with the lowest values of B. By
finding the combinations that were common to both
groups, we identified the 11 best feature sets. Visual
inspection of the LLE results for these combinations
confirmed the desired separation between REM and
stage 4 sleep. Note that all 11 of these feature combi-
nations provided results with B = 0.

4.4 Separation of sleep stages via LLE

Having described the EEG data set using frequency-
based and statistical measures and having identified the
most effective subsets of those features, we are now
ready to apply the LLE algorithm. As a representative
result, we choose one of the 11 feature sets from the
previous section; the six features are power in the delta
and theta bands, variance, spindle score, maximum
height of the PSD above a linear estimate in the alpha
band, and high power fraction. These are plotted in
Fig. 4 for 178 epochs from the sc4002e0 data set. The
corresponding hypnogram is included for reference.
Note that the features were calculated in 30-second
non-overlapping windows to match the sleep scoring of
the hypnogram.
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Fig. 4 Scaled features of EEG data set sc4002e0, as described in
Section 4.2. The subfigures show power in the (a) delta and (b)
theta bands, (c) variance, (d) spindle score, (e) maximum height
of the power spectrum in the alpha band after subtraction of a
linear estimate, and (f) high power fraction. Figure (g) shows
the hypnogram of the EEG data, where the number and color
indicate the sleep stage: awake (0, black), stage 1 (1, yellow),
stage 2 (2, green), stage 3 (3, cyan), stage 4 (4, blue), and REM
(5, red). The features were calculated for the data from epochs
1,597–1,774 in 30-second windows with no overlap

We then use these features as the high-dimensional
input to the LLE algorithm. The 2D results for 13 near-
est neighbors (k = 13) are displayed in Fig. 5(a). Every
point in this figure represents a 30-second window of
EEG data, and the color and symbol represent the
sleep stage as determined by manual scoring. Here we
see a very clear separation between the REM points
(red circles) and those from stage 4 (blue stars), as
required by our criteria for the automatic selection of
the feature set. Stages 1 through 3 are located between
those two groups and are arranged by sleep depth. In
this example, we see a general trend of increasing sleep
depth as we move to the upper right corner of the space.
In addition, this low-dimensional embedding provides
results with a smooth temporal progression. This is
demonstrated by Fig. 5(b), where the LLE results from
Fig. 5(a) are plotted versus time. In this example, the
gradual transition to deep stage 4 sleep and the quick
transition to REM are visible in the plot of Y1.

We would like to emphasize the importance of
identifying strongly connected components when us-
ing LLE. Figure 6(a) shows an example of the Y1–Y2

output space when LLE is performed on all 178 data
points. Here, the feature set consisted of power in
the delta, theta, and gamma bands, total power, max-
imum value of the PSD in the alpha band, and the
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Fig. 5 (a) Results of applying LLE to EEG data using the six
features in Fig. 4. The features were calculated for 30-second
non-overlapping windows of data and the resulting 6-dimensional
points were embedded in 2D space using LLE with k = 13;
therefore, each point in this figure represents 30 s of EEG that
has been characterized by the six features. The color and shape

indicate sleep stage based on manual scoring: awake (black +),
stage 1 (yellow �), stage 2 (green �), stage 3 (cyan �), stage 4
(blue ∗), and REM (red ◦). (b) LLE output dimensions Y1 and Y2
versus time, for the results shown in (a). This demonstrates that
LLE provides a low-dimensional output where the sleep state
changes smoothly over time

low power fraction. Again, each point represents 30-
seconds of EEG data, and the symbol (and color) are
assigned based on its designated sleep stage. While
there is some visible separation between the stages, the

overall trend is unclear. On the other hand, Fig. 6(b)
shows the results when LLE is applied to the largest
strongly connected component within the data. This
component was identified as described in Section 3.2,
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Fig. 6 LLE results on sleep EEG data before (a) and after
(b) removal of eight weakly connected points. The six features
were power in the delta, theta, and gamma bands, total power,
maximum height of PSD above a linear estimate in the alpha
band, and low power fraction, and we used k = 13. As before,

the color and symbol indicate sleep stage: awake (black +), stage
1 (yellow �), stage 2 (green �), stage 3 (cyan �), stage 4 (blue ∗),
and REM (red ◦). Note the dramatic improvement in separation
between sleep stages when LLE is done on only one strongly
connected component in (b)



J Comput Neurosci (2011) 30:471–487 481

and all other points were removed before using LLE.
This greatly improves the results; the data points are
spread further apart, and we see a grouping of sleep
stages similar to Fig. 5. Sometimes the removal of
weakly connected points has a very small impact on the
results, but situations like this make it a necessity. The
significant improvement for this feature set allowed it
to be counted as one of the “best” 11 results discovered
by the automatic algorithm.

In this case, analysis of the strongly connected com-
ponents resulted in the removal of eight data points:

– 3 points from waking (epochs 1,620, 1,717, and
1,718)

– 2 points from stage 2 (epochs 1,619 and 1,624)
– 2 points from stage 3 (epochs 1,712 and 1,713)
– 1 point from stage 4 (epoch 1,665)

Based on Fig. 6(a), we can see why some of these
were removed; there are four points that are clearly
isolated from the rest of the data. However, the re-
moval of points from stages 3 and 4 are much less
obvious. It is important to realize that, by using the con-
cept of strongly connected components, this decision is
automatic—it allows us to avoid the subjective selection
of outlier points.

5 Integration of EEG data and the model sleep cycle

Thus far, we have shown that LLE is capable of distin-
guishing between sleep stages using only one channel
of EEG and that the embedding exhibits a smooth
progression over time. However, remember that our
original goal was to find the relationship between EEG
data and the mathematical model of the sleep cycle.
Here we accomplish this by applying LLE simulta-
neously to EEG data and simulated data from the
model.

5.1 Model data set

To generate the model data set, we place a grid of
points on the sleep manifold (Fig. 1) and obtain the
numerical solution of the cortical model at each one.
We vary L over the interval [0.5, 2] in increments of
0.1 and �hrest

e over [−5, 5] in increments of 0.5. This
gives us a total of 336 model signals for analysis; we
then remove the initial transients and characterize each
signal based on a subset of the features described in
Section 4.2. In this way, the nonlinear sleep manifold
is turned into “EEG-like” signals which are converted
to high-dimensional data points for use with LLE.

For the model data set, the length of each signal
is 10 s (as opposed to the 30-second windows used
for the EEG data). We are able to use this shorter
time because we can choose parameters in the model
to simulate a stationary brain state, i.e. we can use
constant values of L and �hrest

e . A test of the feature
calculations for various window lengths indicated that,
in many cases, the signal properties were stationary
for windows greater than five seconds. Certain parts
of the sleep manifold had transients lasting roughly 10
seconds.

In order to compare this model data set directly
to EEG measurements, it is important that all of the
basic properties match. For example, just as REM EEG
signals have a much lower variance than those from
stages 3 and 4, we expect that the signals from the
topmost REM portion of the sleep manifold will have
a smaller variance than those on the lower NREM
section. However, we found that the use of a constant
α, which defines the variance of the stochastic input
to the model cortex in Eq. (10), does not reproduce
this behavior. Therefore, we varied the value of α as
we moved in the L-�hrest

e space. More specifically, we
based it on the sleep manifold. Define μe to be a matrix
of the steady-state values of he after they have been
shifted and scaled to have a range of [0, 1]. Then we
define a matrix of α values:

α = α · (−7μe + 8
)

. (15)

Therefore, the REM portion of the model sleep cycle
(where μe ∼ 1)) will have stochastic inputs of α, while
the lower NREM section (where μe ∼ 0) will have
inputs of variance 8α. This stochastic input allowed us
to successfully reproduce the desired range of variances
in the model signals.

In addition to the variance, other features of the
model data set mimic characteristics of sleep EEG.
This can be verified by plotting the features as we
traverse the sleep manifold. For example, power in
the delta band, composite permutation entropy index
(CPEI), “peak” height of the power spectral density
in the alpha band, low power fraction, and high power
fraction are shown in Fig. 7. The values of each feature
are displayed for the grid of points in L and �hrest

e that
covers the sleep manifold. For reference, the steady
state values of he on the sleep manifold are shown in
Fig. 7(a); note that this is similar to viewing Fig. 1 from
the top and coloring the points based on their height.
The lowest value is plotted in white and the highest
value in black.

As desired, Fig. 7(b) indicates that the power in the
delta band increases as the depth of sleep increases,
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Fig. 7 Variation of five features as the surface of the sleep
manifold is traversed in L-�hrest

e space. Each feature has been
scaled by its RMS value and depicted in grayscale, with white
indicating the lowest values and black representing the highest
values. (a) The steady state values of he from the sleep manifold
in Fig. 1. The black points represent the upper REM branch, the
white points represent NREM, and the fold is located at roughly
L = 1.2. The other subfigures show (b) power in the delta band,
(c) permutation entropy, (d) maximum height of PSD above a
linear estimate in the alpha band, (e) low power fraction, and (f)
high power fraction. These five features use α as defined in Eq.
(15). They show that the representation of REM and NREM in
the model is consistent with the characteristics of sleep EEG

with the largest values occurring near the quick transi-
tion to REM sleep. Similarly, Fig. 7(e) and (f) show that
the fraction of power in the low frequencies is greater
during NREM sleep, while the fraction of power at high
frequencies is greater during REM sleep. Consistent
with previous reports that the CPEI decreases with
depth of anesthesia (Olofsen et al. 2008), we see in
Fig. 7(c) that the CPEI decreases with sleep depth
in the model. Figure 7(d) shows that the region of
greatest alpha power is located in the upper left corner,
for small values of L and large values of �hrest

e . As
a means of comparison, the same five features were
applied to a sample of EEG data and are displayed in
Fig. 8.

5.2 Application of LLE to a hybrid data set

We now join the EEG measurements and the model
data into one hybrid data set and use it as an input
to the LLE algorithm. This simultaneously finds the
low-dimensional embedding for both data types and
allows us to infer a correspondence between them. For
example, Fig. 9(a) shows the result of applying LLE
to the grid of 336 model points and a full night’s sleep
from EEG data set sc4002e0 (epochs 800 to 2,000).
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Fig. 8 Variation of the features from Fig. 7 when they are applied
to sleep EEG data, rather than model data. The sample of EEG
data was taken from sc4002e0, and each feature has been scaled
by its RMS value. The subfigures show (a) power in the delta
band, (b) permutation entropy, (c) maximum height of PSD
above a linear estimate in the alpha band, (d) low power fraction,
(e) high power fraction, and (f) hypnogram of the EEG data. The
colors and numbering for the hypnogram are the same as those
used for Fig. 4. Note that the values of these features (relative to
sleep stage) are consistent with the model results in Fig. 7

The input data was composed of the five features from
Fig. 7: power in the delta band, CPEI, maximum height
of the PSD in the alpha band (relative to a linear
estimate), and the low and high power fractions. We
used k = 14, and only three points were removed by
analysis of the strongly connected components.

In Fig. 9(a), the model data is represented by dots,
where the color denotes the steady-state value of he

associated with that point; in general, the red points
represent the REM portion of the manifold, while the
blue points represent NREM. On the other hand, the
sleep EEG data points are rings, where the color is
chosen based on sleep stage. Note that, for clarity, only
the first 500 EEG data points were included in the
figure.

The most important aspect of this result is that the
EEG data points and model points overlap each other
in the Y1–Y2 output space. This implies that model
points have EEG data points as nearest neighbors (and
vice versa) and verifies that LLE has associated the
two data types with one another. Without fidelity of
the model and careful choice of EEG features, we
would have likely obtained a result with one cluster of
EEG points and a completely separate cluster of model
points. Further, LLE appears to have matched the sleep
stages between the two data types—the deepest sleep
(blue for both EEG and model) appears in the lower
left corner, and REM (red) is embedded in a vertical
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Fig. 9 (a) LLE results for a hybrid data set containing both sleep
EEG data and numerical solutions of the cortical model. We used
the five features from Fig. 7 and set k = 14. The rings represent
EEG data and are colored by sleep stage. While the analysis
included 1,200 windows of EEG data, only 500 are displayed here
for clarity. The solid dots represent data from the model; they
are colored based on the mean value of he at that point, where

red represents the highest (REM) values, and dark blue marks
the lowest (NREM) values. Note that the data and model points
overlap in the output space and that the arrangement of sleep
stages is very similar. (b) LLE results showing the EEG data only,
using the same colors and symbols as Fig. 6. This allows us to see
that the data has been roughly separated by sleep stage

band where Y1 is in the range [−1, 0]. The separa-
tion between sleep stages can be seen more clearly in
Fig. 9(b), which displays only the EEG data points from
Fig. 9(a). Here we see that the stages are grouped; even
the REM points and the awake points are separated,
despite the fact that their EEG traces are characterized
by very similar features. If we were to plot the Y1 and
Y2 values of the EEG data points as they evolve in time,
we would see a very similar result to the one in Fig. 5(b).
Here, the Y1 direction appears to be an approximate
indicator of sleep depth.

5.3 Connection to the theoretical sleep manifold

So far, we have seen that LLE provides a qualitatively
similar embedding for REM and NREM points in
both EEG measurements and simulated model data.
However, we would like to quantify this relationship.
In other words, we would like to associate each EEG
data point with a position on the sleep manifold in the
L-�hrest

e space. This will allow us to infer the model
trajectory of a subject’s actual brain state as it moves
along the manifold.

To do this, we use the results in Fig. 9(a) and again
turn to the concept of nearest neighbors. Using k = 14,
we calculate the nearest neighbors of every point in
the Y1–Y2 space. We then identify model points that
are nearest neighbors of EEG data points. Each one of
those model points has an associated position on the

sleep manifold; we assume that the L-�hrest
e positions

of the model nearest neighbors will be the most closely
associated positions for the EEG data point.

We can visualize this concept by creating histograms
of the model nearest neighbors and separating them
by sleep stage (Fig. 10(a)). Every time a model point
is a nearest neighbor of an EEG point, we increment
the count at the model point’s associated location in
L-�hrest

e for the sleep stage of the EEG point. We then
create grayscale plots of the total counts, where white
indicates that a location was never a nearest neighbor of
that sleep stage and black indicates that it was a nearest
neighbor many times.

For example, (i)–(vi) in Fig. 10(a) correspond to
awake, REM, and stages 1–4, respectively. The thick
vertical line at L = 1.2 marks the approximate location
of the fold. As we move from REM to the deeper stages
of sleep, we can see a continuous progression along
the sleep manifold. In this example, REM and stage 1
sleep generally associate themselves with locations on
the right half of the manifold (and a small piece of the
lower left corner). Then in stage 2 sleep, we move to
the left half of the manifold; here, we see two distinct
groups of points, with a majority landing in the group
that borders the area associated with REM and Stage
1. Stage 3 is associated with a cluster of points starting
in the upper left-hand corner and approaching the fold.
Stage 4 continues this progression and is located in a
band of points leading up to the fold.
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Fig. 10 Association between EEG data set sc4002e0 and the
sleep manifold. Each picture shows the sleep manifold in L-
�hrest

e space, with a heavy black line to indicate the location of
the fold. (a) Histograms of nearest neighbors for (i) waking, (ii)
REM, (iii) stage 1, (iv) stage 2, (v) stage 3, and (vi) stage 4 sleep.
The shading of each square indicates the number of times that
location on the sleep manifold was a nearest neighbor of EEG
data in that stage. For example, (vi) shows that stage 4 sleep most
often associates itself with the lower NREM branch of solutions

leading up to the fold. (b) A composite picture of the results in
(a), where each location is colored based on the sleep stage with
the most neighbors at that point, relative to the total number
of neighbors associated with that stage. Again, we use stage 1
(yellow), stage 2 (green), stage 3 (cyan), stage 4 (blue), and REM
(red). The intensity of color is scaled based on the percentage
of neighbors that come from that stage; the more saturated the
color, the greater the percentage. Waking points were excluded

We can then create a composite plot that combines
all five sleep stages. We neglect the waking points for
this task because the current model does not effectively
distinguish between the waking and REM states, al-
though this is certainly an issue that may be addressed
in the future. For every location on the manifold, we de-
termine which sleep stage it was most closely associated
with and color it accordingly. To do this, we scale the
number of nearest neighbors for each stage by the total
number for that stage; then, for every position on the
manifold, we choose the stage with the highest value.
This accounts for the fact that the subjects do not spend
an equal amount of time in each sleep stage (otherwise,
more time spent in a certain stage would lead to more
nearest neighbors and a greater likelihood of dominat-
ing this composite plot). As in previous figures, we use
red for REM, yellow for stage 1, green for stage 2, cyan
for stage 3, and blue for stage 4. The intensity of the
color is assigned based on the percentage of times it
was associated with that sleep stage. Suppose a certain
point on the manifold was a neighbor of stage 2 twelve
times, a neighbor of stage 1 five times, and a neighbor
of REM three times. We would color that point green
to indicate stage 2 sleep, and its saturation value would
be 12/(12 + 5 + 3) = 0.6. In other words, the intensity
of the color is a “confidence” measure; the more sat-
urated the color, the more closely it is associated with
that sleep stage. The composite figure for the data in
Fig. 10(a) is shown in Fig. 10(b).

5.4 Inclusion of additional data sets

It is important that this method of analysis works con-
sistently for different subjects with a variety of sleeping
patterns. We tested this capability using the full night
of sleep from each of the remaining three data sets:
sc4012e0, sc4102e0, and sc4112e0. Rather than start
from scratch and re-run the LLE algorithm, we pro-
jected the new data onto the existing embedding. For
a new input x, this is a three-step process (Saul et al.
2003):

1. Find the k nearest neighbors of each new data point
among the points in the existing embedding.

2. Compute the best linear reconstruction w j of each
new point using only its nearest neighbors. Again,
we enforce the constraint that the weights used in
the reconstruction sum to one:

∑
j w j = 1.

3. Calculate the output for the new data points: y =∑
j w jY j, where Y contains the original embedding

coordinates and j cycles through the neighbors
of x.

This is more computationally efficient than running
the entire algorithm again, and it guarantees that the
output embedding will not change as we add new data.
Most importantly, this makes it possible to do contin-
uous real-time monitoring of EEG data; a new point
could be projected onto the results every 30 s (or less)
as the subject sleeps.
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Fig. 11 Composite plots for EEG data sets (a) sc4012e0, (b)
sc4102e0, and (c) sc4112e0, when they are projected onto the
LLE results from Fig. 6(b), as described in Section 5.4. These pic-
tures are analogous to Fig. 10(b) and use the same color scheme.
Note that the results are consistent with those for sc4002e0 in
Fig. 10(b); over various subjects, the sleep stages are generally
associated with the same positions on the sleep manifold

When we project the sleep data from files sc4012e0,
sc4102e0, and sc4112e0 onto the embedding derived
from sc4002e0, we obtain the composite pictures in
Fig. 11(a)–(c), respectively. All three results are con-
sistent with one another, despite coming from different
subjects and containing a minimal amount of stage 3
and 4 deep sleep. The only exception to this is stage
4 sleep in Fig. 11(c); however, it is important to note
that only 21 points out of 1100 were denoted as stage
4 sleep for this subject, and those points were not all
consecutive. Therefore, the subject had only transient
movements into stage 4 from stage 3, and it is perhaps
not surprising that the results show the stage 4 EEG
points mixed in with those from stage 3. Also note that

the placement of the sleep stages in Fig. 11 is consistent
with the results in Fig. 10.

Lastly, we combine the results from all four data
sets (the original embedding with sc4002e0 plus three
projected data sets) to produce Fig. 12. The histograms
in Fig. 12(a) were created by a simple summation of
the nearest neighbor histograms for all four data sets.
The composite plot in Fig. 12(b) was then generated
according to the logic described in Section 5.3 using
the combined histogram data. In all, these results are
based on almost 40 h of EEG data from four different
subjects. Again, they are consistent with the individual
results and they show a clear picture of the sleep man-
ifold regions associated with each sleep stage. It is also
noteworthy that only a handful of points on the sleep
manifold (colored white in the composite picture) were
never nearest neighbors of an EEG data point.

This picture may be very useful in the analysis of
seizures during sleep. Imagine taking another new sleep
EEG data set, this time from an epileptic subject, and
projecting it onto these results. By following the loca-
tion in L-�hrest

e as the subject sleeps, we can get an
idea of the sleep stage as it is traditionally defined,
and we can also identify that stage in more detail and
detect nearness to transitions between stages. The grid
of points on the sleep manifold essentially gives us
descriptions of 336 different brain states associated with
sleep. We expect that future research will identify the
locations on the sleep manifold where seizures are most
likely to occur. With that knowledge, if the sleep state
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Fig. 12 Combined association between all four EEG data sets
and the sleep manifold. The data set sc4002e0 was directly
compared to the cortical model using LLE, and the remaining
three data sets were projected onto those results as described in
Section 5.4. (a) Total histograms of nearest neighbors, separated
by sleep stage; these were calculated by summing the histograms
from all four EEG data sets. The pictures show awake, REM,

and stages 1–4 in (i) through (vi), respectively. (b) The total
composite picture for all four data sets. This was generated from
the histogram data in (a) and is analogous to Figs. 10(b) and
11. Again, this is consistent with previous results and shows the
regions of the sleep manifold most closely associated with each
sleep stage
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characterization is done continuously while the subject
is sleeping, this may allow for the prediction (and pos-
sibly prevention) of seizures.

We emphasize the fact that the coloring in the com-
posite pictures (Figs. 10(b), 11, and 12(b)) is based
on the subjective scoring of sleep data. The reliability
of categorizing individual epochs of data has been re-
ported at 73% for scorers from different labs (Norman
et al. 2000) and as high as 90% for scorers from the
same lab (Whitney et al. 1998). It has also been shown
that reliability varies by sleep stage, with stage 2 having
the highest level of agreement between scorers (78.3%)
and stage 1 having the lowest (41.8%) (Norman et al.
2000). This certainly affects our results. For example,
imagine if some of the points scored as REM that
landed in the range 1.6 < L < 2 on the sleep manifold
were instead scored as stage 1. Then the right side
of the composite picture would be completely yellow
and the region associated with stage 1 would be more
clear. Therefore, the composite pictures should be seen
as “guides” to tie the analysis back to the traditional
definitions of the sleep stages, not as the ultimate truth.
As mentioned in the previous paragraph, we are most
interested in the position on the sleep manifold, the
trajectory that results as the subject sleeps, and the rela-
tionship of this trajectory to the regions where seizures
may be most likely to occur.

6 Summary

Mathematical models represent an opportunity for ex-
ploration and prediction. In this case, a model of the
human sleep cycle creates the possibility for a more
detailed description of sleep states, with application to
the prediction and analysis of seizures during sleep. The
first step in such an endeavor is always to connect the
model to the real world through experimental data.

Here we have used locally linear embedding to di-
rectly associate human sleep EEG data with the mathe-
matical model. We first showed that LLE has the ability
to distinguish between sleep stages when applied to
EEG data alone. This analysis can reliably separate
REM and NREM sleep data and provide a smooth tem-
poral progression through the various stages of sleep.
We also presented the concept of strongly connected
components as a method of automatic outlier rejection
for EEG data and discussed a method for the selection
of EEG features used in the analysis. Then, by using
LLE on a hybrid data set containing both sleep EEG
and signals generated from the mathematical sleep cy-
cle, we were able to quantify the relationship between
the model and the data. This enabled us to take any

sample of sleep EEG data and associate it with a
position among the continuous range of sleep states
provided by the model. In addition, this approach yields
consistent results for various subjects over a full night
of sleep and can be done online as the subject sleeps.
This suggests a wide range of possibilities for future
investigation.
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