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ABSTRACT OF THE DISSERTATION 

 
Econometric Models in Transportation 

 
By 

 
Timothy Chong Ji Wong 

 
Doctor of Philosophy in Economics – Transportation Economics 

 
 University of California, Irvine, 2015 

 
Professor David Brownstone, Chair 

 
 

The three chapters in this dissertation study and apply econometric models to answer questions 

in transportation economics. Chapter 1 and 2 analyze the Berry, Levinsohn and Pakes (BLP) 

discrete choice model for combined micro- and macro-level data. Chapter 1 considers the 

concerns of choice set aggregation and estimating consistent standard errors within the BLP 

Model. These concerns are studied within the context of a vehicle choice application with 

interest in estimating household valuation of fuel efficiency. Chapter 2 studies the numerical 

properties of the maximum likelihood approach to estimating this BLP model. Chapter 3 

applies a Poisson-Log Normal panel data model to study the effect of red light cameras on 

collision counts in Los Angeles. The camera program suffered from weaknesses in enforcement 

that dampened the effectiveness of the program over time. The model considered here controls 

for this dampening effect. 

Chapter 1 finds that choice set aggregation affects the point estimates obtained from the BLP 

model and causes standard errors to be too small. The use of inconsistent sequential standard 

errors also underestimates the magnitude of standard errors. These findings may partly explain 



 

 

xi 
 

the disparity across existing estimates from choice models on the value households place on 

vehicle fuel efficiency. 

Chapter 2 finds that the maximum likelihood estimation approach is able to find the 

global minimum regardless of choice of starting values, optimization routine used and tightness 

of convergence criteria. These findings highlight the benefits of estimating the BLP model on 

combined micro- and macro-level datasets using the maximum likelihood approach compared 

to using the nested fixed point approach and only macro level data where numerical stability is 

difficult to obtain. 

Chapter 3 finds that controlling for the dampening effect from poor enforcement, the Los 

Angeles Automated Red Light Camera program decreased red light running related collisions 

but increased right-angle and injury collisions, as well as collisions overall. 
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Chapter 1 

  

Choice Set Aggregation and Consistent Standard Errors in BLP 

Models for Micro- and Macro-level Data 

 

1.1 Introduction 

Multinomial choice models have become popular in demand estimation because, unlike 

systems of demand equations, the number of parameters to be estimated is not a function of the 

number of products, removing the obstacle of estimating markets with many differentiated 

products. One challenge of choice modeling in applications is determining the level of detail at 

which the choice set is defined. Modeling choices at their finest level can quickly cause the 

resulting choice set to grow so large that it exceeds the practical capabilities of estimation. In 

addition, it is common in micro-level datasets that household choices are not observed at the 

finest level possible. In such cases, researchers often aggregate choices to the level of detail that 

is observed. For example, when modeling a household's vehicle choice decisions, the exact 

choice set may contain vehicles at the make-model-trim level. Assume households decide 

between four vehicles: the Honda Civic LX, Honda Civic EX, Toyota Corolla G, and Toyota 

Corolla X; however, the researcher only observes the household's choice between two broad 

make-model groups, the Honda Civic and the Toyota Corolla. Hence, the researcher aggregates 

the exact choice set to the make-model level. In this case, the researcher creates an “average” 



 

 

2 
 

Honda Civic whose characteristics consist of the average attributes of the Civic LX and Civic 

EX, such as horsepower and curb weight, and likewise for the Corolla G and Corolla X.  

Despite these practical considerations, aggregation of the choice set to broader levels removes 

useful variation from the choice set and misspecifies the choices faced by households, which can 

diminish researchers’ ability to understand key choice determinants. This paper studies the 

effect of choice set aggregation on estimates derived from choice models, applying this practice 

to a common policy concern regarding vehicle choice. These effects are studied within the 

context of a Berry, Levinsohn and Pakes (henceforth, BLP) model for micro- and macro-level 

data estimated with a maximum likelihood approach. This model bears strong similarities to the 

models applied in Goolsbee and Petrin, 2004; Chintagunta and Dubé, 2005; Train and Winston, 

2007; Langer, 2014 and Whitefoot et al., 2014. Specifically, I discuss two model specifications 

within this BLP framework that help overcome this concern of aggregation: an aggregation 

correction by McFadden, 1978, and a model for broad choice data by Brownstone and Li, 2014. 

McFadden’s aggregation correction places a distributional assumption on the elements within 

each aggregated choice and uses the higher moments of the distribution in the utility 

specification. Brownstone and Li, 2014, define the choice probability of a broad group as the 

sum of the choice probabilities of the elements within that group, leveraging on the existence of 

aggregate market share data at the exact choice level for identification.   

These results are particularly meaningful for evaluating the literature on vehicle choice. 

Multinomial choice models are commonly applied to vehicle choice data with interest in 

estimating households’ willingness to pay for fuel efficiency. These estimates are important 

because they help measure the extent that households do not value energy saving investments 

like vehicle fuel efficiency as standard economic theory on rational behavior would predict. 
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This energy paradox has significant consequences. If households consistently undervalue 

energy saving investments, this implies that households are incurring excess environmental 

costs, even if proper mechanisms (e.g. carbon taxes,) are in place to control for environmental 

externalities. Therefore, implementing government policies that increase the energy efficiency 

of products, (e.g. energy labelling programs, minimum energy efficiency standards) may be in 

the best interest of both households and the environment. Despite the important implications of 

understanding the energy paradox, the existing literature on willingness to pay for fuel 

efficiency is inconclusive (Greene, 2010; Helfand and Wolverton, 2011). One potential source of 

the disparity in estimates could be the common practice of aggregating the exact vehicle choice 

set to broader groups based on vehicle class (Goldberg, 1998; Bhat and Sen, 2005; Bento et al., 

2009; Jacobsen, 2013).  

I find that aggregation affects both the point estimates and standard errors of parameters from 

the model. Estimates of household willingness to pay for vehicle fuel efficiency are twice as 

large when aggregation is modeled using McFadden’s method, and four times smaller when the 

fully disaggregated alternatives are modeled using the Brownstone and Li approach. The 

Brownstone and Li approach better suits the current application because it is harder to justify 

the necessary distributional assumptions of McFadden’s approach in the current setting. 

Perhaps more importantly, model estimates are more likely to appear statistically significant 

when choices are aggregated without correction because doing so ignores the measurement 

error it introduces to the choice attributes. Estimates of household willingness to pay for vehicle 

fuel efficiency are significant in the model that aggregates choices but not significant in the 

other two models. If these results extend to existing vehicle choice studies that aggregate 

choices, it suggests that current disparities on the energy paradox may in part stem from 
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overconfidence in model estimates because of a failure to account for noise induced by choice 

set aggregation.  

I am aware of one other study that investigates the concern of choice set aggregation. Spiller, 

2012, studies aggregation within a discrete-continuous model of household vehicle fleet choice 

and utilization. She compares estimates from a model that aggregates vehicles to make-class 

categories to a model that defines vehicles at the make-model level, finding that demand for 

gasoline is more inelastic when choices are aggregated to broader levels. 

Three recent papers define vehicles at the finest levels of detail possible when estimating 

household willingness to pay for fuel efficiency, though none of these papers employ choice 

models to household-level data in their work. Busse et al., 2013 employ a reduced form 

approach to study the effect of fuel prices on vehicle transaction prices, market shares and sales 

for new and used vehicles of different fuel economies while Allcott and Wozny, 2014 and 

Grigolon et al., 2014 employ choice models to macro-level data. Busse et al., 2014 do not find 

evidence that households undervalue fuel efficiency. Grigolon et al., 2014, find only modest 

undervaluation of fuel costs, while Allcott and Wozny, 2014, find a wide range of values 

varying from undervaluation to rational valuation, depending on various model assumptions.  

These findings on choice set aggregation are also relevant to many other empirical questions 

that choice models are used to study, including the effect of mergers (Nevo, 2000), welfare gains 

from new products (Petrin, 2002, Goolsbee and Petrin, 2004), measuring market power (Nevo, 

2001), and explaining the declining market share of dominant firms (Train and Winston, 2007). 

The BLP model for micro- and macro-level data is often estimated sequentially. In the first 

stage, a choice model is fit where product specific constants are estimated. These constants are 
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then used as dependent variables in an instrumental variables (IV) regression in the second 

stage. The standard errors from this two-step process are inconsistent because they ignore 1) the 

constraint that estimated shares equal macro-level market shares and 2) the correlations that 

exist between estimates across the two stages. Though the model has been applied to data for 

more than a decade, consistent standard errors for both stages of the model have never been 

formally derived. Previous studies that implement this model either correct only the standard 

errors of first stage parameters (BLP,2004; Chintagunta and Dubé, 2005), use inconsistent 

standard errors, or never formally state how they obtain the standard errors of model estimates. 

Thus, in this paper, I also derive consistent standard errors for the entire model by recasting 

each sequence of the model jointly within a Generalized Method of Moments (GMM) 

framework. I examine the performance of both the inconsistent and consistent standard errors 

through a Monte Carlo study and the vehicle choice application. I show that the use of standard 

errors derived from sequential estimation can cause errors when hypothesis testing. Second 

stage standard errors from sequential estimation are downward biased. I also find that the first 

stage standard errors are too small. In application, the standard errors derived from the GMM 

framework are larger than the sequential standard errors, generally by a factor of 1.3 to 13. 

However, the GMM standard errors for fuel costs are larger by a staggering 14 to 43 times. 

These findings also relate to the disparate results across existing choice models on the energy 

paradox. Studies that draw inference using inconsistent standard errors (BLP, 2004; Train and 

Winston, 2007; Whitefoot et al, 2014) may portray estimates as more significant than they really 

are.  

Both the concern of choice set aggregation and the inconsistency of the standard errors from 

sequential estimation are independent of the random coefficients framework typically included 
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in the BLP model. Therefore, I simplify the common BLP model by removing the random 

coefficient specification. Including random coefficients will result in slightly larger standard 

errors due to sampling noise from simulated maximum likelihood estimation, and, if correctly 

specified, also result in richer substitution patterns across products.  

This paper is structured as follows. In Section 2, I present the BLP model for micro- and macro-

level data. In Section 3, I detail the maximum likelihood approach to estimating the model, 

including the inconsistent and consistent methods of obtaining standard errors. In Section 4, I 

demonstrate through a Monte Carlo experiment the inconsistency of standard errors obtained 

through sequential estimation and show that the consistent standard errors provide the 

appropriate coverage probabilities of the true value in the limit. In Section 5, I present the 

McFadden, 1978, correction for aggregation bias and the Brownstone and Li, 2014, model for 

broad choice data, and adapt these models to the BLP setting at hand. In Section 6, I apply the 

consistent standard error formula and aggregation corrections to a vehicle choice application 

and discuss the results, relating them to the existing literature on the energy paradox. Section 7 

summarizes and concludes.  

 

1.2 The BLP Model 

The seminal BLP choice model (BLP, 1995) contributes an important innovation to the choice 

modeling literature by accommodating the endogeneity of product attributes, since the 

econometrician rarely observes the full set of attributes of products that induce households to 

make purchases. In BLP, 1995, the model is applied using only macro-level data. BLP, 2004, 

extends the model to applications that combine both micro- and macro-level data. In this paper, 
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BLP addresses an important concern in micro-level choice modeling, the issue of 

unrepresentative sampling. To overcome this concern, they supplement their unrepresentative 

choice dataset with aggregate market share data that is believed to be more representative.  

The BLP model for micro- and macro-level data used here is similar to BLP, 2004. The key 

difference is that BLP, 2004, incorporates household information into their model by 

constructing a moment that captures the covariance of product attributes and household 

attributes. The model here incorporates household information through a standard multinomial 

likelihood function, as is done in Train and Winston, 2007. The model is as follows: 

Let 𝑛 = 1,… , 𝑁   index households which can either purchase any of 𝐽 products, 𝑗 = 1,… , 𝐽 in the 

market or not purchase any product, characterized by selecting the "outside good", 𝑗 = 0. The 

indirect utility of household 𝑛 from the choice of product 𝑗, 𝑈𝑛𝑗 is assumed to follow the 

following linear specification: 

𝑈𝑛𝑗 = 𝛿𝑗 + 𝑤𝑛𝑗′𝛽 + 𝜖𝑛𝑗,                                                 

𝑛 = 1,… , 𝑁,     𝑗 = 0, 1, … , 𝐽 , 

where 𝛿𝑗 is a product specific constant that captures the "average" utility of product 𝑗. In other 

words, it is, the portion of utility from product 𝑗 that is the same for all households. 𝑤𝑛𝑗 is a 

(𝐾1 × 1) vector of household attributes interacted with product attributes, 𝛽 is its (𝐾1 × 1) 

vector of associated parameters, and 𝜖𝑛𝑗 is an error term with mean zero that captures all 

remaining elements of utility provided by product 𝑗 to household 𝑛. For the purpose of 

identification, average utility of the "outside good," 𝛿0, is normalized to zero.  Households select 

the product that yields them the highest utility: 
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𝑦𝑛𝑗 = {
1   
0   

 𝑖𝑓 𝑈𝑛𝑗 > 𝑈𝑛𝑖   ∀ 𝑖 ≠ 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Assuming that  ϵnj follows the type I extreme value distribution, the probability that household 

𝑛, chooses product 𝑗, 𝑃𝑛𝑗  is: 

𝑃𝑛𝑗 =
𝑒𝑥𝑝(𝛿𝑗 + 𝑤𝑛𝑗′𝛽)

∑ 𝑒𝑥𝑝(𝛿𝑘 + 𝑤𝑛𝑘′𝛽)𝑘
 . 

In the "traditional" conditional logit model, 𝛿 = {𝛿1, … , 𝛿𝐽} and 𝛽, can be estimated by 

maximizing the following log-likelihood function:  

𝐿(𝑦; 𝛿, 𝛽) = ∑ ∑ 𝑦𝑛𝑗𝑗 𝑙𝑜𝑔  (𝑃𝑛𝑗)𝑛 .  

An interesting feature of maximum likelihood (ML) estimation of the multinomial logit is how 𝛿 

is identified. The first order condition for 𝛿 is that the log-likelihood function with respect to 

𝛿 equals zero: 

𝜕𝐿

𝜕𝛿𝑗
= ∑ ∑ (𝑦𝑛𝑖𝑖 − 𝑃𝑛𝑖) 𝑑𝑖

𝑗
𝑛 = 0,       for 𝑗 = 1,… , 𝐽, 

𝑤ℎ𝑒𝑟𝑒 𝑑𝑖
𝑗
= {

1
0

       𝑖𝑓 𝑖 = 𝑗

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Rearranging and dividing both sides by 𝑁, we find that  

1

𝑁
∑ 𝑦𝑛𝑗𝑛  =

1

𝑁
∑ 𝑃𝑛𝑗𝑛  ,      for 𝑗 = 1,… , 𝐽. 

The equation describes that the average utilities are estimated such that the predicted shares 

from the model, 𝑆𝑗̂ =
1

𝑁
∑ 𝑃𝑛𝑗𝑛 , match the in-sample shares, that is, the share of households in the 

sample who choose each of the products.  (Train, 2009).  

(1.1) 

(1.2) 
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A key innovation of BLP, 2004, is that 𝛿 is estimated such that the predicted shares match 

aggregate market shares rather than in-sample shares. For 𝑗 = 1,… , 𝐽, 𝛿𝑗 is chosen such that  

𝐴𝑗 = 𝑆𝑗̂  

where 𝐴𝑗 is the aggregate market share for product 𝑗. Berry (1994) shows that for any value of 𝛽, 

a unique 𝛿 exists such that the predicted shares match these aggregate market shares.  

Matching predicted shares to aggregate market shares rather than in-sample shares improves 

estimation in the event that there is high sampling variance and hence, unrepresentative sample 

shares. In addition, by using aggregate market shares, average utilities can be estimated for 

products even if the in-sample shares for these products are zero.   

Finally, it is assumed that the average utilities are a linear function of product attributes: 

𝛿𝑗 = 𝑥𝑗′𝛼1 + 𝑝𝑗′𝛼2 + 𝜉1𝑗, 

where  𝑥𝑗 is a (𝐾2 × 1) vector of exogenous product attributes, 𝛼1 is a (𝐾2 × 1) vector of 

associated parameters, 𝑝𝑗 is a (𝐾3 × 1) vector of product attributes that are endogenous with 

respect to average utility,  𝛼2 is a (𝐾3 × 1) vector of associated parameters, and  𝜉1𝑗 captures the 

average utility associated with attributes unobserved to the econometrician. Because 𝑝𝑗 is 

endogenous with respect to average utility, it is correlated with unobserved attributes contained 

in 𝜉1𝑗, such that 𝐸(𝜉1𝑗|𝑝𝑗) ≠ 0. There exists a set of instruments, 𝑧𝑗, that are correlated with 𝑝𝑗 

and uncorrelated with 𝜉1𝑗: 

𝑝𝑗 = 𝑧𝑗′𝛾 + 𝜉2𝑗 

𝑤ℎ𝑒𝑟𝑒 𝐸(𝜉1𝑗|𝑧𝑗) = 0. 
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For simplicity, I assume here that 𝑧𝑗 is a (𝐾3 × 1) vector, (and therefore, 𝛾 is a 𝐾3 × 1 vector of 

associated parameters), that is, there are as many instruments as there are endogenous 

regressors, making the model just-identified. Although over-identification does not 

tremendously complicate estimation, with a just-identified model, optimal GMM methods are 

not necessary, which simplifies estimation. 

In summary, the BLP model consists of the following equations: 

                                                                          𝑦𝑛𝑗 = {
1   
0   

 𝑖𝑓 𝑈𝑛𝑗 > 𝑈𝑛𝑖   ∀ 𝑖 ≠ 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

                                                                          𝑈𝑛𝑗 = 𝛿𝑗 + wnj′β + ϵnj,    ϵnj ∼ type I extreme value     

                                                                             𝛿𝑗 = 𝑥𝑗′𝛼1 + 𝑝𝑗′𝛼2 + 𝜉1𝑗, 

                                                                             𝑝𝑗 = 𝑧𝑗′𝛾 + 𝜉2𝑗 

                                                                            𝐴𝑗 =
1

𝑁
∑ 𝑃𝑛𝑗𝑛   

In many empirical settings, all observed attributes of households are categorical. For example, 

income is often only observed in categories of income ranges, and education in categories by 

highest level attained. When these types of data are used, and the number of household 

attributes is small compared to the number of households in the sample, it is common that some 

households in the sample are observed to have identical attributes. As long as these households 

are still distributed independently, it is possible to collapse households with identical attributes 

into representative "household types" that make repeated, independent choices. The repeated 

choices are simply an aggregation of the decisions made by each household in the sample, of 

that type. Let 𝑚 denote "household type", where 𝑚 = 1,… , 𝑀.  Let 𝑟𝑚 denote the number of 

households belonging to type 𝑚. It must be the case that ∑ 𝑟𝑚 = 𝑁.𝑚  Finally, let 𝑙𝑚 index 

households within a given household type. Then, 
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𝑦𝑚𝑗 = ∑ 𝑦𝑛𝑗

𝑟𝑚

𝑙𝑚=1
, ∀ 𝑗 = 0, 1, … , 𝐽 . 

It is easy to see that the aggregation of households to "household types" changes the outcome 

variable, because ∑ 𝑦𝑚𝑗𝑗 = 𝑟𝑚 while ∑ 𝑦𝑛𝑗𝑗 = 1. Nevertheless, aggregation leaves the likelihood 

function of the multinomial logit unchanged. There is a computational benefit from estimating 

at the "household type" level, rather than the household level since, as long as 𝑟𝑚 > 1 for any 𝑚, 

then 𝑀 < 𝑁.  

To remain consistent with the Monte Carlo experiment and empirical applications that are 

conducted, the remainder of this paper assumes estimation with aggregation to "household 

types."  

 

1.3 Estimation Procedure: A Maximum Likelihood Approach 

Sequential estimation is conducted in two stages. The first stage involves estimating the average 

utilities, 𝛿, and the parameters associated with the household-product interaction variables, 𝛽. 

The first stage estimates of 𝛿 are then used in the second stage estimation of the parameters 

associated with the product attributes, 𝛼 = [𝛼1 𝛼2]. 

𝛿 and 𝛽 are estimated through an iterative process. Conditional on some initial value of 𝛿, 

maximize equation (1.2) with respect to 𝛽 to obtain conditional maximum likelihood estimates, 

𝛽̂. Conditional on 𝛽̂, estimate 𝛿 using the contraction-mapping algorithm developed in BLP, 

1995. This algorithm is itself an iterative process which yields the estimate, 𝛿, when the 

following equation is iterated on until convergence:  
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𝛿𝑗,𝑡+1 = 𝛿𝑗,𝑡 + ln(𝐴𝑗) − ln ( 𝑆𝑗̂),   ∀ 𝑗 = 1,… , 𝐽   

The algorithm enforces the constraint that the predicted shares equal the aggregate market 

shares. The maximum likelihood and contraction mapping processes are repeated iteratively 

until convergence. 

The second stage of the sequential process estimates the parameters associated with the product 

attributes, 𝛼.  To do this, standard IV estimation is applied, substituting the converged values, 𝛿,̂ 

from the first stage, for the “true values” of the average utilities, 𝛿.  Let 𝑋 = [𝑥1
′  𝑥2

′  … 𝑥𝐽
′]′. Let 

 𝑍 and 𝑃 be similarly defined matrices containing the element, 𝑧𝑗 and 𝑝𝑗  respectively. Then the 

IV estimates are given by the familiar solution: 

𝛼̂ = (𝑋̃′𝑍(𝑍′𝑍)−1𝑍′𝑋̃)
−1

𝑋̃′𝑍(𝑍′𝑍)
−1

𝑍′𝛿̂ 

where 𝑋̃ = [𝑋  𝑃]. 

The standard errors for 𝛼̂ from IV estimation are downward biased. Standard IV estimation 

assumes that the dependent variable (in this case, 𝛿) is known; however, in the BLP model, the 

dependent variable, 𝛿, is an estimate. The standard errors for 𝛼̂ from IV estimation do not 

account for the variance inherent in 𝛿 causing the standard errors of 𝛼̂ to be underestimated.  

Additionally, in application, some researchers obtain the standard errors for 𝛽̂ and 𝛿 from the 

inverse of the Hessian of the logit likelihood function. However, 𝛽̂ and 𝛿 are not maximum 

likelihood estimates, since first stage estimation constrains predicted shares to match aggregate 

market shares, not in-sample shares. Unless the aggregate market shares equal in-sample 

shares, standard errors for 𝛽̂ and 𝛿 obtained in this manner are also inconsistent.  
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To obtain estimates of the correct standard errors for 𝛿, 𝛽̂ and 𝛼̂, recast each sequence of the 

estimation process as moments within a GMM framework. The GMM analogue to the 

sequential process just described involves three sample moments, one for each of the vectors of 

parameters 𝛿, 𝛽 and 𝛼. The first moment condition is formed from the first derivative of the 

logit log-likelihood function, with respect to 𝛽1: 

𝐺1(𝛽, 𝛿) =
1

𝑁
∑ 𝐻1𝑚(

𝑚
𝛽, 𝛿). 

                                                      =
1

𝑁
∑ ∑ 𝑦𝑚𝑗(𝑤𝑚𝑗 − ∑ 𝑃𝑚𝑖𝑤𝑚𝑖) 

𝑖𝑗𝑚
. 

The second moment condition, that identifies 𝛿, is formed from a vector that constrains the 

predicted shares of the products in the model to match the aggregate market shares when 

minimized2: 

𝐺2(𝛽, 𝛿) =
1

𝑁
∑ 𝐻2𝑚(𝛽, 𝛿) 

𝑚
 

            =
1

𝑁
∑ 𝐴 − 𝑃𝑚

𝑚
. 

where 𝐴 = [𝐴1 𝐴2 …𝐴𝐽]′ and 𝑃𝑚 = [𝑃𝑚1 𝑃𝑚2 …𝑃𝑚𝐽]′ 

The third moment condition estimates 𝛼̂. It is formed from a vector that when minimized, 

stipulates that in expectation, the instruments for the attributes of the products are uncorrelated 

with the error term: 

                                                           
1 To obtain the BLP, 2004 estimator of the model, replace this moment with one that interacts the average 
attributes of households with the attributes of vehicles they purchase, then averages over all vehicles in 
the choice set. 
2 Note that although households are aggregated to "household types" (as indicated by the summations 
across 𝑚, rather than 𝑛), expectations are still taken at the household level and not at the household-type 
level, that is, the first and second moments are averaged over 𝑁 and not 𝑀. 
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𝐺3(𝛿, 𝛼) =
1

𝐽
∑ 𝐻3𝑗(𝛿, 𝛼)

𝑗
 

                                         =
1

𝐽
∑ 𝑧𝑗(𝛿𝑗 − 𝑥𝑗𝛼1 − 𝑝𝑗𝛼2)

𝑗
. 

One can also obtain point estimates of the BLP model by minimizing the objective function 

𝑄(𝜃) = 𝐺′𝑊0𝐺 where 𝐺 = [𝐺1 𝐺2 𝐺3]
′, 𝜃 = [𝛽 𝛿 𝛼]′, and 𝑊0 is a weight matrix. When the model is 

just-identified, this solution, 𝜃𝐺𝑀𝑀, is equivalent to the solution from sequential ML 

estimation,{𝛽̂, 𝛿, 𝛼̂} because it satisfies the same estimation conditions. 

In line with derivations by Hansen, 1982, the variance of this GMM estimator, 𝜃𝐺𝑀𝑀, is given by 

the following formula: 

𝑉𝑎𝑟(𝜃𝐺𝑀𝑀) = (𝑀0
′ 𝑊0𝑀0)

−1
(𝑀0

′ 𝑊0𝑆0𝑊0𝑀0)(𝑀0
′ 𝑊0𝑀0)

−1
, 

where 

𝑀0 =

[
 
 
 
 
 
 

1

𝑁

𝜕2𝐿

𝜕𝛽2

1

𝑁

𝜕2𝐿

𝜕𝛽𝜕𝛿
0𝐾1×𝐾2

1

𝑁
∑ −

𝜕𝑃𝑚𝑗

𝜕𝛽𝑚

1

𝑁
∑ −

𝜕𝑃𝑚𝑗

𝜕𝛿𝑚
0(𝐽−1)×𝐾2

0𝐾2×𝐾1
 

1

√𝑁𝐽
∑ 𝑧𝑗′

𝑗

1

𝐽
∑ −𝑧𝑗′

𝑗
𝑥𝑗

]
 
 
 
 
 
 

 

𝑆0 = 

[
 
 
 
 
 
 
 

1

𝑁
∑ 𝐻1𝑚𝐻1𝑚′

𝑚

1

𝑁
∑ 𝐻1𝑚𝐻2𝑚′

𝑚

𝟏

√𝑵𝑱
∑ ∑ 𝐻1𝑚𝐻3𝑗′

𝑗𝑚

1

𝑁
∑ 𝐻2𝑚𝐻1𝑚′

𝑚

1

𝑁
∑ 𝐻2𝑚𝐻2𝑚′

𝑚

𝟏

√𝑵𝑱
∑ ∑ 𝐻2𝑚𝐻3𝑗

𝑗𝑚
′

𝟏

√𝑵𝑱
∑ ∑ 𝐻3𝑗𝐻1𝑛𝑚′

𝑗𝑚

𝟏

√𝑵𝑱
∑ ∑ 𝐻3𝑗𝐻2𝑚

𝑗𝑚
′

1

𝐽
∑ 𝐻3𝑗𝐻3𝑗′

𝑗 ]
 
 
 
 
 
 
 

 . 

Since the current model is just-identified, it is efficient to set 𝑊0 as the identity matrix. In over-

identified cases (𝐾3 > 𝐾2), the two-step optimal GMM method provides more efficient 

(1.3) 
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estimates. Appendix A.1 provides a more detailed derivation and explanation of these standard 

errors. 

Since 
𝜕𝐻1

𝜕𝛼
 ,
𝜕𝐻2

𝜕𝛼
= 0,  this GMM model is a sequential two-step estimator (Newey, 1984). Using the 

derivations by Murphy and Topel (1985), the following equation provides the correction for the 

downward bias present in the standard errors of IV estimates from the second stage of 

estimation: 

𝑉𝑎𝑟(𝛼̂) = 𝑠2(𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋) + 𝐺22 
−1{𝐺21𝐺11

−1𝑆11𝐺11
−1𝐺21 − 𝐺21𝐺11

−1𝑆12 − 𝑆21𝐺11
−1𝐺21

′ }𝐺22 
−1 

where 𝐺11 = [

𝜕𝐻1

𝜕𝛽

𝜕𝐻1

𝜕𝛿

𝜕𝐻2

𝜕𝛽

𝜕𝐻2

𝜕𝛿

] , 𝐺21 = [
𝜕𝐻3

𝜕𝛽

𝜕𝐻3

𝜕𝛿
] , 𝐺22 = [

𝜕𝐻3

𝜕𝛼
] , 𝑆11 = [

1

𝑁
∑ 𝐻1𝑚𝐻1𝑚′𝑚

1

𝑁
∑ 𝐻1𝑚𝐻2𝑚′𝑚

1

𝑁
∑ 𝐻2𝑚𝐻1𝑚′𝑚

1

𝑁
∑ 𝐻2𝑚𝐻2𝑚′𝑚

 ], 

The first term is the standard IV formula for standard errors. The second term is an upward 

correction to account for the first stage. This second term has three components. The first, 

containing the covariance matrix of the first stage parameters, 𝐺11
−1𝑆11𝐺11

−1, accounts for the 

variance of 𝛿, while the second and third components account for the correlation between the 

errors across the two stages. 

 

1.3.1 Speeding up the Contraction Mapping Algorithm 

The contraction-mapping algorithm can incur a high time cost particularly when tight stopping 

criteria are used, and the dimensions of the choice set are large. To speed up the contraction-

mapping algorithm, I implement the Li, 2012 modification that augments the contraction 

mapping with an analytic Newton-Raphson algorithm. The modification produces a 280-fold 

improvement in the number of iterations necessary for convergence over the unmodified 
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contraction mapping algorithm and a six-fold improvement in estimation time when using 

simulated data sets. The modification is as follows: 

𝛿𝑗,𝑡+1 = 𝛿𝑗,𝑡 + H−1[ln(𝐴𝑗) − ln ( 𝑆𝑗̂)] ∀𝑗 = 1,2 …  𝐽, 

where H is the matrix of first order partial derivatives of [−ln ( 𝑆̂)], which can be shown to equal 

 𝐻 =

[
 
 
 
 
 
 
 1 −

∑ 𝑃𝑛1
2

𝑛

∑ 𝑃𝑛1 𝑛
−

∑ 𝑃𝑛1𝑃𝑛2𝑛

∑ 𝑃𝑛1𝑛
… −

∑ 𝑃𝑛1𝑃𝑛𝐽𝑛

∑ 𝑃𝑛1𝑛

−
∑ 𝑃𝑛2𝑃𝑛1𝑛

∑ 𝑃𝑛2𝑛
 1 −

∑ 𝑃𝑛2
2

𝑛

∑ 𝑃𝑛2𝑛
… −

∑ 𝑃𝑛2𝑃𝑛𝐽𝑛

∑ 𝑃𝑛2𝑛

⋮ ⋮ ⋱ ⋮

−
∑ 𝑃𝑛𝐽𝑃𝑛1𝑛

∑ 𝑃𝑛𝐽𝑛
−

∑ 𝑃𝑛𝐽𝑃𝑛2𝑛

∑ 𝑃𝑛𝐽𝑛
… 1 −

∑ 𝑃𝑛𝐽
2

𝑛

∑ 𝑃𝑛𝐽𝑛 ]
 
 
 
 
 
 
 

 

One of the drawbacks of the Newton-Raphson algorithm is that in some situations, the method 

fails to converge. To avoid this problem from occurring in the empirical example, I only invoke 

the Newton modification when 𝛿𝑡+1 − 𝛿𝑡 ≤ 10−3. Using this ad-hoc rule, the contraction 

mapping algorithm does converge each time it is called in the empirical example, although the 

time savings are now only four-fold. 

Recent work shows certain approaches to estimating the BLP models on macro-level data 

behave poorly. Nevo, 2000, Dubé et al., 2012, and Knittel and Metaxoglou, 2014, among others, 

note that the model is sensitive to starting values, requires very tight convergence criteria, can 

have multiple local minima, may falsely stop at points that are not even local minima, and is 

sensitive to the choice of optimization routine used. In light of these findings, in the following 

chapter of this dissertation, I study these concerns within the BLP model for combined micro- 

and macro-level data, finding that in these data settings, the ML approach does not suffer from 

such numerical concerns.  
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1.4 A Monte Carlo Experiment on the Consistency of Standard Errors 

The following Monte Carlo experiment analyzes the properties of the standard errors from 

sequential ML estimation and the analytic GMM standard errors. The experiment proceeds as 

follows: Exogenous variables, {𝑤𝑚𝑗, 𝑥𝑗, 𝑧𝑗} are generated for a large population of household 

types, 𝑁𝑝𝑜𝑝, and a fixed number of products, 𝐽, For each generated household type, I create 𝑟𝑚 

households. For simplicity, an equal number of households are generated for each type, 𝑟𝑚 = 𝑟 ,

∀𝑚. More detailed information on the data generation process is available in Appendix A.2. 

Each iteration of the experiment then follows these steps: 

1. New draws of the error terms, {𝜖𝑚𝑗, 𝜉1𝑗, 𝜉2𝑗} are generated and with that, the endogenous 

variables, {𝑦𝑚𝑗, 𝛿𝑗 , 𝑝𝑗} are created as functions of the exogenous variables, error terms and 

the predetermined values of parameters, {𝛼, 𝛽, 𝛾}.  

2. Using the vector of selected products, {𝑦𝑚𝑗}, population market shares, 𝐴𝑗, are created.  

3. A random subsample of household types, 𝑀, is selected from 𝑁𝑝𝑜𝑝. The number of 

households in a given subsample, 𝑁 = ∑ 𝑟𝑚 =𝑚 𝑀 × 𝑟 

4. Estimation proceeds as outlined in the previous section; the model is estimated sequentially 

using the iterative ML and contraction mapping algorithm process in the first stage, and IV 

estimation in the second stage.  

5. To obtain standard errors from the sequential process, the standard errors of 𝛽 are 

calculated as the inverse of the negative Hessian matrix of the log-likelihood function, and 

the standard errors of 𝛼 follow the standard IV variance formula. To obtain the corrected 

standard errors, I use the GMM variance formula in equation (1.3). 
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Table 1.1 displays the coverage probabilities of 80% confidence intervals constructed for 𝛽 and 

𝛼. These coverage probabilities were obtained from running 1000 Monte Carlo repetitions of the 

experiment for various sizes of 𝑁,  where 𝐽 = 30,𝑁𝑝𝑜𝑝 = 100,000, and 𝑟 = 100. The choice of 𝐽 =

30 is sufficient to obtain asymptotic results in that dimension. 

Table 1.1: Coverage probabilities of 80% confidence intervals for 𝛽 and 𝛼, for 𝑁 = 2500, 1000 
and 60000, where 𝐽 = 30,𝑁𝑝𝑜𝑝 = 100,000, and 𝑟 = 100. 

Parameter 
𝑁 = 2,500 𝑁 = 10,000 𝑁 = 60,000 

Sequential Joint Sequential Joint Sequential Joint 

𝛽1̂ 0.390 0.907 0.371 0.839 0.382 0.807 

𝛽2̂ 0.606 0.883 0.672 0.806 0.700 0.805 

𝛼0̂ 0.789 0.813 0.791 0.796 0.810 0.810 

𝛼11̂ 0.747 0.797 0.794 0.806 0.806 0.806 

𝛼12̂ 0.597 0.858 0.746 0.805 0.781 0.797 

𝛼2̂ 0.807 0.809 0.829 0.827 0.802 0.802 

 

For each value of 𝑁, I report two sets of coverage probabilities, the "Sequential" column reports 

coverage probabilities calculated using standard errors from sequential estimation of the model. 

The "Joint" column reports coverage probabilities calculated using the analytic standard errors 

derived from equation (1.3).  

As expected, Table 1.1 shows that the coverage probabilities for 𝛽 from the sequential model 

converge to the wrong values. Confidence intervals for 𝛽1and 𝛽2 that should capture the true 

value of the parameter 80% of the time across repeated samples, only capture the true value 37-

39% and 60-70% of the time respectively. While the sequential standard errors of 𝛽 are too small 

in this study, and more severely so for 𝛽1  than 𝛽2, this result is specific to this Monte Carlo 

study. The sign and severity of the inconsistency is indeterminate across applications. As 

previously mentioned, the inconsistency of the sequential estimator stems from the fact that 

standard errors are derived from a likelihood function that does not contain the same 
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information as was used to obtain the point estimates. Since the average utilities are estimated 

by matching predicted probabilities to aggregate shares, it is incorrect to obtain standard errors 

as if the predicted probabilities were matched to in-sample shares. 

Confidence intervals for 𝛽̂ constructed from the corrected standard errors perform much better. 

When 𝑁 = 2,500, it can be inferred from the coverage probabilities that there is upward bias in 

the size of confidence intervals (and in turn, the standard errors) in small household samples. 

Nevertheless, as 𝑁 increases to 60,000, these coverage probabilities converge to 80%.  

As theory predicts, the uncorrected standard errors of 𝛼̂ from sequential estimation are 

downward biased. This bias is more pronounced when 𝑁 = 2,500, than when 𝑁 = 60,000. In 

fact, when 𝑁 = 60,000, the improvements from joint estimation are meager. The downward bias 

occurs because the standard IV standard errors do not account for the variance present in 𝛿. 

Therefore, the larger the variances of the average utilities, 𝛿, the larger the bias in the standard 

errors from sequential estimation. Since estimates of the average utilities are less precise when 

the household sample size is small, there are larger downward biases when 𝑁 is small. As 𝑁 

increases, the variance of the estimates of 𝛿 shrink, causing the bias of the uncorrected standard 

errors of 𝛼̂ to shrink as well. The standard errors from the joint GMM model, which do account 

for the variances of 𝛿,̂ have the coverage probabilities of approximately 80% across all three 

values of 𝑁 considered.  
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Figure 1.1 displays box plots of the coverage probabilities of the 80% confidence intervals for 

the 29 𝛿𝑗 's from the same Monte Carlo experiment. The left side presents the coverage 

probabilities using standard errors from the sequential model, while the right side presents the 

coverage probabilities using the corrected standard errors from the joint model.                

 

Figure 1: Box plots of the coverage probabilities of 80% confidence for the "average" utilities 
estimated when 𝑀 = 25, 100 and 600, where 𝐽 = 30,𝑁𝑝𝑜𝑝 = 100,000, and 𝑟 = 100. 

 

The three box plots on the left side of the figure show there is large variation in the coverage 

probabilities of the 𝛿𝑗
′𝑠, though this variation narrows as 𝑁 increases. The inability to obtain 

coverage probabilities of the 𝛿𝑗
′𝑠 that center around 0.8 reflect the inconsistency of using 

maximum likelihood derivations to calculate the standard errors of estimates that are not 

obtained from maximum likelihood estimation. 

The three box plots on the right side of the figure suggest that there is an upward bias in the 

standard errors for many of the 𝛿𝑗 's in small samples. When 𝑁 = 2,500, even the first quartile 

value is greater than 80%, and the distribution shows several outliers. Nevertheless, this bias 

    N=2,500        N=10,000        N=60,000         N=2,500        N=10,000        N=60,000 

             Sequential         Joint 
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diminishes quickly, as sample sizes increases. As shown in the box plots for 𝑁 = 10,000 and 

𝑁 = 60,000, the coverage probabilities for the 80% confidence intervals for all of the 𝛿𝑗 's center 

tightly around 80%.  

To increase efficiency of the second stage estimates, Goolsbee and Petrin, 2004, and Chintagunta 

and Dubé, 2005, weigh the second stage observations by the inverse of the variance of 𝛿 but use 

the sequential approach to calculate the standard errors.3 Running a Monte Carlo study on this 

method, I find that the second stage standard errors behave similarly to the sequential standard 

errors in Table 1.1 at best. In many Monte Carlo runs, second stage standard errors were more 

downward biased when weights were used. 

 

1.5 Methods of Aggregation 

In this section, I introduce two methods that address the concerns related to aggregation of 

products to broad levels. The first model, introduced in McFadden, 1978, proposes that the 

covariance matrix of the attributes within each broad group and the number of products within 

each broad group be included in the likelihood function of the choice model. The second model 

is a model for broad choice data, introduced in Brownstone and Li, 2014. In their model, 

equation (1.2) is defined in terms of the broad choice sets from which household choices are 

observed and the broad choice probabilities are defined as the sum of the probabilities of the 

exact choices contained within each broad choice. Before introducing the two models, it is 

necessary to formally define broad choice data. 

                                                           
3 Goolsbee and Petrin, 2004, do not incorporate macro-level share data in their model, hence their 
standard errors of 𝛿 obtained from the Hessian of the log-likelihood function are consistent.  Chintagunta 
and Dubé, 2005, obtain standard errors of 𝛿 through a parametric bootstrap. 
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Define 𝐶 as the exact choice set that contains all products, 𝑗 = 1, 2, … , 𝐽. 𝐶 is decomposed into 𝐵 

groups, denoted 𝐶𝑏 , 𝑏 = 1, 2, … , 𝐵. Each product, 𝑗, belongs to only one choice group such that, 

𝐶 = ⋃ 𝐶𝑏
𝐵
𝑏=1  and ⋂ 𝐶𝑗 = 0/ .𝐵

𝑏=1  Individuals’ exact choices, 𝑦𝑛𝑗, are not observed. Instead, what is 

observed are individuals’ choices among the broad choice groups, 𝑌𝑛𝑏: 

𝑌𝑛𝑏 = {
1
0

𝑖𝑓 𝑦𝑛𝑗 ∈ 𝐶𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

1.5.1 McFadden’s Method for Aggregation 

The empirical application concerned in McFadden, 1978, is the modeling of household choice of 

residential location. Here, the broad choice groups are communities where households are 

known to reside while the exact choice set contains the dwellings within these communities.  

Let 𝑤𝑛𝑗 denote the observed attributes of household 𝑛 interacted with the attributes of dwelling 

𝑗.  When the number of dwellings within a community is large, and 𝑤𝑛𝑗 behaves as if it is 

independently identically normally distributed with mean, 𝑤𝑛𝑗
∗ , and variance Ω𝑛𝑏, then, 

McFadden, 1978, shows that for the conditional logit with linear utility specification, the 

probability that household 𝑛 chooses community 𝑏 converges to: 

𝑃̅𝑛𝑏 =
exp (𝛿𝑏 + 𝑤𝑛𝑏

∗ ′𝛽 +
1
2𝛽′Ω𝑛𝑏𝛽 + log(𝐷𝑏))  

∑ exp (𝛿𝑘 + 𝑤𝑛𝑘
∗ ′𝛽 +

1
2𝛽′Ω𝑛𝑘𝛽 + log(𝐷𝑘))  𝑘

 

where 𝐷𝑏 is the number of dwellings in community 𝑏. 

The presence of the term, 
1

2
𝛽′Ω𝑛𝑏𝛽, in (1.4) comes from the fact that the sample mean and 

sample sum of squared errors are sufficient statistics for the normal distribution with unknown 

mean and variance.  To account for the distribution of characteristics of products within group 

(1.4) 
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𝑏, it is necessary to condition on both quantities. The intuition here is that community attributes 

with larger variances should have a greater impact on the probability that the community is 

selected. A simpler approach to incorporate Ω𝑛𝑏, is to relax the constraint that its associated 

parameter, 𝛽, is equal to the parameter on 𝑤𝑛𝑏
∗ . This approach yields consistent estimates 

without the complexity of non-linear constraints. 

Lerman, 1977, explains that the log (𝐷𝑏) term is a measure of community size. “Other conditions 

being equal, a large tract (i.e., one with a large number of housing units) would have a higher 

probability of being selected than a very small one, since the number of disaggregate 

opportunities is greater in the former than the latter.” Here, the coefficient associated with 

log (𝐷𝑏) is assumed to be one, because it is assumed that the logit model applies to each product 

in the exact choice set. Should this assumption not hold, then the coefficient on log (𝐷𝑏)  will 

differ from one.  

The simplest way to apply McFadden’s method to address aggregation concerns within the BLP 

setting, is to apply the likelihood function as in equation (1.2), to household choice of 

communities, replacing the choice probability defined in equation (1.1) with equation (1.4).  

One limitation of this method is that it does not controls for the aggregation present in the 

product specific constants, 𝛿𝑏. Recall that in the BLP model, the product specific constants are a 

function of product attributes. Using McFadden’s method in this model, it is assumed that 𝛿𝑏is 

a linear combination of 𝑥𝑏
∗ and 𝑝𝑏

∗ , the means of 𝑥𝑗 and 𝑝𝑗. To apply McFadden’s method to 

account for the aggregation in 𝑥𝑏
∗ and 𝑝𝑏

∗ , one would have to include the covariance matrix of 𝑥𝑏 

and 𝑝𝑏 in 𝑃𝑛𝑏. Since 𝑃𝑛𝑏 would then be a function of both 𝛽 and 𝛼, the sequential approach to 

estimating the BLP model would no longer be valid. Because of the estimation complexities this 
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introduces, in this paper, I do not control for aggregation in 𝑥𝑏
∗ and 𝑝𝑏

∗ . Additionally, while 

McFadden’s method applies easily to the conditional logit and nested logit, it is not 

immediately intuitive how the method can be applied to frameworks with more flexible 

substitution patterns, such as the mixed logit. 

Nevertheless, the BLP model with McFadden’s method has its advantages. The model is 

relatively easy to compute, particularly if the non-linear constraints are ignored, and unlike the 

proceeding model, does not require aggregate market share data at the exact choice level for 

identification.  

1.5.2 A BLP Model for Broad Choice Data 

When the researcher observes individuals’ choices among broad choice groups, but macro-level 

market share data is available at the exact choice level, Brownstone and Li propose estimating 

household choice at the broad group level, defining the probability of choosing a broad group 

as the sum of the probabilities of the exact choices contained within the group. This involves 

replacing the likelihood function in equation (1.2) with the following: 

𝐿(𝑦; 𝛿, 𝛽) = ∑ ∑ 𝑌𝑛𝑏
𝑏

𝑙𝑜𝑔  (𝑃̃𝑛𝑏)
𝑛

 

where 𝑃̃𝑛𝑏 = ∑ 𝑃𝑛𝑗𝑗∈𝐶𝑏
 and 𝑃𝑛𝑗 is defined as in equation (1.1). 

Estimation of this model follows the maximum likelihood approach detailed in Section 3. The 

contraction mapping algorithm is used to estimate 𝛿𝑗, while 𝛽 is estimated by maximizing 

equation (1.5).  

Brownstone and Li, 2014, show that equation (1.5) is not globally concave and generally, has 

less concavity than equation (1.2). They also show that the parameters of the model, estimated 

(1.5) 
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on exact choice data, are better identified and have smaller variances than estimates from the 

model for broad choice, given the added uncertainty in the model for broad choice, stemming 

from having only partial information on household decisions. 

There are numerous advantages to estimating the broad choice model over McFadden’s 

method. It avoids aggregation altogether and preserves the sequential estimation process. Also, 

the model for broad choice does not require that asymptotic distributional assumptions be 

placed on the variables of the exact choice set, 𝑋𝑛𝑑, within each broad group as is the case with 

McFadden’s method. There may not always be an intuitive way to partition the exact choice set 

into groups that are all large to best approximate the asymptotic normality assumption required 

for consistency when using McFadden’s method. Additionally, the model for broad choice 

produces estimates of product specific constants for each product in the exact choice set, rather 

than product specific constants at the broad group level. This allows for more observations in 

the second stage regression, providing more variation and power to the estimates in that stage. 

This addresses a concern of these types of models, raised in BLP, 2004. Because these models are 

typically estimated on single cross-sections of data, there are often not enough observations in 

the second stage to obtain precise estimates of 𝛽.  

However, the model for broad choice is poorly identified without macro-level market share 

data at the exact choice level. Additionally, the model for broad choice can be computationally 

burdensome to estimate because of the higher dimensions of 𝛿. Finally, given that there are 

many more first stage parameters to be estimated in this model, larger household sample sizes 

are required to obtain significant results. Because these first stage parameters are used in the 

second stage, this can also affect the efficiency of the second stage estimates as well. 
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1.6 A Vehicle Choice Application 

Standard economic theory dictates that households should invest in an energy saving 

opportunity if the upfront cost of investment is lower than the present value of future savings 

from decreased energy bills.  However, analysts of the energy industry have long debated the 

existence of an energy paradox, that households undervalue energy saving investments, hence 

underinvest in such technologies and over-consume energy. Explanations for this paradox 

include market failures such as imperfect information, principle-agent issues, credit constraints, 

and non-rational behavior such as loss aversion and hyperbolic discounting (Gillingham and 

Palmer, 2014). If the paradox exists, resulting market inefficiencies mean that many households 

in the state are spending more on fuel than they would if market failures did not exist. 

Additionally, the paradox suggests that private vehicle travel incurs excess environmental costs, 

even if proper mechanisms (e.g. carbon taxes) are in place to control for environmental 

externalities from vehicle emissions. This would mean there is a role for government 

intervention to correct the market failures through instruments that encourage increased 

household investments in fuel efficiency technologies such as rebates, taxes, fuel efficiency 

information programs and mandated fuel efficiency standards. 

The energy paradox remains contested, in part because existing estimates of household 

valuations of energy saving investments are varied and inconclusive. Some of this disagreement 

comes from studies on vehicle choice (Greene, 2010). In this section, I apply the standard error 

corrections and methods for aggregation from the previous sections to a vehicle choice 

application in effort to explain some of this lack of consensus on whether the energy paradox 

exists.  
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I model the choices of households in the United States who purchase new model year 2008 

vehicles between October 2007 and September 2008. As in Train and Winston, 2007, this model 

omits households that buy used vehicles or do not make any vehicle purchase over the sample 

period. Train and Winston, 2007, contend that “preferences among new car buyers can be 

estimated more accurately by estimating directly on a sample of new car buyers,” and has the 

“practical advantage that it can include explanatory variables whose distributions are not 

known for the general population.”  

Data are obtained from Brownstone and Bunch, 2013. They compile data on households and 

their purchase decisions from the 2009 National Household Transportation Survey (NHTS). The 

NHTS sample is not a simple random sample. Households in 20 regions were oversampled 

because metropolitan transportation planning organizations in those regions sponsored larger 

samples for their own use. In addition, a single interview was conducted for each household 

between April 2008 and May 2009. Households who were interviewed earlier are more likely to 

have purchased model year 2008 vehicles after their NHTS interview, and this purchase is not 

reflected in the sample.  

Multinomial choice models still yield consistent estimates of model parameters despite the use 

of stratified samples as long as all household heterogeneity is fully captured in the model 

specification through 𝑤𝑛𝑗 (Manski and Lerman, 1977). However, to obtain population averaged 

estimates from this model, one must place weights that correct sample stratification.  

If household heterogeneity is not fully specified in the model, then estimates of 𝛼 will not yield 

the average effect of vehicle attributes on utility. For example, assume that wealthy households 

are less sensitive to vehicle price than the rest of the population and that this heterogeneity is 
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not accounted for in the model. Then, if wealthy households are over-represented in the sample, 

the estimates of the average effect of household disutility from vehicle price will be too small.  

Alternatively, if the researcher has information about the distribution of characteristics in the 

population, he could place weights on the observations such that the weighted observations are 

representative of the population. One can incorporate such weights in estimation through the 

Weighted Exogenous Sampling Maximum Likelihood Estimator (WESML) by Manski and 

Lerman, 1977. WESML was developed to address choice-based sampling concerns (where the 

sample is stratified based on the observed choices, 𝑦𝑛𝑗) but also applies when one is interested 

in estimating “average effects” without a full specification of household heterogeneity. 

The results here assume that 𝑤𝑛𝑗 sufficiently captures household heterogeneity such that 

estimates from the model are consistent for 𝛼. To test the robustness of this assumption, I also 

estimate the BLP model for broad choice data using sampling weights. These results are 

presented in Appendix A.3. 

Vehicle attributes are provided by the Volpe Center and supplemented with data from Polk, the 

American Fleet Magazine, and the National Automobile Dealers Association. Vehicle price data 

are adjusted adding the gas guzzler tax for some vehicles and subtracting estimated purchase 

subsidies for hybrid vehicles. Vehicle attribute data are available at the trim level, however, 

NHTS household choices are only observed at the Make/Model/Fuel-type level. 

Macro-level market share information at the Make/Model/Fuel-type/trim4 level is also 

obtained from the Volpe Center. They collect information on production volumes which 

                                                           
4 “Make” refers to the manufacturer of the vehicle (e.g. Ford, General Motors, Toyota.) “Model” refers to 
the product name (e.g. Focus, Chevrolet Impala, Prius.) “Fuel-type” refers to the power source to move 
the vehicle (gasoline, natural gas, gasoline-electric hybrid). “Trim” denotes different configurations of 
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represent all model year 2008 vehicles that are produced (and eventually sold.) These 

production volumes are adjusted to omit fleet vehicle purchases.  

There are 10,500 NHTS households in the dataset who purchase at least one new model year 

2008 vehicle during the sample period. All household characteristic variables are categorical in 

nature. Because of this I aggregate to 4157 unique "household types," with between one and 

forty-one households within each type. There are 235 broad groups of vehicles that households 

choose from, and 1120 vehicles in the exact choice set.  

Table 1.2 provides some descriptive statistics about the NHTS household sample as well as a 

comparison of NHTS in-sample vehicle shares to the Volpe aggregate market shares. Table 1.3 

summarizes the utility specification that is used in the models. 

                                                                                                                                                                                           

standard equipment and amenities for a given vehicle make and model, such as manual or automatic 
transmission, fabric of leather seats, and number of engine cylinders (e.g. Honda Civic DX, Honda Civic 
LX.) 
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Table 1.2: Descriptive Statistics of the NHTS sample and market shares 

NHTS Socioeconomic Attribute Variables Sample Value (%) 

Percent retired with no children 
Percent whose children is under the age of 15 
Percent living in urban areas 
Percent of household respondents with college degree 
Average gasoline price at time of vehicle purchase ($) 
Household Income Distribution†:  

Less than $25,000 
$25,000 - $75,000 
$75,000 - $100,000 
Greater than $100,000 
Income Missing 

Household Size Distribution 
1 
2 
3 
4+ 

34.17 
26.89 
68.07 
48.12 
3.46 

 
5.98 

35.36 
16.62 
35.28 
6.76 

 
10.96 
49.31 
17.14 
22.58 

Market share of MY2008 vehicle purchases by Manufacturer  
(NHTS household in-sample shares vs. Volpe aggregate market shares)   

Share (%) 

NHTS Volpe 

General Motors 
Toyota 
Honda 
Ford 
Other Japanese 
Chrysler 
European 
Korean 

21.76 
18.82 
15.53 
13.87 

8.87 
8.53 
6.46 
4.30 

20.76 
18.98 
13.45 
12.05 
7.58 
9.79 
7.59 
5.06 

†Although five household income categories are observed, I use only four in the empirical application. I combine the 
lowest two categories into one for purposes of identification as I find the results for the two categories are very 
similar.  
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Table 1.3: Vehicle attributes, 𝑥𝑗, and vehicle-household attribute interactions, 𝑤𝑛𝑗, included in 

the estimated model 

𝑥𝑗 𝑤𝑛𝑗 

Price 

Horsepower/Curb Weight 

Hybrid 

Curb Weight 

Wagon 

Mid-Large Car 

Performance Car 

Small-Medium Pickup 

Large Pickup 

Small-Medium SUV 

Large SUV 

 

 

 (Price) × (75,000<Income<100,000) 

(Price) × (Income>100,000) 

(Price) × (Income Missing) 

(Prestige) × (Urban) 

 (Prestige)  × (Income>100,000) 

 (Performance Car) × (Income>100,000) 

(Japan) × (Urban) 

 (Van) × (Children under 15) 

(Large SUV) × (Children under 15) 

(Small SUV) × (Children under 15) 

(Korea) × (Rural) 

(Seats≥5) × (Household Size≥4) 

(Mid-Large Car) × (Retired) 

(Prestige) × (Retired) 

 (Import) × (College) 

(Prestige) × (Japan) × (College) 

(Prestige) × (Europe) × (College) 

(Prestige) × (Japan) × (Urban) 

 (Performance Car) × (College) 

Fuel Operating Cost (cents per mile) 

(Fuel Operating Cost) × (College) 

Note: Fuel operating cost is the product of gallons per mile and fuel price (in cents per mile) 
“Korea,” “Japan,” and “Europe” are dummy variables that equal 1 if the vehicle is made in that region and 0 
otherwise. 
“Prestige” is a dummy variable that equals 1 if the vehicle is classified as a “prestige brand” by the American Fleet 
Magazine.  
The following vehicle classes were adopted from the American Fleet Magazine: Mid-Large Car, Performance Car, 
Small-Medium Pickup, Large Pickup, Small-Medium SUV and Large SUV. 
 

I consider three specifications of the BLP model for micro- and macro-level data: a model that 

aggregates to the Make-Model-Fuel type level (BLP with aggregated choices), the BLP with 

McFadden’s method for aggregation, where data is also grouped at the Make-Model-Fuel type 

level but the number of choices and co-variance matrix of attributes within each group are 

utilized in estimation, and the Brownstone and Li, 2014, BLP model for broad choice data.  
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First, I present the results of the standard error corrections for the BLP model with aggregated 

choices in Table 1.4. I focus this discussion on the price and fuel operating cost estimates. 

Results for the full model are listed in Appendix A.4. Table 1.4 shows that the uncorrected 

standard errors from sequential estimation are smaller than the corrected standard errors. These 

findings are consistent with the findings from the Monte Carlo study in Table 1.1. Hence, a 

likely explanation for this is that the former are biased downward. Most corrected standard 

errors are larger by a factor of about 2 to 3. The corrected standard error for fuel operating cost, 

however, is 18 times larger. This is a concern given the importance of this variables in 

constructing estimates of how much households value fuel efficiency improvements.  

Table 1.4: BLP with Aggregated Choices: The sequential and GMM standard errors for select 
parameters. 

Variable 

BLP with Aggregated Choices 

Estimated 
Parameter 

Uncorrected 
Standard 

Error 

Corrected 
Standard 

Error 

Ratio of 
Corrected to 
Uncorrected 

Standard 
Errors 

(Price) × (75,000<Income<100,000) 0.065 0.004 *** 0.014 *** 3.067  
(Price) × (Income>100,000) 0.102 0.004 *** 0.015 *** 3.556  
(Price) × (Income Missing) 0.094 0.005 *** 0.015 *** 3.140  

Fuel Operating Cost (cents per mile) -2.877 0.053 *** 0.953 *** 18.064  
(Fuel Operating Cost) × (College) -0.061 0.009 *** 0.020 *** 2.225  

Price -0.116 0.019 *** 0.026 *** 1.368  
Notes: * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 
1% level. 

 

Table 1.5 presents select point estimates and standard errors, both corrected and uncorrected, 

for the BLP model for broad choice data. Full results are in Appendix A.4. The ratio of corrected 

to uncorrected standard errors display similar behavior as in Table 1.4. Again, the greatest 
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correction occurs for the fuel operating cost variable, and the ratios are larger across the board 

compared to Table 1.4.  

Table 1.5: BLP with Broad Choice Data: Sequential and GMM standard errors for select 
parameters. 

Variable 

BLP Model for Broad Choice Data 

Estimated 
Parameter 

Uncorrected 
Standard 

Error 

Corrected 
Standard 

Error 

Ratio of 
Corrected to 
Uncorrected 

Standard Errors 
(Price) × (75,000<Income<100,000) 0.038 0.006 *** 0.052  9.379  

(Price) × (Income>100,000) 0.123 0.008 *** 0.100  13.343  
(Price) × (Income Missing) 0.079 0.006 *** 0.056  9.383  

Fuel Operating Cost (cents per mile) -0.599 0.048 *** 2.044  42.908  
(Fuel Operating Cost) × (College) -0.057 0.013 *** 0.076  5.792  

Price -0.098 0.008 *** 0.097  12.686  
Notes: * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 
1% level. 

 

Table 1.6 presents the point estimates and corrected standard errors for the price, fuel cost, 

horsepower, and curb weight variables from the BLP model with Aggregated Choices, BLP 

model with McFadden’s method for aggregation, and the BLP for broad choice data.5 These 

variables vary by trim and hence are aggregated in both the BLP model with aggregated choices 

and the BLP Model with McFadden’s method. Recall that the BLP model with McFadden’s 

method controls for aggregation in the {Price × Income} and {Fuel Operating Cost} variables but 

not for the aggregation in variables held constant across households (i.e. price, 

horsepower/curb weight, curb weight.) In the BLP model for broad choice, there is no 

aggregation of vehicle attributes.  

There are interesting comparisons to be made across the three models regarding the significance 

of estimates. Table 1.6 shows that more variables appear statistically significant with 

                                                           
5 For results from the full model specifications, see Appendix A.4. 
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aggregation than without. When using McFadden’s method, only the coefficients on curb 

weight and fuel operating cost are significant at the 1% level. By controlling for aggregation in 

the first stage, all coefficients on price variables and the coefficient on 

Fuel Operating Cost × College lose significance. In the BLP model for broad choice data, all 

variables reported in Table 1.6 lose significance, as is the case for all but two variables in the 

entire specification (see Table A4).  

There are two explanations for why variables are less significant when aggregation is either 

accounted for or avoided altogether. First, by treating the aggregated choice set as if it is the 

exact choice set, the BLP model with aggregated choices ignores the uncertainty from the fact 

that choices are only partially observed, and aggregated vehicle attributes contain measurement 

error. Hence, the model produces smaller standard errors than the two models that do account 

for aggregation. These findings are consistent with comparisons between the “peakedness” of 

the likelihood function of the exact choice model and the broad choice model, presented in 

Brownstone and Li, 2014.  Second, with respect to the BLP model for broad choice data, because 

of the high dimensionality of 𝛿, estimates of these parameters are less precise. The large 

standard errors associated with these estimates inflate the standard errors of the second stage 

coefficients making them less significant. Though the BLP model for broad data allows for more 

observations in the second stage, unfortunately, the gains in precision from these added 

observations are swamped by the lack of precision from the increase in the dimension of 𝛿. 
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Table 1.6: Select estimates across BLP models with various methods for aggregation. 

Variable 

BLP with 
Aggregated Choices 

BLP with McFadden’s 
Method 

BLP for Broad 
Choice Data 

Estimated 
Parameter 

Corrected 
Standard Error 

Estimated 
Parameter 

Corrected 
Standard Error 

Estimated 
Parameter 

Corrected 
Standard 

Error 

(Price) × (75,000<Income<100,000) 0.065 0.014 *** 0.001 0.067  0.038 0.052 
(Price) × (Income>100,000) 0.102 0.015 *** 0.004 0.056  0.123 0.100 
(Price) × (Income Missing) 0.094 0.015 *** 0.011 0.080  0.079 0.056 

Fuel Operating Cost (cents/mile) -2.877 0.953 *** -2.946 0.263 *** -0.599 2.044 
(Fuel Operating Cost) × (College) -0.061 0.020 *** -0.027 0.466  -0.057 0.076 

Price -0.116 0.026 *** -0.064 0.120  -0.098 0.097 
Horsepower / Curb weight 158.582 53.803 *** 144.232 93.200  20.737 111.690 

Curb Weight 7.569 2.511 *** 7.084 1.907 *** 0.002 0.006 
Notes: * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 
1% level. 
 

Given that there are more alternatives in the BLP model for broad choice data and more 

variables in the BLP model with McFadden’s method, I cannot speak of the differences in 

magnitudes of coefficients across the three models. However, comparisons can be made across 

utility independent quantities such as the estimates of willingness to pay for improvements in 

fuel operating costs. 

Table 1.7: Willingness to pay estimates across the three model specifications 

Willingness to pay for a 1 
cent/mile improvement 

in fuel efficiency 
(thousands)† 

Estimated 
Parameter 

Uncorrected 
Standard 

Error 

Corrected 
Standard 

Error‡ 

Ratio of 
Corrected to 
Uncorrected 
Std. Errors 

Implied 
Discount 

Rate 

BLP Model with 
Aggregated Choices 

24.695 4.090 *** 10.128 ** 2.477  -23.675 

BLP Model with 
McFadden’s Method 

46.083 14.663 *** 83.105  5.667  -28.132 

BLP Model for Broad 
Choice Data 

6.123 0.683 *** 22.706  33.234  -10.785 

Note: * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level. 
† willingness to pay for a 1 cent/mile reduction in fuel operating costs for households with no college education and income below 
$75,000 (in thousands of dollars). 
‡ calculated using the delta method:  

𝑉𝑎𝑟(𝑤𝑖𝑙𝑙𝑖𝑛𝑒𝑠𝑠 𝑡𝑜 𝑝𝑎𝑦) =  𝑉𝑎𝑟 (
𝛽𝑓𝑢𝑒𝑙𝑜𝑝 

𝛼𝑝𝑟𝑖𝑐𝑒

) =
𝛽𝑓𝑢𝑒𝑙𝑜𝑝

2

𝛼𝑝𝑟𝑖𝑐𝑒
4 𝜎𝑝𝑟𝑖𝑐𝑒

2 +
1

𝛼𝑝𝑟𝑖𝑐𝑒
2 𝜎𝑓𝑢𝑒𝑙𝑜𝑝

2 −
2𝛽𝑓𝑢𝑒𝑙𝑜𝑝

𝛼𝑝𝑟𝑖𝑐𝑒
3 𝜌𝑓𝑢𝑒𝑙𝑜𝑝,𝑝𝑟𝑖𝑐𝑒𝜎𝑝𝑟𝑖𝑐𝑒𝜎𝑓𝑢𝑒𝑙𝑜𝑝,      

𝜎𝑝𝑟𝑖𝑐𝑒
2 = 𝑣𝑎𝑟(𝛼𝑝𝑟𝑖𝑐𝑒), 𝜎𝑓𝑢𝑒𝑙𝑜𝑝

2 = 𝑣𝑎𝑟 (𝛽𝑓𝑢𝑒𝑙𝑜𝑝), 𝜌𝑓𝑢𝑒𝑙𝑜𝑝,𝑝𝑟𝑖𝑐𝑒 = 𝑐𝑜𝑟𝑟(𝛽𝑓𝑢𝑒𝑙𝑜𝑝, 𝛼𝑝𝑟𝑖𝑐𝑒) 
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Table 1.7 presents the implied willingness to pay estimates for a 1 cent/mile improvement in 

fuel operating cost, in thousands of dollars, for households with no college education and 

incomes less than $75,000. These quantities are constructed using the estimates in Table 1.6. This 

1 cent/mile improvement in fuel cost is a 7.4% improvement over the average fuel operating 

cost of households in the sample. The final column of Table 1.7 provides the implied discount 

rate assuming vehicles are held for 14 years, with an annual mileage of 18,778, assumptions 

used in Greene, 2010. The negative discount rates in this column indicate that across all three 

models, households overvalue future fuel savings compared to present day investments in 

vehicle fuel efficiency. 

The BLP model with McFadden’s method has the largest willingness to pay estimates while the 

BLP model with broad choice data has the smallest estimates, though only the BLP model with 

aggregated choices presents an estimate that is significant at any of the conventional levels. An 

interesting point to draw from Table 1.7 is that the use of uncorrected standard errors leads one 

to believe that all three estimates of willingness to pay are significant, whereas with corrected 

standard errors only one of them (BLP with aggregated choices) is, and only at the 5% level. For 

the BLP model for broad choice data, the difference is driven largely by the fact that using the 

uncorrected standard errors grossly understates the uncertainty in the fuel operating cost 

coefficients. For the BLP model with McFadden’s method, the difference is because the 

uncorrected standard errors understate the uncertainty in the price coefficients. The 

impreciseness of these estimates suggests that when aggregation is accounted for, this dataset 

does not speak loudly enough to provide conclusive evidence on the existence of the energy 

paradox within this model specification.  
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One will also notice from Table 1.6 that the estimates associated with horsepower and curb 

weight vary more drastically across models than estimates associated with other variables. This 

means that many utility invariant quantities formed from these variables such as willingness to 

pay for horsepower and willingness to pay for curb weight will differ across models as is the 

case with vehicle fuel efficiency. This suggests that choice set aggregation also affects the 

estimates associated with attributes other than fuel efficiency. In addition, fuel efficiency, 

horsepower, and curb weight are highly correlated variables. It is likely that the cost of 

aggregation increases in the face of collinearity because aggregation further obfuscates the 

ability to disentangle these competing effects. This is reflected in the instability of the estimates 

of these three variables across the three models.  

The Make/Model/Fuel-type groups contain between one and fifty-five trims, with 47.7% of the 

groups containing 3 trims or less. Thus the assumption that attributes within each broad group 

follow a normal distribution may not hold for all Make-Model groups. This means that the 

estimates from the BLP model with McFadden’s method for aggregation may be less plausible 

in this empirical application. The BLP model with McFadden’s method may perform better if 

choices are aggregated to a higher level (for example, the Make/Class level) such that there are 

many more vehicle trims within each broad group. The distributional assumptions may be 

better approximated in such a setting. 

There are a number of possible reasons why willingness to pay for fuel efficiency is not 

estimated with sufficient precision in the BLP Model for Broad Choice Data to provide 

conclusions about the existence of an energy paradox. Given the larger choice set in this model, 

an even larger number of households is required for asymptotic assumptions to apply. A larger 

household sample may also be required to obtain significant estimates. It is also possible that 
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there is a lack of sufficient variability in vehicle fuel efficiency within this dataset to pin down 

household valuation of this attribute. In addition, vehicle fuel efficiency is highly correlated 

with horsepower and curb weight, making it difficult to disentangle the value households place 

on each of these attributes. Finally, it is possible that the model specification is simply too rich to 

be identified by the current data because of the uncertainty from only broadly observing 

choices. If pared down to a smaller model, it may perform better.  

 

1.7 Conclusion 

In this paper, I examine the implications of choice set aggregation on parameter estimates in 

multinomial choice models, a practice common when household choices are not fully observed 

and when modeling choices at the most detailed level renders the model too large for 

estimation in standard computing environments. I discuss two models that account for choice 

set aggregation. The first is a method for aggregation by McFadden, 1978, that places 

distributional assumptions on the elements within each aggregated alternative and uses the 

higher order moments of the distribution in the utility specification. The second is a model for 

broad choice by Brownstone and Li, 2014, that defines the choice probability of a broad group of 

products as the sum of the probabilities of products within that group, circumventing the need 

for aggregation. Applying these models, and a model that aggregates choices, to vehicle choice 

data reveals that aggregation affects the point estimates of the model. In addition, standard 

errors are smaller when the presence of aggregation is ignored, because the measurement error 

from aggregation does not get accounted for in estimation. 
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Choice set aggregation is studied within a model that employs the innovations from a series of 

Berry, Levinsohn, and Pakes papers. One can incorporate these innovations into choice models 

by estimating the model sequentially. However, standard errors from this estimation procedure 

are inconsistent. I derive consistent standard errors for the model by recasting the model within 

a GMM framework, and find, both in a Monte Carlo study and a vehicle choice application, that 

for all parameters of interest, the GMM standard errors are larger than the inconsistent standard 

errors derived from sequential estimation. For most variables, the GMM standard errors are 

larger by a factor of 1.3 to 5, though the largest correction inflates the standard errors of a 

variable by a factor of 18. 

If these findings on choice set aggregation and inconsistent sequential standard errors extend to 

existing vehicle choice studies that aggregate the choice set, than this may help explain some of 

the variation in existing estimates of households’ valuations of fuel efficiency from choice 

models which have been a source of conflict on the presence of an energy paradox. First, the 

variation in estimates across studies may be driven in part by the practice of choice set 

aggregation. Second, the use of inconsistent standard errors from the sequential estimation 

process may lead researchers to be overconfident in the significance of model estimates. Finally, 

models that aggregate the choice set ignore the measurement error that aggregation induces 

also causing standard errors of their estimates to be too small. Addressing these concerns may 

help increase coherency across studies on how much value households place on fuel efficiency.  

The findings from this paper should also serve as a call to search for better data and 

identification strategies in vehicle choice models so that future research can provide more 

precise estimates on the matter. For example, there is greater variation in vehicle fuel efficiency 

in the present decade than the last because of higher fuel prices, more hybrid vehicle models 
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and tighter fuel efficiency standards. Also, data on used-vehicle purchases will introduce 

attractive variation in vehicle attributes since the mix of vehicle attributes has changed quite 

rapidly in the last decade. Exploiting this variation may provide tighter estimates of household 

valuation for fuel efficiency and a clearer resolution to the energy paradox.  

More generally, these findings send a cautionary message to choice model practitioners on the 

importance of giving due consideration to how choice sets are defined. Aggregating choices 

without accounting for the variation across aggregated alternatives may lead the researcher to 

flawed and invalid conclusions from model estimates. Given the popularity of multinomial 

choice models across a variety of fields, including transportation, industrial organization and 

marketing, such practices may have widespread consequences. This paper brings attention to 

two existing models that provide methods to address aggregation in hope that practitioners will 

adopt these methods in future work.  
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Chapter Two 

 

The Numerical Performance of the BLP Model for Combined 

Micro- and Macro-level Data 

 

2.1. Introduction  

Discrete choice models have become popular in demand estimation because of their ability to 

model rich substitution patterns between large arrays of products while avoiding the curse of 

dimensionality that plagues systems of demand equations. In addition, innovations by Berry, 

Levinsohn and Pakes, 1995, henceforth BLP, that allow discrete choice models to accommodate 

controls for the endogeneity of product attributes have added to the attractiveness of these 

models. Though first developed for settings where only macro-level data are available, the BLP 

model has since been extended to settings where both micro- and macro-level data are 

combined in estimation (BLP,2004, Goolsbee and Petrin, 2004, Train and Winston, 2007). 

Variations of the BLP model have been applied to study a host of empirical questions such as 

the effect of mergers (Nevo, 2000a), welfare gains from new products (Petrin, 2002) and 

measuring market power (Nevo, 2001). 

Estimating the BLP model can be challenging. This is because estimation requires inverting a 

nonlinear system of market share equations. When only macro-level data is available, the most 

common estimation approach involves nesting a contraction mapping algorithm that estimates 
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the market share equations within the parameter search of a Generalized Method of Moments 

(GMM) objective function (Berry, 1994, BLP, 1995). By nesting the algorithm, the dimensionality 

of the objective function is significantly reduced. Using this approach, estimation involves both 

an "outer loop" that searches over the parameters of the GMM objective function, and a nested 

"inner loop" to the contraction mapping algorithm. Henceforth, this method is referred to as the 

nested fixed point (NFP) approach.  

The GMM objective function of the NFP approach is highly non-linear and optimization of this 

function has proven challenging. Numerous studies note concerns with the effectiveness of 

using the NFP approach to obtain reliable estimates of BLP model parameters. One of the 

earliest papers to highlight problems with the NFP approach is Nevo, 2000b where it is noted 

that for certain values of parameters, the objective function can be undefined. He writes that 

“poor starting values, different scaling of variables and the non-linear objective would cause 

this to happen.”  

Dubé et al., 2012, investigate the sensitivity of BLP model estimates to the tightness of 

convergence tolerance levels of the “inner loop” and the “outer loop” in NFP estimation. 

Through a Monte Carlo study, they find that unless both loops are set to very tight convergence 

tolerance levels, errors from the “inner loop” propagate to the “outer loop” causing estimates to 

converge to a common wrong solution that is not even a local minimum. In addition, they also 

test the sensitivity of model estimates to starting points under varying convergence tolerance 

levels. They find that estimates converge 95-100% of the time when convergence tolerance levels 

of both loops are set tight (10−14 for the inner loop and 10−6 for the outer loop), but only 54-76% 

of the time when both loops are set loose (10−4 for the inner loop and 10−2 for the outer loop.)  

In light of these findings, they propose recasting the NFP objective function as a mathematical 
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program with equilibrium constraints (MPEC). This estimation method has better numerical 

properties and, in certain settings, speed advantages over the NFP approach. 

Knittel and Metaxoglu, 2014, study how estimates from the NFP approach vary depending on 

the optimization algorithm used. They estimate the BLP model on two widely used data sets: an 

automobile data set from BLP, 1995, and a breakfast cereal data set from Nevo, 2000b. They 

consider eleven different optimization algorithms, and find that estimates are in fact sensitive to 

the optimization algorithm in use. For example, within the automobile dataset, the own-price 

elasticities for the product with the highest market share ranges from -3.48 to -0.93 with a mean 

of 2.77 and a standard deviation of 0.53. The average change in profits due to a hypothetical 

merger for automobiles ranges from $485 million to $2548 million with a mean of $787 million 

and a standard deviation of $316 million. The authors also find that local minima with 

comparable objective function values can have very large differences in economic implications. 

In a hypothetical merger exercise, two local minima in the automobile data set with comparable 

objective function values reported changes in profits and consumer welfare that differ from the 

true values by a factor of 2 .5 and 2 respectively.  

Skrainka, 2011, studies the small sample properties of the BLP model for macro data. He finds 

that for sample sizes that are commonly observed in empirical work, parameter estimates and 

elasticities from the BLP model are considerably biased, and even when very large empirical 

settings are considered (50 markets and 100 products), results still show finite sample bias. He 

hypothesizes that part of this small sample bias is related to the fact that GMM estimators have 

poor finite sample properties. He also shows that the bias is a function of the quality of 

instruments used. The most commonly applied instruments from BLP, 1995, cause larger biases 

than instruments derived from supply equations.  
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While the numerical performance of the NFP approach for BLP models for macro-level data has 

received much attention, the same cannot be said of estimation methods for BLP models that 

combine micro- and macro-level data in estimation. In this paper, I help fill this gap by 

investigating the numerical performance of the maximum likelihood (ML) approach to 

estimating the BLP model that combines micro- and macro-level data. The ML approach was 

first developed in Goolsbee and Petrin, 2004 but also received early attention in Chintagunta 

and Dubé, 2005, and Train and Winston, 2007. I test the sensitivity of estimates from the ML 

approach to different starting values, tightness of convergence criteria and minimization using 

two different optimization routines. 

The BLP model for combined micro- and macro-level data is a multinomial logit model for 

micro data with two departures. The first is the imposition of a constraint that matches 

predicted shares from the model to macro-level market share data rather than in-sample shares.  

The second is the nesting of an instrumental variables framework within the choice model to 

account for the endogeneity of product attributes. The ML approach is a sequential estimation 

procedure. In the first stage, the parameters of the logit choice model are estimated while 

imposing the macro-level market share constraint. The second stage involves estimating an 

instrumental variables regression to account for the endogeneity of product characteristics. 

When the model is just identified, the ML approach is equivalent to estimating a Generalized 

Method of Moments (GMM) model where the first order condition of the logit likelihood 

function is the first moment function of the model, the market share constraint is the second, 

while the instrumental variables framework forms the third.  

Despite being a GMM estimator, the ML approach is named as such to differentiate it from 

another GMM estimator for the same model developed in BLP, 2004, that incorporates 
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consumer demographics into the model through a moment that captures the covariance of 

product attributes and household attributes, rather than through a likelihood function.  

One advantage of micro-level data is that it allows the researcher to observe consumers’ 

demographics and their product choices, rather than just population market shares and product 

characteristics. The presence of such data allows the researcher to directly model the effect of 

consumer demographics on product choices without depending as heavily on a random 

coefficient specification to account for consumer heterogeneity. Thus, a priori, one may expect 

models with micro-level data to have better numerical properties than models that rely solely 

on macro-level data. However, the ML approach still uses some similar estimation techniques 

as the NFP approach, such as the contraction mapping algorithm, hence may be susceptible to 

the same estimation concerns that plague the NFP approach highlighted here.  

I find that the ML approach to estimating the BLP model for combined micro- and macro-level 

data is insensitive to the concerns of starting values, tightness of convergence criteria and choice 

of minimization routine that have been shown to plague the BLP model for macro data. The 

finding that the BLP model estimates well even with loose convergence criteria suggests that 

researchers need not incur the large time costs associated with tight convergence tolerances 

because reliable estimates of model parameters can be obtained with looser tolerances. More 

broadly, the findings in this paper suggest that there are significant computational advantages 

from having micro-level data on consumer choice as such data allows econometricians to 

estimate demand models with objective functions that are more numerically stable.  

An important distinction should be made between existing research on the numerical properties 

of the NFP approach and the work contained in this paper. All existing work on this topic that I 
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am aware of include a random coefficient (i.e. mixed logit) utility specification in the BLP 

model. Here, I only consider fixed coefficients. The random coefficient framework could make 

the numerical properties of the models studied here worse because it introduces the burden of 

simulation methods in estimation which often adds noise to the estimation process. 

This paper is structured as follows. In Section 2, I present the random utility framework that 

underlies BLP models. In Section 3, I present the methods for estimating the BLP model when 

both micro- and macro-level data are available and when only macro data is available. In 

Section 4, I present a Monte Carlo study that tests the sensitivity of model estimates to the 

various numerical concerns. Section 5 concludes.   

 

2.2. The BLP Model 

Let 𝑛 = 1,… , 𝑁   index consumers who can either purchase any of 𝐽 products, 𝑗 = 1,… , 𝐽 in the 

market or not purchase any product, characterized by selecting the "outside good", 𝑗 = 0. The 

indirect utility of consumer 𝑛 from the choice of product 𝑗, 𝑈𝑛𝑗 is assumed to follow the 

following linear specification6: 

𝑈𝑛𝑗 = 𝛿𝑗 + 𝑤𝑛𝑗′𝛽 + 𝜖𝑛𝑗,                                                 

𝑛 = 1,… , 𝑁,     𝑗 = 0, 1, … , 𝐽 , 

where 𝛿𝑗 is the "average" utility of product 𝑗, that is, the portion of utility from product 𝑗 that is 

the same for all consumers. 𝑤𝑛𝑗 is a (𝐾1 × 1) vector of consumer characteristics interacted with 

product characteristics, 𝛽 is its (𝐾1 × 1) vector of associated parameters, and 𝜖𝑛𝑗 is an error term 

                                                           
6 As mentioned in the introduction, BLP models most commonly assume a random coefficient framework, that is 

𝑈𝑛𝑗 = 𝛿𝑗 + 𝑤𝑛𝑗
′ 𝛽𝑛 + 𝜖𝑛𝑗  where 𝛽𝑛~𝑁(𝛽, Ω). In this paper,𝛽 is assumed to be fixed. 
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with mean zero that captures all remaining elements of utility provided by product 𝑗 to 

consumer 𝑛. For the purpose of identification, average utility of the "outside good," 𝛿0, is 

normalized to zero.  Consumers select the product that yields them the highest utility: 

𝑦𝑛𝑗 = {
1   
0   

 𝑖𝑓 𝑈𝑛𝑗 > 𝑈𝑛𝑖   ∀ 𝑖 ≠ 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Assume that  ϵnj follows the type I extreme value distribution. Then, the probability that 

consumer 𝑛 chooses product 𝑗 is given by the following logit probability: 

𝑃𝑛𝑗 =
𝑒𝑥𝑝(𝛿𝑗 + 𝑤𝑛𝑗′𝛽)

∑ 𝑒𝑥𝑝(𝛿𝑘 + 𝑤𝑛𝑘′𝛽)𝑘
 . 

In the conditional logit model, 𝛿 = {𝛿1, … , 𝛿𝐽} and 𝛽, can be estimated by maximizing the 

following log-likelihood function: 

𝐿(𝑦; 𝛿, 𝛽) = ∑ ∑ 𝑦𝑛𝑗𝑗 𝑙𝑜𝑔  (𝑃𝑛𝑗)𝑛 .  

An interesting feature of maximum likelihood (ML) estimation of the conditional logit is how 𝛿 

is estimated. As with any ML estimator, set the first derivative of the log-likelihood function 

with respect to 𝛿 equal to zero: 

𝜕𝐿

𝜕𝛿𝑗
= ∑ ∑ (𝑦𝑛𝑖𝑖 − 𝑃𝑛𝑖) 𝑑𝑖

𝑗
𝑛 = 0,       for 𝑗 = 1,… , 𝐽, 

𝑤ℎ𝑒𝑟𝑒 𝑑𝑖
𝑗
= {

1
0

       𝑖𝑓 𝑖 = 𝑗

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Rearranging and dividing both sides by 𝑁 yields: 

1

𝑁
∑ 𝑦𝑛𝑗𝑛  =

1

𝑁
∑ 𝑃𝑛𝑗𝑛  ,      for 𝑗 = 1,… , 𝐽. 

(2.1) 
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As the equation describes, the average utilities are estimated such that the predicted shares 

from the model, 𝑆𝑗̂ =
1

𝑁
∑ 𝑃𝑛𝑗𝑛 , match the in-sample shares, that is, the share of consumers in the 

sample who choose each of the products.  (Train, 2009).  

A key innovation of BLP, 2004, is that 𝛿 is estimated such that the predicted shares match 

macro-level market shares rather than in-sample shares. For 𝑗 = 1,… , 𝐽, 𝛿𝑗 is chosen such that  

𝐴𝑗 = 𝑆𝑗̂  

where 𝐴𝑗 is the macro-level market share for product 𝑗. Berry, 1994, shows that for any value of 

𝛽, a unique 𝛿 exists such that the predicted shares match these macro-level market shares.  

Matching predicted shares to macro-level market shares rather than in-sample shares improves 

estimation in the event that there is high sampling variance and hence, unrepresentative sample 

shares. In addition, by using macro-level market shares, average utilities can be estimated for 

products even if the in-sample shares for these products are zero.   

Finally, it is assumed that the average utilities are a linear function of product attributes: 

𝛿𝑗 = 𝑥𝑗′𝛼1 + 𝑝𝑗′𝛼2 + 𝜉1𝑗, 

where  𝑥𝑗 is a (𝐾2 × 1) vector of exogenous product attributes, 𝛼1 is a (𝐾2 × 1) vector of 

associated parameters, 𝑝𝑗 is a (𝐾3 × 1) vector of product attributes that are endogenous with 

respect to average utility,  𝛼2 is a (𝐾3 × 1) vector of associated parameters, and  𝜉1𝑗 captures the 

average utility associated with attributes unobserved to the econometrician. Because 𝑝𝑗 is 

endogenous with respect to average utility, it is correlated with unobserved attributes contained 
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in 𝜉1𝑗, such that 𝐸(𝜉1𝑗|𝑝𝑗) ≠ 0. There exists a set of instruments, 𝑧𝑗, that are correlated with 𝑝𝑗 

and uncorrelated with 𝜉1𝑗: 

𝑝𝑗 = 𝑧𝑗′𝛾 + 𝜉2𝑗 

𝑤ℎ𝑒𝑟𝑒 𝐸(𝜉1𝑗|𝑧𝑗) = 0. 

For simplicity, I assume here that 𝑧𝑗 is a (𝐾3 × 1) vector, (and therefore, 𝛾 is a 𝐾3 × 1 vector of 

associated parameters), that is, there are as many instruments as there are endogenous 

regressors, making the model just-identified. Although over identification does not 

tremendously complicate estimation, with a just-identified model, optimal GMM methods are 

not necessary, which simplifies estimation. 

In summary, the BLP model consists of the following equations: 

                                                                          𝑦𝑛𝑗 = {
1   
0   

 𝑖𝑓 𝑈𝑛𝑗 > 𝑈𝑛𝑖   ∀ 𝑖 ≠ 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

                                                                          𝑈𝑛𝑗 = 𝛿𝑗 + wnj′β + ϵnj,    ϵnj ∼ type I extreme value     

                                                                            𝐴𝑗 =
1

𝑁
∑ 𝑃𝑛𝑗𝑛   

                                                                             𝛿𝑗 = 𝑥𝑗′𝛼1 + 𝑝𝑗′𝛼2 + 𝜉1𝑗, 

                                                                             𝑝𝑗 = 𝑧𝑗′𝛾 + 𝜉2𝑗 

 

2.3. Estimation Procedures 

In this section, I detail three estimation methods for the BLP model. In the first subsection, I 

detail the ML approach which is a sequential estimation procedure to estimating the BLP model 

on a combination of micro- and macro-level data. In the second and third subsections, I describe 
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the NFP and MPEC approaches to estimating the BLP model. Both methods are used when the 

model is applied solely to macro-level data. These approaches are equivalent to each other 

though not equivalent to the ML approach. In fact, they should be less efficient than the ML 

approach since they use less data in estimation. Finally, in the fourth subsection, I detail a 

Newton-Raphson augmentation to the contraction mapping algorithm from Li, 2012 that I 

implement to decrease the algorithm’s time to convergence.  

 

2.3.1. The Maximum Likelihood Approach 

In the presence of both micro-level data on consumer demographics and product choice, and 

macro-level data on product market shares, BLP, 2004, show that the model can be estimated 

sequentially. The estimation approach detailed here is similar to BLP, 2004. The key difference is 

that BLP, 2004, incorporates household information into their model by constructing a moment 

that captures the covariance of product attributes and household attributes. The model here 

incorporates household information through a logit likelihood function, as is done in Train and 

Winston, 2007. 

Sequential estimation can be conducted in two stages. The first stage involves estimating the 

average utilities, 𝛿, and the consumer-alternative interaction parameters, 𝛽. The first stage 

estimates of 𝛿 are then used in the second stage estimation of the parameters associated with the 

alternative attributes, 𝛼 = [𝛼1 𝛼2]. 

Since 𝛿 and 𝛽 are dependent on each other, they are estimated through an iterative process. 

Conditional on some initial value of 𝛿, maximize equation (2.1) with respect to 𝛽 to obtain 

conditional maximum likelihood estimates, 𝛽̂. Conditional on 𝛽̂, 𝛿 is then estimated using the 
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contraction-mapping algorithm developed in BLP, 1995. This algorithm is itself an iterative 

process which yields the estimate, 𝛿, when the following equation is iterated on until 

convergence:  

𝛿𝑗,𝑡+1 = 𝛿𝑗,𝑡 + ln(𝐴𝑗) − ln ( 𝑆𝑗̂),   ∀ 𝑗 = 1,… , 𝐽 

The contraction mapping algorithm enforces the constraint that the predicted shares equal the 

macro market shares. With these new estimates, 𝛿,̂ the maximum likelihood process can be 

estimated again to update 𝛽̂. The maximum likelihood and contraction mapping processes are 

repeated iteratively until convergence. 

The second stage of the sequential process estimates the parameters, 𝛼, associated with product 

attributes, {𝑝𝑗, 𝑥𝑗}.  To do this, two stage least squares (2SLS) estimation is used, substituting the 

converged values, 𝛿,̂ from the first stage, for the true values of the average utilities, 𝛿.  The 2SLS 

estimates are given by the familiar instrumental variables solution: 

𝛼̂ = (𝑋̃′𝑍(𝑍′𝑍)−1𝑍′𝑋̃)
−1

𝑋̃′𝑍(𝑍′𝑍)−1𝑍′𝛿̂ 

where 𝑋̃ = [𝑋  𝑃]. 

To obtain estimates of the standard errors for 𝛿, 𝛽̂ and 𝛼̂, recast each sequence of the estimation 

process as moments within a GMM framework. The GMM analogue to the sequential process 

just described involves three sample moments, one for each of the vectors of parameters 𝛿, 𝛽 

and 𝛼. The first moment is the first derivative of the logit log-likelihood function with respect to 

𝛽: 

(2.2) 
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𝐺1(𝛽, 𝛿) =
1

𝑁
∑ H1n(

n
β, δ). 

                                                    =
1

𝑁
∑ ∑ ynj(wnj − ∑ Pniwni) 

ijn
. 

The second moment, that identifies 𝛿, constrains the predicted shares of the alternatives in the 

model to match the macro market shares: 

𝐺2(𝛽, 𝛿) =
1

𝑁
∑ 𝐻2𝑛(𝛽, 𝛿) 

𝑛
 

                    =
1

𝑁
∑ ∑ 𝐴 −

𝑗𝑛
𝑃𝑛. 

where 𝐴 = [𝐴1 𝐴2 …𝐴𝐽]′ and 𝑃𝑛 = [𝑃𝑛1 𝑃𝑛2 …𝑃𝑛𝐽]′ 

The third moment estimates 𝛼̂. This 2SLS moment condition stipulates that in expectation, the 

instruments, 𝑧𝑗, are uncorrelated with the error term: 

𝐺3(𝛿, 𝛼) =
1

𝐽
∑ 𝐻3𝑗(𝛿, 𝛼)

𝑗
 

                         =
1

𝐽
∑ 𝑧𝑗(𝛿 − 𝑥𝑗𝛼)

𝑗
. 

The sequential ML approach is equivalent to minimizing the objective function 𝑄(𝜃) = 𝐺′𝑊0𝐺 

where 𝐺 = [𝐺1 𝐺2 𝐺3]
′ and 𝑊0 is a weight matrix of appropriate size, when the model is just-

identified because it satisfies the same estimation conditions. 

The variance of this GMM estimator, 𝜃𝐺𝑀𝑀 is as follows: 

(2.3) 
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𝑉𝑎𝑟(𝜃𝐺𝑀𝑀) = (𝑀0
′𝑊0𝑀0)

−1(𝑀0
′𝑊0𝑆0𝑊0𝑀0)(𝑀0

′𝑊0𝑀0)
−1, 

where 

𝑀0 =

[
 
 
 
 
 
 

1

𝑁

𝜕2𝐿

𝜕𝛽2

1

𝑁

𝜕2𝐿

𝜕𝛽𝜕𝛿
0𝐾1×𝐾2

1

𝑁
∑ −

𝜕𝑃𝑛𝑗

𝜕𝛽𝑛

1

𝑁
∑ −

𝜕𝑃𝑛𝑗

𝜕𝛿𝑛
0(𝐽−1)×𝐾2

0𝐾2×𝐾1
 

1

√𝑁𝐽
∑ 𝑧𝑗′

𝑗

1

𝐽
∑ −𝑧𝑗′

𝑗
𝑥𝑗

]
 
 
 
 
 
 

 

𝑆0 = 

[
 
 
 
 
 

1

𝑁
∑ 𝐻1𝑛𝐻1𝑛′𝑛

1

𝑁
∑ 𝐻1𝑛𝐻2𝑛′𝑛

𝟏

√𝑵𝑱
∑ ∑ 𝐻1𝑛𝐻3𝑗′𝑗𝑛

1

𝑁
∑ 𝐻2𝑛𝐻1𝑛′𝑛

1

𝑁
∑ 𝐻2𝑛𝐻2𝑛′𝑛

𝟏

√𝑵𝑱
∑ ∑ 𝐻2𝑛𝐻3𝑗𝑗𝑛 ′

𝟏

√𝑵𝑱
∑ ∑ 𝐻3𝑗𝐻1𝑛′𝑗𝑛

𝟏

√𝑵𝑱
∑ ∑ 𝐻3𝑗𝐻2𝑛𝑗𝑛 ′

1

𝐽
∑ 𝐻3𝑗𝐻3𝑗′𝑗 ]

 
 
 
 
 

. 

Since the current model is just-identified, it is efficient to set 𝑊0 equal to the identity matrix.  

2.3.2 The Nested Fixed Point Approach 

When the econometrician possesses only macro-level data, then he does not observe the 

products individual consumers purchase or the characteristics of the consumers that makes the 

purchase. However, he does observe product market shares at the aggregate level, 𝐴𝑗, product 

attributes, {𝑥𝑗, 𝑝𝑗𝑧𝑗} and possibly also the distribution of consumer characteristics in the 

population such as income and education. In the absence of micro data, the most common 

approach to estimating the model is the nested fixed point (NFP) approach.   
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The NFP method to estimating the BLP model, involves concentrating 𝛿 out of the parameter 

search so that optimization is restricted to 𝛽 and 𝛼. This is done by nesting the contraction 

mapping algorithm within the 2SLS moment condition such that equation (2.3) becomes: 

𝐺3(𝛽, 𝛼) =
1

𝐽
∑ 𝐻3𝑗(𝛿(𝛽), 𝛼)

𝑗
 

                         =
1

𝐽
∑ 𝑧𝑗(𝛿(𝛽) − 𝑥𝑗𝛼)

𝑗
. 

For each value of 𝛽 and 𝛼, the contraction mapping algorithm is used to estimate 𝛿. These 

estimates of 𝛿 are then used to evaluate 𝐺3(𝛽, 𝛼). By doing this, the first and second moments 

are no longer explicitly involved in estimation. The second moment is made binding through 

the contraction mapping algorithm while the first moment enters implicitly, through the 

calculation of the logit choice probabilities in the contraction mapping algorithm.  

When consumer characteristics are unobserved, as is often the case in macro data settings, one 

can account for consumer heterogeneity by sampling consumer attributes like income and 

education repeatedly from the known distribution of consumer characteristics, then averaging 

the choice probabilities across samples, that is: 

𝑃𝑗 =
1

𝑅
∑

exp(δj + 𝑤𝑗(𝑟)𝛽)

∑ exp (𝛿𝑘 + 𝑤𝑘(𝑟)𝛽)𝑘

𝑅

𝑟=1

 

When the model is over-identified as is typically the case in empirical work, 𝛼 can also be 

concentrated out of the objective function by expressing it as in equation (2.2).  The IV moment 

then becomes:  
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𝐺3(𝛽) =
1

𝐽
∑ 𝐻3𝑗(𝛿(𝛽), 𝛼(𝛿(𝛽)))

𝑗
 

                   =
1

𝐽
∑ 𝑧𝑗(𝛿(𝛽) − 𝑥𝑗𝛼(𝛿(𝛽)))

𝑗
 

and the search is conducted solely over 𝛽. The attractiveness of the NFP method is that it 

reduces a (𝐾1 + 𝐾2 + 𝐽) -dimensional problem to one with only 𝐾1 parameters.  

The NFP method should yield the same model estimates as the ML approach, although the NFP 

method makes use of macro-level data only, while the ML approach incorporates micro data as 

well. Hence one would expect the NFP method to be less efficient than the ML approach. 

 

2.3.3 Mathematical Programming with Equilibrium Constraints 

More recently, Dubé et al. (2012) has propose an alternative estimation procedure to the NFP 

method. They recast the NFP GMM objective function as a mathematical program with 

equilibrium constraints (MPEC). This constrained optimization formula is  

min
𝛼,𝛽

1

𝐽
∑ 𝑧𝑗(𝛿(𝛽) − 𝑥𝑗𝛼)

𝑗
 

subject to  𝐴 =
1

𝑁
∑ 𝑃𝑛

𝑛
 

MPEC removes the need for the contraction mapping algorithm and has a speed advantage, 

because the iterative nature of the contraction mapping algorithm can slow down estimation 

significantly. The speed advantage of MPEC holds when the econometrician observes many 

markets and the number of products considered is not too large (<500 products). In addition, 

Dubé et al.,2012 show that MPEC is much more numerically stable than the NFP approach. 

MPEC has become a popular alternative to the NFP approach. Recent papers that have 
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employed this approach include Skrainka, 2011, Gillen et al, 2014, and Gordon and Hartmann, 

2013.   

2.3.4 Speeding up the Contraction Mapping Algorithm 

As previously mentioned, the contraction-mapping algorithm can incur a high time cost 

because it can take many iterations to reach convergence, especially when tight convergence 

criteria are used. To speed up the contraction-mapping algorithm in the Monte Carlo study 

here, I implement a simple modification using an analytic Newton-Raphson algorithm (Li, 

2012). This modification produces a 280-fold improvement in number of iterations over the 

unmodified contraction mapping algorithm, and a six-fold improvement in estimation time. 

The modification is as follows: 

𝛿𝑡+1 = 𝛿𝑡 + H−1[ln(𝑀𝑗) − ln ( 𝑆̂)] 

where H is the matrix of first order partial derivatives of [ln(𝑀𝑗) − ln ( 𝑆̂)], which can be shown 

to equal 

 𝐻 =

[
 
 
 
 
 
 
 1 −

∑ 𝑃𝑛1
2

𝑛

∑ 𝑃𝑛1 𝑛
−

∑ 𝑃𝑛1𝑃𝑛2𝑛

∑ 𝑃𝑛1𝑛
… −

∑ 𝑃𝑛1𝑃𝑛𝐽𝑛

∑ 𝑃𝑛1𝑛

−
∑ 𝑃𝑛2𝑃𝑛1𝑛

∑ 𝑃𝑛2𝑛
 1 −

∑ 𝑃𝑛2
2

𝑛

∑ 𝑃𝑛2𝑛
… −

∑ 𝑃𝑛2𝑃𝑛𝐽𝑛

∑ 𝑃𝑛2𝑛

⋮ ⋮ ⋱ ⋮

−
∑ 𝑃𝑛𝐽𝑃𝑛1𝑛

∑ 𝑃𝑛𝐽𝑛
−

∑ 𝑃𝑛𝐽𝑃𝑛2𝑛

∑ 𝑃𝑛𝐽𝑛
… 1 −

∑ 𝑃𝑛𝐽
2

𝑛

∑ 𝑃𝑛𝐽𝑛 ]
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2.4. A Monte Carlo Study: Starting Values and Convergence Criteria 

To compare the sensitivity of the ML algorithms to different starting values, convergence 

criteria and optimization routines, I conduct a Monte Carlo study conducted as follows.  

I generate a single data set from the following model: 

                                                                          𝑦𝑛𝑗 = {
1   
0   

 𝑖𝑓 𝑈𝑛𝑗 > 𝑈𝑛𝑖   ∀ 𝑖 ≠ 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

                                                                          𝑈𝑛𝑗 = 𝛿𝑗 + 𝑤𝑚𝑗1𝛽1 + 𝑤𝑚𝑗2𝛽2 + 𝜖𝑛𝑗,    𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ 𝑚 

                                                                             𝛿𝑗 = 𝛼0 + 𝑥𝑗1𝛼11+𝑥𝑗2𝛼12 + 𝑝𝑗𝛼2 + 𝜉1𝑗, 

                                                                             𝑝𝑗 = 𝑧𝑗𝛾 + 𝜉2𝑗 

(𝜉1𝑗, 𝜉2𝑗)~𝑁(02, Ω),   Ω = [
1 0.5

0.5 1
]. 

where 

𝐽 = 30 

𝑁𝑝𝑜𝑝 = 1,000,000 

𝑥𝑗1 is a 𝐽 × 1 vector of binary values, drawn from a Bernoulli distribution with success 

probability of 0.5, 

𝑥𝑗2 is a 𝐽 × 1 vector of continuous values drawn from a standard normal distribution bounded 

between −2 and 2, 

𝑣𝑚1 and  𝑣𝑚2 are  𝑁𝑝𝑜𝑝 × 1 vectors of continuous values drawn from a standard normal 

distribution bounded between −2 and 2,  

𝑤𝑚𝑗1 is an 𝑁𝑝𝑜𝑝𝐽 × 1vector of interactions between 𝑣𝑚1 and 𝑥𝑗1 , 
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𝑤𝑚𝑗2 is an 𝑁𝑝𝑜𝑝𝐽 × 1vector of interactions between 𝑣𝑚2 and 𝑥𝑗2 , and  

𝑧𝑗 is a 𝐽 × 1 vector of continuous values drawn from a standard normal distribution bounded 

between −2 and 2. 

Finally,  

𝛽1 = 0.8,   𝛽2 = −0.7, 𝛼0 =  0, 𝛼11 = −.5, 𝛼12 = 1, 𝛼2 = −0.5, and  𝛾 = 1.3. 

I use the choices generated from this dataset to create macro-level market shares, then randomly 

select a subsample of consumers, 𝑁 = 20,000, from 𝑁𝑝𝑜𝑝 to serve as the Monte Carlo sample.  

I generate 100 different sets of starting values and estimate the model 100 times using a different 

set of starting values each time. I provide the analytic gradient in estimation and use the 

KNITRO minimization package in MATLAB (Byrd, Hribar, and Nocedal, 1999; Byrd, Nocedal 

and Waltz, 1999) to conduct the parameter search. To confirm that the gradients were 

programmed correctly, they are checked against their numerical equivalents, and are found to 

always be equal to the ninth or tenth decimal. KNITRO is the optimization package used in 

Dubé et al., 2012 and is also a package considered in Knittel and Metaxoglou, 2014. It has 

quickly become the choice optimization routine for estimation of BLP models.  

As in Dubé et al., 2012, I conduct the Monte Carlo study considering various convergence 

tolerance levels.  For the ML algorithm, three convergence criteria have to be set, one each on 

the contraction mapping algorithm and the likelihood function, and an "outer" loop that iterates 

between the two. I consider a "tight" algorithm, where the contraction mapping tolerance is 

10−14 while both the likelihood tolerance and outer loop tolerance are 10−6, and a "loose" 
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algorithm where the contraction mapping tolerance is 10−4 and the likelihood and outer loop 

tolerances are 10−2.  

In addition, I also run the Monte Carlo study using the NFP approach on quasi-macro data. In 

this setting, I estimate the model using the same simulated data as used in the Monte Carlo 

study for the ML algorithms, but ignoring the data on consumer choices, 𝑦𝑛𝑗. This assumes the 

case where the researcher observes individual consumer characteristics but does not observe 

consumers’ choices from the product space. This is in contrast to the more common macro-level 

data scenario where the researcher only knows the distribution of consumer characteristics 

within the population and has to sample from this distribution to simulate consumer 

characteristics. 

For the NFP approach, I consider a "tight" algorithm where the inner loop tolerance is set at 

10−14 and the outer loop tolerance is set at 10−6, a "loose-both" algorithm where the inner loop 

tolerance is 10−4 and the outer loop tolerance is 10−2 and a "loose-inner" algorithm where the 

inner loop tolerance is 10−4 and the outer loop tolerance is 10−6. The results from the Monte 

Carlo runs on the NFP and ML approaches are displayed in Table 2.1. 
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Table 2.1: Three NFP and two ML implementations: Varying starting values for one generated 
data set 

 

The second row in Table 2.1 shows the fraction of runs that converge to a local minimum. The 

three NFP routines converge to a minimum about 90% of the time. The routines converge to a 

saddle point in all other runs. Both ML routines always converge to a local minimum.  The third 

row of Table 2.1 shows the mean estimates of 𝛽1 and 𝛼1across the 100 Monte Carlo runs while 

the fourth row shows the empirical standard deviation of the estimates across the 100 Monte 

Carlo runs. Rows three and four show that for the NFP approach, the tightness of the tolerance 

levels matter for the estimates of 𝛼1. The estimates of 𝛼1 are more sensitive to starting values 

under “NFP loose both” and “NFP loose-inner”. Of these three methods, "NFP tight" presents 

the least variable estimates that are also, on average, closest to the truth. Comparatively, even 

when loose tolerances are used for the ML algorithm, estimates are much closer to the truth, 

with small standard deviations across the Monte Carlo runs.  

The fifth row shows the lowest objective function value attained across all 100 runs. The NFP 

routines achieve smaller "lowest values" than the ML routines even though the NFP routine 

utilizes less data. This is because the NFP routine has fewer convergence criteria. The NFP 

 NFP 
loose 
both 

NFP 
loose-
inner 

NFP 
tight 

ML 
loose 

ML 
tight 

Truth 

Fraction that converge 
to a minimum 

0.89 0.89 0.88 1.00 1.00  

Mean Estimate 
𝛽1 
𝛼1 

 
0.4660 
0.3921 

 
0.4660 
0.1926 

 
0.4660 
0.4103 

 
0.7028 
0.4252 

 
0.7028 
0.4252 

 
0.8000 
0.5000 

Std. Dev. of Estimate 
𝛽1 
𝛼1 

 
2.1462 
0.1127 

 
2.1462 
0.0975 

 
2.1462 
0.0677 

 
0.63 X 10-4 

0.12 X 10-6 

 
0.17 X 10-7 

0.31 X 10-8 

 

Lowest objective 
function 

1.7 X 10-31 3.2 X 10-31 2.0 X 10-30 9.8 X 10-11 2.4 X 10-17  

Average computation 
time 

4.77 4.88 17.54 3.62 79.69  
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routine nests one algorithm within the other, thus only requires two convergence criteria. The 

ML routine iterates between algorithms and thus requires three convergence criteria. This extra 

loop in the ML routines causes a loss in precision compared to the NFP routines. Nevertheless, 

the objective function of the ML method is less sensitive to starting values, and finds the 

minimum more often than the NFP approach.  

Finally, the sixth row shows average computation time across the Monte Carlo runs. There is a 

clear trade-off between computation time and precision. The "ML tight" routine is much slower 

than the other four estimation routines, and though the variance in estimates of 𝛼 and 𝛽 are 

smaller under “ML tight,” they are already relatively precise when using “ML loose” 

suggesting that the gains from using tighter convergence tolerances are small. This is in contrast 

to the findings of Dubé et al., 2012 who show that for the NFP approach, it is crucial to use tight 

convergence tolerances to obtain consistent model estimates. 

I also study the sensitivity of model estimates to optimization algorithms. I re-run the Monte 

Carlo study in Table 2.1 using the “fminunc” search routine provided by MATLAB. I provide 

the routine with analytic first and second derivatives for minimization. This routine uses a 

trust-region method to obtaining the solution to the optimization problem. Interestingly, when 

using “fminunc” rather than the KNITRO for optimization, the results in Table 2.1 remain 

unchanged. This result is promising for the ML approach as it shows that the approach is 

insensitive to starting values and convergence tolerance levels under either optimization 

routine. However, for the NFP approach, this finding is inconsistent with that of Knittel and 

Metagoxlu, 2014 who find that the choice of optimization package affects the point estimates 

that are yielded as the solution. In addition, Dubé et al., 2012 also note that the “fminunc” solver 

often fails to converge to a local minimum when minimizing the NFP objective function.   
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I conjecture that what is driving the poor results from the NFP approaches in Table 2.1 is not the 

poor numerical properties of the NFP objective function, but rather, a lack of model 

identification from having only a single cross-section of data. This explanation also gains 

support from two other facts. First, I find that the numerical properties of the NFP approach do 

not improve when I increase the number of consumers, 𝑁,  and choices, J, in the generated data 

set. Asymptotic theory on the BLP model (Berry et al, 2004b) suggests that this should be the 

case, though evidence from Skrainka, 2011, suggests that very large increases are required 

before asymptotic behavior becomes evident. Second, the results in Table 2.1 for the NFP 

approach are much worse than the findings reported in Dubé et al., 2012 who run a similar 

study using a mixed logit model. Dubé et. al, 2012 allow for multiple cross sections of data, 

which is probably necessary for the NFP approach to estimate well. Extending this Monte Carlo 

study to a panel data setting may yield the NFP approach more promising results.  

 

2.5. Conclusion 

Recent studies have cast doubt on the estimation properties of the Nested Fixed Point (NFP) 

approach typically used to estimate the BLP model for macro-level data. Dubé et. al, 2012 

demonstrate that the method lacks robustness to starting values and tightness of convergence 

criteria. Knittel and Mexagolu, 2014 show that the estimates obtained using the NFP approach is 

sensitive to the choice of optimization routine for minimization.  In light of these findings, in 

this paper, I study whether the concerns of starting values, tightness of convergence criteria and 

choice of optimization algorithms also apply to the maximum likelihood (ML) approach to 

estimating the BLP model for combined micro- and macro-level data. 
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The Monte Carlo study conducted in this paper yields positive results regarding the properties 

of the ML approach to estimating this model. The ML approach is robust to starting values and 

provides consistent estimates even when loose convergence criteria are used. The ML approach 

is also insensitive to the KNITRO optimization routine and the “fminunc” optimization routine 

in MATLAB. The insensitivity to the ML approach to the tightness of convergence criteria mean 

that researchers can obtain consistent parameter estimates without incurring the large time 

costs associated with tight convergence tolerances.  

More broadly, the findings in this paper suggest that there is great value in micro-level choice 

datasets. One solution to the numerous challenges faced when trying to obtain reliable 

estimates from macro-level data choice models is to supplement macro-level datasets with 

micro-level data on consumer demographics and product choice. Though obtaining micro-level 

data is often more expensive, such datasets circumvent numerous estimation challenges that 

plague BLP models that rely solely on macro-level data. In addition, this study shows that with 

micro-level data, one may obtain consistent estimates of model parameters from just a single 

cross section of data. Evidence here and in other papers (Skrainka, 2011) suggest that with 

macro data, it is likely that one needs many cross sections for the model to estimate well.  

Researchers and policymakers should take these considerations into account when deciding the 

amount of resources they want to allocate to data collection.  
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Chapter 3 

 

Lights, Camera, Legal Action! The Effectiveness of Red Light 

Cameras on Collisions in Los Angeles 

 

3.1 Introduction 

In 2009, road collisions at intersections killed 7,043 people in the United States, of which 676 

were attributed to drivers failing to stop at red lights (Federal Highway Administration, 

2010a,b). Tangible economic costs of collisions alone are estimated at about 313.6 billion dollars 

a year, in 2013 prices, primarily because of losses due to injury, death, property damage, travel 

delay and insurance administration. If one utilizes value of statistical life estimates rather than 

just productivity loss estimates, these costs rise by over 70% (Small and Verhoef, 2007). Such 

large figures warrant that road safety policies be studied carefully in order that resources are 

best used to reduce collisions and their associated costs. 

Red light cameras (henceforth cameras) have been introduced in cities across the United States 

since the 1990s to increase enforcement of traffic laws in the hope of increasing safety. These 

camera systems are triggered to capture an image of the intersection if a vehicle crosses the 

stopping line after a specified time, once the light has turned red. License plate information 

from the photographs is then used to issue a ticket to the vehicle owner. Evidence on the 

effectiveness of cameras in increasing safety at intersections remains inconclusive. While past 
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research indicates that cameras decrease the number of right-angle collisions, some findings 

suggest that the cameras also increase rear-end collisions significantly, because road users brake 

more suddenly in the presence of these cameras (Erke, 2009).  

This paper studies the City of Los Angeles Automated Photo Red Light Enforcement Program 

which was in effect from April 2006 to July 2011 and estimates the effect these cameras had on 

collisions. Leveraging on the city's size and abundance of available potential control 

intersections, intersections with cameras (henceforth treated intersections) are compared against 

nearby intersections without cameras, matched on observable characteristics. The spatial 

correlation that arises from this design is incorporated into the study through the use of a 

random coefficient specification within a Poisson regression model.  Similar methods are 

adopted by Hallmark et al., 2010, in their study of cameras in Davenport, Iowa.  The estimation 

design in this paper also attempts to capture the potential spillover effects that cameras may 

have on neighboring intersections by considering three sets of control groups with varying 

distances from the treated intersections.  

The Los Angeles camera program suffered from legal setbacks that dampened the effectiveness 

of the program over time. Because the Los Angeles Superior Courts began rejecting citations 

issued from cameras, citations issued later in the program were more frequently ignored. In 

addition, the installation of cameras at intersections were accompanied by increases in amber 

and all-red phase signal timings at the same intersections, complicating the ability to uncover 

the effectiveness of cameras alone on collisions. However, by assuming that the effect of 

cameras on collisions decayed over time, due to enforcement weaknesses, while the effect of 

traffic light phase timings did not, it is possible to separate the effect of cameras on collisions 

from the effect of traffic light phase timings on collisions. This is done by estimating the yearly 
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effect of the program on collisions for each of the five years of the program. The assumption just 

stated suggests that any reversal in trends of the yearly effects must be assigned to the decay in 

the effectiveness of camera enforcement over time.   

Controlling for the decay in enforcement, this study finds that cameras decrease red-light-

running collisions. Nevertheless, cameras also increase right-angle, rear-end, and injury-related 

collisions. As a result, cameras cause a net increase in collisions overall.  The paper is organized 

as follows: Section 2 presents a summary of existing findings and estimation concerns on the 

effectiveness of cameras. Section 3 provides an overview of camera programs in Los Angeles. 

Sections 4 and 5 provide details on the data used and estimation strategy employed. In section 

6, the results from estimation are presented and discussed, while section 7 summarizes and 

concludes the study.   

 

3.2 Literature Review 

There is a well-developed existing literature on the effect of cameras on road safety. Retting et 

al., 2003, and Aeron-Thomas and Hess, 2009, provide summaries of the existing work on the 

issue. In addition, Høye, 2013, conducts a meta-analysis of the camera literature, which 

provides a comprehensive index of academic papers that address the effect of cameras on 

collisions and other safety indicators.  

Past research indicate that cameras reduce red-light-running violations. Studies of Oxnard, 

California (Retting et al., 1999a), Fairfax County, Virginia (Retting et al., 1999b), Salem, Oregon 

(Ross and Sperley, 2011) and Virginia Beach, Virginia (Martinez and Porter, 2006) find that 

cameras decrease violations when cameras were installed. Porter et al., 2012, find that when the 
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same cameras in Virginia Beach were turned off, red light running rose dramatically, by almost 

300% in the subsequent month, and by 400%, one year later.  

The effectiveness of cameras at reducing collisions, however, is more ambiguous. Retting and 

Kyrychenko, 2002, and Hallmark et al., 2010, find that cameras reduce the overall number of 

collisions. Retting and Kyrychenko, 2002, find that cameras decrease injury related collisions. 

Hu et al., 2011, study a cross section of 99 cities and find that cameras decrease fatal collisions. 

Haque et al., 2010, find that cameras in Singapore decrease motorcycle collisions. Other studies 

find less encouraging results in support of cameras. Some find that, at best, cameras have no 

effect on collisions overall (Chin and Quddus, 2002; Burkey and Obeng, 2004; Garber et al., 

2007). Many studies also find that cameras increase rear-end collisions (Burkey and Obeng, 

2004; Council et al., 2005a; Garber et al., 2007; Shin and Washington, 2007). These increases 

suggest that, in the presence of cameras, drivers brake more abruptly to avoid citations, causing 

such collisions to occur.  

Høye, 2013, provides some rationale for the lack of cohesive results. In her meta-analysis, she 

highlights two primary concerns when studying camera programs that cause heterogeneity in 

results: selection bias and spillover effects. Studies that do not control for selection bias find 

reductions in right angle collisions that are twice as large as studies that do not. She also finds 

evidence that publication bias accounts for heterogeneity in results across studies. Overall, she 

finds that cameras increase all collisions by 6%, decrease right-angle collisions by 13%, and 

increase rear end collisions by 40%. Right-angle injury collisions decrease by 33% and rear end 

injury collisions increase by 19%  
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Selection bias arises because the placement of cameras at intersections is, in most cases, non-

random. Cameras are generally placed at intersections where more collisions occur. 

Unobservable characteristics of these intersections that make them particularly dangerous (for 

example, high traffic volume) are hence correlated with the presence of cameras. Unless this 

correlation is addressed, any estimate of the effect of cameras on collisions will also capture 

some of the effect of these unobservable characteristics, creating bias (Rubin, 1974).  

Spillover effects arise because the presence of cameras at certain signalized intersections within 

a city may cause drivers to behave differently at signalized intersections without cameras. The 

traditional thought is that the spillover effect is positive (Retting et al., 1999a,b; Shin and 

Washington, 2007). Cameras help drivers develop better driving habits, making them less likely 

to run red lights at all intersections. However, it is also conceivable that the spillover effect is 

negative. A driver who wants to shorten travel time could run more red lights at intersections 

without cameras knowing he is more likely to receive a citation for such an offence at an 

intersection with cameras.  

These concerns have been addressed previously in different ways. One way to control for 

selection bias is by conditioning on an extensive set of variables that affect safety at 

intersections. This strategy is employed by Burkey and Obeng, 2004, Chin and Quddus, 2002, 

and Haque et al. 2010, among others. Generally, the set of control variables includes data on the 

number of lanes at intersections, weather conditions, length of amber lights, speed limits and 

traffic volume. By controlling for these variables, the estimate of the effect of the cameras is free 

of selection bias if one contends that conditional on these variables, placement of cameras is 

random. One shortcoming of this estimation design is that it does not account for spillover 
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effects unless non-camera intersections are chosen from outside the potential spillover effect 

region. 

In the absence of extensive and detailed data on variables affecting safety at intersections, an 

alternative strategy to overcome selection bias is to use control groups to serve as comparisons 

to treated intersections. This strategy controls for all characteristics (both observed and 

unobserved) that are identical across the intersections in the control group and the intersections 

with cameras. In the Hallmark et al., 2010, study of Davenport, Iowa, the authors select control 

intersections that have similar traffic volumes, collision frequencies and roadway types. When 

studying the camera program in Oxnard, California, Retting and Kyrychenko, 2002, consider 

the effect cameras have on all signalized intersections within the city, not just those that 

received cameras. They use as a control group, the neighboring cities of San Bernardino, Santa 

Barbara and Bakersfield, California. Hence, they obtain estimates that capture both the effect of 

the cameras on treated intersections and spillover effects as well.  

 

3.3 An Overview of Los Angeles Red Light Camera Programs 

In November, 2005, the City of Los Angeles, in cooperation with the Los Angeles Police 

Department (LAPD) approved a contract with a private vendor to install and provide camera 

enforcement services at 32 intersections across the city (KABC-TV News, 2005). Figure 3.1 

displays the locations of the 32 intersections across the city.  
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Figure 3.1: Location of Red Light Cameras under the City fo Los Angeles Automated Photo Red 
Light Enforcement Program, 2006-2011. Adapted from Compton, 2011. 

 

Selection of the locations of these cameras was non-random. Selection was made based on 

collision records from 2003 and 2004 with an equal number of cameras being placed under each 
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of the four LAPD Bureaus’ jurisdictions (Compton, 2011). Additionally, intersections where 

installation of cameras would be expensive and more challenging were omitted as were 

intersections adjacent to state highways that required state approval of any changes (Greuel, 

2010). Cameras were installed at staggered times between April 4th, 2006 and December 12th, 

2007. Once a camera and related signs were posted, the LAPD began a 30-day warning period 

during which violators were issued warnings instead of tickets.  

 On July 27th, 2011, the Los Angeles City Council voted unanimously to discontinue the camera 

program. This decision was mainly because of escalating costs. Since the program began, only 

60% of citations issued had been paid leaving the city council to cover an annual $1-1.5 million 

in program costs. The low percentage of citation payment was due to a judicial interpretation of 

the California Vehicle Code.  According to this interpretation of the vehicle code, moving 

citations had to be issued to the driver of the vehicle; however, the citations from the cameras 

were instead issued to the registered owner of the vehicle. Consequently, the Los Angeles 

Superior Court was unwilling to enforce camera citations and made the decision not to notify 

the Department of Motor Vehicles about the unpaid camera citations. Because of this, no holds 

were placed on drivers' licenses and vehicle registration renewals if citations were ignored. 

(Bloomekatz et al., 2011).  

Other reasons for the program's discontinuation include new state legislation that reduced the 

maximum fines for "rolling right turns," disputes about the implementation of the program 

since cameras were not chosen solely in the interest of public safety, and the possibility that the 

concurrent changes in all-red and amber light phase times were the cause of any safety 

improvements, and not the cameras themselves (Greuel, 2010).  
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3.4 Data 

Data were obtained from numerous sources. Compton, 2011, obtained information about the 

camera program, including where and when the cameras were installed, from the LAPD. These 

same data are used here. Characteristics of intersections, such as number of lanes and 

intersection type, were obtained from Google Maps. 

Collision records were obtained from the California Highway Patrol Statewide Integrated 

Traffic Records System (CHP SWITRS). This database was also the source of collision records 

for the Retting and Kyrychenko, 2002, study of cameras in Oxnard, California. The CHP 

SWITRS records every police reported collision in California from 2001 onwards. The system 

was queried for all collisions within Los Angeles from January 2006 to December 2010. All 

252,406 collisions obtained from CHP SWITRS were checked for spelling errors and cross 

checked with corresponding streets on Google Maps. Similar data clean up processes are 

conducted in the Burkey and Obeng, 2004, study of Greensboro, North Carolina. This data are 

then used to create intersection-month observations. Collisions are aggregated by month for 

each intersection. This creates the outcome variable of interest, the number of collisions at a 

particular intersection in a particular month. 

From this data set, I consider five categories of collisions where the effect of cameras is worth 

investigating: all collisions, right-angle collisions, rear-end collisions, red light collisions and 

injury collisions. "All collisions" encompass every collision in the dataset for the time period of 

study. Three variables supplied within the SWITRS dataset are used to define the remaining 

four categories considered. First, the dataset contains a type of collision variable which defines 
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collisions into seven types based on the point of contact between vehicles. Two of the seven 

types are used: right-angle collisions and rear-end collisions. Second, the primary collision factor 

violation variable categorizes collisions by the traffic violation that police determine caused the 

collision. This variable is used to obtain a fourth category of collisions for this study: red-light-

running related collisions. Note that this category is not entirely objective since police discretion 

is involved in deciding which collisions are caused by red light running. Finally, the collision 

severity variable defines each collision into five collision types, ranging from property damage 

only (no injury) to fatal. This variable is used to obtain injury collisions. Injury collisions 

encompass four of the five collisions defined in the collision severity variable: fatal, severe injury, 

visible injury and complaint of pain. 44.95% of collisions are property damage only, 44.21% are 

complaint of pain collisions, 9.43% are visible injury collisions, 1.15% are severe injury collisions 

and 0.27% are fatal collisions. The distribution of collisions across the five considered categories 

are summarized in Table 3.1 and illustrated by two Venn diagrams in Figure 3.2. Right-angle 

and rear-end collisions are mutually exclusive; however they are not mutually exclusive of red 

light and injury collisions. Similarly, red light and injury collisions are not mutually exclusive of 

each other either.  

Table 3.1: Three-way (relative) frequency table of collisions by category: type of collision, red 
light collisions and injury collisions 

Type of 
Collision 

Non- Red Light Collision Red Light Collision 
Total 

Non-Injury Injury Non-Injury Injury 

Other 21067 
(16.64%) 

24417 
(19.28%) 

594 
(0.47%) 

2444 
(1.93%) 

48522 
(38.32%) 

Rear-end 12521 
(9.89%) 

18605 
(14.69%) 

80 
(0.06%) 

137 
(0.11%) 

31343 
(24.75%) 

Right-angle 6767 
(5.34%) 

24806 
(19.59%) 

2544 
(2.01%) 

12647 
(9.99%) 

46764 
(36.93%) 

Total 40355 
(31.87%) 

67828 
(53.56%) 

3218 
(2.54%) 

15228 
(12.03%) 

126629 
(100.00%) 
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The average number of months observed before a treated intersection receives a camera is 16.46 

months, while the average number of months observed after a treated intersection receives a 

camera is 42.53 months. A longer "before" period, where all intersections are untreated, cannot 

be used because the city operated a camera program with a different private vendor prior to 

this program which expired in June 2005. It is not known which intersections received cameras 

under the earlier program and when these cameras were removed, though news reports about 

the defunct cameras began circulating around November 2005 (KABC-TV News 2005), 

suggesting the possibility of contamination from the previous program had dwindled by the 

end of 2005. 

 

 

 
Figure 3.2: Proportional Venn Diagram showing the relationships between  four of the 

categories of collisions studied 
*Rear-end Collisions and Right-Angle Collisions are mutually exclusive, hence there is no overlap between their 
respective sets. 
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Additionally, Compton, 2011, provides evidence that the previous program did not contaminate 

driver behavior in the current program. 

 

3.5 Estimation 

The estimation design employed here considers concerns of selection bias and spillover effects 

highlighted in existing studies of camera programs.  

To address concerns of selection bias, I make use of control intersections, similar to the study by 

Hallmark et al., 2010. While the strategy of conditioning on an extensive set of observable 

intersection characteristics is an attractive approach to addressing the problem, these data are 

not available for intersections in Los Angeles. However, the camera program in Los Angeles is 

well suited for the use of control intersections as comparisons to treated intersections. Because 

the city is very large, there are many untreated intersections that are potential controls. For each 

treated intersection, I select four nearby intersections, one each to the north, south, east and 

west of the treated intersection as controls for that treated intersection. 7 Therefore, each control 

intersection shares one common street with the treated intersection.  

These control intersections are also selected by matching on three observable characteristics: 

type of intersection (i.e. four-way), presence of a traffic light, and number of lanes. If no 

intersection with a common street fulfills the matching criteria, it is replaced with the closest 

intersection that does match the observable characteristics. The use of four nearby intersections 

serve as good counterfactuals to the treated intersections; not only are they similar to treated 

                                                           
7 Four treated intersections on Figueroa Street (Imperial Highway, Florence Ave, Century Boulevard, and 
Manchester) and two treated intersections in the San Fernando Valley (Balboa Boulevard/Vanowen Boulevard and 
Sherman Way/Louise Ave) are located too closely to have their own set of controls. The solution employed was to 
merge these intersections into two separate groups that share the same controls. 
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intersections on matched observable characteristics, they are also similar on many unobservable 

characteristics, such as traffic volume, driver characteristics and weather patterns. However, 

this design raises concerns of spatial correlation.  

In modeling, it is necessary to assume that observations are independent of each other. This is 

equivalent to saying that conditional on observed factors, the remaining unobserved effects (or 

errors) are random, or uncorrelated across observations.  However, in this study, since control 

intersections are selected nearby to treated intersections, observations are located in clusters 

rather than randomly distributed across the city. Therefore, it is likely that errors are non-

random, due to spatial correlation. The proper specification of a model should incorporate this 

concern. Details on how this study addresses spatial correlation is described later. 

To address potential spillover effects, three rings of nearby intersections are considered: 0.5 

mile, 1 mile and 2 miles away from the treated intersections respectively.8 Figure 3.3 shows an 

example of the three sets of control intersections for a treated intersection. The spillover effect 

should be strongest at the 0.5-mile ring and weakest at the 2-mile ring. The tradeoff is that the 

0.5-mile ring is often better matched to the treated intersection on observables such as number 

of lanes than the 2-mile ring, hence, better controls for the effect of unobservable characteristics 

like traffic volume and weather, on collisions. Table 3.2 presents the mean collisions per month 

at intersections before and after cameras were installed for both the treated and treated 

intersections 0.5-mile away. Table B1 in the appendix presents additional summary statistics of 

the data in use. 

 

                                                           
8 Most signalized intersections in the city are located about 0.5-miles apart; hence it is not feasible to consider 
rings of intersections at closer distances than 0.5 and 1-mile from the treated intersection. 
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      Intersection with red light camera 

      0.5-mile control intersection 
      1-mile control intersection 

      2-mile control intersection 
 

Figure 3.3: Control intersections for Red Light Camera at Beverly Boulevard and Western 
Avenue 
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Table 3.2: Mean collisions per month at treated and 0.5-mile control intersections before and 
after treatment 

Type of 
Collision  

Treated 
Intersections 

Control 
Intersections 

Difference in Means 

Before After Before After Before After 

All 
Mean 1.0778 1.1159 0.8266 0.8077 0.2513  *** 0.3082  *** 

Std. Dev. 0.0511 0.0299 0.0233 0.0138 0.0562 0.0329 

Right-
angle 

Mean 0.3949 0.3798 0.2853 0.2821 0.1096   ** 0.0977  *** 

Std. Dev. 0.0307 0.0169 0.0130 0.0078 0.0333 0.0186 

Rear-end 
Mean 0.2840 0.3279 0.2147 0.2098 0.0694   ** 0.1181  *** 

Std. Dev. 0.0248 0.0156 0.0114 0.0064 0.0273 0.0169 

Red 
Light 

Mean 0.1673 0.0953 0.1158 0.1039 0.0514   ** 0.0085 

Std. Dev. 0.0188 0.0080 0.0080 0.0046 0.0205 0.0093 

Injury 
Mean 0.6637 0.6892 0.5049 0.5071 0.1588  *** 0.1821  *** 

Std. Dev. 0.0377 0.0237 0.0169 0.0107 0.0412 0.0260 
 

All control intersections selected are four-way intersections with traffic lights and at least three 

lanes on each street in the intersection. The minimum number of lanes for any of the treated 

intersections is also three. For the 0.5-mile control ring, there is only one instance where a 

control intersection selected does not share a common street with the treated intersection, or 

0.008% of all intersections. For the 1-mile ring, there are 14 such instances (11.6%), and for the 2-

mile ring, 25 such instances (20.7%). Hence, the quality of matches is significantly higher at the 

0.5-mile ring compared to the 2-mile ring. The absolute differences in the number of lanes at the 

treated and control intersections are presented in Table 3.3. These absolute differences are 

calculated for all control intersections that have a street in common with the treated 

intersection. Differences in number of lanes are taken first for the street in common between the 

two intersections and then for the streets that are uncommon between the two intersections. For 

example, in Figure 3.3, the treated intersection is located at Beverly Boulevard and Western 

Avenue. The 0.5-mile control intersection, west of the treated intersection, is located at Beverly 

Boulevard and Wilton Place. The differences in number of lanes in this case is the difference in 

the number of lanes on Beverly Boulevard at its intersections with Western Avenue and Wilton 
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Place (common street) and the difference in the number of lanes at Western Avenue and Wilton 

Place at their respective intersections with Beverly Boulevard (uncommon street).  

Table 3.3: Absolute difference in number of lanes at treated and control intersections 

Control 
Ring 

 Average absolute 
difference in 

number of lanes 

Standard 
Error 

Min Max Zero 
Difference (%) 

0.5-mile Common Street 0.7983 0.9074 0 4 42.86 

Uncommon Street 1.3193 1.1194 0 6 26.05 

1-mile Common Street 0.7905 0.8737 0 3 44.76 

Uncommon Street 1.2667 1.1458 0 6 28.57 

2-mile Common Street 0.8022 0.7919 0 3 41.76 

Uncommon Street 1.2308 1.0962 0 5 28.57 
 

The intersection-month observations created from the SWITRS data are used to create an 

intersection-by-month panel dataset. Since the outcome variable, the number of collisions at a 

particular intersection in a particular month, is count in nature, it is assumed to follow a Poisson 

distribution. A limitation of the Poisson distribution is that it is equidispersed (its variance is 

always equal to its mean) and cannot model error correlations across observations. The latter is 

necessary to model spatial correlation that arises from the use of control intersections in this 

study. To overcome these shortcomings, the Poisson distribution is "mixed" with a log-normal 

distribution to form the Poisson-log-normal model. This mixing distribution relaxes the 

assumption of equidispersion9 and allows for error correlations across observations. Hallmark 

et al., 2010, employ a similar model in their study of cameras. The model, first developed by 

Hausman et al., 1984, is as follows: 

Let 𝑦𝑖𝑡 be the number of collisions at intersections 𝑖 = 1,… , 𝑛 across months, 𝑡 = 1,… , 𝑇, 𝑋 be an 

𝑛𝑇 × 𝑘 matrix of covariates that predict 𝑦, and 𝑥𝑖𝑡 be a 1 × 𝑘 row from the matrix 𝑋. Let 𝛽 be a 

𝑘 × 1 vector of coefficients corresponding to the 𝑘 covariates in 𝑋. Let 𝑊be an 𝑛𝑇 × 𝑔 matrix of 
                                                           
9 For a derivation of the model's overdispersion property, see Appendix B.1.  
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covariate values, and 𝑤𝑖𝑡 be a 1 × 𝑔 row from the matrix 𝑊. The 𝑔 covariates in 𝑊 have 

corresponding coefficients, 𝑏𝑖 where 𝑏𝑖 is a 𝑔 × 1 vector. 

Then, 

𝑦𝑖𝑡|𝛽, 𝑏𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖𝑡) 

where 𝜇𝑖𝑡 is the conditional mean,  

𝜇𝑖𝑡 = 𝐸(𝑦𝑖𝑡|𝛽, 𝑏𝑖) = exp(𝑥𝑖𝑡𝛽 + 𝑤𝑖𝑡𝑏𝑖) 

𝑏𝑖~ 𝑁(𝜂, 𝐷). 

Note that since 𝑏𝑖~ 𝑁(𝜂, 𝐷), exp(bi)~ logNormal. This is how a log-normal distribution is 

"mixed" with a Poisson distribution. Since the coefficients 𝑏𝑖 are stochastic, they are called 

"random coefficients."  

Assuming observations are independent and identically distributed, 

𝑓(𝑦𝑖|𝛽, 𝑏𝑖) =  ∏𝑝(𝑦𝑖𝑡|𝛽, 𝑏𝑖)

𝑇

𝑡=1

  

where 𝑝 is the Poisson mass function and 𝑦𝑖 = {𝑦𝑖𝑡}, 𝑡 = 1,… , 𝑇. 

The joint density of 𝑦𝑖 and 𝑏𝑖 is 

𝑓(𝑦𝑖 , 𝑏𝑖|𝛽, 𝜂, 𝐷) =  𝑓(𝑦𝑖|𝛽, 𝑏𝑖)𝜙(𝑏𝑖, |𝜂, 𝐷) 

where 𝜙(𝑏𝑖, |𝜂, 𝐷) is a 𝑔 −variate normal density function with mean 𝜂 and variance matrix 𝐷. 

The likelihood function is the product of the individual likelihood contributions, where 𝑏𝑖 is 

marginalized over its distribution, hence  

(3.1) 

(3.2) 
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𝐿(𝑦|𝛽, 𝜂, 𝐷) =  ∏𝐿𝑖(𝑦𝑖|𝛽, 𝜂, 𝐷)

𝑛

𝑖=1

 

                                          =  ∏∫𝑓(𝑦𝑖 , 𝑏𝑖|𝛽, 𝜂, 𝐷) 𝑑𝑏𝑖

𝑛

𝑖=1

 . 

If the matrix, 𝑊, is empty or alternatively, if  𝐷 is a zero matrix, then the model reduces to a 

simple Poisson regression without random coefficients. The 𝑏𝑖′𝑠 allow for heterogeneous effects 

of covariates on the outcome variable. In addition, the 𝑏𝑖
′𝑠 can be interpreted as representing 

error components that create correlations across the intersections (Brownstone and Train, 1999). 

In the first application of this model, 𝜇𝑖𝑡 is specified as follows: 

𝜇𝑖𝑡 = exp(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡  𝛽𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝛾𝑡𝛽𝑡𝑖𝑚𝑒 + 𝑔𝑟𝑜𝑢𝑝𝑖ℎ𝑏𝑖). 

The treatment variable, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡 is an indicator variable that takes on the value 1 if there is a 

camera at intersection 𝑖 in month 𝑡, and 0 if that intersection does not have a camera in month 𝑡: 

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡 = {
1
0

𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖 ℎ𝑎𝑠 𝑎 𝑐𝑎𝑚𝑒𝑟𝑎 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

𝛾𝑡 is a 1 × 𝑇 row vector of month dummy variables, equal to 1 for an observation in month 𝑡 and 

0 otherwise. These variables capture the effects common to all intersections in each month. 

𝑔𝑟𝑜𝑢𝑝𝑖ℎ is a 1 × 𝑔 row vector of group specific dummies. Each treated intersection and its 

associated control intersections are placed in a group, ℎ. In all, there are a total of 𝑔 groups of 

intersections, ℎ = 1,2,… , 𝑔. For each observation, only the ℎ − 𝑡ℎ entry in 𝑔𝑟𝑜𝑢𝑝𝑖ℎ takes on the 

value of 1, corresponding to the group, ℎ, that the observation (intersection 𝑖) belongs to. The 

remaining columns take on the value of 0: 
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{𝑔𝑟𝑜𝑢𝑝𝑖ℎ} = {
  1
  0

 
𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  𝑖 𝑖𝑠 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 ℎ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

The associated coefficients for 𝑢𝑝𝑖ℎ , 𝑏𝑖, are random coefficients. As previously mentioned, 

random coefficients can be interpreted as error components. Following this interpretation, the 

use of the 𝑔𝑟𝑜𝑢𝑝  variable allows the model to have an additional error component that is group 

specific, in addition to the independent and identically distributed error term that affects all 

observations. Additionally, the random coefficient allows correlation across groups as well. This 

captures the spatial correlation concerns previously noted. These correlations manifest in the 

covariance matrix of the random coefficients, 𝐷.  

To be more precise, 

        𝐶𝑜𝑣(𝑤′𝑖𝑡𝑏𝑖 ,  𝑤′𝑗𝑠𝑏𝑗) =  𝐸[(𝑤′
𝑖𝑡𝑏𝑖 − 𝑤𝑖𝑡

′ 𝜂)( 𝑤′
𝑗𝑠𝑏𝑗 − 𝑤𝑗𝑠

′ 𝜂)] 

= 𝑤𝑖𝑡
′  𝐷 𝑤𝑗𝑠 

since 𝐷 is the covariance of 𝑏𝑖 and 𝑏𝑗.  

Denoting 𝐷𝑙ℎ as the element in row 𝑙 and column ℎ of matrix 𝐷, the covariance between two 

intersections within the same group, g, is simply, 𝐷𝑔𝑔, and the covariance between two 

intersections in different groups, 𝑔 and ℎ, is, 𝐷𝑔ℎ.  

Additionally, the group specific dummies allow each intersection to have its own intercept, 

thereby controlling for all intersection-specific effects that are constant over time. For example, 

if there are no changes to the number of lanes and speed limit at an intersection over the time 

period studied, then the coefficient 𝑏𝑖 captures the total effect of these factors on collisions. This 

removes the need for data on intersection characteristics insofar as these characteristics are 

constant over time.  
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 The parameters 𝛽, 𝜂, and 𝐷,  are estimated with Bayesian inference as outlined in Chib et al., 

1995, using the following priors: 

𝛽~𝑁(0𝑘 , 𝐼𝑘 × 100),    𝜂~𝑁(0𝑔, 𝐼𝑔 × 100),   𝐷−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑔 + 4, 𝐼𝑔). 

An Expectation-Maximization routine (Dempster et al., 1977) is first used to obtain suitable 

starting values which are then fed into a Gibbs sampler to obtain the joint posterior distribution 

of the estimates, 𝛽, 𝜂, and 𝐷. Within the Gibbs sampler, the data augmentation technique 

(Tanner and Wong 1987) is used to estimate the latent 𝑏𝑖′𝑠 (Chib et al., 1995). 

While the parameters 𝛽, 𝜂 and 𝐷 are informative, of greater interest is the effect of cameras on 

the outcome variable, number of collisions. This "treatment effect" is the difference in the 

expected number of collisions at treated intersections, with and without the cameras (and light 

timing changes): 

𝐸𝑖𝑡( 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 𝑖𝑡) = 𝐸𝑖𝑡(𝑦𝑖𝑡|𝛽, 𝜂, 𝐷, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡 = 1) − 𝐸𝑖𝑡(𝑦𝑖𝑡|𝛽, 𝜂, 𝐷, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡 = 0)  

The aggregate marginal effect of treatment on collisions can be obtained by taking the 

expectation of the aforementioned quantity over the distribution of the estimated parameters, 

𝛽, 𝜂, 𝐷: 

𝐸𝛽,𝜂,𝐷𝐸𝑖𝑡[𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑡 ]     ∀𝑖 ∈ {𝑖:max{𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡} = 1}. 
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3.6 Results 

For the sake of parsimony, this section presents results using the 0.5-mile ring as controls since 

this ring best addresses the problem of selection bias. Results using the 1 and 2-mile rings are 

provided in Appendix B.10  

As described in Section 4, five non-mutually exclusive categories of collisions are considered: 

all, right-angle, rear-end, red light and injury collisions. Table 3.4 presents the marginal effects 

of the program on collisions in Los Angeles from 2006 to 2010. Because amber light and all-red 

phase times were changed concurrently with the installation of cameras, this marginal effect 

captures both the effects of the cameras and the light timing changes. Thus, all results from this 

specification have to be interpreted as the aggregate effect of both changes on collisions.  

Table 3.4:  The marginal effect of treatment on all, right-angle, rear-end, red light and injury 
collisions from 2006 to 2010 using 0.5-mile control ring 

Type of 
Collisions 

Marginal Effect 
95% Probability 

Interval 
% Change 

All 0.1866 0.0790 0.2929 16.72 

Right-angle 0.0905 0.0419 0.1393 23.82 

Rear-end 0.1130 0.0682 0.1598 34.46 

Red Light -0.0116 -0.0306 0.0085 -12.12 

Injury 0.1532 0.0869 0.2166 22.23 

 
Estimates based on 10,000 Markov chain Monte Carlo draws with a burn-in of 1000 iterations. The following non-
informative priors are used for all regressions 

𝛽~𝑁(0𝑘 , 𝐼𝑘 × 100),    𝜂~𝑁(0𝑔, 𝐼𝑔 × 100),   𝐷−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑔 + 4, 𝐼𝑔). 

The marginal effects presented here, and in all subsequent tables, have posterior distributions that are Poisson-Log 
Normal. This distribution is not necessarily symmetric. Therefore, probability intervals are presented because they 
present a more informative measure of uncertainty than standard deviations. 
 

                                                           
10 See Figures B2.1 & B2.2, Tables B2.1 & B2.2 
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The estimates in Table 3.4 show that when "all collisions" are considered, treatment causes a 

significant increase of 0.18 collisions a month. This translates to a 17% increase in collisions. The 

model also estimates increases in right-angle and rear-end collisions of 24% and 34% 

respectively. The marginal effect of treatment on red light collisions is negative but 

insignificant. Injury collisions increase by 22%.   

Results in Table 3.4 show that the program increased collisions overall. However, because of the 

concurrent changes to light timing phases and the lack of legal enforcement of the program, it 

does not tell us the specific effect cameras had on collisions. To estimate this effect, we need a 

model that captures the potential decay in enforcement over time.11 To do this, I permit the 

treatment variable to differ by year. 12 This is done by generating one treatment variable for each 

of the five years in the sample, 2006-2010. The five variables are obtained by multiplying the 

previously defined treatment variable, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡, by year dummy variables.  

The results from this specification are presented in Table 3.5. The percent changes in collisions 

due to treatment are also summarized in Figures 3.4-3.9. The estimates for 2006 across all five 

types of collisions are imprecise because only four intersections receive cameras that year, hence 

these results are not discussed here. Nevertheless, the remaining results from this specification 

are insightful. Similar patterns emerge across time for four of the categories of collisions. For "all 

collisions", right-angle, rear-end and injury collisions, the treatment effect is positive for all five 

years. This effect first exhibits a rising trend but this trend reverses in the later years in the 

sample. For red light camera related collisions, the treatment effect is negative for the first three 

                                                           
11 Appendix B.2 present results for an alternative specification that also controls for decay in enforcement: a re-
estimation of the single treatment variable model for the years 2006-2008. 
12 The choice to separate treatment out by year rather than half year or quarter is made purely for the sake of 

parsimony. The estimation time cost involved lends favor to smaller models. 
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years in the sample, then becomes positive for the final two. Unfortunately, the estimates for 

rear-end and red light camera related collisions are imprecise since these collisions are the most 

infrequent among the five types of collisions.    

Table 3.5:  The marginal effect of treatment on all, right-angle, rear-end, red light and injury 
collisions from 2006 to 2010 by year for 0.5-mile control ring 

Type of 
Collision 

Year 
Marginal 

Effect 
95% Probability Interval % Change 

All 

2006 0.4489 -0.0465 0.9821 40.22 

2007 0.0892 -0.0530 0.2307 7.99 

2008 0.1756 0.0434 0.3065 15.73 

2009 0.3016 0.1753 0.4253 27.03 

2010 0.1440 0.0287 0.2624 12.90 

Right-
angle 

2006 0.0442 -0.1993 0.3249 11.65 

2007 0.1000 0.0220 0.1831 26.34 

2008 0.0972 0.0298 0.1627 25.60 

2009 0.1075 0.0438 0.1768 28.30 

2010 0.0687 0.0108 0.1303 18.10 

Rear-end 

2006 -0.0315 -0.3001 0.2573 -9.61 

2007 0.0808 -0.0145 0.1744 24.64 

2008 0.0890 0.0117 0.1689 27.14 

2009 0.0638 -0.0152 0.1414 19.45 

2010 0.0624 -0.0074 0.1337 19.04 

Red Light 

2006 -0.0543 -0.1642 0.1031 -57.00 

2007 -0.0114 -0.0452 0.0310 -11.97 

2008 -0.0636 -0.0863 -0.0372 -66.71 

2009 0.0302 -0.0042 0.0685 31.71 

2010 0.0036 -0.0245 0.0342 3.75 

Injury 

2006 -0.0915 -0.3456 0.1944 -13.27 

2007 0.1082 0.0144 0.2069 15.70 

2008 0.1308 0.0443 0.2172 18.98 

2009 0.2107 0.1230 0.3044 30.57 

2010 0.1681 0.0855 0.2558 24.39 
Estimates based on 10,000 Markov chain Monte Carlo draws with a burn-in of 1000. The following non-informative 
priors are used for all regression 

𝛽~𝑁(0𝑘 , 𝐼𝑘 × 100),    𝜂~𝑁(0𝑔, 𝐼𝑔 × 100),   𝐷−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑔 + 4, 𝐼𝑔). 
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Figure 3.4: The marginal effect of treatment on collisions by year using the 0.5-mile control ring 

 
Figure 3.5: Point and 95% interval estimates of the marginal effect of treatment on all collisions 

by year, using the 0.5-mile control ring 

 
Figure 3.6: Point and 95% interval estimates of the marginal effect of treatment on right-angle 

collisions by year, using the 0.5-mile control ring 
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Figure 3.7: Point and 95% interval estimates of the marginal effect of treatment on rear-end 

collisions by year, using the 0.5-mile control ring 

 
Figure 3.8: Point and 95% interval estimates of the marginal effect of treatment on red light 

collisions by year, using the 0.5-mile control ring 

 

Figure 3.9: Point and 95% interval estimates of the marginal effect of treatment on injury related 
collisions by year, using the 0.5-mile control ring 
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The initial general trends observed across all five categories of collisions could be a result of 

increased awareness of the program as it grew in size. The reversals in trends that are observed 

across all five types of collisions around 2009 and 2010 allow us to make causal statements 

about the effectiveness of cameras alone on collisions. If we are willing to contend that the 

treatment variable captures only the effects of light timing changes and cameras, and that the 

effect on collisions from the changes to all-red and amber light timings remains constant over 

time, then we can attribute these trend reversals to the decay in effectiveness of legal 

enforcement on collisions. This assumption allows us to infer that cameras, when fully enforced, 

decrease red light collisions but increase "all" and right-angle collisions. In addition, there is 

weaker evidence that cameras increase rear-end and injury collisions. 

There is also evidence suggesting that light timing changes increase red light related collisions. 

In 2009, not only does the trend of decreases in red light collisions end, the sign of the treatment 

effect switches from negative to positive. If we assume that the decay due to legal enforcement 

weaknesses is complete by 2009, then the sign change in 2009 must be because the light timings 

changes increase such collisions, since the treatment effect for 2009 no longer captures any effect 

of cameras on collisions. 

One explanation for the observed increases in right-angle and rear-end collisions is that the 

presence of cameras induce drivers to do one of two things when the traffic light signal 

transitions from green to red, either they brake more dramatically to avoid entering the 

intersection and being captured on camera, or they accelerate in attempt to make it through the 

intersection before being caught on camera.  
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Because the camera program was preceded by an earlier program, a shorter period, before 

which the cameras were installed, is used than would have been preferred. Therefore, results 

presented here are susceptible to spillovers from this earlier program if drivers were not aware 

of the earlier program's termination. Under certain assumptions, we can postulate how such 

spillovers would bias the results of this study. If we assume that cameras have the same effect 

on collisions in both programs, then the spillovers from the existing program would cause 

downward bias in the magnitude of the effect of cameras but not the sign of the effect, that is, 

the results presented here are smaller in magnitude than they should be. If we do not make that 

assumption, then the signs and magnitudes of the bias are indeterminate. However, as 

mentioned in Section 4, I believe the concerns related to the spillover bias from the earlier 

program are small because news reports informed drivers about termination of the program. 

Compton, 2011, finds evidence in support of this fact as her study of this program is robust to 

concerns of spillovers from the earlier program.  

3.6.1. Spillover Effects 

Comparisons across rings do not tell a clear story about spillover effects. Table 3.6 presents the 

marginal effects of treatment across all three control rings for the single treatment variable 

specification. For all five types of collisions, the effect of treatment becomes less positive as 

distance of control ring from treated intersection increases. For red light related collisions, 

nearby intersections are more dangerous than distant intersections after treatment suggesting a 

negative spillover effect. For the other four categories, untreated intersections are safer the 

closer they are to treated intersections.  
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Table 3.6:  The marginal effect of treatment on all, right-angle, rear-end, red light and injury 
collisions from 2006 to 2010 using 0.5-mile, 1-mile and 2-mile control rings 

Type of 
Collision 

Control 
Intersections 

Marginal Effect 
of Treatment 

95% Probability 
Interval 

% Change 

All 

0.5-mile 0.1866 0.0790 0.2929 16.72 

1-mile 0.1416 0.0192 0.2607 12.69 

2-mile 0.1248 -0.0010 0.2494 11.19 

Right-angle 

0.5-mile 0.0905 0.0419 0.1393 23.82 

1-mile 0.0748 0.0136 0.1320 19.71 

2-mile 0.0682 0.0045 0.1294 17.96 

Rear-end 

0.5-mile 0.1130 0.0682 0.1598 34.46 

1-mile 0.1038 0.0471 0.1550 31.66 

2-mile 0.1042 0.0489 0.1608 31.78 

Red Light 

0.5-mile -0.0116 -0.0306 0.0085 -12.12 

1-mile -0.0030 -0.0233 0.0178 -3.12 

2-mile 0.0022 -0.0195 0.0242 2.30 

Injury 

0.5-mile 0.1532 0.0869 0.2166 22.23 

1-mile† - - - - 

2-mile† - - - - 

Estimates based on 10,000 Markov chain Monte Carlo draws with a burn-in of 1000 iterations. The following non-
informative priors are used for all regressions 

𝛽~𝑁(0𝑘 , 𝐼𝑘 × 100),    𝜂~𝑁(0𝑗 , 𝐼𝑗 × 100),   𝐷−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑗 + 4, 𝐼𝑗). 

†Results omitted because model EM algorithm failed to converge 
 

There is no clear story about spillover effects for the treatment-by-year specification either. 

While comparisons across rings for "all collisions" suggest the same relationship as observed in 

Table 3.6, comparisons across rings for other types of collisions are not insightful. Relevant 

results for these comparisons are available in Tables 3.5, B2.1 and B2.2.  

This inconclusive evidence on spillover effects is consistent with Høye, 2013, whose study 

raised doubts on the existence and extent of spillover effects. It is possible that the lack of 



 

 

92 
 

conclusive evidence about the nature of spillover effects from cameras is because the positive 

and negative spillover effects are cancelling each other out and all the model is capturing is 

noise.  

While quantitative results from estimation vary across rings, qualitatively, results across all 

three sets of control rings tell the same story, suggesting that even if spillover effects are of 

concern, they cast doubt on the magnitudes but not the signs of the estimated effects. 

 

3.6.2 Sensitivity Analysis 

Model sensitivity analysis is conducted to ensure that the results of the model do not hinge on 

particular assumptions. First, results for all three specifications are robust to choice of the prior 

distribution used in Bayesian estimation. Marginal effects remain unchanged with the use of 

both stronger and weaker priors. A second concern is that the dependent variable, number of 

collisions, used for all regressions is based on counts of collisions up to 200 feet away from 

intersections. This choice of distance is arbitrary. However, results do not change when the 

models are applied to collisions 100 feet and 300 feet away from intersections. Finally, when 

potential spillover effects from a concurrent camera program managed by the Los Angeles 

County Metropolitan Transit Authority are accounted for, by omitting intersections located in 

close proximity to LACMTA cameras, results do not vary significantly either.  

3.7 Conclusion 

The findings here suggest that cameras increase collisions overall, as well as right-angle and 

injury collisions. There is weaker evidence that cameras increase rear-end collisions as well but 
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decrease red-light running related collisions. These findings show that camera surveillance of 

city intersections may not improve collisions unilaterally. It appears that drivers may brake 

more dramatically causing rear-end collisions, or accelerate to try to get through the intersection 

before the camera is triggered, causing right angle collisions. At best, we can hope that it 

reduces the more costly collisions at the expense of minor collisions.  

Additionally, this study suggests there may be a disconnect between the effect of cameras on 

violations and collisions. Cameras have been shown to decrease violations but I find they 

increase collisions overall. This suggests that the types of violations we are issuing may not be 

fully justified in terms of the likelihood that they translate into collisions. Policymakers may 

want to consider a review of safety laws so that only actions that threat safety are defined as 

violations. That being said, the negative findings here should not be used as conclusive 

evidence against the case for cameras.  

One caveat is that this study provides conclusions only about the average effect that cameras 

have on collisions. It may be the case that cameras are more effective at certain intersections 

than others, depending on the design of the intersection. For example, Burkey, 2005, finds that 

cameras are less effective at intersections with high traffic volumes while Høye, 2013, finds that 

cameras are most effective when warning signs are posted at some but not all camera 

intersections. Unfortunately, this study does not have the data to determine the conditions 

under which cameras may be most effective. This should be an undertaking of future research.  

A second caveat is that the design of this study focuses on the effects cameras have on driver 

behavior and does not provide an exhaustive economic cost-benefit analysis of the program. As 

just mentioned, it is plausible that cameras increase minor injury collisions but significantly 
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decrease severe injury and fatal collisions, which are 2.5 and 50 times more costly than minor 

injuries respectively (Council et al., 2005b).  It is not possible to ascertain this effect within this 

model because the frequency with which fatal collisions occur is too low.13 Fatal collisions make 

up only 0.87% of injury collisions; hence it is unlikely that fatal collisions are driving the 

observed increases in injury related collisions. A possible strategy to study the economic costs 

and benefits of this program is to weigh each collision by its average estimated cost based on 

collision severity estimates, and apply the same methodology of this paper in a censored data 

model with random coefficients.   

The answer to these questions will provide a more definitive answer on whether or not camera 

programs are worth continuing. Until then, when investing in camera programs, policy makers 

should be aware of the potential unintended consequences that could arise from 

implementation of the technology.  

  

                                                           
13 There are only 26 fatal collisions in the 0.5-mile control ring sample or 0.29% of observations, 21 fatal collisions 
in the 1-mile control ring sample (0.25%), and 17 fatal collisions in the 2-mile control ring sample (0.20%). 
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Appendix A 

A.1. Derivation of the corrected variance-covariance matrix of the 

sequential estimator 

The variance of any GMM estimator is given by the following formula: 

𝑉𝑎𝑟(𝜃𝐺𝑀𝑀) = (𝑀0
′𝑊0𝑀0)
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If the model is just identified (as is assumed in this application), then it is sufficient to set 𝑊0 =

𝐼. In an over identified setting, the two-step optimal GMM procedure can be used to generate 

the appropriate estimate of 𝑊0. 

The expectations for the first two moments, 𝐺1and 𝐺2, are taken across households while the 

expectation for the third moment, 𝐺3, is taken across alternatives. This means that the estimates, 

𝛽 and 𝛿, obtained from minimization of 𝐺1and 𝐺2, are consistent and asymptotically efficient as  

𝑁 → ∞ while the estimate of 𝛼 obtained from 𝐺3 is consistent and asymptotically efficient as 𝐽 →

∞. Berry, Linton and Pakes, 2002, note that for asymptotic normality to hold, 𝑁 must increase at 

rate 𝐽2. 

Because of this, there is a peculiarity to the estimation of 𝑆0 that is worth noting. 𝑆0is the sum of 

the outer product of the contributions to the moment function. While the cross product of 𝐻1𝑚 

and 𝐻2𝑚 is simply 𝐻1𝑚𝐻2𝑚′, calculating the other cross products is not straightforward as there 

is a dimensionality mismatch between 𝐻1𝑚 and 𝐻3𝑗, and, 𝐻2𝑚 and 𝐻3𝑗 because there are 𝑁  

observations in 𝐻1𝑚 and 𝐻2𝑚 and only 𝐽 observations in 𝐻3𝑗. 

The solution to this is to divide each of the 𝑁 moment contributions in 𝐻1𝑚 and 𝐻2𝑚 by √𝑁 and 

to divide each of the 𝐽 moment contributions in 𝐻3𝑚 by √𝐽. Then, each of the 𝑁 moment 

contributions in 𝐻1𝑚and 𝐻2𝑚 is multiplied with each of the 𝐽 moment contributions in 𝐻3𝑗,  and 

these quantities are summed. This produces the formulas in entries (3,1), (3,2), (1,3) and (2,3) of 

𝑆0. Dividing by √𝑁 and √𝐽 ensures that these quantities converge to finite values as 𝐽 and 𝑁 →

∞.  
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A.2. Data Generating Process for the Monte Carlo Study 

𝑦𝑚𝑗 = ∑ 𝑦𝑛𝑗

𝑟𝑚

𝑙𝑚=1
∀𝑛 ∈ 𝑚 

                                                                          𝑦𝑛𝑗 = {
1   
0   

 𝑖𝑓 𝑈𝑛𝑗 > 𝑈𝑛𝑖   ∀ 𝑖 ≠ 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

                                                                          𝑈𝑛𝑗 = 𝛿𝑗 + 𝑤𝑚𝑗1𝛽1 + 𝑤𝑚𝑗2𝛽2 + 𝜖𝑛𝑗,    𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ 𝑚 

                                                                             𝛿𝑗 = 𝛼0 + 𝑥𝑗1𝛼11+𝑥𝑗2𝛼12 + 𝑝𝑗𝛼2 + 𝜉1𝑗, 

                                                                             𝑝𝑗 = 𝑧𝑗𝛾 + 𝜉2𝑗 

(𝜉1𝑗, 𝜉2𝑗)~𝑁(02, Ω),   Ω = [
1 0.5

0.5 1
]. 

where 

𝑥𝑗1 is a 𝐽 × 1 vector of binary values, drawn from a Bernoulli distribution with success 

probability of 0.5, 

𝑥𝑗2 is a 𝐽 × 1 vector of continuous values drawn from a standard normal distribution bounded 

between −2 and 2, 

𝑣𝑚1 and  𝑣𝑚2 are  𝑀 × 1 vectors of continuous values drawn from a standard normal 

distribution bounded between −2 and 2,  

𝑤𝑚𝑗1 is an 𝑀𝐽 × 1vector of interactions between 𝑣𝑚1 and 𝑥𝑗1 , 

𝑤𝑚𝑗2 is an 𝑀𝐽 × 1vector of interactions between 𝑣𝑚2 and 𝑥𝑗2 , and  

𝑧𝑗 is a 𝐽 × 1 vector of continuous values drawn from a standard normal distribution bounded 

between −2 and 2. 

 

Finally, 𝛽1 = 0.8,   𝛽2 = −0.7, 𝛼0 =  0, 𝛼11 = −0.5, 𝛼12 = 1, 𝛼2 = 0.5, and  𝛾 = 1.3. 
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A.3. Results from the BLP Model with Sampling Weights 

The household sample obtained from the 2009 National Household Transportation Survey is 

not a representative sample. Households in 20 regions were oversampled because metropolitan 

transportation planning organizations in those regions sponsored larger samples for their own 

use. In addition, a single interview was conducted for each household between April 2008 and 

May 2009. Households who were interviewed earlier are more likely to have purchased model 

year 2008 vehicles after their NHTS interview, and these purchases are not reflected in the 

sample.  

Estimates from the choice model will not be consistent under this sampling scheme if household 

heterogeneity along the stratified dimensions are not fully accounted for in the model 

specification. The main results of this paper assume that heterogeneity is fully specified. To test 

this assumption, I estimate the BLP model for broad choice data incorporating sampling 

weights in estimation that allow the data to approximate a simple random sample.  

Unfortunately, in estimation, a few variables no longer converge once weights are used. These 

variables are: 

College X Prestige X Japan 

College X Prestige X Europe 

Fuel Operating Cost 

College X Fuel Operating Cost 

Because the “fuel operating cost” variables no longer converge, to capture the effect of fuel 

efficiency on utility, “gallons per miles” is included in the model. Since the estimates from the 

weighted and unweighted specifications are no longer directly comparable, in Table C1, I 

present the implied discount rates from both models for the average household: 
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Table A1: Implied Discount Rates from household willingness to pay for fuel efficiency 

 Willingness to Pay 
(thousands)* 

Implied Discount Rate† 

BLP Broad Choice without Weights (I) -0.263 Undefined 

BLP Broad Choice without Weights (II) 8.213 -13.809 

BLP Broad Choice with Weights 0.526 -19.710 
Notes:  
*For the BLP Broad Choice without Weights, willingness to pay is for a 1 cent/mile improvement in fuel operating 
cost. For BLP Broad Choice with Weights, willingness to pay is for a gallon per mile improvement in fuel efficiency.  
BLP Broad Choice without Weights (I) takes the weighted average of willingness to pay across income and college 
groups.  BLP Broad Choice without Weights (II) takes the weighted average of willingness to pay across income and 
college groups assuming that the willingness to pay for households with income greater than $100,000 is zero.  
† Implied interest rates are calculated assuming households drive vehicles 18,778 miles a year and hold vehicles for 
14 years. 
 

BLP Broad Choice without weights (I) yields an undefined interest rate because the average 

willingness to pay for a one cent/mile reduction in fuel operating cost across the sample is 

negative. This is driven by the fact that the coefficient on vehicle price, used to construct the 

willingness to pay measure, is positive for the households in the highest income category. BLP 

Broad Choice without weights (II) forces the negative willingness to pay values of high income 

households to equal zero. This results in an average willingness to pay of $8,213.95 and an 

implied discount rate of -14.8%.  

The BLP Broad Choice with weights estimates that households are willing to pay $525.58 for a 

one gallon per mile improvement in fuel efficiency. This implies a discount rate of -19.71%. 

These findings provide some evidence that the model is robust to the use of sampling weights. 

All three methods in the table generate implied interest rates that suggest an overvaluation of 

fuel efficiency. When a zero-bound constraint is imposed in aggregating the willingness to pay 

estimates from the model without weights, it yields an implied interest rate that is qualitatively 

similar to the implied interest from the model estimated with weights (-14% vs -19%).  
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A.4. Full Results from the Three Vehicle Choice Specifications 
  

Table A2: BLP model with aggregated choices: parameter estimates 

𝑤𝑛𝑗 Estimated 
Parameter 

Uncorrected 
Standard Error 

Corrected 
Standard Error 

(Price) × (75,000<Income<100,000) 0.065 0.004 *** 0.0136 *** 

(Price) × (Income>100,000) 0.102 0.004 *** 0.0153 *** 

(Price) × (Income Missing) 0.094 0.005 *** 0.0153 *** 

(Prestige) × (Urban) 0.609 0.095 *** 0.2165 *** 

(Prestige)  × (Income>100,000) 0.167 0.091 * 0.1652  

(Performance Car) × (Income>100,000) 0.242 0.103 ** 0.1427 * 

(Japan) × (Urban) 0.367 0.048 *** 0.1040 *** 

(Van) × (Children under 15) 0.849 0.084 *** 0.1238 *** 

(Large SUV) × (Children under 15) 0.157 0.056 *** 0.0776 ** 

(Small SUV) × (Children under 15) 0.503 0.112 *** 0.1683 *** 

(Korea) × (Rural) -0.614 0.105 *** 0.1408 *** 

(Seats≥5) × (Household Size≥4) 0.406 0.032 *** 0.1026 *** 

(Mid-Large Car) × (Retired) 0.953 0.050 *** 0.0977 *** 

(Prestige) × (Retired) 0.575 0.073 *** 0.1396 *** 

(Import) × (College) 0.398 0.047 *** 0.0694 *** 

(Prestige) × (Japan) × (College) -0.127 0.177  0.2941  

(Prestige) × (Europe) × (College) -0.598 0.139 *** 0.2156 *** 

(Prestige) × (Japan) × (Urban) -0.180 0.154  0.3329  

(Performance Car) × (College) 0.622 0.099 *** 0.1671 *** 

Fuel Operating Cost (cents per mile) -2.877 0.053 *** 0.9533 *** 

(Fuel Operating Cost) × (College) -0.061 0.009 *** 0.0202 *** 

    

𝑥𝑗 Estimated 
Parameter 

Uncorrected 
Standard Error 

Corrected 
Standard Error 

Price -0.116 0.019 *** 0.026 *** 

Horsepower/Curb weight 158.582 24.622 *** 53.803 *** 

Hybrid -13.222 0.815 *** 4.102 *** 

Curb weight 7.569 0.309 *** 2.511 *** 

Wagon 0.892 1.248  1.384  

Mid-Large Car -0.685 0.540  0.548  

Performance Car -0.354 0.850  0.889  

Small-Medium Pickup 6.196 1.087 *** 2.101 *** 

Large Pickup 5.231 1.155 *** 1.454 *** 

Small-Mid SUV 9.292 1.668 *** 3.198 *** 

Large SUV 2.275 0.472 *** 0.866 *** 
Notes: * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 
1% level.  
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Table A3: BLP model with McFadden’s method: parameter estimates 

𝑤𝑛𝑗 Estimated 
Parameter 

Uncorrected 
Standard Error 

Corrected 
Standard Error 

 (Price) × (75,000<Income<100,000) 0.001 0.002  0.067  

(Price) × (Income>100,000) 0.004 0.001 *** 0.056  

(Price) × (Income Missing) 0.011 0.004 *** 0.080  

(Prestige) × (Urban) 0.620 0.094 *** 2.735  

 (Prestige)  × (Income>100,000) 1.195 0.072 *** 2.257  

 (Performance Car) × (Income>100,000) 0.712 0.112 *** 1.121  

(Japan) × (Urban) 0.363 0.048 *** 1.625  

 (Van) × (Children under 15) 0.946 0.084 *** 5.639  

(Large SUV) × (Children under 15) 0.251 0.055 *** 2.339  

(Small SUV) × (Children under 15) 0.679 0.111 *** 4.999  

(Korea) × (Rural) -0.597 0.105 *** 3.655  

 (Seats≥5) × (Household Size≥4) 0.427 0.035 *** 0.222 * 

(Mid-Large Car) × (Retired) 0.891 0.049 *** 3.914  

(Prestige) × (Retired) 0.429 0.072 *** 1.096  

 (Import) × (College) 0.437 0.047 *** 1.960  

(Prestige) × (Japan) × (College) -0.096 0.176  9.624  

(Prestige) × (Europe) × (College) -0.607 0.139 *** 11.408  

(Prestige) × (Japan) × (Urban) -0.195 0.154  2.158  

(Performance Car) × (College) 0.691 0.113 *** 1.676  

Fuel Operating Cost (cents per mile) -2.946 0.056 *** 0.263 *** 

(Fuel Operating Cost) × (College) -0.027 0.009 *** 0.466  

    

𝑥𝑗 Estimated 
Parameter 

Uncorrected 
Standard Error 

Corrected 
Standard Error 

Price -0.064 0.020 *** 0.120  

Horsepower/Curb weight 144.232 26.475 *** 93.200  

Hybrid -12.288 0.880 *** 3.364 *** 

Curb weight 7.084 0.398 *** 1.907 *** 

Wagon -0.054 1.342  1.403  

Mid-Large Car -0.572 0.615  4.454  

Performance Car -0.517 0.928  2.251  

Small-Medium Pickup 6.817 1.201 *** 2.220  

Large Pickup 4.777 1.352 *** 3.047  

Small-Mid SUV 2.973 0.604 *** 0.885 *** 

Large SUV 2.676 1.054 ** 4.440  
Notes: * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 
1% level. 
 
 
 
 
 
 



 

 

108 
 

 

Table A4: BLP model with broad choice data: parameter estimates 

𝑤𝑛𝑗 Estimated 
Parameter 

Uncorrected 
Standard Error 

Corrected 
Standard Error 

 (Price) × (75,000<Income<100,000) 0.038 0.006 *** 0.052  

(Price) × (Income>100,000) 0.123 0.008 *** 0.100  

(Price) × (Income Missing) 0.079 0.006 *** 0.056  

(Prestige) × (Urban) -1.253 0.137 *** 0.698 * 

 (Prestige)  × (Income>100,000) -1.591 0.167 *** 1.381  

 (Performance Car) × (Income>100,000) 1.518 0.212 *** 2.159  

(Japan) × (Urban) -0.453 0.075 *** 0.662  

 (Van) × (Children under 15) 0.788 0.144 *** 0.934  

(Large SUV) × (Children under 15) 0.707 0.166 *** 1.160  

(Small SUV) × (Children under 15) 0.352 0.084 *** 0.584  

(Korea) × (Rural) 0.341 0.157 ** 0.917  

 (Seats≥5) × (Household Size≥4) -1.664 0.351 *** 1.063  

(Mid-Large Car) × (Retired) 0.108 0.080  0.287  

(Prestige) × (Retired) -0.415 0.102 *** 0.339  

 (Import) × (College) 0.362 0.074 *** 0.518  

(Prestige) × (Japan) × (College) -0.294 0.194  1.338  

(Prestige) × (Europe) × (College) -1.747 0.296 *** 2.043  

(Prestige) × (Japan) × (Urban) -0.420 0.177 ** 1.156  

(Performance Car) × (College) 2.815 0.327 *** 4.622  

Fuel Operating Cost (cents per mile) -0.599 0.048 *** 2.044  

(Fuel Operating Cost) × (College) -0.057 0.013 *** 0.076  

    

𝑥𝑗 Estimated 
Parameter 

Uncorrected 
Standard Error 

Corrected 
Standard Error 

Price -0.098 0.008 *** 0.097  

Horsepower/Curb weight 20.737 8.960 ** 111.690  

Hybrid -2.193 0.727 *** 9.051  

Curb weight 0.002 0.000 *** 0.006  

Wagon 0.048 0.454  1.209  

Mid-Large Car 2.258 0.317 *** 2.185  

Performance Car -3.280 0.392 *** 5.066  

Small-Medium Pickup -1.179 0.464 ** 3.228  

Large Pickup -0.777 0.392 ** 3.035  

Small-Mid SUV 2.888 0.304 *** 1.030 *** 

Large SUV 2.697 0.496 *** 1.760  
Notes: * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level. 
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Appendix B 

B.1. Dispersion in the Poisson-Log Normal Model 

Let Σi be the covariance matrix of (𝑦𝑖𝑏𝑖): 

Σ𝑖 = [
Σ11 Σ12

Σ21 Σ22
]
(𝑔+1)×(𝑔+1)

 

where Σ11is the unconditional variance of 𝑦𝑖, Σ22 is the 𝑔 × 𝑔 unconditional covariance matrix of 

the 𝑏𝑖
′𝑠 and Σ12 = Σ21′ is the covariance between 𝑦𝑖 and 𝑏𝑖. 

Note that 𝑦𝑖 is not equidispersed in equation (3.2) as it is in equation (3.1); unlike in the 

standard Poisson model, the variance of 𝑦𝑖 is not equal to its mean because according to the 

partition inverse theorem: 

Σ11 = Σ11|2 + Σ12Σ22
−1Σ21 

          = 𝐸(𝜇𝑖𝑡) + Σ12𝐷
−1Σ21 . 

 

B.2. Estimating the model using the 2006 - 2008 time period 

An additional specifications of the model is considered to address the issue of decay in 

enforcement of the program over time. This is a re-estimation of the model for the period of 

2006 to 2008. Media reports highlighting fine collection issues first surfaced around March 2010 

(Connell, 2010) suggesting that people started ignoring citations in 2009 and early 2010. Hence, 

the omission of observations from 2009 and 2010 controls for the lack of legal bite that plagued 

the program. Table B3 presents the results from this specification for all three control rings. 

Results for the 0.5-mile ring in Table B3 tell a similar story as those in Table 3.4, though 

magnitudes of estimates are larger with the exception of rear-end and injury collisions. The 
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treatment effect for "all collisions" rises to 21% (compared to 17% in Table 3.4), right-angle 

collisions to 35% (24% in Table 3.4), and rear-end collisions to 32% (34% in Table 3.4). Injury 

collisions, however, fall to 16% (22% in Table 3.4). In addition, this specification estimates a 

significant decrease in red light collisions of 54% as opposed to a non-significant decrease of 

12% in Table 3.4. The difference in results across specifications for right-angle and red light 

collisions suggest that the decay dampened the effect of increases in cameras on right-angle 

collisions and reduced the positive effect that cameras have on red light related collisions.   
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Figure B1.1: The marginal effect of treatment on collisions by year using 1-mile control ring 

Estimate of marginal effect on rear-end collisions in 2006 omitted because it is an implausible outlier 

 

Figure B1.2: The marginal effect of treatment on collisions by year using 2-mile control ring† 
Estimate of marginal effect on rear-end collisions in 2006 omitted because it is an implausible outlier 
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Table B1: Descriptive statistics of intersection-month collision counts, before and after treatment 
for the five types of collisions, by treatment status 

Type of 
Collision  

 

Treated 
intersections 

0.5-mile controls 1-mile controls 2-mile controls 

Before After Before After Before After Before After 

All 

Number 
of 

Collisions 

0 199 485 833 2516 859 3446 862 2688 

1 158 505 560 1626 535 2020 499 1391 

2 104 255 265 712 210 906 222 626 

3 35 109 84 139 97 327 90 208 

4 11 36 21 68 43 103 30 64 

5 4 13 6 24 13 32 4 26 

6 2 3 1 3 1 4 1 4 

7 1 0 0 1 0 1 1 3 

8 0 0 0 1 0 1 0 1 

 

Mean 1.0778 1.1159 0.8266 0.8077 0.8476 0.7741 0.7993 0.7396 

Std Dev 0.0511 0.0299 0.0233 0.0138 0.0257 0.0138 0.0246 0.0142 

Right 
Angle 

Number 
of 

Collisions 

0 360 977 1340 3975 1347 3978 1311 3965 

1 116 336 363 998 336 923 333 866 

2 30 81 59 191 63 155 54 156 

3 5 12 8 21 10 21 10 18 

4 3 0 0 4 1 5 1 5 

5 0 0 0 1 1 0 0 1 

6 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

 

Mean 0.3949 0.3798 0.2853 0.2820 0.2850 0.2589 0.2785 0.2508 

Std Dev 0.0307 0.0169 0.0130 0.0077 0.0137 0.0075 0.0135 0.0075 

Rear End 

Number 
of 

Collisions 

0 391 1020 1440 4215 1421 4144 1393 4168 

1 103 320 285 872 271 790 259 735 

2 19 58 40 93 56 131 48 97 

3 0 7 5 9 9 15 9 10 

4 0 1 0 1 1 2 0 1 

5 1 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

 

Mean 0.2840 0.3279 0.2147 0.2098 0.2355 0.2174 0.2235 0.1921 

Std Dev 0.0248 0.0156 0.0114 0.0064 0.0127 0.0069 0.0124 0.0064 
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Red Light 

Number 
of 

Collisions 

0 439 1275 1575 4692 1569 4617 1515 4588 

1 64 128 185 463 181 440 180 392 

2 11 3 10 30 7 24 14 26 

3 0 0 0 4 1 1 0 3 

4 0 0 0 1 0 0 0 2 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

 

Mean 0.1673 0.0953 0.1158 0.1038 0.1126 0.0966 0.1217 0.0919 

Std Dev 0.0188 0.0080 0.0080 0.0046 0.0080 0.0043 0.0085 0.0045 

Injury 

Number 
of 

Collisions 

0 304 708 1198 3133 1217 3180 1220 3210 

1 170 441 542 1368 509 1282 484 1227 

2 62 156 164 415 146 364 148 358 

3 18 40 26 82 36 76 32 79 

4 3 15 6 22 13 12 4 17 

5 1 1 1 3 1 3 0 1 

6 1 0 0 0 1 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

 

Mean 0.6637 0.6892 0.5049 0.5070 0.5055 0.4679 0.4724 0.4605 

Std Dev 0.0377 0.0237 0.0168 0.0107 0.0179 0.0103 0.0168 0.0104 

Number of Observations 514 1406 1770 5190 1758 5082 1709 5011 
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Table B2.1:  The marginal effect of treatment on all, right-angle, rear-end, and red light collisions 
from 2006 to 2010 by year using 1-mile control ring† 

Type of 
Collision 

Year 
Marginal 

Effect 
95% Probability Interval % Change 

All 

2006 0.3867 -0.1219 0.9104 34.65 

2007 -0.0189 -0.1756 0.1431 -1.69 

2008 0.1718 0.0381 0.3131 15.39 

2009 0.2547 0.1223 0.3833 22.82 

2010 0.1043 -0.0216 0.2322 9.34 

Right-
angle 

2006 0.1120 -0.1799 0.4391 29.49 

2007 0.0718 -0.0228 0.1626 18.89 

2008 0.1170 0.0374 0.1999 30.80 

2009 0.1275 0.0485 0.2060 33.58 

2010 0.0731 -0.0036 0.1432 19.24 

Rear-end 

2006 0.5844 0.3055 0.9119 178.24 

2007 0.0473 -0.0194 0.1203 14.42 

2008 0.1285 0.0641 0.1939 39.18 

2009 0.1278 0.0668 0.1938 38.99 

2010 0.0972 0.0405 0.1586 29.63 

Red Light 

2006 0.0027 -0.1088 0.1555 2.81 

2007 -0.0278 -0.0648 0.0120 -29.19 

2008 -0.0295 -0.0540 -0.0042 -30.97 

2009 0.0218 -0.0150 0.0606 22.93 

2010 0.0153 -0.0164 0.0508 16.09 
Estimates based on 10,000 Markov chain Monte Carlo draws with a burn-in of 1000. The following non-informative 
priors are used for all regression 

𝛽~𝑁(0𝑘 , 𝐼𝑘 × 100),    𝜂~𝑁(0𝑔, 𝐼𝑔 × 100),   𝐷−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑔 + 4, 𝐼𝑔). 

†Injury collision results not provided because model EM algorithm failed to converge  
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Table B2.2:  The marginal effect of treatment on all, right-angle, rear-end, and red light collisions 
from 2006 to 2010 by year using 2-mile control ring† 

Type of 
Collision 

Year 
Marginal 

Effect 
95% Probability Interval % Change 

All 

2006 0.3236 -0.1699 0.8963 28.99 

2007 -0.0484 -0.2034 0.1113 -4.34 

2008 0.1479 -0.0026 0.2974 13.25 

2009 0.1771 0.0335 0.3176 15.87 

2010 0.1197 -0.0208 0.2511 10.73 

Right-
angle 

2006 -0.0315 -0.3001 0.2573 -8.30 

2007 0.0808 -0.0145 0.1744 21.27 

2008 0.0890 0.0117 0.1689 23.43 

2009 0.0638 -0.0152 0.1414 16.79 

2010 0.0624 -0.0074 0.1337 16.44 

Rear-end 

2006 0.5517 0.2653 0.8850 168.26 

2007 0.0355 -0.0385 0.1120 10.83 

2008 0.1407 0.0652 0.2168 42.91 

2009 0.1183 0.0503 0.1950 36.07 

2010 0.1034 0.0403 0.1695 31.54 

Red Light 

2006 -0.0147 -0.1262 0.1381 -15.41 

2007 -0.0115 -0.0465 0.0303 -12.09 

2008 -0.0273 -0.0512 0.0001 -28.60 

2009 0.0369 -0.0015 0.0776 38.71 

2010 0.0069 -0.0221 0.0397 7.27 
Estimates based on 10,000 Markov chain Monte Carlo draws with a burn-in of 1000. The following non-informative 
priors are used for all regression 

𝛽~𝑁(0𝑘 , 𝐼𝑘 × 100),    𝜂~𝑁(0𝑔, 𝐼𝑔 × 100),   𝐷−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑔 + 4, 𝐼𝑔). 

†Injury collision results not provided because model EM algorithm failed to converge  
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Table B3:  Marginal effect of treatment on all, right-angle, rear-end, red light and injury 
collisions from 2006 to 2008 using 0.5-mile, 1-mile and 2-mile control rings 

Type of 
Collision 

Control 
Intersections 

Marginal Effect of 
Treatment 

95% Probability Interval % Change 

All 

0.5-mile 0.2367 0.1637 0.3099 20.57 

1-mile 0.1488 0.0555 0.2415 12.94 

2-mile 0.0873 0.0058 0.1656 7.59 

Right-angle 

0.5-mile 0.1400 0.0956 0.1848 34.76 

1-mile 0.1151 0.0735 0.1577 28.56 

2-mile 0.1385 0.0959 0.1844 34.38 

Rear-end 

0.5-mile 0.1122 0.0743 0.1503 31.97 

1-mile 0.1155 0.0773 0.1537 32.91 

2-mile 0.1353 0.0959 0.1752 38.54 

Red Light 

0.5-mile -0.0421 -0.0579 -0.0259 -53.70 

1-mile 0.1158 0.0778 0.1554 147.77 

2-mile -0.0215 -0.0370 -0.0036 -27.40 

Injury 

0.5-mile 0.1138 0.0650 0.1651 16.49 

1-mile 0.1643 0.1120 0.2190 23.82 

2-mile 0.1823 0.1306 0.2373 26.42 

Estimates based on 10,000 Markov chain Monte Carlo draws with a burn-in of 1000. The following non-informative 
priors are used for all regression 

𝛽~𝑁(0𝑘 , 𝐼𝑘 × 100),    𝜂~𝑁(0𝑗 , 𝐼𝑗 × 100),   𝐷−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑗 + 4, 𝐼𝑗). 

 

 

 

 

 

 

 

 

 




