
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Optimizing Sparse Graph and Tensor Algorithms

Permalink
https://escholarship.org/uc/item/68k7f9jp

Author
Lonkar, Amogh

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68k7f9jp
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

OPTIMIZING SPARSE GRAPH AND TENSOR ALGORITHMS
A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Amogh Lonkar

December 2024

The Dissertation of Amogh Lonkar
is approved:

Asst. Prof. Scott Beamer, Chair

Prof. Seshadhri Comandur

Asst. Prof. Tyler Sorensen

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Amogh Lonkar

2024

Table of Contents

List of Figures vi

List of Tables xv

Abstract xvii

Dedication xix

Acknowledgments xx

1 Introduction 1
1.1 Thesis Overview . 5

2 Workload Analysis of a Sparse Tensor Decomposition 7
2.1 Introduction . 7
2.2 Background . 9

2.2.1 Tensor Data Structures . 9
2.2.2 Matricized Tensor Times Khatri Rao Product (MTTKRP) 10

2.3 Experimental Setup . 11
2.3.1 Sparse Tensor Frameworks 12
2.3.2 Tensor Dataset . 12

2.4 Performance Analysis . 13
2.5 Improving Performance . 16

2.5.1 Comparison Against Leading Frameworks 19
2.6 Related Works . 20
2.7 Conclusion . 22

3 Improving Scalability of Pivoting-Based Clique Counting 23
3.1 Introduction . 23
3.2 Background . 27

3.2.1 Preliminaries . 27
3.2.2 Enumeration-Based K-Clique Counting 29

iii

3.2.3 Pivoting-Based K-Clique Counting 29
3.3 Parallelizing the Ordering Phase 34

3.3.1 Parallel Core-Approximation 34
3.3.2 Centrality-Based Ordering 38

3.4 Maximum Neighbor Influence . 40
3.4.1 Work-Locality Tradeoff . 41

3.5 Improving Counting Phase Scalability 44
3.5.1 Reducing Memory Consumption 45

3.6 Evaluation . 47
3.6.1 Experimental Setup . 48
3.6.2 Accelerating the Ordering Phase 49
3.6.3 Work-Locality Tradeoff and Maximum Neighbor Influence 56
3.6.4 Reduction in Memory Usage 60
3.6.5 Parallel Scaling of k-Clique Counting 63
3.6.6 Total Execution Time Comparison 65
3.6.7 Comparison Against GPU 68

3.7 Related Work . 73
3.8 Conclusion . 74

4 Actor-Based Distributed Breadth-First Search 76
4.1 Introduction . 76
4.2 Background . 78

4.2.1 Conventional Top-Down BFS 78
4.2.2 Bottom-Up BFS . 79
4.2.3 The Actor Model . 81
4.2.4 HCLib-Actor Framework 82
4.2.5 The Actor Graph Library (AGL) 83

4.3 Actor-Based Direction-Optimizing BFS 84
4.3.1 Parallel Top-Down BFS 84
4.3.2 Parallel Bottom-Up BFS 86
4.3.3 Parallel Direction-Optimizing BFS 90

4.4 Evaluation . 91
4.4.1 Experimental Setup . 91
4.4.2 Bottom-Up Comparison 92
4.4.3 Direction-Optimizing BFS 100
4.4.4 Comparison Against Prior Work 101

4.5 Related Work . 104
4.6 Conclusion . 105

5 Conclusion 107
5.1 Summary of Contributions . 108
5.2 Future Work . 109

iv

Bibliography 111

v

List of Figures

1.1 The sparse graph is stored efficiently in the compressed sparse row
(CSR) format. We can access any edge in the graph using the
offset (red) and neighbor (yellow) arrays. Typical graph algorithms
involve iterating over a vertex’s neighbors and performing some
computation. In this example, we want to update the score of
a vertex by summing the scores of its neighbors. This results in
irregular memory accesses since the scores of the neighbors may
not be near each other. 2

1.2 Latency (cycles) for random memory accesses to a fixed-size array
using a pointer-chase microbenchmark measured on an Intel Xeon
Platinum 8260 system. When the array is small enough to fit into
the caches (<72MB), the latency is not as high. However, once the
array is too big and requests regularly go to DRAM, the latency
increases significantly. 3

2.1 A 2-D Tensor stored in the Coordinate (COO) format. The x and
y-coordinates of each non-zero are stored in separate arrays with
the associated non-zero value. 10

2.2 IPC vs MPKI for MTTKRP in different frameworks run on various
tensors in the FROSTT dataset. Higher MPKI results in low IPCs,
suggesting that LLC misses are a problem. Low MPKI numbers,
coupled with low observed bandwidth utilization suggests that only
a few LLC misses are quite problematic. 14

vi

2.3 Fraction of cycles without any new instructions issued vs MPKI
for MTTKRP in different frameworks run on various tensors in
the FROSTT dataset. Higher MPKI results in more stalls as the
processor has to wait for data to arrive from main memory before
it can start processing it. We observe that even for a very low
MPKI of 5, the processor spends 80% of cycles without issuing any
instructions. This means that the performance of current out-of-
order processors is highly sensitive to even a few LLC misses. . . . 15

2.4 Poor load miss density of the baseline algorithm. Since generating
the address requires additional computation, loads are spaced far
apart and the resulting number of memory requests is much smaller
than the memory system allows. There is potential to improve
performance by amortizing the request overhead by getting more
misses in flight. 16

2.5 Speedup vs MPKI for SIMD using manual intrinsics for various
tensors. Initially, when the tensor is small enough to fit within
cache (low MPKI), SIMD speedup is high due to better resource
utilization. As the tensors get bigger, the processor is stalled for sig-
nificant cycles waiting on data from main memory and the speedup
starts to plateau. However, for larger tensors, the speedup is still
roughly 1.5× over the baseline. 18

2.6 Speedup vs improvement in bandwidth utilization over the baseline
for SIMD, Software Prefetching and combining both. Higher is
better for both axes. Increasing bandwidth utilization leads to
better performance (higher speedups) for MTTKRP. 20

vii

2.7 Speedups over our baseline for existing frameworks and our SIMD
and Software prefetching implementations. Tensors are ordered ac-
cording from smallest runtime (fastest) to largest runtime (slowest)
for the baseline implementation. We present only kernel runtimes,
however, both SPLATT and ALTO require additional preprocess-
ing, which if considered, result in runtimes longer than our own
implementations. SPLATT is unable to decompose certain larger
dimensional tensors and is generally the slowest framework. 21

3.1 Frequency distribution of k-cliques in different graphs. Enumeration-
based algorithms are exponentional with respect to clique size (k),
and increasing frequency of moderately sized cliques in real-world
graphs further exposes this increasing complexity. 25

3.2 Converting an undirected input graph (left) to directed acyclic
graph (right) by a degree-based ordering. Furthermore, the high-
lighted (red) portion on the right indicates the subgraph induced
by vertex 0. 28

3.3 Array for sets X, P and R and a dense lookup for the location
of vertices within the set while processing vertex 0 in the example
DAG (Figure 3.2). Storing the sets in a single array allows for
efficiently transferring vertices between X, P and R in between
recursion levels. 31

3.4 Differences in the function call heirarchy between enumeration-
based algorithms (left) and Pivoter (right) for counting 4-cliques
associated with vertex 0 in the example DAG from Figure 3.2. The
number in the box denotes the vertex for which the induced sub-
graph is being built in that level. Vertices are processed sequentially
in a depth-first manner. In the heirarchy on the left, the sequence
1→ 4 is processed multiple times. In contrast, the stack for Pivoter
is much smaller and avoids redundant computation in the counting
phase. 33

viii

3.5 Converting the undirected input graph (left) to a directed acyclic
graph (right) by a core ordering. Even though vertex 0 has the
highest degree, most of its neighbors are low-degree vertices. Hence
it has a lower degree than vertex 1 after peeling vertices 4, 5, and
6, and the edge is directed from 0→ 1. 39

3.6 Differences in degree distribution after producing a DAG using core
(left) and degree ordering (right) on the Skitter graph. 41

3.7 Dense structure for storing the neighbor lists of the first-level in-
duced subgraph. 45

3.8 Sparse structure in ComSpark for storing neighbor lists in the first-
level subgraph. Instead of a dense array to point to the locations of
the neighbor lists, the sparse structure uses a hash map with vertex
identifiers as keys and pointers to the neighbor lists as values. . . 46

3.9 Optimized structure with remapping in ComSpark for storing neigh-
bor lists in the first-level subgraph. Only the ~d(v)-sized remapped
array (orange) and the neighbor lists are stored in memory. 47

3.10 Maximum out-degrees produced by changing the error parameter in
the parallel approximation algorithms. The maximum out-degrees
for core, degree and centrality-based orderings are also included as
a reference. As ε increases, and more vertices are removed in each
round, the maximum out-degree produced by the ordering increases. 51

3.11 Comparison between time to produce various orderings. On larger
graphs, our approximation is significantly faster. In addition to
being fast, our approximation with ε = −0.5 produces the same
maximum out-degree as core ordering. This results in the counting
phase time between both to be comparable. Degree ordering is
always the fastest ordering, but it does not always result in the
best counting times. 53

ix

3.12 Comparison between the time to count 8-cliques for each ordering.
The core ordering and our parallel approximation generally result
in the best counting times due to its algorithmic efficiency. Graphs
like DBLP, Baidu and Friendster benefit more from a degree ordering. 54

3.13 Comparison between the total execution times for counting 8-cliques
using each ordering. In graphs where core ordering results in the
fastest counting, our parallel approximation with ε = −0.5 results
in much faster overall time due to the fast, parallel ordering. . . . 55

3.14 Differences in the number of instructions executed during the count-
ing phase while counting 8-cliques using both orderings. Lower is
better. The instruction count is normalized to that of core ordering.
The number of million instructions per-vertex for core ordering is
denoted at the top of each bar. Even though degree ordering results
in marginally faster counting on some graphs, core ordering is al-
ways more algorithmically efficient as fewer instructions are always
executed. 56

3.15 Ratio of the number of function calls per-vertex and MPKI be-
tween core and degree ordering in the counting phase while counting
cliques using our dense structure. Since the maximum out-degree of
degree ordering is typically higher, degree ordering results in more
instructions than core ordering while counting cliques. More func-
tion calls lead to more cache locality since the first-level subgraph
is reused in subsequent recursive calls. Degree ordering has a lower
MPKI than core ordering for every graph. 57

3.16 Total execution time for counting varied clique sizes using only
our core approximation, only the degree ordering, or the ordering
selected by our heuristic. Our heuristic always selects the correct
ordering for these graphs and it does not add significant overhead. 60

x

3.17 Comparing the total process memory usage between ComSpark’s
dense, sparse and remapped structures for counting 8-cliques in
the input graphs. Lower is better. Memory usage is normalized to
ComSpark’s dense structure memory consumption. Dense struc-
ture memory consumption (GB) is denoted above each bar. The
same ordering is used for all runs. On average, the sparse and
remapped structures result in 3.31× less memory consumption. . . 61

3.18 Comparing the reduction in memory usage and MPKI between
ComSpark’s dense and remapped structures for counting 8-cliques
in the input graphs. Lower is better. Both metrics are normalized
to ComSpark’s dense structure. The same ordering is used for all
runs. Compaction in the remapped structure allows a larger frac-
tion of the induced subgraph to reside in cache, reducing the miss
rate. 62

3.19 Comparing the performance of different ComSpark memory struc-
tures while counting 8-cliques on 64 threads. Higher is better. The
same ordering is used for all runs. The remapped structure provides
the fast access of the dense structure and the memory compression
of the subgraph structure, resulting in good overall performance. . 63

3.20 Comparing parallel scaling of between different subgraph structures
in ComSpark for the entire process of counting 6, 12-cliques in all
input graphs. The time for each run includes the time to com-
pute the heuristic, and both ordering and counting phases. Both
ComSpark structures scale linearly, resulting in better overall per-
formance. For Baidu and Friendster, memory becomes a bottleneck
for our dense implementation at 32 threads. Our more compact
sparse and remapped structures avoid this and scales linearly even
beyond 32 threads. 64

xi

3.21 Total execution time (on a log scale) required for counting cliques of
different sizes on the input graphs for each of the CPU algorithms
(Pivoter [56], Arb-Count [104], ComSpark) and GPU-Pivot running
on an NVIDIA Volta V100 GPU. Lower is better. GPU-Pivot does
not report times for k > 11. We observe that the lone enumeration-
based algorithm (Arb-Count) takes longer for higher values of k. In
contrast, the pivoting-based approaches typically do not get slower
for higher k. Due to improved parallel scaling, ComSpark is much
faster than Pivoter, despite requiring constant time for various k.
This allows the inflection point at which pivoting starts to win to
decrease from k = 10 to k = 8 on larger graphs. Due to better
scaling, ComSpark outperforms GPU-Pivot for all k on DBLP and
larger k on two out of the four common graphs (As-Skitter and
Orkut). 66

3.22 Number of function calls required in the counting phase while count-
ing cliques of different sizes. The number of calls are normalized to
that of counting 4-cliques in each graph. Counting larger cliques in
denser graphs with many cliques like As-Skitter and Orkut result in
more work until it plateaus. This is due to an optimization in the
original Pivoter code that allows early termination in the counting
process. 69

3.23 Self-normalized execution times for GPU-Pivot and ComSpark for
As-Skitter and Orkut. We normalize the execution times for various
values of k by dividing by the execution time of k = 4 for that
specific implementation. We observe that the execution time for
GPU-Pivot increases with k. In contrast, ComSpark’s execution
time does not increase significantly. Notably, in the case of As-
Skitter, ComSpark has almost constant execution time for all values
of k. This allows ComSpark to outcompete GPU-Pivot for larger k. 69

xii

3.24 Self-normalized execution times for GPU-Pivot and ComSpark for
LiveJournal. We normalize the execution times for various values
of k by dividing by the execution time of k = 4 for that specific
implementation. While the execution times for both algorithms
increase with k, ComSpark shows a slower rate of increase. 70

3.25 Total execution times for counting various k-cliques in LiveJournal
using ComSpark and GPU-Pivot on a log-scale. Since GPU-Pivot
only reports times up to k = 8, we project the performance for
counting k >= 9 for GPU-Pivot using a regression. We use the
equation y = 0.021 ∗ e1.6037x to model the performance of GPU-
Pivot. The R-squared value for our regression is 0.99. 71

4.1 Software stack for implementing Actor-based BFS. We implement
BFS in the Actor Graph Library (AGL), which is built on top of
the HCLib-Actor framework (yellow). The HCLib-Actor framework
leverages the Conveyor library (green) for message aggregation. . 84

4.2 Edges checked in each level by different bottom-up implementations
for a SCALE 26 R-MAT graph. 93

4.3 Edges checked in each level by different bottom-up implementations
for the Twitter graph. 93

4.4 Total number of messages sent during different bottom-up imple-
mentations for a SCALE 26 R-MAT graph and the Twitter graph. 94

4.5 Time for each level for different bottom-up implementations for a
SCALE 26 R-MAT graph and the Twitter graph. Sequential takes
198.61s for the first level on R-MAT and 580.09s and 517.28s for
the first two levels on Twitter respectively. 95

4.6 Comparison between weak scaling for various bottom-up implemen-
tations. 95

xiii

4.7 Impact of different batch parameters on performance. We vary the
number of request-response queries for Threshold and the number
of messages in a batch for Batch (right). We measure the time
taken for levels 2 and beyond for the R-MAT graph, and levels 3
and beyond for Twitter. 97

4.8 Execution time (left) and messages sent (right) for levels 2-7 of
bottom-up BFS on an R-MAT SCALE 26 graph. Parallel takes
3.50s for level 2. 98

4.9 Execution time (left) and messages sent (right) for levels 2-7 of
bottom-up BFS on the Twitter graph. Parallel takes 1.04s for level
3. 98

4.10 Total number of messages sent during the relevant bottom-up levels
using different messaging schemes for a SCALE 26 R-MAT graph
and the Twitter graph. 99

4.11 Effect of switching heuristic on hybrid BFS performance. 100
4.12 Time for each level for the top-down, bottom-up and hybrid imple-

mentations for a SCALE 26 R-MAT graph and the Twitter graph. 101
4.13 Comparison between weak scaling for various implementations. . . 102
4.14 Normalized search rate (MTEPS/Core) for various implementations.102

xiv

List of Tables

2.1 Summary of notation used. 10
2.2 Summary of the properties of input tensors taken from FROSTT

[105]. 13

3.1 Summary of the properties of input graphs used in the Evalua-
tion. All graphs are unweighted and symmetrized prior to analysis.
These graphs are taken from a variety of sources [33, 67, 101]. We
only use Soc-Pokec for evaluating our heuristic, and LiveJournal
for comparison against the GPU. 48

3.2 Comparison between time taken to convert the input graph into
a DAG using the sequential core and degree orderings and the as-
sociated counting times for counting 8-cliques. The fastest overall
times are bolded. The core ordering is guaranteed to produce the
lowest maximum out-degree, which typically reduces the work in
the counting phase. 50

3.3 The number of rounds required to order the graph for different
values of ε. Setting ε to -0.5 results in the same maximum out-
degree as the core ordering. The number of rounds in this case is
still significantly less than the |V| rounds (on the order of millions)
required by the sequential core ordering algorithm. Setting ε to
50000 effectively results in a degree-based ordering since only one
round is required. ε = 0.1 is a good compromise between parallelism
(number of rounds) and ordering quality (Figure 3.10). 52

xv

3.4 Hardware performance counters for the counting phase of degree
ordering normalized to core ordering. Degree ordering always ex-
ecutes more instructions, but executes them faster due to fewer
cache misses (MPKI). 58

3.5 Order-selecting heuristic inputs, measurements, and decisions for
counting 8-cliques. Our heuristic selects our core approximation
aδ > 0.15, or if there are more than 0.10 common neighbors. We
select a degree ordering otherwise, or if the graph is very small
(|V | < 1M). Our heuristic always selects the correct ordering for
these graphs. The time to compute the heuristic is tiny. 59

3.6 Summary of total execution time for counting cliques using Pivoter
[56], Arb-Count [104], GPU-Pivot [4] and ComSpark. We use the
times reported by GPU-Pivot in their paper. Every other algorithm
is executed using 64 threads on the same machine (CPU) under
the same conditions. The execution times reported include any
preprocessing, including graph ordering, but ignore graph reading
times. The best CPU execution time is denoted in bold and if the
GPU execution time is the fastest, it is denoted in green. 67

3.7 Comparison of CPU and GPU specifications. These values were
obtained from [89,112]. 72

3.8 Performance of the GPU normalized to that of the CPU. We use
the power (TDP), transistor and area (mm2) for each system as
reported in Table 3.7. 72

4.1 Various messaging schemes for parallel bottom-up BFS 90
4.2 Difference in amount of communications and synchronization be-

tween our Actor-based hybrid BFS and CombBLAS. We use mpiP [116]
to profile CombBLAS. 103

xvi

Abstract

Optimizing Sparse Graph and Tensor Algorithms

by

Amogh Lonkar

Most big data processing tasks today rely heavily on graph and tensor algorithms

to uncover useful information within real-world data. Graph algorithms are used

to model relationships between entities, such as social networks. On the other

hand, tensor algorithms are essential for processing multi-dimensional data, such

as those encountered in machine learning, image recognition, and natural language

processing.

Real-world data is sparse and irregular, making these data processing tasks

difficult for modern processors. These algorithms require a significant amount

of communication between compute and memory, and sometimes between differ-

ent compute nodes for very large problem sizes. In this dissertation, we analyze

graph and tensor workloads to understand data access patterns. We then present

optimizations for improving data communication efficiency within the system to

improve performance. We consider multiple problems, such as clique counting in

graphs (computationally intensive), sparse tensor decomposition (effects of higher

dimensionality), and distributed breadth-first search (synchronization and com-

munication across a network).

In this dissertation, we present ComSpark, a clique counting algorithm which

scales linearly on CPUs and outperforms GPUs in some cases. To improve the per-

formance of sparse tensor decompositions, we present two software optimizations

that improve memory bandwidth utilization. Finally, we reduce the amount of

communication required in distributed breadth-first search by using asynchronous

xvii

actor messages. Our techniques allow challenging sparse workloads to run faster

and enable us to process larger graphs and tensors on current hardware.

xviii

To my family

xix

Acknowledgments

I would like to thank many people who have been instrumental during my PhD

journey at UC Santa Cruz.

First and foremost, I would like to express my sincere gratitude to my ad-

visor, Prof. Scott Beamer, for his guidance and support over these five years. I

joined UCSC very green as a researcher, and with minimal experience in computer

science. Scott took a chance on me as a student, and for that I will be forever

grateful. He has been a true role model as a researcher and person, and his ded-

ication to teaching others is admirable. I could not have had a better mentor to

introduce me to graphs, and throughout the years I have learned many things

about architecture, parallel computing, and algorithms from our conversations.

He struck a great balance between allowing me the freedom to drive projects and

providing help, advice and ideas when needed. Scott inspires me to push myself

and strive for excellence, and I am better for it.

I would also like to thank the rest of my dissertation committee members,

Prof. Seshadhri Comandur and Prof. Tyler Sorensen, for their valuable feedback.

Sesh provided useful information on clique counting. Tyler provided several useful

suggestions, not just for this dissertation, but also for my Master’s Thesis. His

feedback undoubtedly made both works better.

I would like to thank all of the members of the VAMA lab for our enjoyable

and insightful interactions over the years. Tanuj Gupta, Nishant Khanorkar and

Vincent Titterton have been a pleasure to work with on Actors. Sharing an

office with Jason Vranek, Haoyuan Wang, Yuanpeng Liao, Priyanka Dutta, Alex

Lee, and Jessica Dagostini has been a great experience. Jessica always provided

extremely valuable feedback for my research talks, and was a familiar face at

Supercomputing. I also thank Sabyasachi Basu and Daniel Paul-Peña for our

xx

conversations on subgraph counting and graph theory. I was lucky to have a

rich grad student community at UC Santa Cruz who made my time during the

PhD memorable, and interacting with all of my friends has been one of the best

parts about this journey. There are too many people to mention by name, but I

sincerely thank each and every one.

I am grateful to the members of the FORZA team for their generous support

over the last few years. I am especially appreciative of Akihiro Hayashi and

Youssef Elmougy for all of their assistance with HCLib. Without their efforts,

the BFS chapter in this thesis would not be possible. I also enjoyed getting to

know, and interacting with Rich Vuduc, Jeff Young, and Souvi Hati during the

site visits.

Last, but certainly not least, I would like to thank my family. Our parents

always encouraged me and Omkar to prioritize our education. They made tremen-

dous sacrifices that allowed us to focus on our studies without having to worry

about anything. Their endless love and support does not go unnoticed. This jour-

ney would not have been possible without them by my side, and this achievement

is as much theirs as it is mine. Working and living together with Omkar has been

the best part of the last year.

xxi

Chapter 1

Introduction

Structures like graphs and tensors represent relations between various entities,

such as friends in a social network, interacting proteins in biological processes,

vector spaces in quantum mechanics, etc [5, 31, 64, 82, 110]. Graph and tensor

algorithms iterate over these structures to uncover useful patterns or relation-

ships between the data. Typically, this intermediate data is then fed as input

into machine learning models to accomplish tasks such as classification and rec-

ommendation [41,47,50,62,91,92,102].

Data in the real world tends to be sparse. Classic examples include a rela-

tively small number of accounts with a very large number of followers on Twitter,

and the frequency of common words like ’the’ and ’of’ in a text corpus [29, 64].

Additionally, the volume of real-world data available to us keeps increasing. Both

of these factors necessitate compressed data structures which avoid storing non-

useful information, i.e. zeros. These include Compressed Sparse Row (CSR) for

graphs and Coordinate (COO), Hierarchical Coordinate (HiCOO), Compressed

Sparse Fiber (CSF) etc. for tensors [69, 107]. While these structures tend to be

space-efficient, they result in irregular control flow and memory access patterns,

both of which are challenging for performance on current processors (Figure 1.1).

1

0

2 3

4

1
2 1

2

0

2

0 2 4 5 7

2 1 2 2 0

1 3 3 0 4 2 4

Offsets

Neighbors

score

0 1 2 3 4
for(u: g.vertices())

 for(v: g.neighs(u))
score[u] +=

score[v];

Random memory accesses

Figure 1.1: The sparse graph is stored efficiently in the compressed sparse row
(CSR) format. We can access any edge in the graph using the offset (red) and
neighbor (yellow) arrays. Typical graph algorithms involve iterating over a ver-
tex’s neighbors and performing some computation. In this example, we want to
update the score of a vertex by summing the scores of its neighbors. This results
in irregular memory accesses since the scores of the neighbors may not be near
each other.

The gap between processor speeds and data transfer rates in DRAM, also

known as the memory wall, keeps on increasing [119]. Modern processors employ

caches and various speculative mechanisms such as hardware prefetchers to im-

prove performance. Sparse real-world data results in algorithms with irregular

memory access patterns, which are not predictable by existing prefetchers. Fur-

thermore, data is too large to fit in fast on-chip caches, leading to a large number

of requests to DRAM. For reference, the L1 cache is typically over 100× faster

than DRAM, and accesses to DRAM typically stall the processor for hundreds of

cycles waiting for the requested data (Figure 1.2). This is especially problematic

for sparse graph and tensor algorithms due to their communication-centric nature.

We find this inhibits their parallelism, and ultimately hinders performance.

2

16 64 256 1024 4096 16384 65536 262144 1048576 4194304
Array Size (kB)

0

50

100

150

200

250

300
La

te
nc

y
(C

yc
le

s)

Figure 1.2: Latency (cycles) for random memory accesses to a fixed-size array
using a pointer-chase microbenchmark measured on an Intel Xeon Platinum 8260
system. When the array is small enough to fit into the caches (<72MB), the
latency is not as high. However, once the array is too big and requests regularly
go to DRAM, the latency increases significantly.

Many graph algorithms require large amounts of communication, so they have

low arithmetic intensity [8]. Real-world graphs tend to only have a few high-

degree vertices, leading to reduced locality in data accesses. As a result, graph

algorithms do not fully utilize the compute or memory bandwidth capabilities

of modern processors. Sparse tensors face similar performance challenges. Aside

from large storage demands due to the sheer size of datasets, non-zeros are spread

out far apart and reuse is limited.

The increasing scale of modern data and its irregular nature make sparse graph

and tensor algorithms memory-bound. On our dual-socket Intel Xeon system, we

measure an 11.48% degredation in the performance of BFS, a communication-

intensive workload, for every 10ns increase in memory latency. The performance

3

of BFS drops significantly (1.67x slowdown) when we access memory on the re-

mote socket. We also measure low instruction per cycle (IPC) rates (< 0.3) for

these memory-bound applications on our system. In contrast, we measure IPCs

of over 2 for compute-intensive applications like matrix-multiply. This necessi-

tates optimizing data movement between compute and memory to efficiently use

resources in modern processors. Data communication efficiency can be improved

by reducing the total amount of data moved by doing less algorithmic work, or by

increasing throughput via improved memory-level parallelism. In practice, these

can be achieved via cache-friendly data structure layouts or general communica-

tion efficiency improvements. Prior works improve performance for sparse graph

and tensor workloads by reducing cache miss rates [7,12,30,65,85,95,108,118,123],

or increasing memory bandwidth utilization [1, 52,84].

In this dissertation, we explore the effects of parallelism, throughput and la-

tency on performance as given by Little’s Law [73] (parallelism = throughput ×

latency). We attempt to understand the fundamental issues in data flow across

the memory heirarchy, and even the network, in various types of systems. We

analyze the workload characteristics for different sparse graph and tensor algo-

rithms using hardware performance counters and performance monitoring tools

like Intel VTune. We also closely examine the software for potential inefficiencies.

We focus on memory allocation for intermediate data structures, memory access

patterns, and the amount of algorithmic work leading to extraneous communica-

tion. We also consider how load balance between different threads impacts parallel

performance. Based on our analysis, we target specific optimization strategies to

improve communication efficiency within the system.

As the future moves towards heterogeneous computing with multiple domain-

specific accelerators, efficient data movement between different types of cores be-

4

comes key to improving performance and maintaining energy efficiency. We hope

that the techniques we describe in this dissertation can be applied to those sys-

tems.

1.1 Thesis Overview

To introduce the performance traits of a communication-bound algorithm,

we present a workload characterization of sparse tensor decompositions in Chap-

ter 2. Tensor decompositions can expose underlying hidden relationships within a

dataset. Many applications in data mining, signal processing, image classification,

and outlier detection are powered by tensor decompositions. Tensors provide us

an opportunity to study the effect of higher dimensionality of data on algorithm

performance. In practice, we find that tensor algorithms perform much better

on modern processors than graph algorithms. We also find that a small number

of last-level cache (LLC) misses are very problematic and cause the processor to

stall for a significant amount of cycles. We investigate the effects of different

approaches to improve performance by increasing bandwidth utilization such as

SIMD and Software Prefetching.

In Chapter 3, we present a heuristic to select the best parallel ordering, and

cache-friendly data structures to improve the performance of clique counting.

Clique counting is a fundamental task in network analysis, and is used to identify

dense clusters in a graph. Clique counting is especially challenging because of the

combinatorial explosion in complexity and the high storage requirements of inter-

mediate data structures. Specifically, we consider pivoting-based clique counting

which efficiently counts large cliques in sparse graphs. Through our innovations,

we are able to achieve linear parallel scaling up to 64 cores, resulting in the fastest

parallel CPU implementation to the best of our knowledge.

5

Finally, we consider the impact of communication across a network in a dis-

tributed system for breadth-first search (BFS) in Chapter 4. We consider BFS

because it is a fundamental algorithm for traversing through a graph. By lever-

aging the Actor model, we reduce the amount of high latency network messages

and synchronization overhead to improve performance of distributed BFS.

In Chapter 5, we summarize our contributions and suggest potential future

work.

6

Chapter 2

Workload Analysis of a Sparse

Tensor Decomposition

In this chapter, we lay out a methodology for understanding sparse algorithm

performance by considering Matricized Tensor Times Khatri-Rao Product (MT-

TKRP), a sparse tensor decomposition. We analyze the MTTKRP algorithm,

and use hardware performance counters to identify the system bottleneck, i.e.

memory latency. We then present two targeted software optimizations to improve

performance by increasing memory bandwidth utilization.

2.1 Introduction

Tensors are multi-dimensional arrays which can flexibly represent data rela-

tions. Decomposing a tensor into a function of low-rank components can identify

interesting and useful information. As such, the use of tensors has become popular

in machine learning, social network analysis, data mining, computer vision, and

quantum computing [2,31,42,62,63,93,94,103]. In recent years, there has been a

big push to design efficient algorithms and accelerators to improve sparse tensor

7

algebra performance to enable these applications [44,51,52,61,69,107–109].

Sparse tensors present significant performance challenges for current general-

purpose systems [70]. Since most of the values within a tensor are zero, sparsity

is naturally present in the data. Additionally, high dimensionality leads to large

storage overheads, requiring more efficient data structures to represent sparse

tensors. These two factors combined cause algorithms to have poor spatial and

temporal locality, as useful data is spread far apart with limited opportunity for

reuse. Furthermore, the sheer size of the data necessitates practically efficient

algorithms to compute tensor decompositions. Finally, the algorithms may need

to be specialized for different tensor representations such as Coordinate (COO),

Hierarchical Coordinate (HiCOO) [69] and Compressed Sparse Fiber (CSF) [107].

Some optimizations are often specific for a given dimensionality and not may not

be generally applicable.

The most exciting tensor applications make use of decompositions. A sparse

tensor can be represented as a sum of rank-1 tensors (vectors) using Canonical

Polyadic Decomposition (CPD) [54]. It is analogous to Singular Value Decom-

position (SVD) for matrices. The most computationally intensive step in the

Alternating Least Squares (ALS) algorithm for CPD is Matricized Tensor Times

Khatri Rao Product (MTTKRP), which flattens the tensor along each dimension

and take a column-wise Kronecker Product. CPD’s application in machine learn-

ing for finding trends in datasets over a wide range of domains drives the need for

improving the performance of MTTKRP.

In this work, we present a detailed performance analysis of the MTTKRP

kernel to aid future development and contribute a deeper understanding of the

limiting factors of recent innovations. More generally, our work provides a con-

venient case study exploring processor performance for a sparse workload. We

8

characterize leading sparse tensor frameworks as well as our own code with hard-

ware performance counters. Interestingly, we observe that sparse tensors often

perform well on general-purpose CPUs, and can often benefit from using SIMD

instructions. Their performance (in terms of instruction throughput) is typically

better than comparable sparse graph workloads, which often perform poorly on

current CPUs, and consequently have even more room for improvement [11].

Despite the perceived limitations of current hardware for sparse tensor work-

loads, our analysis finds that a surprisingly few number of last-level cache (LLC)

misses are the primary performance bottleneck remaining. These misses are costly

in modern out-of-order processors, and can greatly impair instruction throughput.

To confirm our observations and scout possible solutions, we evaluate different

techniques to improve performance by utilizing more memory bandwith. We con-

sider single-instruction multiple data (SIMD) extensions and software prefetching.

Our analysis can motivate the development of novel algorithms and accelerators

for sparse tensor workloads.

2.2 Background

2.2.1 Tensor Data Structures

The coordinate (COO) data structure is the simplest way of storing a sparse

tensor [62]. In this format, the coordinates of every non-zero and the associated

non-zero value are stored in separate arrays (Figure 2.1). The benefit of this struc-

ture is that it can easily store an arbitrary-dimensional tensor without requiring

a complex lookup to find the required data. Since it stores the indices of all of

the non-zeros in the tensors, this structure may consume a large amount of space.

Additional optimized data structures like Heirarchical Coordinate (HiCOO), Com-

9

pressed Sparse Column (CSC), and Compressed Sparse Fiber (CSF) compress this

structure even further.

4

12

17 18

9

4x4 2-D Tensor

0 1 2 2 3

0 1 0 3 2

4 12 17 18 9

x-coord

y-coord

value

Coordinate Structure

Figure 2.1: A 2-D Tensor stored in the Coordinate (COO) format. The x and
y-coordinates of each non-zero are stored in separate arrays with the associated
non-zero value.

2.2.2 Matricized Tensor Times Khatri Rao Product (MT-

TKRP)

MTTKRP is the main computational kernel in tensor decompositions. In

this section we present a simple MTTKRP implementation and explore potential

performance bottlenecks (Algorithm 1).

Notation Description

X Tensor

M Modes (dimensions)

X .nz Set of non-zeros in X

R Number of columns in factor matrices

ni ith coordinate of non-zero n ∈ X .nz

Table 2.1: Summary of notation used.

Consider a 3D tensor X ∈ RI×J×K and factor matrices B ∈ RJ×R and C ∈

RK×R. Let the output of MTTKRP be the updated factor matrix A ∈ RI×R,

such that A = X ×B⊙C. In practice, factor matrices are stored in a row-major

format.

10

Algorithm 1 MTTKRP Algorithm based on PASTA [70]
1: function MTTKRP(X , B, C)
2: for all n ∈ X .nz do
3: x← nx, y ← ny, z ← nz
4: for all r = 0...R− 1 do
5: A[x×R + r]+ = n×B[y ×R + r]× C[z ×R + r]
6: return A

We analyze Algorithm 1 line-by-line considering potential memory access lo-

cality. Since the coordinate representation stores the coordinates for each non-zero

in a separate array, Line 3 results in consecutive accesses that enjoy great spatial

locality. These coordinates are then used to index specific rows in each factor

matrix to perform the multiplication.

Various compression techniques used to avoid storing zeros in sparse tensors

may result in poor spatial and temporal locality while accessing different rows

of the factor matrices via indirection (Line 5 in Algorithm 1). The similarity of

values of {x, y, z} × R + r among subsequent accesses depends on the density of

non-zeros along those dimensions. There is potential for tensors to have vastly

differing densities of non-zero values along each dimension. This also raises con-

cerns about load imbalance affecting parallelizability, as each dimension’s work

is done independently. Thus, we expect Line 5 in Algorithm 1 to be a perfor-

mance bottleneck. This step is especially inefficient since we compute each of the

corresponding row indices right before accessing memory.

2.3 Experimental Setup

We perform our experiments on a dual-socket Intel Xeon Platinum 8260 with

768GB of RAM. Each socket has 24 physical cores running at 2.40GHz and

a 35.75MB shared L3 cache. For this analysis, we perform experiments using

11

only a single thread to better focus on the performance implications of the core

microarchitecture. We collect hardware performance counter results using perf,

and we report DRAM traffic measured at the memory controller, as memory

bandwidth is a common bottleneck for data-intensive workloads.

2.3.1 Sparse Tensor Frameworks

For our analysis, we select three of the fastest tensor algebra frameworks for

comparison. PASTA is a parallel benchmark suite for sparse tensor algorithms

with reference implementations for different tensor operations in different repre-

sentation formats [70]. SPLATT is an optimized library for sparse tensor applica-

tions, which implements a novel sparse tensor data structure and other optimiza-

tions like re-ordering transformations and cache tiling [106]. ALTO uses highly

tuned compiler intrinsics to utilize ISA extensions to improve performance [52].

As a baseline, we implement our own version of PASTA’s MTTKRP algo-

rithm in C++ with small modifications such as replacing C-style arrays with STL

vectors and fixing the traversal order along a single mode. Our baseline per-

forms similarly and in some cases, better than PASTA (Figure 2.7). Furthermore,

when we optimize, writing our own implementation ensures that any performance

differences are due solely to intentional algorithmic interventions as opposed to

implementation details.

2.3.2 Tensor Dataset

We use a variety of tensors to capture various workload properties. We use all

of the input tensors from the FROSTT dataset [105] except Patents and Reddit-

2015 (segfaults for multiple frameworks) and Matrix Multiplications (small size).

To help generalize the results across a number of tensors, we broadly characterize

12

each tensor based on the number of non-zeros as small (< 6M), medium (6M –

80M) or large (> 80M). This allows us to observe the effect of tensor size on

performance.

Tensor Description Non-zeros (M) Dimensions

Amazon Reviews Product reviews on Amazon 1741.81 3

Chicago Crime Crime reports in Chicago 5.33 4

Delicious Webpage tags by user 140.13 4

Enron Emails List of words sent in emails 54.20 4

Flickr Image tags by user 112.89 4

LBNL-Network Anonymized network traffic 1.70 5

NELL-1 Language learner database 143.60 3

NELL-2 Language learner database 76.88 3

NIPS Publications List of published papers 3.10 4

Uber Pickups Location data of Uber requests 3.31 4

VAST 2015 Mini-Challenge 1 Synthetic dataset 26.02 5

Table 2.2: Summary of the properties of input tensors taken from FROSTT [105].

2.4 Performance Analysis

Modern general-purpose CPUs are generally thought to be a poor fit for sparse,

irregular computations such as those required for tensor decompositions. However,

we routinely observe instruction per cycle (IPC) rates above 1 for the tensors

in FROSTT, and in most cases, between 1.5 and 3 (Figure 2.2). Radical IPC

improvements are unlikely on a 4-wide machine like the one we use. In this

section, we discern that only a few LLC misses are responsible for the lowest

IPCs. In the next section, we describe software solutions to improve performance

by increasing memory bandwidth utilization.

We find that optimized tensor codes across all frameworks perform decently

13

well on our modern CPU. Some of the smallest tensors achieve IPCs greater than

2. For some of the largest tensors (worst performing), we observe an IPC around 1

and 2.5–10 Misses Per Kilo Instruction (MPKI) (Figure 2.2). As the LLC MPKI

increases (higher cache miss rate), the IPC lowers, and this is apparent across

all of the frameworks. The worst case LLC MPKI is roughly 20, which is not as

frequent as one might expect for a large sparse workload. These executions are not

limited by memory bandwidth, as we observe generally low bandwidth utilization

(≈ 20% on average). Thus, memory latency must be the problem. Retrieving

data from memory stalls the pipeline for a significant amount of cycles, worsening

performance. Unsurprisingly, we find that larger tensors result in higher MPKI

and worse performance across all the frameworks (Figure 2.2). The SPLATT

framework has a substantially lower IPC, because it uses a more sophisticated

algorithm that is more irregular.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
LLC MPKI

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

IP
C

Implementation Tensor Size
Baseline
SPLATT
ALTO

large
medium
small

Figure 2.2: IPC vs MPKI for MTTKRP in different frameworks run on various
tensors in the FROSTT dataset. Higher MPKI results in low IPCs, suggesting
that LLC misses are a problem. Low MPKI numbers, coupled with low observed
bandwidth utilization suggests that only a few LLC misses are quite problematic.

High sparsity leads to memory efficiency challenges. While the coordinate for-

14

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
LLC MPKI

10

20

30

40

50

60

70

80

90

%
 o

f c
yc

le
s w

he
re

 n
o

uo
ps

 is
su

ed

Implementation Tensor Size
Baseline
SPLATT
ALTO

large
medium
small

Figure 2.3: Fraction of cycles without any new instructions issued vs MPKI for
MTTKRP in different frameworks run on various tensors in the FROSTT dataset.
Higher MPKI results in more stalls as the processor has to wait for data to arrive
from main memory before it can start processing it. We observe that even for
a very low MPKI of 5, the processor spends 80% of cycles without issuing any
instructions. This means that the performance of current out-of-order processors
is highly sensitive to even a few LLC misses.

mat alleviates some of the locality concerns by compactly storing the coordinates

in an array and accessing them linearly, the algorithm still requires M random ar-

ray accesses for each non-zero value to retrieve the elements for the factor matrix

product. Computing the row indices one by one before accessing the array spaces

out these loads, further exacerbating the problem (Figure 2.4). A single LLC miss

can stall the pipeline for a large number of cycles. From our measurements, we

observe that an LLC MPKI of 5 corresponds to an average of roughly 80% of

cycles in which no micro-ops are issued (Figure 2.3).

15

...

load

inst

inst

inst

inst

load

inst

inst

Instruction Window

Outstanding
Memory Requests

Not enough requests
to saturate bandwidth

Baseline Performance

Row indices

Figure 2.4: Poor load miss density of the baseline algorithm. Since generating
the address requires additional computation, loads are spaced far apart and the
resulting number of memory requests is much smaller than the memory system
allows. There is potential to improve performance by amortizing the request
overhead by getting more misses in flight.

2.5 Improving Performance

As memory latency seems to be the biggest bottleneck for sparse tensor work-

loads, there are two options to make these algorithms run more efficiently: reduce

the number of cache misses or do useful work during a miss. The miss rate depends

on the layout of the tensor and the traversal order (we desire a higher density of

non-zeros to achieve more hits in the factor matrices). Prior work has reduced

memory traffic (and LLC misses) by various optimizations like tiling and reorder-

ing computations to “densify” each dimension [108] and reducing the number of

array accesses through compiler intrinsics [52]. Another potential innovation is to

create a heuristic to determine the best traversal order for a specific input tensor,

but that may require a large amount of preprocessing.

16

Getting More Misses in Flight

Per Little’s Law, Parallelism = Throughput × Latency. Assuming latency (av-

erage memory access time) is constant, we can increase throughput by improving

parallelism. This queueing theory result can be put into practice by increasing

the number of outstanding memory requests. Currently, the memory bandwidth

is underutilized as there are too few instructions that cause a cache miss in the

instruction window (Figure 2.4). However, the few instructions that do cause

cache misses cause lengthy stalls. Thus, the processor is executing instructions at

a slow rate (due to stalls) while also greatly underutilizing memory bandwidth.

SIMD instructions and software prefetching are two common ways to get more

memory misses outstanding and thus improve bandwidth utilization.

SIMD

A SIMD memory instruction operates on more addresses at a time, increasing

the potential amount of cache misses in the instruction window. MTTKRP is

amenable to vectorization since it performs multiplication on columns of data for

each non-zero. We find that GCC autovectorizes code when using the flags -O3

-march=native -mtune=native. This transformation is fairly performant and we

observe speedups between 1.21× - 2.11× (geomean: 1.44×) over our baseline. We

also use OpenMP’s SIMD directive, resulting in speedups between 1.03× - 2.48×

(geomean: 1.51×) over the baseline. Lastly, we achieve the highest performance

gains over the baseline from packed SIMD by manually using Intel’s intrinsics

(1.37× - 2.81×, geomean: 1.88×).

SIMD provides the biggest benefit when the tensor is sufficiently small to fit

within the cache because the vector units in the processor are not waiting on data

from main memory and can be fully saturated (Figures 2.5 & 4.1). Even though

17

0 2 4 6 8 10 12 14
LLC MPKI

0

1

2

3

4
SI

M
D

Sp
ee

du
p

(x
)

Tensor Size
large
medium
small

Figure 2.5: Speedup vs MPKI for SIMD using manual intrinsics for various
tensors. Initially, when the tensor is small enough to fit within cache (low MPKI),
SIMD speedup is high due to better resource utilization. As the tensors get bigger,
the processor is stalled for significant cycles waiting on data from main memory
and the speedup starts to plateau. However, for larger tensors, the speedup is still
roughly 1.5× over the baseline.

SIMD benefits the larger tensors as well, by increasing memory-level parallelism

(MLP), we do not observe as big of a performance boost. While bandwidth

utilization is increased over the baseline (Figure 4.1), the processor is still stalled

for a significant number of cycles waiting on data from main memory. We observe

this in Figure 4.1, where we can see that larger tensors with a higher MPKI do

not enjoy as big of a boost. However, even in the best case, we observe 54%

bandwidth utilization of the single-core limit. We identify this as an opportunity

for further improvement via hardware acceleration.

Software Prefetching

MTTKRP has a lot of indirect memory accesses (Line 5 in Algorithm 1), which

are difficult for hardware prefetchers. Since this access pattern is easy to compute

18

in software due to the coordinate data structure, we leverage software prefetch-

ing to manually load future useful rows in the factor matrices from memory. We

use the compiler intrinsic __builtin_prefetch to perform this operation. Mem-

ory prefetching bypasses the instruction window entirely and does not stall the

pipeline, allowing us to transfer additional useful data during compute by taking

advantage of reserve bandwidth (Figure 4.1). We apply software prefetching to

our baseline and measure the performance improvement (Figure 4.1). Software

prefetching results in speedups of 1.16−2.20× (geomean: 1.53×) over the baseline.

Unlike SIMD, we observe the biggest performance improvements over the base-

line using software prefetching when the tensors have many non-zeros (Figure 2.7).

These tensors are too large to fit in cache, and transferring useful data earlier helps

reduce the communication latency. Since both of our optimizations work best

on different tensors, we combine both optimizations in a unified implementation

which has good overall performance (Figures 4.1 & 2.7).

2.5.1 Comparison Against Leading Frameworks

We compare the performance of our optimizations against leading tensor frame-

works (Figure 2.7).

Of the existing frameworks, we find that ALTO has the leading performance

due to its very efficient bitmap-based storage structure which allows for fast in-

dexing, fewer memory transactions, and better locality. Additionally, ALTO uses

OpenMP’s SIMD directive to vectorize their code. Our software optimizations

(SIMD, Software Prefetching and SIMD+Software Prefetching) also perform well

compared to our baseline and PASTA, and in some cases, even outperform ALTO

(Flickr-3D, Amazon). Combining SIMD and Software Prefetching results in the

best performance on larger tensors, while SIMD has large speedups on smaller

19

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Increase in Bandwidth (x)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Sp

ee
du

p
(x

)
 Implementation Tensor Size

SIMD
Software Prefetching
SIMD+Software Prefetching

large
medium
small

Figure 2.6: Speedup vs improvement in bandwidth utilization over the base-
line for SIMD, Software Prefetching and combining both. Higher is better for
both axes. Increasing bandwidth utilization leads to better performance (higher
speedups) for MTTKRP.

tensors. We believe ALTO would also benefit from using manual intrinsics for

SIMD and software prefetching. SPLATT typically has the worst performance

between the different implementations.

2.6 Related Works

Due to the rising popularity of data analytics, there have been several recent

works modeling and improving the performance of sparse tensor workloads on

current hardware. Li et. al. present PASTA [69], a sparse tensor benchmark

suite including multiple different tensor kernels to aid application developers in

evaluating different systems as well as performance of new optimizations. They

20

LBNL UBER NIPS
CHICAGO

VAST-3D
VAST-5D

NELL-2
ENRON

FLICKR-3D

DELICIOUS-3D
FLICKR-4D

NELL-1

DELICIOUS-4D
AMAZON

GEOMEAN

0

1

2

3

4

5

6
Sp

ee
du

p
ov

er
 b

as
el

in
e

Baseline
PASTA
SPLATT

ALTO
SIMD

Software Prefetching
SIMD+Software Prefetching

Figure 2.7: Speedups over our baseline for existing frameworks and our SIMD
and Software prefetching implementations. Tensors are ordered according from
smallest runtime (fastest) to largest runtime (slowest) for the baseline implemen-
tation. We present only kernel runtimes, however, both SPLATT and ALTO
require additional preprocessing, which if considered, result in runtimes longer
than our own implementations. SPLATT is unable to decompose certain larger
dimensional tensors and is generally the slowest framework.

also present a novel storage format for sparse tensors that improves data locality

while preserving generality with respect to dimensions [71]. Smith et. al. present

SPLATT, a fast, parallel implementation for 3-D tensors [108]. Their innovations

include cache-friendly reordering of the tensor and cache tiling. Helal et. al.

present ALTO, a bit-encoded linearization of a COO tensor using bit-wise scatter

and gather operations, resulting in significantly fewer memory accesses for index-

ing non-zeros [52]. Nguyen et. al. apply a similarized linear format on GPUs.

Baskaran et. al. present multiple optimizations for processing tensors at large

scale, reducing memory consumption and synchronization [7]. Liu et. al. present

F-COO, a novel sparse tensor storage format for GPUs, and a parallel MTTKRP

implementation for GPUs. In addition to software optimizations, many recent

works have developed novel hardware accelerators for sparse tensors [44, 51,109].

21

2.7 Conclusion

We analyze the performance of different frameworks’ MTTKRP implemen-

tations using performance counters. Analogous to sparse graph workloads, we

find that existing algorithms result in a small number of LLC misses, which are

extremely problematic on current out-of-order machines [11]. These algorithms

are also vulnerable to low miss densities, further accentuating the effect of the

aforementioned LLC misses. In this work, we improve performance of this kernel

by increasing MLP using SIMD and software prefetching. However, we find that

this kernel still suffers from significant LLC miss penalties. Thus, there is an

opportunity to improve performance via hardware or software by either further

increasing MLP or reducing the number of LLC misses. For example, accelerators

with tensor-specific prefetchers and novel data structures which support traversal

orders reducing memory access times could improve efficiency. MLP could also

be increased by processing sparse tensors on massively parallel architectures like

GPUs, which are designed for hiding latency. Our performance improvements

using SIMD show promise for this approach.

22

Chapter 3

Improving Scalability of

Pivoting-Based Clique Counting

3.1 Introduction

Dense subgraph counting is an important problem in network analysis with

many applications in social network analysis and bioinformatics [66]. An example

of a noteworthy dense subgraph is a k-clique, which has exactly k vertices, and

every vertex in the subgraph is connected to each other. Counting the number of

cliques in a graph is an important step in identifying pockets of density within a

graph. Clique finding is a well-researched topic in the graph community and it has

many interesting practical applications for community detection [41,47,50,91] and

social network analysis [92,102]. In recent years, the data mining community has

incorporated clique finding into deep learning classifiers to enhance recommender

systems in social networks [81, 90]. Clique finding is also used prominently in

bioinformatics, and researchers have used graph models to find variants in gene

sequences [82], efficiently group related genes in a database [110], and perform

23

protein structure analysis [5]. The rapid growth in the number of social media

users and the large size of genome data has amplified the need for high performance

systems capable of analyzing these huge networks to count or enumerate their k-

cliques.

Clique finding represents only a single problem in Graph Pattern Mining

(GPM). Motifs are more general graph patterns that also interest researchers

in this space. Various GPM frameworks have been developed to count repeated

instances of given patterns within the search graph. These include Sandslash [25],

Pangolin [26], Peregrine [58], Arabesque [113], Fractal [36], and others. The afore-

mentioned frameworks use more generalized algorithms and provide their own

APIs for counting instances of arbitrary, user-given patterns. In contrast, there

are also algorithms specialized for counting k-cliques, such as kClist [32], Piv-

oter [56], and Arb-Count [104]. By virtue of being custom designed to solve a spe-

cific problem, these algorithms generally perform better than the general-purpose

GPM frameworks.

Clique counting is a challenging but rich problem to explore. Searching for

cliques involves considering various combinations of vertices which results in a

combinatorial explosion in algorithmic work. Naturally, optimizing the algorith-

mic cost is fruitful, but pragmatic simplifications can often lead to the fastest

implementations. Depending on the size of the graph, the size of the clique being

counted, and the topological properties of the input graph, different approaches

may be the fastest. Thus, a high-performance implementation must carefully

balance algorithmic efficiency, parallelizability, and memory time-space tradeoffs.

Leading clique counting algorithms typically contain two main phases: an or-

dering phase, which converts the undirected input graph into a directed acyclic

graph (DAG), and a counting phase, which is dominated by recursively building

24

0 10 20 30 40 50 60
Clique Size (k)

102

105

108

1011

1014

1017

1020
Nu

m
be

r o
f k

-c
liq

ue
s

Skitter
Baidu
Wiki-Talk
Orkut

Figure 3.1: Frequency distribution of k-cliques in different graphs. Enumeration-
based algorithms are exponentional with respect to clique size (k), and increasing
frequency of moderately sized cliques in real-world graphs further exposes this
increasing complexity.

induced subgraphs. Different algorithms approach the counting phase differently,

and they can be classified as enumeration-based [32,104] or pivoting-based [56] al-

gorithms. Enumeration-based algorithms are generally faster for counting smaller

cliques, while pivoting-based algorithms are faster for larger cliques. The presence

of large cliques in large real-world networks (Figure 3.1) necessitates a combination

of algorithmic efficiency and practical performance to process them.

As core counts continue to increase in modern machines, improving parallel

performance becomes increasingly essential to process graphs at scale. Given

that multiple factors affect the performance of clique counting, we take a holistic

approach to improve its parallel scalability and overall performance on CPUs.

We analyze both the ordering and counting phases of the current state-of-the-art

25

pivoting-based clique counting algorithm Pivoter [56], to understand how these

factors impact performance, and present targeted optimizations. In this work, we

present ComSpark, a fast and scalable exact clique counting algorithm, and make

the following contributions:

• We explore tradeoffs between the quality of the ordering and the time to

produce the ordering. We consider a traditional core ordering, a parallel

degree ordering, a parallel core ordering approximation, and a novel par-

allel centrality-based ordering. Our parallel core ordering approximation

performs well and typically produces the same maximum out degree as the

original core ordering. Our novel centrality-based ordering replicates the

characteristics of a core ordering while being easy to compute.

• We observe that different orderings result in better counting times for differ-

ent graph topologies due to a work-locality tradeoff. We present our analysis

of this tradeoff, and provide a heuristic which quickly identifies when a par-

ticular ordering will be beneficial and computes that ordering during the

ordering phase.

• To increase the parallel scalability of the counting phase, we present two

subgraph data structures which greatly reduce the memory usage while still

allowing for fast access to neighbor lists.

• Combining our heuristic and the optimizations in the ordering and counting

phases, we achieve the first scalable clique counting pivoting-based algorithm

on CPUs.

We evaluate ComSpark on a suite of real-world graphs and compare it to

Pivoter and other prior work. We demonstrate that ComSpark achieves near-

linear parallel scaling up through 64 threads for the entire clique counting process.

26

We also compare ComSpark against a GPU implementation of pivoting (GPU-

Pivot). We show that ComSpark achieves better scalability as clique size (k)

increases, allowing it to outcompete the GPU while counting larger cliques.

3.2 Background

3.2.1 Preliminaries

For a given undirected input graph G, we want to count the number of cliques

present of a given size k. A clique is a completely connected subgraph, i.e. each

vertex is directly connected to every other vertex in the subgraph. The input

graph G consists of a vertex set, V(G), and an edge set, E(G). For a k-clique C

present in the input graph, V(C) ∈ V(G), E(C) ∈ E(G) and |V(C)| = k. Each

vertex u in G has a neighborhood, which is the set of the vertices with which u

shares an edge. The neighborhood of u in G is indicated by N(u) and its size is

the degree d(u) = |N(u)|. We treat G as an undirected graph, so v ∈ N(u) =⇒

u ∈ N(v).

To reduce the amount of work done when counting cliques, efficient algorithms

transform G into a DAG, which we denote by ~G. This step adds work to direct

edges to remove cycles in order to avoid counting the same clique multiple times.

Consequently, any vertex u in the new DAG can have two types of neighbors:

in-neighbors and out-neighbors. In-neighbors are those vertices in N(u) for which

u is the destination vertex of the shared edge. Conversely, u’s out-neighbors are

those vertices in N(u) where u is the source vertex of the edge. While counting

cliques, we only consider the out-neighbors of a vertex u in ~G, denoted by ~N(u).

The number of out-neighbors of a vertex u is called its out-degree and is written

as ~d(u).

27

0 1 2

3 4 5 −→

6

0 1 2

3 4 5

6

Figure 3.2: Converting an undirected input graph (left) to directed acyclic graph
(right) by a degree-based ordering. Furthermore, the highlighted (red) portion on
the right indicates the subgraph induced by vertex 0.

Given a total ordering ω, directionalizing transforms the graph G to ~G by

removing the edge v → u from E(G) if ω(v) ≥ ω(u) and keeping only the edge

u → v in E(~G). Edges are thus directed from a lower ω to a higher ω vertex.

Pivoter uses a core/degeneracy ordering, which guarantees the lowest maximum

out-degree (core value) of a vertex in ~G. While this approach reduces the amount

of work done while counting cliques, it requires a fair bit of effort to compute,

and cannot be parallelized since it requires removing vertices in the graph one by

one [83]. More recently, efforts have been made to approximate the core ordering

and improve parallelism by removing multiple vertices with degrees under a certain

threshold [14]. Alternatively, a degree ordering compares vertices by degree and

uses the identifier as a tiebreaker (example in Figure 3.2). Computing a degree

ordering is easy to parallelize. We describe the degree ordering (ω) as:

ω(u) > ω(v) if (~d(u) > ~d(v)) ∨ (~d(u) = ~d(v)) ∧ (u > v)

A major step in counting cliques is building a vertex-induced subgraph. This

subgraph represents the current scope of the graph being explored, which could

potentially be a clique. The induced subgraph contains the vertices in the neigh-

borhood of the target vertex and any edges between them. The induced sub-

28

graph does not include the target vertex itself. The highlighted portion in Fig-

ure 3.2 shows the vertex 0 induced subgraph in the example graph. We de-

note the subgraph induced by vertex u on ~G to be ~gu with ~V (gu) = N(~u) and
~E(gu) = {(v1, v2)|(v1, v2) ∈ E(~G) ∧ v1 ∈ N(~u) ∧ v2 ∈ N(~u)}. Building an induced

subgraph enables efficiently checking connectivity between vertices.

3.2.2 Enumeration-Based K-Clique Counting

Clique counting algorithms like kClist [32] and Arb-Count [104] directionalize

the graph and recursively build induced subgraphs to count cliques. Subgraphs

are built by intersecting adjacency lists to find common neighbors to include in

the subsequent recursion levels. In each recursion level, these algorithms build a

subgraph for every vertex in the graph at that level. This strategy potentially

results in redundant work (Figure 3.4) and becomes more expensive as the depth

of the call stack increases (for larger values of k). Since these algorithms ex-

plicitly process every vertex in every level, they are known as enumeration-based

algorithms.

3.2.3 Pivoting-Based K-Clique Counting

In recent years, more work has been done to improve the practical efficiency

of clique counting algorithms through pruning away extra edges from the search

space. Jain and Seshadhri present Pivoter [56], the leading pivoting-based al-

gorithm for k-clique counting. Pivoter uses pivoting to count maximal cliques

using the Bron-Kerbosch algorithm [17, 39, 114]. Once a maximal clique of size

n has been found, the number of k-cliques present in the maximal clique can be

calculated by the formula
(
n
k

)
. The work savings come from being able to count

cliques by judiciously selecting which subgraphs to build in each level based on a

29

“pivot” vertex. This strategy results in a deeper call stack to find maximal cliques,

albeit with less branching (Figure 3.4). Pivoter is able to count instances of 100-

cliques and larger in real-world networks. In contrast, leading enumeration-based

algorithms work well on k up to 8 (Table 3.6).

Pivoter first converts the input graph into a DAG using a core ordering which

can be generated in linear time. The algorithm for computing the core ordering

from Matula and Beck [83] guarantees the smallest maximum out-degree in the

graph. This is significant, because the maximum degree determines the execution

time of the counting phase and a smaller maximum degree typically means less

algorithmic work (i.e. a shallower call stack) and thus a more efficient algorithm.

Algorithm 2 Core Ordering
1: function OrdCore(G)

2: r ← 0

3: ω ← [0, 0, ..., 0] . Array to hold order of each node

4: while r 6= |V (G)| do

5: Sort nodes by degree

6: r ← r + 1

7: minDegV ertex← first element from sorted list

8: ω[minDegV ertex]← r

9: V (G)← V (G) \minDegV ertex

10: Update degrees of all v ∈ N(minDegV ertex)

11: return ω

12: Build Graph ~G using ω . Add edge (u,v) if ω[u] < ω[v]

Once the ordering of each vertex is computed (Algorithm 2), the graph is

directionalized and edges u → v are only included if and only if ω(u) < ω(v).

Producing the core ordering is a sequential operation since it requires removing a

30

single vertex from the graph in each iteration.

After the DAG is generated, Pivoter starts counting the cliques (Algorithm 3).

It keeps track of 3 sets: X (vertices to be excluded from recursion), P (candidate

vertices for recursion) and R (vertices forming the current clique) (Figure 3.3).

Every vertex is always in exactly one set. The three sets are stored together as

a single of array of size |V (G)| with pointers denoting the boundaries between

the sets. This allows for reuse while efficiently moving vertices within different

sets between recursion levels via swaps. In addition to the sets, Pivoter uses a

|V (G)|-sized array lookup to map vertex identifiers to their index within the set

array.

After initializing the sets, Pivoter recursively builds subgraphs, adds the in-

ducing vertices to R and picks the highest degree vertex in P to be the pivot.

Instead of building a new subgraph at each recursion level, Pivoter reuses and

mutates the current subgraph since the next subgraph is a subset of it. Pivoter

only moves the edges present in the next-level subgraph to the front of the neigh-

bor list. To build a maximal clique, the current clique can be extended by adding

the pivot vertex or the non-neighbors of the pivot to R. Pivoter avoids recursing

over the neighbors of the pivot, resulting in significant work savings (Figure 3.4).

Since the original DAG is not being modified any further (only the subgraph is

modified), each top-level vertex can be processed in parallel.

X P R

2 5 6 1 3 4 0

6 3 0 4 5 1 2

Sets

Lookup

Figure 3.3: Array for sets X, P and R and a dense lookup for the location of
vertices within the set while processing vertex 0 in the example DAG (Figure 3.2).
Storing the sets in a single array allows for efficiently transferring vertices between
X, P and R in between recursion levels.

31

Algorithm 3 Pivoter Algorithm for Counting k-cliques
1: function RecursiveCounting(~gv, P , R, X)

2: if P = {} then . Discovered maximal clique

3: return
(
|R|
k

)
4: else

5: pivot← {p ∈ V (~gv)|d(p) = max d(p)}

6: for all w ∈ {pivot} ∪ {P \N(pivot)} do

7: Move w from P to R

8: Build subgraph ~gw

9: RecursiveCounting(~gw, P , R, X)

10: Move w from R to X

11: function Counting(G, k)

12: count← 0

13: ~G← OrdCore(G) . Directionalize input graph

14: for all v ∈ V(~G) in parallel do

15: P ← N(v)

16: R← {v}

17: X ← {}

18: Build subgraph ~gv

19: count + = RecursiveCounting(~gv, P , R, X)

20: Return count

The worst case execution time for Pivoter is O(c(G)2|SCT (~G)|+m+n), where

n is the number of vertices, m is the number of edges, and c(G) is the core value,

i.e. the maximum out-degree generated by ordering the vertices and SCT is the

search space with complexity |SCT (~G)| = O(n3c(G)/3). Since the complexity of

the algorithm does not depend on the size of the clique (k), large cliques can

32

0

1 3 4

4 1 4

4

Order of
Processing Vertices

0

3

1

4

Figure 3.4: Differences in the function call heirarchy between enumeration-based
algorithms (left) and Pivoter (right) for counting 4-cliques associated with vertex
0 in the example DAG from Figure 3.2. The number in the box denotes the vertex
for which the induced subgraph is being built in that level. Vertices are processed
sequentially in a depth-first manner. In the heirarchy on the left, the sequence
1 → 4 is processed multiple times. In contrast, the stack for Pivoter is much
smaller and avoids redundant computation in the counting phase.

be counted efficiently using Pivoter. In contrast, the complexity of the leading

enumeration-based algorithm Arb-Count is O(mαk−2), where α is the arboricity

of the graph, making it less efficient for counting larger cliques.

Currently, the only parallel optimized implementation of pivoting-based clique

counting algorithms is GPU-Pivot, presented by Almasri et al. [4]. To the best

of our knowledge, no literature currently exists for optimizing Pivoter for CPUs.

In GPU-Pivot, a vertex or an edge is assigned to a block of threads (warp).

However, due to the nature of the pivoting algorithm, opportunities for additional

parallelization among the threads in a warp are limited. GPU-Pivot partitions

groups of threads into blocks. The threads in these blocks sequentially process the

same sequence of vertices during the counting phase. Only the process of finding

the pivot vertex is done in parallel within a block. This makes fully utilizing the

parallel capabilities of GPU hardware very difficult and impacts scaling on large

dense graphs with many cliques.

GPU-Pivot stores the entire adjacency matrix in a binary format to reduce

memory consumption and performs intersections of neighbor lists using binary

operations. Additionally, GPU-Pivot builds a new subgraph per recursive level.

33

This results in additional intersection operations to build the subgraph. In con-

trast, we use a CSR-like structure to store the subgraph. We also avoid building

a new subgraph per-level and are able to reuse our first-level induced subgraph

by storing the relevant neighbors for a particular level at the beginning of the

neighbor list.

3.3 Parallelizing the Ordering Phase

3.3.1 Parallel Core-Approximation

When scaling to larger target clique sizes, limiting the maximum out-degree

in the directionalized graph is essential for performance. The counting effort re-

quired per vertex is superlinear with respect to degree, so limiting the maximum

out-degree during the ordering phase can greatly reduce the amount of algorith-

mic work in the subsequent counting phase. For this reason, Pivoter employs a

core ordering which guarantees the lowest maximum out-degree. Even though

computing a core ordering is sequential, for moderate or larger clique sizes, the

time it saves in the counting phase typically outweighs the time a fast parallel

ordering (to create a different directionalized graph) would save in the ordering

phase (Table 3.2).

However, a sequential ordering can still take up a significant fraction of the

overall time (Table 3.2). Thus, we attempt to accelerate the ordering phase to

improve the parallelizability of the entire algorithm. We take inspiration from

an existing parallel approximation presented by Besta et. al. [14] used for graph

coloring. While the core ordering algorithm used in Pivoter removes a single vertex

(with the least degree) in the graph at a time, the approximation algorithm relaxes

the lowest degree condition by removing multiple vertices from the graph in every

34

round if their degree is less than (1 + ε)× δ, where ε is an error parameter and δ

is the average degree of remaining the graph. It then updates the degrees of the

neighbors of the removed vertices in parallel, before sorting the remaining vertices

in the graph by their new degrees.

Algorithm 4 Parallel Core Ordering Approximation
1: function ApproxCoreOrder(G, ε)

2: while r 6= |V (G)| do

3: remove← {} . Vertices to be removed in round

4: δ ← |E|
|V | . Compute average degree

5: for all u ∈ V (G) do

6: if d(u) < (1 + ε)× δ then

7: remove.append(u)

8: V (G)← V (G)− u . Remove vertices

9: ω[u]← r . Assign rank to vertex

10: r ← r + 1

11: for all u ∈ remove in parallel do

12: for all v ∈ N(u) do

13: d(v)← d(v)− 1 . Update degrees

14: Sort nodes by degree

15: return ω

16: Build Graph ~G using ω . Add edge (u,v) if ω[u] < ω[v]

Since the time spent in the counting phase typically depends on the maximum

out-degree produced by the ordering, we use the maximum out-degree to deter-

mine the quality of an ordering. A larger ε implies that more vertices are removed

in the initial rounds, increasing the amount of parallelism but lowering the quality

of the ordering. If ε is set high enough, the ordering produced by this algorithm

35

results in a degree-based ordering. In contrast, a smaller ε results in fewer ver-

tices removed in each round, reducing the amount of parallelism but producing a

higher quality ordering. A small enough ε results in an approximation of the core

ordering.

An error parameter (ε) of 0.1 is considered to be a good compromise as it re-

moves enough vertices to effectively parallelize each round and requires a relatively

small number of rounds, while producing a low enough maximum out-degree [14].

We emphasize that the goal of Besta et. al.’s work was to produce an ordering

which results in good graph coloring performance. In contrast, we use the order-

ing to reduce the amount of work for counting cliques. In our experiments, we

sweep various values for the error parameter ε and find that ordering quality and

counting performance is typically best when the maximum out-degree is equal to

that produced by the core ordering (Figure 3.10). We are able to achieve this by

setting ε to −0.5 on the graphs we test. This allows us to remove a large fraction

of low-degree vertices in the initial rounds in parallel, and produce the same max-

imum out-degree as the core ordering. At the other end of the spectrum, setting

ε to a very large number (50000) effectively results in a degree ordering.

Prior work has been to optimize ordering for improving the counting phase

performance. Li. et. al. present various color-based ordering algorithms for

reducing the amount of search paths while counting k-cliques [72]. We empha-

size that their algorithms are sequential and targeted towards enumeration-based

clique counting methods, which suffer from redundant work. Our parallel order-

ings are targeted towards pivoting-based clique counting, which already prunes

redundant search paths by selecting a pivot vertex (Figure 3.4).

36

Parallel Optimizations

In addition to a parallel core ordering approximation, we present further op-

timizations to improve performance. In the first round of ordering, we remove a

large fraction of vertices in the graph (up to 75%). This creates a large amount

of parallel work to update the degrees of the neighbors of the removed vertices.

We normally use atomic instructions to ensure correctness while modifying the

degrees in parallel. We refer to this as a push-based update (Algorithm 5). High-

degree vertices which have many low-degree neighbors being removed can suffer

from contention as their degrees need to be decremented multiple times (steps

11-13 in Algorithm 4). To avoid contention when a large number of vertices are

being removed, we develop a pull-based algorithm where each vertex in the graph

checks how many of its neighbors are being removed before updating its degree

locally (Algorithm 6). On the suite of input graphs we test, we find that this

optimization results in a 1.04× speedup over only using the pull-based algorithm

in each level. This is especially beneficial for extremely large graphs like Friend-

ster, where over 10 million vertices are removed in the first round (0.74s faster,

1.1× speedup). Additionally, we use parallel sort in C++17 to sort the remaining

vertices in the graph by their degrees (step 14 in Algorithm 4).

Algorithm 5 Push-based degree update
1: for all u ∈ remove in parallel do

2: for all v ∈ N(u) do

3: atomic_fetch_add(d(v), -1)

37

Algorithm 6 Pull-based degree update
1: for all u ∈ |V | in parallel do

2: if u /∈ remove then

3: for all v ∈ N(u) do

4: if v ∈ removed then

5: d(u)← d(u)− 1 . No atomics required

Despite our efforts to parallelize core ordering due to its work savings in the

counting phase, we find that degree ordering results in faster total execution times

for some graphs (Figure 3.12), and we explore this in Section 3.6.

3.3.2 Centrality-Based Ordering

As a cheaper alternative to the compute-intensive parallel core-approximation,

we aim to understand the functionality of the core ordering and replicate its effect

with a simpler ordering. We first differentiate the core ordering with the degree-

based ordering to better understand its characteristics.

Consider the undirected input graph in Figure 3.5. A degree-based ordering

would direct the edge 1 → 0 since d(0) > d(1). In the core ordering, vertices 4,

5 and 6 would be removed in early rounds since they have the lowest degrees.

Vertex 0 is the next vertex removed since it now has the lowest degree in the

remaining graph. Since vertex 1 is removed later than vertex 0, it has a higher

rank and the core ordering directs the edge 0 → 1. By peeling the lowest degree

vertex at a time, the core ordering process implicitly ranks the vertices by their

importance. In this context, importance is defined as high-degree vertices which

are also connected to other high-degree vertices. Various centrality measures can

compute this effect at a fraction of the cost of the parallel core-approximation.

Since most of vertex 0 ’s neighbors have low degrees, it is not more important than

38

0

1

4

5

6 −→

2 3

0

1

4

5

6

2 3

Figure 3.5: Converting the undirected input graph (left) to a directed acyclic
graph (right) by a core ordering. Even though vertex 0 has the highest degree,
most of its neighbors are low-degree vertices. Hence it has a lower degree than
vertex 1 after peeling vertices 4, 5, and 6, and the edge is directed from 0→ 1.

vertex 1, which has higher-degree neighbors. Centrality measures like Eigenvector

centrality can quickly identify important vertices in the graph [16].

We use the Eigenvector centrality to compute a relative score for each vertex,

and direct edges from vertices with lower scores to higher scores. The pseudo-code

for our ordering algorithm is as follows:

Algorithm 7 Centrality-based Ordering
1: function OrdCentrality(G)

2: ω ← [1
|V | ,

1
|V | , ...,

1
|V |] . Rank of each vertex

3: for all i until max_iters do

4: for all u ∈ V in parallel do

5: contributions[u] = ω[u]

6: for all u ∈ V in parallel do

7: sum ← 0

8: for all v ∈ N(u) do

9: sum ← sum + contributions[v]

10: ω[u] = sum

11: return ω

12: Build Graph ~G using ω . Add edge (u,v) if ω[u] < ω[v]

39

The centrality-based ordering is very simple to compute compared to the par-

allel core-approximation, since it only requires summing up the scores of each

vertices’ neighbor’s scores. This can be done very efficiently in parallel. With a

small number of iterations (3), the centrality-based ordering produces a maximum

out-degree that lies between that of the core ordering and degree-based ordering

(Figure 3.10). While the centrality-based ordering never results in the fastest

performance, it is always faster than the slower ordering between core and de-

gree.(Figure 3.13). This shows that a successful ordering should not only consider

the degrees of the neighbors, but their importance as well.

3.4 Maximum Neighbor Influence

In our analysis, we find that different orderings perform better during the

counting phase for different types of graph topologies (Table 3.2). The fastest

overall execution time (includes ordering and counting time) is typically achieved

by the core approximation with ε = −0.5 or the degree-based ordering (Fig-

ure 3.13). This differs from the previously thought notion that core ordering is

always better for pivoting. Although it is conceivable that a faster to compute

ordering might result in a lower total time than the core ordering, it is surprising

it is faster specifically in the counting phase. Our analysis reveals that counting

with the core ordering executes fewer instructions, but counting with the degree

ordering executes instructions faster (Section 3.6). In other words, the core or-

dering does have the expected algorithmic advantage, but the degree ordering has

a practical speed advantage. Thus, which ordering is faster depends on whether

the core ordering saves a sufficient amount of algorithmic work to overcome the

degree ordering’s speed advantage.

One factor determining the difference in performance for the two orderings is

40

the different degree distributions once the graph has been directionalized. High

degree vertices connected to higher degree vertices result in a large maximum out-

degree in the degree-based ordering. Social networks are assortative, and such a

cluster is common [87]. If some of the higher degree vertices have many low-degree

neighbors, the core ordering ranks that vertex relatively lower and it will have some

directed edges going outward. We find that core ordering results in vertices with

lower maximum out-degrees than that of degree ordering (Figure 3.6).

0 10000 20000 30000
0

50

100

150

200

250

De
gr

ee
 in

 D
AG

Core Ordering

0 10000 20000 30000
0

50

100

150

200

250
Degree Ordering

Degree in Undirected Graph
Figure 3.6: Differences in degree distribution after producing a DAG using core
(left) and degree ordering (right) on the Skitter graph.

3.4.1 Work-Locality Tradeoff

We next analyze why the degree ordering sometimes counts faster despite

both orderings using the same counting implementation. Our analysis reveals

that counting with a degree ordering executes instructions faster due to fewer

cache misses (Section 3.6). Both orderings start from the same graph, and the

resulting DAGs have the same average degree, but their degree distributions can

differ (Figure 3.6). In practice, the degree ordering does not achieve as low of a

41

maximum out degree as the core approximation, but those extra edges reduce the

degrees elsewhere.

The amount of algorithmic work required for a particular vertex to count

cliques is determined by the size of the first-level subgraph induced by that vertex

(g~v in step 18 of Algorithm 3). The lower out-degrees from the core ordering

are attractive because they result in smaller subgraphs, and consequently, fewer

recursive function calls (step 9 in Algorithm 3). The work savings are magnified

when the graph has a lot of cliques, i.e. the number of recursive calls is high due to

the large number of edges in the subgraph. While core ordering always results in

less algorithmic work than a degree-based ordering (Figure 3.14), we still find that

degree ordering results in marginally faster counting time on certain graphs. When

the number of cliques is not high, the amount of work is only slightly more for

degree ordering. The larger subgraphs formed from high out-degree vertices from

the degree ordering result in better cache locality since the first-level subgraph

is reused in subsequent recursion levels, leading to better counting performance

(Figure 3.15).

Since the ordering has a significant impact on the overall execution time of the

algorithm, it is imperative to select the proper ordering for the best performance.

Our analysis shows that either the core-approximation or the degree-based order-

ing results in the best overall performance (Figure 3.13). The number of cliques

in the graph determines whether the reduced algorithmic work from the core or-

dering is more beneficial for performance than the increased locality from larger

subgraphs due to the degree ordering. We present a heuristic to determine which

ordering will perform better by predicting whether the graph contains a large

number of cliques. On the graphs we analyze, we observe that there are many

cliques when the most influential vertex (vertex with the highest degree) in the

42

graph is connected to another influential vertex. When the highest-degree neigh-

bor of the highest-degree vertex has a sufficiently high degree, there tends to be

a large number of common neighbors between the two vertices, forming densely

connected pockets in the graph with many cliques. This follows the assortative

property of social networks.

We measure the influence of the highest-degree neighbor of the most influential

vertex by calculating what fraction of edges in the undirected graph it is a part

of. We refer to this fraction as maximum neighbor influence. We predict whether

the graph will have many cliques or not by multiplying the maximum neighbor

influence with the average degree of the graph. This value can be computed quickly

in linear time. Based on our analysis of several real-world graphs, we predict that

if the value is above 0.15, there are enough cliques in the graph for the work savings

from core ordering to result in better performance. If the value is below 0.15, we

predict that there are not enough cliques in the graph and the locality benefits and

the computational efficiency of degree ordering impact total performance more.

To add robustness to our heuristic, we also test the assortativity of the graph by

measuring the number of common neighbors between the most influential vertex

and its highest-degree neighbor. We find that over 10% of the neighbors are

common between the two vertices when there are many cliques. We also find

that degree ordering is more advantageous for smaller graphs (|V | < 1M), where

ordering is a significant fraction of the total time (Table 3.5). Based on these

values, we select the proper ordering between the core-approximation and the

degree-based ordering.

For the example undirected graph from Figure 3.2, the most influential vertex

is vertex 4, since it has the highest degree. It’s highest-degree neighbor is vertex

1 with degree 4. Thus, the maximum neighbor influence for this graph is d(v)
|E|

43

= 4
12 = 0.33. The result of multiplying the maximum neighbor influence with

the average degree (1.71) is 0.56. Based on our heuristic, we select the core-

approximation ordering in the ordering phase. We also observe that 75% of vertex

1 ’s neighbors are common with vertex 4, increasing the confidence of our heuristic.

3.5 Improving Counting Phase Scalability

While we focus on selecting the best ordering for the counting phase, it is still

important to optimize counting phase performance since it is the longest phase

of the entire clique counting process. We base our counting implementation on

Pivoter since its superior algorithmic complexity enables it to count large cliques

in large real-world graphs. Since the counting phase does not modify the DAG

(the mutations are to induced subgraphs), recursively processing each vertex can

be done in parallel. A vertex-parallel strategy brings up two potential concerns:

load imbalance due to the skewed degree distributions of real-world graphs and

increased memory requirements for large thread-local structures for storing the

induced subgraph.

To analyze the impact of load imbalance, we both attempt to improve load

balance as well as measure the amount of time spent doing work by each thread.

We sweep various scheduling parameters such as task granularity (chunk sizes)

and scheduler types (static, dynamic, cyclic), and we are not able to fully improve

parallel scalability. Additonally, we measure the time required for each thread

during the entire counting phase while running on 64 threads. The coefficient of

variance (the ratio of standard deviation to the mean) for the execution time of

each thread across the entire suite of input graphs is 0.03. Through our analysis,

we find that load balance is at most a minor factor, and memory usage hinders

scalability to a much greater extent. Thus, we optimize the induced subgraph

44

data structure to reduce memory consumption.

3.5.1 Reducing Memory Consumption

The induced subgraph data structure is critical to counting cliques. While

processing a vertex, the first level induced subgraph is built and then modified

in subsequent recursion levels to count all the cliques originating from that ver-

tex. Pivoter stores the induced subgraph and associated structures per thread

since different threads are working on different root vertices and thus different

induced subgraphs. In the original Pivoter code, the subgraph is represented

as an adjacency list, with an array of size |V (G)| pointing to inner arrays that

store the neighbors of the associated vertices (Figure 3.7). The whole structure is

effectively a 2D array. Using an array of size |V (G)| allows for fast access to neigh-

bor lists within the subgraph by simply using the vertex identifier as an index.

This subgraph structure is allocated and initialized locally per-thread, including

the |V (G)|-sized index pointing to inner arrays (for neighbor lists). With minor

adjustments to memory allocation, we observe that such a dense structure is suffi-

cient to result in good parallel performance for most applications on contemporary

hardware (Figure 3.20). We refer to this approach as ComSpark (dense).

3 1

44 3

1

Legend

Vertex in
Induced Subgraph

Edge in
Induced Subgraph

|V|
0 1 2 3 4 5 6

Figure 3.7: Dense structure for storing the neighbor lists of the first-level induced
subgraph.

45

For large graphs, storing a |V (G)|-sized index array per thread may not be

feasible. Note that if the number of threads is greater than the average degree

of the graph, these indices alone will consume more memory than the original

graph. To further compress the subgraph and improve locality, we only index the

vertices with non-zero degree in the subgraph (Figure 3.8). Since the number of

non-zero degree vertices in the subgraph is at worst c(G) (which is on the order of

100s, as opposed to |V (G)|, which is on the order of millions), this may even allow

the entire subgraph to fit in cache. We use a hash map with vertex identifiers

as keys and a pointer to its neighbor list in the new sparse structure as values.

We refer to this approach as ComSpark (sparse). For large graphs like Friendster,

this optimization is able to overcome the scaling plateau from 32 threads to 64

threads.

1 3 4

3 1

44 3

1

Legend

Vertex in
Induced Subgraph

Edge in
Induced Subgraph

d(v)

Hash Map

Figure 3.8: Sparse structure in ComSpark for storing neighbor lists in the first-
level subgraph. Instead of a dense array to point to the locations of the neighbor
lists, the sparse structure uses a hash map with vertex identifiers as keys and
pointers to the neighbor lists as values.

In our experiments, we typically observe a query into a hash map to be ≈ 1.2×

slower than an array lookup. To combine the memory efficiency of a compressed

subgraph structure with the benefit of fast indexing, we present a new subgraph

structure. Instead of using a hash map, we remap the vertex identifiers in the

46

d(v)

1

2

1 3 4

0 1 2

0

2

0

1

Legend
Vertex in

Induced Subgraph

New Vertex
Identifiers

Edge in
Induced Subgraph

Figure 3.9: Optimized structure with remapping in ComSpark for storing neigh-
bor lists in the first-level subgraph. Only the ~d(v)-sized remapped array (orange)
and the neighbor lists are stored in memory.

first level subgraph to range from 0- ~d(v), where v is the vertex currently being

processed (Figure 3.9). We only do this remapping step in the first level of the

recursion, and reuse the new identifiers in subsequent levels. Since the working

set of the subgraph reduces in every recursion level, storing a ~d(u)-sized array

per-thread is still fairly memory-efficient. We refer to this approach as ComSpark

(remap).

We find the remapped subgraphs to have the best combination of speed and

memory usage, and we explore their tradeoffs relative to sparse and dense in the

evaluation. The best ComSpark design uses the remapped subgraph structure

with a core approximation or degree-based ordering determined by our heuristic.

3.6 Evaluation

In this evaluation section, we explore and analyze the various design tradeoffs

to build ComSpark and compare it against prior work. We first analyze the

tradeoffs for the ordering phase and validate our order-selecting heuristic. We then

evaluate the scalability of the counting phase and our overall implementation. We

47

Graph Description |V| (M) |E| (M) ~d kmax
DBLP Citation network 0.32 1.05 2.5 114
Soc-Pokec Social network 1.6 22.3 13.7 29
As-Skitter Internet topology 1.7 11.1 6.5 67
Baidu Links between web pages 2.1 17.8 8.5 31
Wiki-Talk Network of Wikipedia users 2.4 9.3 3.9 26
Orkut Social network 3.1 117.2 38.2 51
LiveJournal Social network 4.8 70.0 8.1 -
Web-Edu Links between .edu web pages 9.85 46.23 19.1 449
Friendster Social network 65.6 1,806.1 27.5 129

Table 3.1: Summary of the properties of input graphs used in the Evaluation.
All graphs are unweighted and symmetrized prior to analysis. These graphs are
taken from a variety of sources [33,67,101]. We only use Soc-Pokec for evaluating
our heuristic, and LiveJournal for comparison against the GPU.

conclude by scaling the clique size and comparing against prior work.

3.6.1 Experimental Setup

We perform our experiments on a single-socket AMD EPYC 9554 (Genoa).

The machine has 64 physical cores running at 3.1GHz and 256MB of shared

L3 cache. Our system has 768GB of RAM. For the experiments, we use 64

threads unless specified otherwise. We compile with g++ (version 12.2.0) with

optimization -O3 and use OpenMP.

We use a variety of input graphs to evaluate the performance of our opti-

mizations (Table 3.1). These graphs are taken from different sources [33,67,101].

Since clique finding is used heavily in social network analysis, we select graphs

commonly used in this subfield to make the analysis more consistent with prior

work. All graphs are unweighted and symmetrized to initially be undirected.

48

3.6.2 Accelerating the Ordering Phase

To appreciate the impact of the ordering phase on the overall execution time,

we first consider the prior ordering approaches: core ordering and degree ordering

(Table 3.2). Although the ordering phase is usually only a modest portion of the

overall execution, it can have a significant impact because it can greatly affect the

counting phase.

49

G
ra
ph

C
or
e
O
rd
er
in
g

D
eg
re
e
O
rd
er
in
g

O
rd
er
in
g
T
im

e
(s
)

C
ou

nt
in
g
T
im

e
(s
)

T
ot
al

T
im

e
(s
)

M
ax

.
O
ut
-D

eg
re
e

O
rd
er
in
g
T
im

e(
s)

C
ou

nt
in
g
T
im

e
(s
)

T
ot
al

T
im

e
(s
)

M
ax

.
O
ut
-D

eg
re
e

(1
th
re
ad

)
(6
4
th
re
ad

s)
(6
4
th
re
ad

s)
(6
4
th
re
ad

s)
(6
4
th
re
ad

s)
(6
4
th
re
ad

s)
D
BL

P
0.
04

0.
04

0.
08

11
3

0.
00

0.
03

0.
03

11
3

A
s-
Sk

itt
er

0.
37

0.
95

1.
32

11
1

0.
01

3.
20

3.
21

23
1

Ba
id
u

0.
68

0.
27

0.
94

78
0.
01

0.
26

0.
27

29
8

W
ik
i-T

al
k

0.
17

1.
33

1.
50

13
1

0.
01

4.
10

4.
11

34
0

O
rk
ut

3.
62

34
.1
8

37
.8
0

25
3

0.
05

43
.6
0

43
.6
4

53
5

W
eb
-E

du
1.
35

2.
27

3.
62

44
8

0.
02

4.
84

4.
86

44
8

Fr
ie
nd

st
er

11
1.
09

73
.9
5

18
5.
04

30
4

1.
89

72
.6
4

74
.5
3

86
8

T
ab

le
3.
2:

C
om

pa
ris

on
be

tw
ee
n

tim
e
ta
ke
n

to
co
nv

er
t
th
e
in
pu

t
gr
ap

h
in
to

a
D
A
G

us
in
g
th
e
se
qu

en
tia

l
co
re

an
d

de
gr
ee

or
de
rin

gs
an

d
th
e
as
so
ci
at
ed

co
un

tin
g
tim

es
fo
r
co
un

tin
g
8-
cl
iq
ue
s.

T
he

fa
st
es
t
ov
er
al
lt

im
es

ar
e
bo

ld
ed
.
T
he

co
re

or
de
rin

g
is
gu

ar
an

te
ed

to
pr
od

uc
e
th
e
lo
we

st
m
ax

im
um

ou
t-
de
gr
ee
,w

hi
ch

ty
pi
ca
lly

re
du

ce
st

he
wo

rk
in

th
e
co
un

tin
g

ph
as
e.

50

We observe that in most cases, the core ordering results in faster counting

times. This is due to its increased algorithmic efficiency in the counting phase,

stemming from the low maximum out-degree it produces. For DBLP, Baidu and

Friendster, we observe that a degree ordering actually results in marginally faster

counting time while being significantly faster in the ordering phase (Table 3.2).

We also observe that the time required to produce a sequential core ordering

can be a significant fraction of the total runtime on larger graphs. To reduce the

ordering phase execution time, we use Besta et. al’s parallel core approximation

algorithm to increase parallelism by removing a larger fraction of vertices at a time.

We measure the time required to direct the input graph using a core ordering, the

parallel core-approximation ordering with different values of the error parameter

(ε), a degree-based ordering, and our centrality-based ordering. We also compare

the associated maximum out-degrees, counting times, and the combined times for

both phases (Figures 3.10, 3.11, 3.12, 3.13).

DBLP
As-Skitter Baidu

Wiki-Talk Orkut
Web-Edu

Friendster
GeoMean

0

1

2

3

4

M
ax

im
um

 O
ut

-d
eg

re
e

core
 = -0.5
 = 0.1
 = 0.5
 = 5
 = 1000
 = 50000

degree
EC

Figure 3.10: Maximum out-degrees produced by changing the error parameter in
the parallel approximation algorithms. The maximum out-degrees for core, degree
and centrality-based orderings are also included as a reference. As ε increases, and
more vertices are removed in each round, the maximum out-degree produced by
the ordering increases.

51

Graph ε = −0.5 ε = 0.1 ε = 50000
DBLP 165 7 1
As-Skitter 525 9 1
Baidu 1347 10 1
Wiki-Talk 499 8 1
Orkut 5936 10 1
Web-Edu 160 8 1
Friendster 6033 15 1

Table 3.3: The number of rounds required to order the graph for different values
of ε. Setting ε to -0.5 results in the same maximum out-degree as the core ordering.
The number of rounds in this case is still significantly less than the |V| rounds (on
the order of millions) required by the sequential core ordering algorithm. Setting
ε to 50000 effectively results in a degree-based ordering since only one round is
required. ε = 0.1 is a good compromise between parallelism (number of rounds)
and ordering quality (Figure 3.10).

Unsurprisingly, we observe that the quality of the ordering decreases as we

increase the value of ε. By setting ε to a very low value (-0.5), we are able to

generate the same maximum out-degree as the sequential core ordering. Even for

a low ε, more than 50% of vertices in the graph are removed in the first round.

Removing so many low degree vertices can be done very quickly in parallel; and

this does not affect the quality of the ordering. Increasing the value of ε decreases

the number of rounds, and makes the ordering even faster to compute (Table 3.3).

Since more vertices are removed in each round, the quality of the ordering suffers

(Figure 3.10). At the other end of the spectrum, setting ε to a very large value

(50000) removes all of the vertices in the graph in one round, effectively resulting in

a degree-based ordering. By ranking vertices based on importance, the centrality

ordering (EC) produces a reasonable quality ordering that lies in between that of

the core and degree orderings.

There are some graphs (DBLP, Web-Edu) where the ordering quality remains

the same for all values of ε. We find that the highest degree vertex in the DAG

is connected to vertices with higher degrees and higher importance in the original

52

undirected graph, since its out-going edges do not change across different order-

ings. This implies the presence of a large maximal clique, which we confirm in

Table 3.1. Further analysis of the DAG topologies show very similar degree dis-

tributions, but the degree-based ordering still results in marginally more higher

degree vertices.

DBLP
As-Skitter Baidu

Wiki-Talk Orkut
Web-Edu

Friendster
GeoMean

0

20

40

60

80

Sp
ee

du
p

ov
er

 C
or

e
Or

de
rin

g core
 = -0.5
 = 0.1
 = 0.5
 = 5
 = 1000
 = 50000

degree
EC

Figure 3.11: Comparison between time to produce various orderings. On larger
graphs, our approximation is significantly faster. In addition to being fast, our
approximation with ε = −0.5 produces the same maximum out-degree as core
ordering. This results in the counting phase time between both to be comparable.
Degree ordering is always the fastest ordering, but it does not always result in the
best counting times.

On average, we observe a 4.55× speedup over our exact sequential core ordering

using our approximation, while producing the same maximum out-degree when

ε = −0.5. Our approximation results in larger speedups especially on larger graphs

(Figure 3.11). Since a core ordering generally results in the fastest counting times,

using the approximation with ε = −0.5 allows us to enjoy the benefit of algorithmic

efficiency in the counting phase, while being able to produce the ordering itself

much faster in parallel. The degree and centrality-based orderings are easy to

compute and very parallizable. Thus, they are much faster to generate than the

core ordering or its approximation, even with a large ε in most cases. This also

53

shows that importance can quickly be approximated.

DBLP
As-Skitter Baidu

Wiki-Talk Orkut
Web-Edu

Friendster
GeoMean

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

ov
er

 C
or

e
Or

de
rin

g core
 = -0.5
 = 0.1
 = 0.5
 = 5
 = 1000
 = 50000

degree
EC

Figure 3.12: Comparison between the time to count 8-cliques for each ordering.
The core ordering and our parallel approximation generally result in the best
counting times due to its algorithmic efficiency. Graphs like DBLP, Baidu and
Friendster benefit more from a degree ordering.

We observe that the core ordering typically results in the best counting times

(Figure 3.12). The low maximum out-degrees it produces results in smaller sub-

graphs, and less work to build those subgraphs and check connectivity between the

vertices in the subgraph. While the other orderings (core-approximation, degree-

based, centrality-based) are faster to compute, the resulting DAG topology results

in more work in the counting phase due to the higher maximum out-degree. How-

ever, graphs like DBLP, Baidu and Friendster have comparable counting phase

performance across the different orderings.

54

DBLP
As-Skitter Baidu

Wiki-Talk Orkut
Web-Edu

Friendster
GeoMean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

ov
er

 C
or

e
Or

de
rin

g core
 = -0.5
 = 0.1
 = 0.5
 = 5
 = 1000
 = 50000

degree
EC

Figure 3.13: Comparison between the total execution times for counting 8-
cliques using each ordering. In graphs where core ordering results in the fastest
counting, our parallel approximation with ε = −0.5 results in much faster overall
time due to the fast, parallel ordering.

Combining the ordering and counting phase times, we also measure the total

time required to count 8-cliques using each ordering (Figure 3.13). In graphs

where core ordering is advantageous, we observe that the parallel approximation

with ε = −0.5 results in the best overall times since the ordering is faster to

compute. Surprisingly, graphs like DBLP, Baidu and Friendster have better overall

performance with the degree-based ordering, despite the ordering quality being

inferior in some cases (Section 3.4.1). The centrality-based ordering is faster than

the degree-based ordering on graphs where the core ordering is advantageous, and

vice versa. However, it is never the fastest ordering. The degree distributions of

the DAG produced by the core-approximation and the centrality-based orderings

lie between that of the DAG produced by the core and degree-based orderings.

Depending on the value of ε selected, we can tune the ordering towards core or

degree.

55

3.6.3 Work-Locality Tradeoff and Maximum Neighbor In-

fluence

To investigate why degree ordering results in better counting performance on

certain graphs, we use hardware performance counters to profile the counting

phases of both orderings (Table 3.4).

DBLP
As-Skitter

 Baidu
Wiki-Talk Orkut

 Web-Edu
 Friendster

GeoMean
0.00

0.25

0.50

0.75

1.00

1.25

No
rm

al
ize

d
In

st
ru

ct
io

n
Co

un
t

0.89

1.43

0.53
1.12

27.33 1.25 0.92

Core Degree

Figure 3.14: Differences in the number of instructions executed during the count-
ing phase while counting 8-cliques using both orderings. Lower is better. The
instruction count is normalized to that of core ordering. The number of million
instructions per-vertex for core ordering is denoted at the top of each bar. Even
though degree ordering results in marginally faster counting on some graphs, core
ordering is always more algorithmically efficient as fewer instructions are always
executed.

We observe that the core ordering always results in fewer instructions executed

(Figure 3.14). This is expected since the maximum out-degree produced by the

core ordering is lower than that of the degree-based ordering. A lower maximum

degree means smaller induced subgraphs, and consequently, fewer instructions to

build those smaller subgraphs. Larger, denser subgraphs generally lead to more

recursive function calls and increased reuse, i.e. locality. To compare the amount

of reuse and consequent locality, we compare the average number of recursions

56

per-vertex and the last-level cache misses per kilo-instruction (LLC MPKI) for

both orderings (Figure 3.15). We measure the last-level cache misses using perf.

For each graph, we normalize the values for both orderings by those for core

ordering.

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Increase in Number of Function Calls Per-Vertex

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Re
du

ct
io

n
in

 M
PK

I

DBLP
As-Skitter
Baidu

Wiki-Talk
Orkut

Web-Edu
Friendster

Figure 3.15: Ratio of the number of function calls per-vertex and MPKI be-
tween core and degree ordering in the counting phase while counting cliques using
our dense structure. Since the maximum out-degree of degree ordering is typi-
cally higher, degree ordering results in more instructions than core ordering while
counting cliques. More function calls lead to more cache locality since the first-
level subgraph is reused in subsequent recursive calls. Degree ordering has a lower
MPKI than core ordering for every graph.

We observe that degree-based ordering results in more recursive function calls

per-vertex than core ordering for all the graphs (Figure 3.15). This is expected,

since the first-level subgraphs for the degree-based ordering are larger. We also

observe that the LLC MPKI for the degree-based ordering is always less than

that for core ordering. Thus, we are able to confirm that the larger subgraphs for

degree-based ordering enjoy more locality.

57

Graph Normalized Normalized Normalized Normalized
Instruction Count Function Calls LLC MPKI IPC

DBLP 1.00 1.01 0.99 1.02
As-Skitter 1.25 1.44 0.74 1.06
Baidu 1.00 1.01 0.94 1.04
Wiki-Talk 1.19 1.35 0.89 1.01
Orkut 1.07 1.08 0.88 1.01
Web-Edu 1.04 1.31 0.95 1.01
Friendster 1.02 1.02 0.88 1.03
GeoMean 1.08 1.16 0.89 1.03

Table 3.4: Hardware performance counters for the counting phase of degree
ordering normalized to core ordering. Degree ordering always executes more in-
structions, but executes them faster due to fewer cache misses (MPKI).

Like the number of instructions, we also observe that the amount of function

calls is roughly equal across both orderings for DBLP, Baidu and Friendster.

These graphs do not have as many densely connected subgraphs, resulting in

fewer instructions per-vertex (Figure 3.14) and fewer cliques (Table 3.5). We

find that when the amount of work for both orderings is comparable when the

graphs are sparser, and the increased locality leads to slightly better counting

performance. Since the degree ordering counts faster and there is no algorithmic

advantage for core ordering, the degree ordering is faster. This demonstrates a

lightweight ordering can produce the fastest overall time, so our our heuristic will

need to consider using a degree ordering.

We summarize the relevant hardware performance counter data for both or-

derings in Table 3.4. Core ordering is more algorithmically efficient by executing

fewer instructions, and degree ordering has a practical speed advantage by execut-

ing its instructions at a faster rate. Our heuristic can quickly compute whether a

given graph will benefit from algorithmic efficiency or increased locality and faster

ordering. We summarize various metrics related to our heuristic in Table 3.5.

We observe that our heuristic selects the correct ordering for almost all of the

58

Graph Best a Average aδ Common Heuristic
Ordering Degree (δ) Fraction Time (s)

DBLP degree 0.03 3.67 0.11 0.72 0.00
Soc-Pokec degree 0.01 13.66 0.08 0.18 0.00
As-Skitter core 0.31 6.54 2.03 0.84 0.01
Baidu degree 0.02 7.94 0.13 0.00 0.01
Wiki-Talk core 0.22 3.88 0.85 0.11 0.01
Orkut core 0.03 37.81 1.13 0.12 0.01
LiveJournal core 0.00 8.59 0.04 0.20 0.01
Web-Edu core 0.04 4.67 0.19 0.90 0.04
Friendster degree 0.00 27.53 0.00 0.00 0.24

Table 3.5: Order-selecting heuristic inputs, measurements, and decisions for
counting 8-cliques. Our heuristic selects our core approximation aδ > 0.15, or if
there are more than 0.10 common neighbors. We select a degree ordering other-
wise, or if the graph is very small (|V | < 1M). Our heuristic always selects the
correct ordering for these graphs. The time to compute the heuristic is tiny.

graphs (Table 3.5). The lone exception is Soc-Pokec. For this graph, we observe

that the counting phase times between both orderings is nearly identical, and

that the faster ordering results in a faster total time. Our heuristic is designed

for quickly approximating connectivity in large graphs with many cliques. Ac-

curately testing for connectivity requires additional preprocessing with multiple

set-intersections, resulting in a significantly slower heuristic. We note that the

performance penalty for selecting the wrong ordering in this case is much less.

In this evaluation, we focus on analyzing the impact of different orderings for

counting 8-cliques since the clique is big enough for pivoting to perform better than

enumeration (Figure 3.21). To determine whether the input clique size (k) impacts

the best ordering, we measure the total execution time of the core approximation

with ε = −0.5, the degree ordering, and our heuristic selecting the ordering for

counting varied clique sizes (Figure 3.16). On larger graphs, degree ordering is

usually faster for k = 4 due to the speed of ordering. However, once the clique

size is sufficiently large for pivoting to be faster (k ≥ 8), which ordering is best

59

does not change. Since the total execution time for pivoting does not change with

k, our heuristic does not consider k.

4 8 12 16 20
0.00

0.02

0.04

0.06

0.08

0.10

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

DBLP

4 8 12 16 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

As-Skitter

4 8 12 16 20
0.0

0.1

0.2

0.3

0.4

0.5

Baidu

Core Approx. (= -0.5)
Degree
ComSpark (with Heuristic)

4 8 12 16 20
0

1

2

3

4

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

Wiki-Talk

4 8 12 16 20
0

10

20

30

40

50

60
Orkut

4 8 12 16 20
0

1

2

3

4

5

Web-Edu

4 8 12 16 20
0

20

40

60

80

Clique Size (k)

Friendster

Figure 3.16: Total execution time for counting varied clique sizes using only
our core approximation, only the degree ordering, or the ordering selected by our
heuristic. Our heuristic always selects the correct ordering for these graphs and
it does not add significant overhead.

3.6.4 Reduction in Memory Usage

We compare the performance of our different subgraph structures in terms of

counting speed and memory consumption. We first measure the memory usage

for our dense subgraph structure in ComSpark1.
1Maximum memory usage collected via the Maximum resident set size reported by the

command /usr/bin/time -v.

60

DBLP
As-Skitter Baidu

Wiki-Talk Orkut
Web-Edu

Friendster
GeoMean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
M

em
or

y
Us

ag
e

1.02 4.24 5.65 5.58 18.48 24.50 455.69

Dense Sparse Remap

Figure 3.17: Comparing the total process memory usage between ComSpark’s
dense, sparse and remapped structures for counting 8-cliques in the input graphs.
Lower is better. Memory usage is normalized to ComSpark’s dense structure
memory consumption. Dense structure memory consumption (GB) is denoted
above each bar. The same ordering is used for all runs. On average, the sparse
and remapped structures result in 3.31× less memory consumption.

As expected, we find that our compact sparse and remapped structures are

very memory efficient, requiring 3.31× less space compared to our dense structure

across the suite of input graphs (Figure 3.17). With these optimizations, we

are able to fit a larger set of the subgraph in cache, resulting in better locality

(Figure 3.18).

61

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Reduction in Memory Usage

1

2

3

4

5

6

7
Re

du
ct

io
n

in
 M

PK
I

DBLP
As-Skitter
Baidu
Wiki-Talk

Orkut
Web-Edu
Friendster

Figure 3.18: Comparing the reduction in memory usage and MPKI between
ComSpark’s dense and remapped structures for counting 8-cliques in the input
graphs. Lower is better. Both metrics are normalized to ComSpark’s dense struc-
ture. The same ordering is used for all runs. Compaction in the remapped struc-
ture allows a larger fraction of the induced subgraph to reside in cache, reducing
the miss rate.

The remapped structure provides the fast access time of the dense structure

(Figure 3.19), and the memory compression of the sparse structure (Figure 3.17).

As core count, and consequently contention for shared memory, increases, our

remapped structure becomes a more scalable solution.

62

DBLP
As-Skitter Baidu

Wiki-Talk Orkut
Web-Edu

Friendster
GeoMean

0

1

2

3

4

Sp
ee

du
p

Ov
er

 D
en

se
 S

tru
ct

ur
e

Dense Sparse Remap

Figure 3.19: Comparing the performance of different ComSpark memory struc-
tures while counting 8-cliques on 64 threads. Higher is better. The same ordering
is used for all runs. The remapped structure provides the fast access of the dense
structure and the memory compression of the subgraph structure, resulting in
good overall performance.

3.6.5 Parallel Scaling of k-Clique Counting

To compare the improvement in parallel scaling of our optimizations in the

ordering and counting phases with Pivoter, we count 6 and 12-cliques on the

input graphs on increasing thread counts up to 64 threads using the different

subgraph structures (Figure 3.20). Each plot shows the parallel speedup of the

entire algorithm (includes the time to compute the heuristic and times for both

ordering and counting phases) relative to the single thread performance of that

implementation, and each includes a dashed line to indicate ideal parallel scaling.

63

1 2 4 8 16 32 64
0

10

20

30

40

50

60
Pa

ra
lle

l S
pe

ed
up

DBLP

1 2 4 8 16 32 64

As-Skitter

1 2 4 8 16 32 64

Baidu

1 2 4 8 16 32 64
0

10

20

30

40

50

60

Pa
ra

lle
l S

pe
ed

up

Wiki-Talk

1 2 4 8 16 32 64

Orkut

1 2 4 8 16 32 64

Web-Edu

1 2 4 8 16 32 64

Friendster

 Implementation k
Ideal Scaling
ComSpark (dense)

ComSpark (sparse)
ComSpark (remap)

6
12

Number of Threads

Figure 3.20: Comparing parallel scaling of between different subgraph structures
in ComSpark for the entire process of counting 6, 12-cliques in all input graphs.
The time for each run includes the time to compute the heuristic, and both or-
dering and counting phases. Both ComSpark structures scale linearly, resulting in
better overall performance. For Baidu and Friendster, memory becomes a bottle-
neck for our dense implementation at 32 threads. Our more compact sparse and
remapped structures avoid this and scales linearly even beyond 32 threads.

We observe that all implementations of ComSpark achieve near-linear scaling

for most graphs. In Baidu and Friendster, we observe that scaling for ComSpark’s

dense structure plateaus at 32 threads. In contrast, by compressing the subgraph

using ComSpark’s sparse and remapped structures, we are able to achieve linear

scaling for both of those graphs. This greatly increased scalability is largely en-

abled by the more efficient memory use of our subgraph data structures. Scaling

for DBLP plateaus beyond 8 threads. We attribute this to being a very small

64

graph and not having enough parallel work to saturate all cores for the duration

of the run. Testing various schedulers with different task granularities does not

improve performance. Despite poor scalability, the total execution time is very

small (0.04s). We use the remapped structure in our main implementation due to

its low memory usage and speed advantage.

3.6.6 Total Execution Time Comparison

We next consider the overall execution times for counting cliques of various

sizes on all the input graphs for each implementation (Figure 3.21 and Table 3.6).

While reporting the execution time, we include all preprocessing, including the

time required to compute our heuristic and directionalize the graph. Consistent

with prior work, we exclude the time required to read and build the undirected

input graph. Each execution uses 64 threads, and we report the average time of

two trials to account for variance. We use the execution times for GPU-Pivot as

reported [4] for the NVIDIA Volta V100 GPU for the input graphs in common.

GPU-Pivot does not report times for cliques larger than k = 11. We report the

times for all of our subgraph structures for comparison in Table 3.6.

65

6 8 10 12

10 1

100

101
Ex

ec
ut

io
n

Ti
m

e
(s

) DBLP

6 8 10 12

100

101

As-Skitter

6 8 10 12
10 1

100

101

Baidu

Pivoter
ArbCount
ComSpark
GPU-Pivot

6 8 10 12

100

101

102

Ex
ec

ut
io

n
Ti

m
e

(s
) Wiki-Talk

6 8 10 12

101

102

103
Orkut

6 8 10 12

101

102

Web-Edu

6 8 10 12

102

103

Friendster

Clique Size (k)

Figure 3.21: Total execution time (on a log scale) required for counting cliques
of different sizes on the input graphs for each of the CPU algorithms (Pivoter [56],
Arb-Count [104], ComSpark) and GPU-Pivot running on an NVIDIA Volta V100
GPU. Lower is better. GPU-Pivot does not report times for k > 11. We observe
that the lone enumeration-based algorithm (Arb-Count) takes longer for higher
values of k. In contrast, the pivoting-based approaches typically do not get slower
for higher k. Due to improved parallel scaling, ComSpark is much faster than
Pivoter, despite requiring constant time for various k. This allows the inflection
point at which pivoting starts to win to decrease from k = 10 to k = 8 on
larger graphs. Due to better scaling, ComSpark outperforms GPU-Pivot for all
k on DBLP and larger k on two out of the four common graphs (As-Skitter and
Orkut).

We observe that Arb-Count’s execution time increases greatly with clique size

(k) for most graphs, while the remaining pivoting-based approaches increase much

more slowly (Table 3.6). This is consistent with findings from prior literature. A

pivoting-based approach has a fixed initial cost due to a deeper recursive call stack

irrespective of input clique size (k). However, once this process is finished, count-

ing different sized cliques requires nearly negligible additional time. LiveJournal

is the lone exception, where even pivoting-based methods do not have constant

execution time for increasing k. LiveJournal has significantly more cliques/vertex

than the rest of the graphs, and the time saved due to an early termination op-

66

Graph Algorithm k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13
DBLP Pivoter 1.50 1.00 1.50 1.00 1.50 1.00 1.50 1.50

Arb-Count 0.13 2.07 32.11 450.86 > 2h > 2h > 2h > 2h
GPU-Pivot 0.109 0.109 0.109 0.109 0.109 0.109 - -
ComSpark (Dense) 0.13 0.12 0.13 0.12 0.13 0.15 0.12 0.13
ComSpark (Sparse) 0.07 0.07 0.06 0.07 0.07 0.08 0.06 0.06
ComSpark (Remap) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

As-Skitter Pivoter 16.26 17.27 17.77 17.74 18.26 17.69 17.78 18.29
Arb-Count 0.38 2.51 18.34 125.52 754.08 4189.38 > 2h > 2h
GPU-Pivot 1.01 1.27 1.59 1.84 1.78 1.78 - -
ComSpark (Dense) 1.04 1.11 1.10 1.10 1.11 1.16 1.09 1.09
ComSpark (Sparse) 1.24 1.31 1.31 1.34 1.36 1.31 1.32 1.32
ComSpark (Remap) 1.00 1.04 1.06 1.07 1.08 1.06 1.06 1.07

Baidu Pivoter 19.44 19.52 19.11 20.03 19.31 18.85 18.94 19.57
Arb-Count 0.07 0.07 0.07 0.08 0.11 0.22 0.45 0.90
ComSpark (Dense) 1.19 1.02 1.02 1.01 1.03 1.12 1.17 1.02
ComSpark (Sparse) 0.38 0.38 0.37 0.39 0.40 0.39 0.39 0.38
ComSpark (Remap) 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

Wiki-Talk Pivoter 33.42 35.91 36.91 35.93 35.91 35.93 36.45 35.95
Arb-Count 0.28 1.32 4.60 13.24 28.60 51.30 73.87 95.76
ComSpark (Dense) 1.47 1.58 1.54 1.54 1.52 1.56 1.56 1.58
ComSpark (Sparse) 1.77 1.85 1.90 1.87 1.88 1.91 1.88 1.91
ComSpark (Remap) 1.44 1.50 1.51 1.51 1.50 1.53 1.50 1.52

Orkut Pivoter 654.13 753.08 812.71 858.04 889.39 904.02 909.91 912.99
Arb-Count 5.35 18.58 69.89 281.03 1294.34 > 2h > 2h > 2h
GPU-Pivot 17.23 20.33 26.18 33.64 39.96 48.10 - -
ComSpark (Dense) 31.24 33.78 37.29 40.81 42.94 43.90 44.82 44.72
ComSpark (Sparse) 37.50 41.04 45.95 50.46 53.21 54.58 55.39 55.27
ComSpark (Remap) 29.86 32.58 36.69 40.25 42.45 43.42 43.83 43.85

LiveJournal GPU-Pivot 379.88 1639.54 6850.99 - - - - -
ComSpark (Remap) 1721.29 5991.74 18739.85 49871.35 115426.48 - - -

Web-Edu Pivoter 45.29 46.36 47.84 47.82 47.25 48.79 50.47 53.35
Arb-Count 456.47 > 2h > 2h > 2h > 2h > 2h > 2h > 2h
ComSpark (Dense) 3.05 3.09 3.11 3.30 3.26 3.35 3.51 3.56
ComSpark (Sparse) 2.16 2.59 2.91 3.07 3.06 3.09 3.14 3.13
ComSpark (Remap) 1.81 2.12 2.37 2.53 2.54 2.70 2.52 2.68

Friendster Pivoter 3064.48 3097.26 3054.73 3032.45 3050.13 3063.23 3070.55 3080.26
Arb-Count 30.77 44.19 166.53 2132.27 > 2h > 2h > 2h > 2h
GPU-Pivot 63.87 66.54 67.06 71.40 71.05 71.45 - -
ComSpark (Dense) 301.55 297.45 298.61 296.48 298.48 297.94 298.58 296.30
ComSpark (Sparse) 97.21 97.82 98.10 98.03 98.21 98.14 98.33 98.27
ComSpark (Remap) 72.97 73.39 73.53 73.55 73.55 73.58 73.62 73.62

Table 3.6: Summary of total execution time for counting cliques using Pivoter
[56], Arb-Count [104], GPU-Pivot [4] and ComSpark. We use the times reported
by GPU-Pivot in their paper. Every other algorithm is executed using 64 threads
on the same machine (CPU) under the same conditions. The execution times
reported include any preprocessing, including graph ordering, but ignore graph
reading times. The best CPU execution time is denoted in bold and if the GPU
execution time is the fastest, it is denoted in green.

67

timization is more apparent. However, we observe that the rate of increase in

execution time reduces as k increases. This implies that the execution time will

be constant beyond a large enough k.

Initially, Pivoter starts to win out over enumeration-based algorithms on CPUs

at k = 10. Most notably, we enable pivoting to be more advantageous earlier, at

k = 8 for larger graphs with ComSpark’s parallel scalability. ComSpark is the first

work to count 10-cliques in LiveJournal in under two days. ComSpark outperforms

GPU-Pivot on DBLP and has comparable performance on Friendster while using

a midrange server that costs a fraction of the premier GPU.

3.6.7 Comparison Against GPU

Lastly, we consider the performance differences between the optimized parallel

implementations of pivoting on the CPU (ComSpark) and the GPU (GPU-Pivot)

for counting cliques of different sizes in the common graphs. The amount of

work while counting smaller cliques is typically less than that for larger cliques

due to an optimization in the original Pivoter code that allows the counting to

terminate early (Figure 3.22). This allows GPU-Pivot to be faster than the CPU

implementations for moderate k when the amount of work has not hit its peak

(Table 3.6).

68

4 5 6 7 8 9 10 11
Clique Size (k)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

No
rm

al
ize

d
Nu

m
be

r o
f F

un
ct

io
n

Ca
lls As-Skitter

Orkut
Friendster

Figure 3.22: Number of function calls required in the counting phase while
counting cliques of different sizes. The number of calls are normalized to that of
counting 4-cliques in each graph. Counting larger cliques in denser graphs with
many cliques like As-Skitter and Orkut result in more work until it plateaus. This
is due to an optimization in the original Pivoter code that allows early termination
in the counting process.

4 5 6 7 8 9 10 11
k

1

2

3

4

5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e
(x

) Algorithm Graph
GPU-Pivot
ComSpark

As-Skitter
Orkut

Figure 3.23: Self-normalized execution times for GPU-Pivot and ComSpark for
As-Skitter and Orkut. We normalize the execution times for various values of
k by dividing by the execution time of k = 4 for that specific implementation.
We observe that the execution time for GPU-Pivot increases with k. In contrast,
ComSpark’s execution time does not increase significantly. Notably, in the case
of As-Skitter, ComSpark has almost constant execution time for all values of k.
This allows ComSpark to outcompete GPU-Pivot for larger k.

69

We also observe that the total execution time for GPU-Pivot increases linearly

with k as the amount of work increases when there are a lot of cliques in the graph

(Figure 3.23). We suspect this is due to an increased number in intersection opera-

tions while building the subgraph in each recursive level. Additionally, the nature

of the pivoting algorithm does not allow for efficient use of the GPU’s hardware re-

sources, inhibiting scalability. In contrast, the execution time for ComSpark does

not increase significantly with k. This allows ComSpark to outperform GPU-Pivot

for larger k on these two graphs. Our approach is more scalable for counting large

cliques on challenging graphs like those. Both GPU-Pivot and ComSpark do not

show significant variation in execution time relative to k on graphs where work

does not increase significantly, like Friendster.

Comparison on LiveJournal

We also include a comparison against LiveJournal, since it is a computationally

challenging graph with many cliques.

4 5 6 7 8 9 10
Clique Size (k)

0

500

1000

1500

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e
(x

)

Algorithm
GPU-Pivot ComSpark

Figure 3.24: Self-normalized execution times for GPU-Pivot and ComSpark for
LiveJournal. We normalize the execution times for various values of k by dividing
by the execution time of k = 4 for that specific implementation. While the
execution times for both algorithms increase with k, ComSpark shows a slower
rate of increase.

70

4 5 6 7 8 9 10
Clique Size (k)

101

102

103

104

105

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

ComSpark
GPU-Pivot
GPU-Pivot Projected

Figure 3.25: Total execution times for counting various k-cliques in LiveJournal
using ComSpark and GPU-Pivot on a log-scale. Since GPU-Pivot only reports
times up to k = 8, we project the performance for counting k >= 9 for GPU-
Pivot using a regression. We use the equation y = 0.021 ∗ e1.6037x to model the
performance of GPU-Pivot. The R-squared value for our regression is 0.99.

We observe that the execution time of both the CPU and GPU increases signif-

icantly with k for LiveJournal, compared to As-Skitter and Orkut, other relatively

challenging graphs (Figures 3.23 and 3.24). We also observe that the execution

time of the GPU increases significantly more with k than ComSpark. Conse-

quently, the performance gap between ComSpark and GPU-Pivot reduces as k

increases (Figure 3.25). Using an exponential regression (y = 0.021∗e1.6037x, R2 =

0.99) to project the performance for GPU-Pivot for k >= 9, we predict that

ComSpark will outperform GPU-Pivot at k = 10. This is consistent with what

we observe with Orkut, another graph with many cliques (Figure 3.21). In their

paper, the authors of Pivoter report an execution time of 5.9 days for counting

10-cliques in LiveJournal [56]. With ComSpark’s improved scalability, we are able

to perform this in 1.3 days.

Even though time-to-solution is the most important metric, we also we com-

pare the performance normalized to power, number of transistors and area for

71

both systems since their architectures are fundamentally different (Table 3.8).

We compute performance as 1000
time

(higher is better). Since the implementation de-

tails for the CPU are not public, we use estimates obtained from [112] (Table 3.7).

For the Volta V100, we use details provided in the V100 whitepaper [89].

System Model TDP (W) Transistors (B) Area (mm2)

CPU AMD EPYC 9554 360 52.6 576

GPU NVIDIA Volta V100 300 21.1 815

Table 3.7: Comparison of CPU and GPU specifications. These values were
obtained from [89,112].

Graph
Perf/Watt Perf/transistor Perf/mm2

k = 8 k = 11 k = 8 k = 11 k = 8 k = 11

DBLP 0.44 0.44 0.91 0.91 0.26 0.26

As-Skitter 0.80 0.73 1.66 1.51 0.47 0.43

Orkut 1.68 1.08 3.49 2.25 0.99 0.64

Friendster 1.32 1.24 2.73 2.57 0.77 0.73

GeoMean 0.94 0.81 1.95 1.68 0.55 0.88

Table 3.8: Performance of the GPU normalized to that of the CPU. We use the
power (TDP), transistor and area (mm2) for each system as reported in Table 3.7.

On average, we observe that the CPU results in better performance per-Watt

and per-mm2 (Table 3.8). The GPU has better energy efficiency on the larger

graphs (Orkut and Friendster), and consistently better performance per-transistor

on all graphs. Finally, we observe that the CPU results in consistently better area

efficiency. We also observe that the efficiency of the GPU drops as we count larger

cliques. For counting sufficiently large cliques, the CPU could potentially become

72

the leading energy and area-efficient solution.

Pivoting algorithms are more suited for counting large cliques in graphs and

enumeration algorithms perform well for smaller cliques. A hybrid algorithm

which performs well for all clique sizes can easily be implemented by switching

with a simple heuristic e.g. (k ≥ 8). Due to its improved parallel scalability

in both ordering and counting phases, ComSpark typically outperforms current

state-of-the-art CPU and GPU algorithms for large clique sizes (k ≥ 8).

3.7 Related Work

One of the fastest sequential algorithms for clique counting is provided by

Chiba and Nishizeki [28]. While the algorithm is simple and efficient, it includes a

step which makes it sequential and suboptimal for dealing with the massive real-

world graphs of today. Finocchi et al. present a scalable algorithm for counting

k-cliques using the MapReduce framework [43]. They use a degree ordering to

direct the graph. KClist was the first work to parallelize Chiba and Nishizeki’s

algorithm by separating the ordering and counting phases [32]. More recently,

Shi et al. present Arb-Count, a work-efficient parallel algorithm with polylog-

arithmic span [104]. Aside from the core and degree ordering, they also imple-

ment the Barenboim-Elkin [6] and Goodrich-Pszona [45] orderings. This work is

considered to be the state-of-the-art parallel clique counting algorithm amongst

the enumeration-based methods. Li et al. provide an optimized parallel algo-

rithm which orders the graph on a coloring-based method [72]. Lastly, Almasri

et al. implement ennumeration and pivoting-based k-clique counting algorithms

on GPUs (GPU-Pivot) [4]. Aside from the aforementioned dedicated solvers, var-

ious GPM frameworks [25, 26, 36, 58, 113] are also capable of counting cliques in

large graphs. In addition to exact clique counting, related problems like maxi-

73

mal clique enumeration and approximate clique counting have also been heavily

studied. Maximal clique enumeration involves finding cliques which cannot be

extended any further [17, 27, 35, 39, 114]. Other recent works attempt to approxi-

mate k-clique counts in graphs through sampling [24,57,120,121] or probabilistic

hashing [15].

3.8 Conclusion

In this chapter, we take a holistic approach to improve the parallel scalability of

clique counting. We provide in-depth analysis of how the ordering phase impacts

the counting phase during clique counting. We take inspiration from prior work

to find a parallel approximation of the core ordering which allows ComSpark to

benefit from faster ordering times without sacrificing algorithmic efficiency while

counting. We use our analysis to develop a heuristic which predicts which order-

ing algorithm will lead to the fastest counting, and consequently, fastest overall

execution time for a given input graph topology. We also improve the parallel

scalability of pivoting-based clique counting by reducing memory usage through a

compact subgraph structure. While several optimizations have been presented for

optimizing the counting phase on GPUs, including an even more memory-efficient

subgraph structure, we hope that our parallel ordering methods and heuristic can

be used to further improve performance on the GPU. Our remapped subgraph

structure may potentially reduce the increase in GPU execution time as k in-

creases. We emphasize that a similar methodology to the analysis provided in

this paper can be followed for improving the performance of other Graph Pattern

Mining algorithms.

With improved overall performance, we are able to count large cliques in large

graphs very efficiently. ComSpark achieves total speedups of 16.26 − 71.78×

74

(Geometric Mean: 28.97×) over Pivoter while counting k-cliques. ComSpark

is also faster than the fastest enumeration-based implementation (Arb-Count)

for a smaller clique size than before. On challenging graphs with many cliques,

ComSpark scales better with clique size, allowing us to outperform the GPU while

counting larger cliques.

While we focus on counting the total number of k-cliques in this work, we are

easily able to obtain per-vertex k-clique counts with a few simple changes to our

code. Since more research is ongoing in the field of Graph Pattern Mining, we

hope our optimizations can be used as a performance benchmark to compare the

performance of new clique counting algorithms.

75

Chapter 4

Actor-Based Distributed

Breadth-First Search

In this chapter, we optimize communication across the network layer while

performing a Breadth-First Search (BFS) traversal on large graphs stored across

multiple compute nodes. We implement the leading direction-optimizing BFS al-

gorithm to reduce the amount of data sent across the network during the traver-

sal [9]. We reduce the amount of synchronization while implementing the bottom-

up step of this algorithm by leveraging actor messages using the Fine-grained

Asynchronous Bulk Synchronous (FABS) programming model.

4.1 Introduction

Traversing a graph in a breadth-first search (BFS) order is a fundamental

algorithm in computer science, and is commonly used to test connectivity and

find shortest paths. The widespread use of BFS makes it a commonly used graph

benchmark [86]. BFS has low computational intensity and requires a large amount

of communication to check for visited vertices, resulting in low IPC. We consis-

76

tently measure IPCs less than 0.3 for a variety of graphs on our Intel Xeon system.

The impact of communication is exacerbated when the graph is distributed across

many servers, and has to send high-latency messages over a network. As systems

and graphs get bigger, it is necessary to have an algorithm which scales well.

A BFS traversal starts at a source vertex and attempts to find every vertex

in the graph that is accessible from the source. The conventional BFS approach

is level-synchronous top-down, starting at the source vertex and expanding its

frontier outwards while visiting every vertex at that level before moving on to

the next level. Since real-world graphs tend to be low-diameter and follow a

power law distribution, most vertices are visited within the first few steps. This

approach benefits from a lot of parallelism due to the low-diameter topology of

many real-world graphs like social networks.

Direction-optimizing BFS, an optimzed algorithm by Beamer et. al. [9], re-

duces the amount of communication required by dynamically switching to a bottom-

up approach when the frontier becomes large. Existing distributed bottom-up

methods require a large amount of barrier synchronization instructions, and they

quickly become a performance bottleneck [13, 18, 21]. In this work, we leverage

asynchronous actor messages to efficiently implement both top-down and bottom-

up steps. We implement different messaging schemes for bottom-up BFS and

analyze the tradeoffs in communication volume and performance between them.

We also implement an actor-based direction-optimizing BFS which dynamically

switches between top-down and bottom-up based on the size of the frontier. Our

actor-based approach is competitive with prior leading approaches. Actor-based

top-down BFS has been implemented before [23,98]. To the best of our knowledge,

ours is the first actor-based implementation of direction-optimizing BFS.

77

4.2 Background

4.2.1 Conventional Top-Down BFS

The conventional BFS approach is top-down, starting at a source vertex and

expanding its frontier outwards while visiting every vertex at that level before

moving on to the next level. In each level, every vertex in the frontier checks

all of its neighbors to find those that are unvisited. Every unvisited neighbor is

marked as visited and then added to the frontier for the next level. Thus, the

total number of edge checks required by the top-down approach is the same as

the number of edges in the connected component containing the source vertex.

Due to the scale-free topologies of real-world social networks, the frontier ex-

ponentially grows in the first few rounds and then rapidly decreases. By virtue of

being low-diameter, these networks tend to have a small number of levels. Since

most of the vertices are visited in the first few levels, the later levels result in

many failed edge checks to find unvisited vertices.

Algorithm 8 Breadth-First Search
1: function Breadth-First Search(graph)

2: frontier ← { source }

3: next ← { }

4: parents ← [-1, -1, -1, ..., -1] . Mark all vertices as unvisited

5: parents[source] ← source

6: while frontier 6= { } do

7: Top-Down-Step(graph, frontier, next, parents)

8: frontier ← next

9: next ← {}

78

Algorithm 9 Top-DownStep
1: function Top-Down-Step(graph, frontier, next, parents)

2: for all u ∈ frontier do

3: for all v ∈ neighbors[u] do

4: if parents[v] = -1 then . v is unvisited

5: parents[v] ← u

6: next ← next ∪ {v}

Distributed implementations of the top-down approach are level synchronous,

requiring a barrier to allow for each of the processing elements (PEs) to have a

global view of the frontier.

4.2.2 Bottom-Up BFS

In contrast to the conventional top-down approach, the bottom-up approach

attempts to find visited parents of unvisited vertices. This approach can be expen-

sive when there are a large number of unvisited vertices. However, this approach

can be more algorithmically efficient than top-down when the frontier is large,

avoiding many redundant edge checks to already visited vertices. Beamer et. al. [9]

leverage this observation and combine the top-down approach with a bottom-up

approach to reduce the amount of edges checked in their novel direction-optimizing

BFS.

79

Algorithm 10 Bottom-Up Step
1: function Bottom-Up-Step(graph, frontier, next, parents)

2: for all u ∈ vertices do

3: if parents[u] = -1 then

4: for all v ∈ neighbors[u] do

5: if v ∈ frontier then

6: parents[u] ← v

7: next ← next ∪ {u}

8: break

There is a performance tradeoff between parallelizing and serializing the in-

ner for-loop (Step 4 in Algorithm 10). Exposing parallelism in the inner for-loop

allows for efficient utilization of a large number of PEs at larger scale. In con-

trast, serializing the inner loop combined with the break statement (Step 7 in

Algorithm 10) reduces the number of edges checked during the traversal, making

it more algorithmically efficient.

In order to get the benefits of early termination for the inner-loop, prior MPI-

based distributed implementations like CombBLAS are forced to communicate

greatly, and bitmap compression only partially constrains that growing amount of

communication. Bottom-up also requires a significant amount of synchronization

in MPI due to the request-response communication pattern. There needs to be a

barrier after every message to ensure it is received before it can begin computa-

tion. Unsurprisingly, interprocessor communication is a performance bottleneck

in distributed graph algorithms [77]. Beamer et. al. [13] observe sub-linear scaling

while implementing distributed direction-optimizing BFS, as the bottom-up step

suffers from high communication overhead.

80

4.2.3 The Actor Model

The Actor Model is a concurrent programming model where different actors

can communicate with each other via asynchronous message-passing [53]. We treat

each core/processing element (PE) in the system as an actor. Upon receiving a

message, an actor invokes a message handler which can perform local computation

or message another remote actor.

Since the actor’s local state is private, no locks are required. This allows the

Actor Model to scale to a large number of PEs, making it an ideal fit to implement

in distributed-memory systems.

Common Actor Terms

• Processing Element (PE): A unit of computation within a parallel system.

We treat each core in the system as a unique PE.

• Mailbox: Inbox of an actor which stores messages sent to it [34]. Each

mailbox has its own message handler which calls a message handler. The

message handler can perform some local computation or message another

actor.

• Selector: An actor with multiple mailboxes. Each mailbox has its own

message handler that can perform a different task.

• Non-blocking actor message: An asynchronous message sent by an actor.

Non-blocking implies that the sender PE does not need to wait to resume

computation after sending a message. The receiver PE does not need to

immediately drop its current task to process the received message.

81

4.2.4 HCLib-Actor Framework

A defining feature of the Actor Model is its inherent asynchrony, i.e. there is

no requirement for an order in which messages must be processed. The HCLib-

Actor framework provides a productive programming interface for asynchronous

actor-based applications in combination with the scalable and performant HCLib

runtime [96, 97]. It is built on the Conveyors library [80] which performs tasks

like message aggregation, but exposes a very complicated programmer interface.

Selectors, i.e. actors with multiple mailboxes, are a key concept in the HCLib-

Actor framework [55]. Multiple mailboxes allow for different computations to be

triggered by the message handlers, enabling complex dataflows in graph processing

among other applications.

The traditional Bulk-Synchronous Parallel (BSP) approach for parallel com-

putation consists of multiple ”supersteps” in which barriers ensure the completion

of any communication (one-way messages) within the superstep before they are

viewable. BFS requires sending a large number of messages, resulting in many

barriers. Certain PEs may be forced to spend a significant amount of time waiting

at barriers in the case of uneven work distribution amongst the PEs due to graph

topology. Thus, BSP may not result in effective utilization of system resources

for irregular, communication-intensive workloads like BFS.

In contrast, the Fine-grained Asynchronous Bulk Synchronous (FABS) model

proposed by Paul et. al. [96] extends this model to allow for asynchronous two-way

messaging within supersteps. Overlapping multiple rounds of communication and

computation within a superstep results in fewer idle cycles and better utilization of

resources. This is supported by fine-grained, atomically processed actor messages,

automatic message aggregation, and an asynchronous tasking runtime. FABS

allows us to efficiently sequentialize the inner for-loop of Bottom-Up BFS without

82

significant synchronization overhead.

4.2.5 The Actor Graph Library (AGL)

The Actor Graph Library is a streamlined distributed-memory graph pro-

cessing library based on the Actor Model and built on top of the HCLib-Actor

framework [48]. AGL recognizes that there are many common steps for imple-

menting various graph kernels on distributed-memory systems that do not involve

the development and optimization of the kernel itself. These include things like

generating or reading the graph, distributing the graph amongst the PEs intelli-

gently, easily accessing data from the graph, etc. This enables the developer to

focus on optimizing their graph processing tasks. We use AGL to implement our

actor-based BFS.

Data distribution is a critical factor for achieving high performance on distributed-

memory systems. AGL allows for multiple methods to assign the portions of the

graph to different PEs to improve locality or communication efficiency [60]. Each

PE stores the local portion of the graph in the Compressed Sparse Row (CSR)

format. Each vertex in the graph contains two identifiers. One is a unique iden-

tifier referred to as the ’global ID’. The second identifier is referred to as the

’local ID’, and it denotes its position within a host PE. After the graph has been

distributed between different PEs, AGL provides static functions to access vertex-

specific data. These include functions for finding the host PE of a vertex given

its global ID, and converting a global ID to a local ID to access data within the

local structures.

83

Memory

Network
RDMA Conveyors

Mailbox 1

Mailbox n

...
Async.

Tasking
Runtime

Computation
Task 1

Computation
Task n

...

Actor Graph Library

Actor-based BFS

Processing Element

Figure 4.1: Software stack for implementing Actor-based BFS. We implement
BFS in the Actor Graph Library (AGL), which is built on top of the HCLib-Actor
framework (yellow). The HCLib-Actor framework leverages the Conveyor library
(green) for message aggregation.

4.3 Actor-Based Direction-Optimizing BFS

In this section, we detail our implementations of parallel top-down and bottom-

up BFS and how we combine them to implement a direction-optimizing BFS.

4.3.1 Parallel Top-Down BFS

Our top-down algorithm is the same in spirit as the pseudocode we highlight in

Algorithm 9. We treat each processing element (PE) as an actor, which maintains

the parent array for its local vertices as its state. Each vertex in the frontier sends

a non-blocking actor messages to all of its neighbors. Our message consists of

the two vertices that constitute the edge which is being checked. Upon receiving

84

the message, a PE checks whether the local vertex in question has already been

visited. If the vertex is unvisited, its parent is updated (to mark it as visited), and

it is added to the local frontier. Since the parent array is private to each actor,

no atomics or locks are required during the update. We include a barrier at the

end of each level so each PE knows it is safe to move to the next level.

Algorithm 11 Actor-based Top-Down BFS
1: function Breadth-First Search(graph)

2: frontier ← { source } . Only on PE owning the source

3: frontier_size ← 1

4: next ← { }

5: parents ← [-1, -1, -1, ..., -1]

6: while frontier_size > 0 do

7: for all u ∈ frontier in parallel do

8: for all v ∈ neighbors[u] do

9: Send(FINDOWNER(v), {u, v}) . Non-blocking Actor Message

10: BARRIER()

11: frontier_size ← ALLREDUCE(next.size()) . Global frontier size

12: frontier ← next

13: next ← {}

14: function Top-Down Message Handler({u, v})

15: if parents[v] = -1 then

16: parents[v] ← u . Local state, no atomics/locks required

17: next ← next ∪ {v}

85

4.3.2 Parallel Bottom-Up BFS

Our parallel bottom-up algorithm is the same in spirit as the pseudocode we

provide in Algorithm 10. Similar to our top-down implementation, we treat each

PE as an actor. As we mention previously, there is a performance trade-off be-

tween parallelizing and sequentializing the inner for-loop (Step 4 in Algorithm 10).

In this work, we explore this tradeoff by implementing various messaging schemes

for bottom-up BFS.

Distributed-memory bottom-up requires a request-response communication

pattern to find a valid parent. This requires each actor to have multiple mailboxes:

one for generating requests to other PEs and one for responding to requests from

other PEs. Our message needs to be slightly modified from the top-down case

to include which mailbox the message is being sent to. Based on this value, the

appropriate message handler is triggered. Selectors allow us to define these extra

mailboxes seamlessly.

In our parallel inner-loop version, we send messages to all of the neighbors

of every unvisited vertex at once. Of those neighbors, the vertex whose visited

response is recorded first is assigned to be the parent of the original requesting

vertex. The vertex is then marked as visited and then added to the frontier.

Sending multiple requests in parallel can be advantageous when the frontier is

small, since the latencies of the responses are amortized. However, when the

frontier is large, this can result in many redundant edge checks. We refer to this

approach as Parallel.

86

Algorithm 12 Actor-based Bottom-Up BFS with Parallel Inner-Loop
1: function Breadth-First Search(graph)

2: frontier ← { source } . Only on PE owning the source

3: frontier_size ← 1

4: next ← { }

5: parents ← [-1, -1, -1, ..., -1]

6: while frontier_size > 0 do

7: for all u ∈ local vertices do

8: if parents[u] = -1 then

9: for all v ∈ neighbors[u] do . Sends multiple requests at a time

10: Send(FINDOWNER(v), REQUEST_HANDLER, {u, v})

11: BARRIER()

12: frontier_size ← ALLREDUCE(next.size()) . Global frontier size

13: frontier ← next

14: next ← {}

15: function REQUEST_HANDLER({u, v})

16: if parents[v] 6= -1 then . Only send response if valid parent

17: Send(FINDOWNER(u), RESPONSE_HANDLER, {u, v})

18: function RESPONSE_HANDLER({u, v})

19: if parents[u] = -1 then . Only execute if no responses recorded

20: parents[u] ← v

21: next ← next ∪ {v}

Typically, implementing the sequentialized version of the algorithm is more

difficult. Prior works accomplish this by paritioning the search step into multiple

sub-steps in which a dense bitmap of the frontier is rotated amongst the processor

grid [18]. During each sub-step, only a single processor examines a particular

87

vertex’s edges and then passes on those vertices to the next processor in the

subsequent sub-step. In contrast, the HCLib-Actor framework provides enough

messaging flexibility to implement a serial request-response pattern at a finer

granularity, thus improving the communication efficiency of the algorithm. This

requires the addition of an extra mailbox to handle each type of response. If

the first neighbor of an unvisited vertex has already been visited, we mark the

requesting vertex as visited and add it to the frontier. If the neighbor has not

been visited, we send the response to a different mailbox. The handler for this

mailbox then sends a request to the next neighbor, and this process continues

until the original vertex finds a valid parent or all neighbors are queried. Thus,

we only perform an edge check when we know for sure that no valid parent has

claimed the vertex yet. We refer to this approach as Sequential.

88

Algorithm 13 Actor-based Bottom-Up BFS with Sequential Inner-Loop
1: function Breadth-First Search(graph)

2: frontier ← { source } . Only on PE owning the source

3: frontier_size ← 1

4: next ← { }

5: parents ← [-1, -1, -1, ..., -1]

6: while frontier_size > 0 do

7: for all u ∈ local vertices do

8: if parents[u] = -1 then

9: v ← first neighbor of u . Only sending a single request at a time

10: Send(FINDOWNER(v), REQUEST_HANDLER, {u, v})

11: BARRIER()

12: font_size ← ALLREDUCE(next.size()) . Global frontier size

13: frontier ← next

14: next ← {}

15: function REQUEST_HANDLER({u, v})

16: if parents[v] 6= -1 then

17: Send(FINDOWNER(u), RESPONSE_HANDLER_FOUND, {u, v})

18: else

19: Send(FINDOWNER(u), RESPONSE_HANDLER_NOTFOUND, {u, v})

20: function RESPONSE_HANDLER_FOUND({u, v})

21: parents[u] ← v

22: next ← next ∪ {v}

23: function RESPONSE_HANDLER_NOT_FOUND({u, v})

24: v ← next neighbor of u

25: Send(FINDOWNER(v), REQUEST_HANDLER, {u, v})

We find that the sequential inner-loop version is much slower in the initial

89

levels when the highest-degree vertices have not been visited yet, and faster in

the later levels. During the intial levels, the message latency is a performance

bottleneck since the PE has to wait for the prior neighbor to respond before

sending the next request. To accelerate the process of finding valid parents without

messaging every neighbor at once, we explore different messaging schemes and

observe improvements in performance over Sequential at modest batch sizes. We

take advantage of flexible communication in the Actor model to parameterize

our messaging schemes to evaluate its effect on performance. We summarize our

different messaging schemes in the following table:

Name Messaging Scheme
Parallel All neighbors at once

Sequential One neighbor at a time until valid parent found
Threshold First t neighbors one-by-one, remaining all at once if parent not found
Exponential Exponentially increasing number of messages (2n) every time

Batch Fixed number of neighbors (b) at a time

Table 4.1: Various messaging schemes for parallel bottom-up BFS

4.3.3 Parallel Direction-Optimizing BFS

We combine our top-down and sequential bottom-up implementations to form

a performant parallel direction-direction BFS. The top-down approach is advanta-

geous when the frontier is small, since it requires fewer edge checks. The bottom-

up approach is more efficient when the frontier is large, since it easier to find

a valid parent. At each level, we implement whichever algorithm will be faster.

To decide which algorithm should be implemented at a particular level, we use

heuristics from prior work [9] that consider the number of edges emanating from

the frontier, and the remaining number of edges to check.

90

4.4 Evaluation

In this section, we analyze the performance and communication efficiency of

our different BFS implementations. We also compare the performance of our par-

allel distributed-memory direction-optimizing algorithm with one of the leading

implementations, CombBLAS [21], and the Graph500 reference code [86].

4.4.1 Experimental Setup

We perform our experiments on the Phoenix cluster at Georgia Tech [59].

Each compute node has dual Intel Xeon Gold 6226 CPUs running at 2.7 GHz,

24 physical cores, 19.25MB shared L3 cache and 192GB of RAM. The nodes are

connected together using Infiniband 100HDR interconnect. The cluster has 851

total compute nodes. We compile our code using g++ (version 10.3.0) with -O3

-loshmem flags.

We use a variety of synthetic graphs and one real-world graph (Twitter) [64]

for evaluating our implementation. The Twitter graph has 61.5 million vertices

and 1.47 billion edges. The first type of synthetic graph we use is based on the

R-MAT random graph model [22]. The R-MAT generator creates graphs with

very skewed degree distributions and low-degree. We set the R-MAT parameters

a, b, c, d to 0.57, 0.19, 0.19, 0.05. The second type of synthetic graph we use is the

Uniform Random graph based on Erdős-Réyni model [40]. In this model, the two

vertices making up an edge are generated from a uniform random distribution.

This graph represents the worst case in terms of locality since every vertex has an

equal probability of being the neighbor of another vertex. Similar to the Graph500

benchmark, we denote the size of a graph with a SCALE variable for both types

of synthetic graphs. This implies that the graph has 2SCALE vertices. We set the

edge-factor (average degree) to 16. All of the graphs we use are undirected and

91

do not contain duplicate edges.

Our main metric of interest to judge performance is the search rate Traversed

Edges per Second (TEPS). Since different algorithms may explore a different num-

ber of edges, we maintain consistency by dividing the total number of edges in

the graph by the total execution time, which may not be the number of edges

actually traversed. To increase robustness, we perform between 8 to 64 trials by

randomly selecting different source vertices in the graph to start the traversal. To

be consistent with prior work, we report the harmonic mean of the TEPS for each

trial.

4.4.2 Bottom-Up Comparison

In this section, we compare the communication efficiency and performance of

our different bottom-up implementations. To measure communication efficiency,

we first count the number of messages sent to check for valid parents in every level

for each messaging scheme. We also consider the total number of messages sent.

We first measure the communication efficiency between the parallel and se-

quential inner-loop versions. We measure the number of messages sent to check

for valid parents in every level for each case.

92

0 1 2 3 4 5 6 7
Level

0.0

0.5

1.0

1.5

2.0
M

es
sa

ge
s S

en
t

1e9 R-MAT SCALE 26

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 G

ra
ph

 D
isc

ov
er

ed

Parallel
Sequential
Threshold
Exponential
Batch
Fraction of Graph

Figure 4.2: Edges checked in each level by different bottom-up implementations
for a SCALE 26 R-MAT graph.

0 2 4 6 8 10 12 14
Level

0.0

0.5

1.0

1.5

2.0

2.5

M
es

sa
ge

s S
en

t

1e9 Twitter

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 G

ra
ph

 D
isc

ov
er

ed

Parallel
Sequential
Threshold
Exponential
Batch
Fraction of Graph

Figure 4.3: Edges checked in each level by different bottom-up implementations
for the Twitter graph.

In the intial few levels, we observe that all of the bottom-up versions send a

large number of messages (Figures 4.2, 4.3). This is expected, since the frontier

is very small at that point, and each unvisited vertex sends a message to all of its

neighbors at once trying to find a valid parent. Once the frontier is sufficiently

large (≈ 40 − 60% of the graph), the number of messages sent during Sequential

is significantly less than that of Parallel, since unvisited vertices can find visited

93

neighbors quickly. This greatly reduces the amount of algorithmic work performed

by Sequential. We also observe that Threshold, Exponential, and Batch send

slightly more messages than Sequential, but still significantly fewer messages than

Parallel (Figures 4.2, 4.3, 4.4). Once the frontier is large enough, and the high-

degree vertices have been visited, the efficiency of bottom-up shines through and

all versions send a small number of messages for the last remaining levels.

Par
alle

l

Se
qu

en
tia

l

Th
res

ho
ld

Ex
po

ne
nti

al
Batc

h
0

1

2

3

4

5

6

To
ta

l M
es

sa
ge

s S
en

t

1e9 R-MAT SCALE 26

Par
alle

l

Se
qu

en
tia

l

Th
res

ho
ld

Ex
po

ne
nti

al
Batc

h
0

1

2

3

4

5

6

7

1e9 Twitter

Figure 4.4: Total number of messages sent during different bottom-up imple-
mentations for a SCALE 26 R-MAT graph and the Twitter graph.

Despite being more algorithmically efficient, we find that Sequential results

in the worst performance (Figures 4.5, 4.6). The difference in performance is

largely in the first few levels when the frontier is not large enough for bottom-up

to be beneficial. A large number of messages are sent in the early levels, and the

sequential request-response pattern suffers from high network latency. In contrast,

Parallel amortizes this latency by sending all the messages in parallel at once.

94

0 1 2 3 4 5 6 7
Level

0

5

10

15

20

25

30

35

40

Ex
ec

ut
io

n
Ti

m
e

(s
)

R-MAT SCALE 26
Parallel
Sequential
Threshold
Exponential
Batch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Level

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(s
)

Twitter
Parallel
Sequential
Threshold
Exponential
Batch

Figure 4.5: Time for each level for different bottom-up implementations for a
SCALE 26 R-MAT graph and the Twitter graph. Sequential takes 198.61s for the
first level on R-MAT and 580.09s and 517.28s for the first two levels on Twitter
respectively.

We also evaluate weak scaling performance of the different actor-based bottom-

up implementations. We increase graph size as we increase the number of nodes

(and cores) and measure the TEPS.

16
(1 Node)

32
(2 Nodes)

64
(4 Nodes)

128
(8 Nodes)

256
(16 Nodes)

512
(32 Nodes)

1024
(64 Nodes)

2048
(128 Nodes)

4096
(256 Nodes)

Cores

101

102

103

Se
ar

ch
 R

at
e

(M
TE

PS
)

24 25 26 27 28 29 30 31 32
SCALE

Parallel
Sequential
Threshold

Exponential
Batch

Figure 4.6: Comparison between weak scaling for various bottom-up implemen-
tations.

We observe that Parallel has the best overall performance (Figure 4.6). Since

95

a bulk of the time (≈ 70−90% of total time) is spent in the early levels when the

frontier is very small, messaging all of the neighbors in parallel is the best strategy

due to overlapping the messaging latency. After the high degree vertices are

discovered in the first few levels, sending multiple messages does not significantly

increase the amount of algorithmic work. Sequential suffers due to a large number

of non-overlapping high-latency network messages in the initial levels. Batching

multiple messages at a time (Threshold, Exponential and Batch) achieves a good

compromise between reducing message count and practical performance.

Since direction-optimizing BFS performs the top-down step in the first few

levels when the frontier is small and most of the graph is unvisited, we focus

our analysis of the bottom-up portion on the later levels. Bottom-Up is typically

advantageous at level 2 on an R-MAT SCALE 26 graph and at level 3 on the

Twitter graph (Figure 4.12).

We first attempt to find the best parameters for Threshold and Batch imple-

mentations by testing various values, and measuring the execution time of the

relevant BFS levels. For Threshold, we vary the number of single request-response

queries we perform before messaging all of the remaining neighbors at once. For

Batch, we vary the number of messages sent at a time and measure its impact on

performance.

96

1 2 5 10 15 25 50
Threshold

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Graph
R-MAT SCALE 26
Twitter

1 2 5 10 15 25 50
Batch Size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Graph

R-MAT SCALE 26
Twitter

Figure 4.7: Impact of different batch parameters on performance. We vary the
number of request-response queries for Threshold and the number of messages in
a batch for Batch (right). We measure the time taken for levels 2 and beyond for
the R-MAT graph, and levels 3 and beyond for Twitter.

For Threshold, we observe an improvement in performance by increasing the

number of communication rounds until it flattens out around 5-10 (Figure 4.7).

When threshold t = 1, we send a singular message to the first neighbor to check

if it is visited. If the first neighbor is unvisited, we message all of the remaining

neighbors in parallel. Thus, t = 1 effectively behaves like Parallel. Note that by

level 2 or 3, over 60% of the graph has been visited (Figure 4.2, 4.3). Since most

high-degree vertices have been visited, the remaining vertices have a higher chance

of finding a visited parent earlier. A moderate threshold (10) allows for sufficient

algorithmic efficiency by implementing a sequential request-response pattern but

benefits from Parallel-like behavior when chances of finding a parent are low.

As we increase the threshold beyond 10, the bottom-up starts to behave like

Sequential and we do not observe any performance improvement by increasing it

any further.

While increasing the batch size, we find that marginally increasing batch size

to 2 results in the best performance. Messaging two neighbors at a time instead

97

of one helps to overlap the network latency without sending extraneous messages.

Increasing the batch size beyond that reduces the algorithmic efficiency by sending

more messages at a time than needed. A batch size b = 1 is Sequential and a large

enough batch size effectively behaves like Parallel.

Next, we consider the amount of messages sent and the execution time for the

relevant bottom-up BFS levels.

2 3 4 5 6 7
Level

0.0

0.1

0.2

0.3

0.4

0.5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Performance
Parallel
Sequential
Threshold
Exponential
Batch

2 3 4 5 6 7
Level

0

1

2

3

4

5

6

7

M
es

sa
ge

s S
en

t

1e7 Communication Efficiency
Parallel
Sequential
Threshold
Exponential
Batch

Figure 4.8: Execution time (left) and messages sent (right) for levels 2-7 of
bottom-up BFS on an R-MAT SCALE 26 graph. Parallel takes 3.50s for level 2.

3 4 5 6 7 8 9 10 11 12 13 14 15
Level

0.0

0.1

0.2

0.3

0.4

Ex
ec

ut
io

n
Ti

m
e

(s
)

Performance
Parallel
Sequential
Threshold
Exponential
Batch

3 4 5 6 7 8 9 10 11 12 13 14 15
Level

0

1

2

3

4

5

M
es

sa
ge

s S
en

t

1e7 Communication Efficiency
Parallel
Sequential
Threshold
Exponential
Batch

Figure 4.9: Execution time (left) and messages sent (right) for levels 2-7 of
bottom-up BFS on the Twitter graph. Parallel takes 1.04s for level 3.

98

Par
alle

l

Se
qu

en
tia

l

Th
res

ho
ld

Ex
po

ne
nti

al
Batc

h
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
To

ta
l M

es
sa

ge
s S

en
t

1e9 R-MAT SCALE 26

Par
alle

l

Se
qu

en
tia

l

Th
res

ho
ld

Ex
po

ne
nti

al
Batc

h
0

1

2

3

4

5 1e8 Twitter

Figure 4.10: Total number of messages sent during the relevant bottom-up levels
using different messaging schemes for a SCALE 26 R-MAT graph and the Twitter
graph.

On both graphs, we observe that Parallel is much slower than the rest of the

implementations in the first relevant level (Figures 4.8, 4.9). We also observe that

it sends over 10×more messages than the others (Figure 4.10). Unlike the first two

levels when Parallel is significantly faster due to increased bandwidth utilization,

the algorithmic efficiency of fewer messages benefits performance more when the

frontier is large enough. In the first relevant level, we observe that Threshold and

Batch are marginally faster than Sequential. We attribute this to the fact that

some high unvisited high degree vertices remain that are two hops away from

a visited vertex. Batch sends a fraction of those messages in parallel, reducing

average latency. In the subsequent levels after ≈ 99% of the graph is discovered,

and the last few vertices remain, all implementations perform equally efficiently

since the number of messages is very low. On aggregate, Threshold is the fastest

bottom-up version in the relevant levels, closely followed by Batch. We emphasize

that the best bottom-up implementation for direction-optimizing BFS (Threshold)

is different than the best bottom-up implementation in isolation (Parallel).

99

4.4.3 Direction-Optimizing BFS

In this section, we explain how we combine our top-down and bottom-up BFS

to form a hybrid.

For hybrid BFS to perform at its best, it must always select the fastest im-

plementation at each level. Prior works present a simple heuristic based on the

number of edges to check in the frontier (mf) and the number of unexplored edge

checks (mu) [9]. Since these metrics are easy to compute, we use a similar heuris-

tic. To compute (mf) for a particular level, we sum up the degrees of all the

vertices in the frontier. This only requires a single ALLREDUCE operation. We

subtract this value from the total number of edges to explore in the graph to get

mu. To switch between top-down and bottom-up, we use the formula mf >
mu

α
.

We set α = 10 since it works well for a majority of graphs (Figure 4.11).

0.15 0.5 1 2 5 10 50 100 1000
0

20

40

60

80

100

120

Ex
ec

ut
io

n
Ti

m
e

(s
)

Graph
R-MAT SCALE 24
R-MAT SCALE 26

URAND SCALE 26
Twitter

Figure 4.11: Effect of switching heuristic on hybrid BFS performance.

Our tuned hybrid always executes the correct version at each level (Fig-

100

ure 4.12).

0 1 2 3 4 5 6 7
Level

0

10

20

30

40
Ex

ec
ut

io
n

Ti
m

e
(s

)

R-MAT SCALE 26
Search Direction

Top-Down
Bottom-Up
Direction-optimizing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Level

0

1

2

3

4

5
Twitter

Search Direction

Top-Down
Bottom-Up
Direction-optimizing

Figure 4.12: Time for each level for the top-down, bottom-up and hybrid im-
plementations for a SCALE 26 R-MAT graph and the Twitter graph.

We find that the performance of our direction-optimizing implementation is

the best when using Sequential or Threshold in the bottom-up step. We use

Sequential since it results in the fewest messages sent (Figure 4.4).

4.4.4 Comparison Against Prior Work

We compare how our Actor-based BFS performs relative to two existing BFS

implementations: the Graph500 reference code and CombBLAS (Figure 4.13).

The Graph500 reference code implements top-down BFS using MPI. CombBLAS

implements direction-optimizing BFS in MPI.

101

16
(1 Node)

32
(2 Nodes)

64
(4 Nodes)

128
(8 Nodes)

256
(16 Nodes)

512
(32 Nodes)

1024
(64 Nodes)

2048
(128 Nodes)

4096
(256 Nodes)

Cores

100

101

Se
ar

ch
 R

at
e

(G
TE

PS
)

24 25 26 27 28 29 30 31 32
SCALE

Actor DO-BFS
Reference
CombBLAS

Figure 4.13: Comparison between weak scaling for various implementations.

16
(1 Node)

32
(2 Nodes)

64
(4 Nodes)

128
(8 Nodes)

256
(16 Nodes)

512
(32 Nodes)

1024
(64 Nodes)

2048
(128 Nodes)

4096
(256 Nodes)

Cores

101

102

No
rm

al
ize

d
Se

ar
ch

 R
at

e
(M

TE
PS

/C
or

e)

24 25 26 27 28 29 30 31 32
SCALE

Actor DO-BFS
Reference
CombBLAS

Figure 4.14: Normalized search rate (MTEPS/Core) for various implementa-
tions.

Since it only implements top-down BFS, the Graph500 reference is the slowest

(Figure 4.13). Its performance is comparable to the performance of our top-

down implementation. Our hybrid BFS matches the performance to CombBLAS

up to SCALE 30. Since many different factors affect the performance of our

102

Actor-based hybrid BFS at larger SCALE, we compare our communication volume

and synchronization with that of CombBLAS (Table 4.2). While considering the

normalized search rate (MTEPS/Core), we find that performance drops across the

different implementations when the number of cores increases (Figure 4.14). This

implies that larger graphs spread across more cores require more communication,

resulting in worse performance. We identify improving the per-core efficiency at

larger scale as an avenue for future work.

SCALE Actor-based BFS CombBLAS
Average Bytes (MB) Barriers Average Bytes (MB) Barriers

24 531.31 14 560.70 192
26 2196.71 14 4057.19 192
28 8643.25 16 30958.91 192

Table 4.2: Difference in amount of communications and synchronization be-
tween our Actor-based hybrid BFS and CombBLAS. We use mpiP [116] to profile
CombBLAS.

We observe that our implementation results in fewer bytes transferred and sig-

nificantly fewer barriers during the BFS traversal (Table 4.2). While the Comb-

BLAS implementation does early termination of the inner-loop, it requires a large

amount of communication. Even sending a compressed bitmap between PEs re-

sults in significant data movement. Fine-grained asynchronous messages from

actors allow us to improve communication efficiency. Additionally, overlapping

computation with communication within supersteps in FABS results in signifi-

cantly fewer barriers. Even though the practical performance is currently on par

with existing MPI-based methods, we show the potential of Actors as a solution

for contemporary, large-scale communication-bound algorithms.

In addition to better communication efficiency, we also find that programming

Actors using HCLib is much simpler. For reference, our direction-optimizing BFS

implementation only requires 271 lines of code. In contrast, the MPI-based source

103

code of CombBLAS is over 1100 lines of code. Application developers can sig-

nificantly increase productivity by leveraging existing messaging frameworks like

HCLib that abstract away complex tasks related to messaging. Programmers

only need to specify the contents of a message, its destination, what to do when

a message is received and how to convey to all PEs that the work is done for

termination.

4.5 Related Work

Parallel BFS has been a well studied topic for many years [100]. Most parallel

implementations follow the level-synchronous algorithm which requires a commu-

nication barrier at the end of each level, giving the PEs a global view of the

frontier. Techniques to improve parallel performance of BFS include ensuring

proper load balance given the skewed degree distributions of real-world graphs,

reducing the amount of synchronization (atomics, locks, barriers) for parallel up-

dates and optimal data placement to improve locality while accessing neighbors

of a vertex. The direction-optimizing BFS by Beamer et. al. [9] is the seminal

algorithm for parallel BFS. In this algorithm, the conventional top-down step is

combined with a bottom-up approach to reduce the amount of algorithmic work

required while performing the traversal.

BFS on distributed-memory systems also has a rich history of prior work.

Yoo et. al. present a novel 2-D graph partitioning method for top-down BFS

on the IBM BlueGene/L [122]. Buluc and Madduri present a novel hybrid 2-D

algorithm for distributed-memory systems targeted towards graphs with skewed

degree distributions [21]. By combining 2-D partitioning and intra-node mul-

tithreading, their algorithm significantly reduces communication overhead. Ad-

ditionally, Buluc et. al. present their distributed-memory implementation of

104

direction-optimizing BFS in [18]. Ueno et. al. present their optimizations for

their leading distributed-memory implementation of the direction-optimizing BFS

algorithm [115]. Their optimizations include a new efficient data structure, vertex

reordering and batching update communication messages during the bottom-up

step. They are able to perform a BFS traversal on a trillion-vertex graph on the

RIKEN K-Computer within half a second. Multiple distributed-memory graph

processing frameworks such as Pregel [79], Parallel Boost Graph Library [37, 46]

and Gemini [124] include implementations of level-synchronous top-down BFS.

There have been developments in asynchronous graph processing in recent

years [49, 117]. Pearce et. al. present a novel shared-memory algorithm for

asynchronous graph traversal using top-down BFS [98]. They extend that work

to perform asynchronous traversals on scale-free graphs on distributed-memory

systems with local non-volatile memory (NAND-flash) [99]. Elmougy et. al.

present a study on large-scale asynchronous graph processing using the HCLib-

Actor framework where they evaluate PageRank and Jaccard Index [38]. More

recently, Chandio et. al. present techniques for optimizing BFS on dynamic

graphs by using asynchronous actor messages on decentralized systems [23].

4.6 Conclusion

In this work, we implement an actor-based direction-optimizing BFS in distributed-

memory systems. BFS is challenging on these systems due its low computa-

tional intensity and high communication needs, which are further exacerbated by

the network latency. Due to the increased cost of communication, reducing the

amount of edge checks during the traversal is critical for good performance. The

direction-optimizing BFS algorithmically reduces the amount of redundant com-

munication by combining the conventional top-down approach with a bottom-up

105

approach when the frontier gets significantly large. Despite a reduction in the

amount of algorithmic work, current practical implementations of distributed-

memory Direction-Optimizing BFS are unable to achieve the ideal communica-

tion efficiency in the bottom-up phase due to excessive synchronization in existing

parallel programming models. To that end, we explore the tradeoffs between algo-

rithmic efficiency and practical performance between different messaging schemes

in bottom-up BFS using point-to-point messages in the HCLib Actor Framework.

We apply this analysis to creating the most efficient direction-optimizing version.

Our hybrid heuristic picks the best version for each level of the traversal. We

also compare our communication efficiency and performance with existing leading

distributed-memory BFS implementations and show that we reduce the amount of

communication and barriers required during the traversal while providing compa-

rable performance. As we grow increasingly dependent on GPU clusters, our work

motivates the need for a performant Actor-based messaging library for GPUs that

can improve the scalability of communication-bound applications by reducing the

communication between GPUs.

106

Chapter 5

Conclusion

In this dissertation, we present optimizations for improving communication

efficiency for different sparse tensor and graph algorithms on both shared and

distributed-memory systems.

Our analysis shows that modern general-purpose CPUs are not designed well

for the irregular, communication-intensive sparse algorithms we consider in this

work. The cost of communication in terms of the sheer number of cycles spent

waiting on data severely hampers performance. We typically achieve the best

parallel performance improvements at larger scale by reducing the amount of data

transferred between compute and DRAM, or between multiple compute nodes

connected across a network. By improving performance, we enable solving larger

and more complex problem sizes on the same hardware. Additionally, moving less

data potentially reduces energy consumption of these systems.

To conclude, we summarize a list of contributions and present ideas for future

work.

107

5.1 Summary of Contributions

We make the following contributions in this work:

1. A workload characterization of MTTKRP, a sparse tensor kernel (Chapter

2). Across multiple leading tensor frameworks, we show that only a few last-

level cache misses significantly impact processor performance due to memory

latency. We present two optimizations (SIMD and Software Prefetching) to

improve performance by increasing memory-level parallelism.

2. ComSpark, a parallel pivoting-based clique counting algorithm (Chapter 3).

This is the first work to showcase the benefits of a parallel ordering for

this problem, as prior work only uses a sequential core ordering due to its

algorithmic efficiency in the counting phase. We provide detailed analysis for

tradeoffs involved with using different orderings and present a heuristic to

select the best ordering for performance. We also present compact subgraph

structures which significantly reduce memory consumption, improve locality,

and improve the parallel scalability of the counting phase.

3. Actor-based Direction-Optimizing Breadth-First Search (Chapter 4). We

leverage the Actor model to develop multiple Bottom-Up BFS implementa-

tions with different fine-grained messaging schemes. We evaluate the tradeoff

between increasing parallelism by sending more messages to reduce latency,

and algorithmic efficiency by sending fewer messages. We combine our most

efficient Bottom-Up implementation with Top-Down BFS to achieve a per-

formant hybrid. This is the first work to implement actor-based direction-

optimizing BFS.

108

5.2 Future Work

The analysis presented in this thesis leads way to many interesting directions

for future work on similar problems. These include applying our analysis tech-

niques to improve performance of Graph Pattern Mining, as well as hardware

support for sparse data processing.

Graph Pattern Mining

Future work in clique counting can take many directions based on the type of

input graphs and hardware systems. Dynamic graphs present an additional set

of challenges with the addition and removal of edges over time. Clique counting

on dynamic graphs is a problem that has not been studied in prior literature.

Since real-world data is rarely static over time, this is an important problem to

consider. Due to the added time dimension in the dataset, storing intermediate

data without significantly increasing memory consumption is a challenge. How

the best ordering changes as the graph changes, and if recomputing the ordering

improves performance are also important questions to consider.

Counting cliques on graphs that are too large to fit in a single compute node

is also an interesting problem. Computationally intensive algorithms like clique

counting are better suited to distributed-memory systems than algorithms like

BFS, since there is enough algorithmic work to offset the cost of communica-

tion. However, scaling beyond a single compute node does not come without its

challenges. Building subgraphs on distributed-memory systems requires a large

amount of communication across low latency networks, and may require a signifi-

cant amount of memory. Data placement for improving locality and load balance,

and handling cases where even the induced subgraph is too large to fit in memory

are additional challenges to consider.

109

Lastly, the ordering analysis and heuristic we present in Chapter 3 can easily

be applied to other subgraph counting algorithms on real-world graphs.

Hardware Support for Sparse Data Processing

We show that optimizing data movement in software benefits performance.

However, the benefits of those optimizations are still limited by the interaction

between software and the underlying hardware. While sparse tensor accelerators

exist [44, 51, 109], hardware support for data prefetching is missing from current

literature. Prior hardware-software codesign solutions like Prodigy [111] show the

potential for improving performance with more intelligent prefetching. It is inter-

esting to think of the Power-Performance-Area tradeoffs for adding this feature in

sparse tensor accelerators. Similarly, hardware support for Actors in distributed-

memory systems can accelerate tasks like message aggregation, improving the

performance of irregular applications like graph-processing.

Additional Tensor Optimizations

To improve MLP for MTTKRP by increasing the number of outstanding mem-

ory requests, we batch together phases of address generation and memory requests.

Such a batching requires hardcoding certain loops for tensors with different di-

mensions. From our experiments, we find that hardcoded tensor codes perform

better than flexible code that can handle any dimensional tensor which performs

the same amount of algorithmic work. The hardcoded implementation potentially

reduces some instruction overhead or benefits from compiler optimizations which

enable additional performance. Understanding the performance gap may lead to

opportunities for more software optimizations which can be applied to different

sparse applications.

110

Bibliography

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung
Choi. A scalable processing-in-memory accelerator for parallel graph pro-
cessing. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture, pages 105–117, 2015.

[2] Santiago Aja-Fernández, Rodrigo de Luis Garcia, Dacheng Tao, and Xuelong
Li. Tensors in image processing and computer vision. Springer Science &
Business Media, 2009.

[3] George Almasi. PGAS (partitioned global address space) languages., 2011.

[4] Mohammad Almasri, Izzat El Hajj, Rakesh Nagi, Jinjun Xiong, and Wen-
mei Hwu. Parallel k-clique counting on gpus. In International Conference
on Supercomputing (ICS), pages 1–14, 2022.

[5] K. C. Dukka Bahadur, Tatsuya Akutsu, Etsuji Tomita, Tomokazu Seki, and
Asao Fujiyama. Point matching under non-uniform distortions and protein
side chain packing based on an efficient maximum clique algorithm. Genome
Informatics, 13:143–152, 2002.

[6] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed mis al-
gorithm for sparse graphs using nash-williams decomposition. Distributed
Computing, 22(5-6):363–379, 2010.

[7] Muthu Baskaran, Tom Henretty, Benoit Pradelle, M Harper Langston,
David Bruns-Smith, James Ezick, and Richard Lethin. Memory-efficient
parallel tensor decompositions. In 2017 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–7. IEEE, 2017.

[8] Scott Beamer. Understanding and Improving Graph Algorithm Performance.
PhD thesis, University of California, Berkeley, 2016.

[9] Scott Beamer, Krste Asanovic, and David Patterson. Direction-optimizing
breadth-first search. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–10. IEEE,
2012.

111

[10] Scott Beamer, Krste Asanović, and David Patterson. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619, 2015.

[11] Scott Beamer, Krste Asanovic, and David Patterson. Locality exists in
graph processing: Workload characterization on an ivy bridge server. In
2015 IEEE International Symposium on Workload Characterization, pages
56–65. IEEE, 2015.

[12] Scott Beamer, Krste Asanović, and David Patterson. Reducing pagerank
communication via propagation blocking. In 2017 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pages 820–831. IEEE,
2017.

[13] Scott Beamer, Aydin Buluc, Krste Asanovic, and David Patterson. Dis-
tributed memory breadth-first search revisited: Enabling bottom-up search.
In 2013 IEEE International Symposium on Parallel & Distributed Process-
ing, Workshops and Phd Forum, pages 1618–1627. IEEE, 2013.

[14] Maciej Besta, Armon Carigiet, Kacper Janda, Zur Vonarburg-Shmaria,
Lukas Gianinazzi, and Torsten Hoefler. High-performance parallel graph
coloring with strong guarantees on work, depth, and quality. In Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pages 1–17. IEEE, 2020.

[15] Maciej Besta, Cesare Miglioli, Paolo Sylos Labini, Jakub Tětek, Patrick
Iff, Raghavendra Kanakagiri, Saleh Ashkboos, Kacper Janda, Michał Pod-
stawski, Grzegorz Kwaśniewski, et al. Probgraph: High-performance and
high-accuracy graph mining with probabilistic set representations. In Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pages 1–17. IEEE, 2022.

[16] Phillip Bonacich. Factoring and weighting approaches to status scores and
clique identification. Journal of mathematical sociology, 2(1):113–120, 1972.

[17] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Communications of the ACM, 16(9):575–577, 1973.

[18] Aydin Buluç, Scott Beamer, Kamesh Madduri, Krste Asanovic, and David
Patterson. Distributed-memory breadth-first search on massive graphs.
arXiv preprint arXiv:1705.04590, 2017.

[19] Aydin Buluc and John R Gilbert. On the representation and multiplica-
tion of hypersparse matrices. In International Symposium on Parallel and
Distributed Processing (IPDPS), pages 1–11. IEEE, 2008.

112

[20] Aydın Buluç and John R Gilbert. The Combinatorial BLAS: Design, im-
plementation, and applications. The International Journal of High Perfor-
mance Computing Applications (IJHPCA), 25(4):496–509, 2011.

[21] Aydin Buluç and Kamesh Madduri. Parallel breadth-first search on dis-
tributed memory systems. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pages 1–12,
2011.

[22] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM Inter-
national Conference on Data Mining, pages 442–446. SIAM, 2004.

[23] Bibrak Qamar Chandio, Maciej Brodowicz, and Thomas Sterling. Structures
and techniques for streaming dynamic graph processing on decentralized
message-driven systems. In Workshop Proceedings of the 53rd International
Conference on Parallel Processing (ICPP), pages 1–6, 2024.

[24] Lijun Chang, Rashmika Gamage, and Jeffrey Xu Yu. Efficient k-clique count
estimation with accuracy guarantee. Proceedings of the VLDB Endowment,
17(11):3707–3719, 2024.

[25] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav
Pingali. Sandslash: a two-level framework for efficient graph pattern mining.
In International Conference on Supercomputing (ICS), pages 378–391, 2021.

[26] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Pan-
golin: An efficient and flexible graph mining system on cpu and gpu. VLDB,
13(8):1190–1205, 2020.

[27] James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. Fast algorithms
for maximal clique enumeration with limited memory. In Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 1240–1248, 2012.

[28] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing al-
gorithms. SIAM Journal on computing, 14(1):210–223, 1985.

[29] Flavio Chierichetti, Ravi Kumar, and Bo Pang. On the power laws of lan-
guage: Word frequency distributions. In Proceedings of the 40th interna-
tional ACM SIGIR conference on research and development in information
retrieval, pages 385–394, 2017.

[30] Jee Choi, Xing Liu, Shaden Smith, and Tyler Simon. Blocking optimization
techniques for sparse tensor computation. In 2018 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pages 568–577. IEEE,
2018.

113

[31] Geir Dahl, Jon Magne Leinaas, Jan Myrheim, and Eirik Ovrum. A tensor
product matrix approximation problem in quantum physics. Linear algebra
and its applications, 420(2-3):711–725, 2007.

[32] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in
sparse real-world graphs. In World Wide Web Conference (WWW), pages
589–598, 2018.

[33] Timothy A Davis and Yifan Hu. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS), 38(1):1–
25, 2011.

[34] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 years of
actors: a taxonomy of actor models and their key properties. In Proceed-
ings of the 6th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, pages 31–40, 2016.

[35] Wen Deng, Weiguo Zheng, and Hong Cheng. Accelerating maximal clique
enumeration via graph reduction. Proceedings of the VLDB Endowment,
17(10):2419–3431, 2024.

[36] Vinicius Dias, Carlos HC Teixeira, Dorgival Guedes, Wagner Meira, and
Srinivasan Parthasarathy. Fractal: A general-purpose graph pattern mining
system. In International Conference on Management of Data (MOD), pages
1357–1374, 2019.

[37] Nicholas Edmonds and Andrew Lumsdaine. The Parallel Boost Graph Li-
brary 2.0: Active messages as a spanning model for parallel graph computa-
tion. In Massive Graph Analytics, pages 459–481. Chapman and Hall/CRC,
2022.

[38] Youssef Elmougy, Akihiro Hayashi, and Vivek Sarkar. Highly scalable large-
scale asynchronous graph processing using actors. In International Sympo-
sium on Cluster, Cloud and Internet Computing Workshops (CCGridW),
pages 242–248. IEEE, 2023.

[39] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal
cliques in sparse graphs in near-optimal time. In International Symposium
on Algorithms and Computation (ISAAC), pages 403–414. Springer, 2010.

[40] Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ.
math. inst. hung. acad. sci, 5(1):17–60, 1960.

[41] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks VS Lakshmanan, and
Xuemin Lin. Efficient algorithms for densest subgraph discovery. arXiv
preprint arXiv:1906.00341, 2019.

114

[42] Sofia Fernandes, Hadi Fanaee-T, and João Gama. Tensor decomposition for
analysing time-evolving social networks: An overview. Artificial Intelligence
Review, 54(4):2891–2916, 2021.

[43] Irene Finocchi, Marco Finocchi, and Emanuele G Fusco. Clique counting
in mapreduce: Algorithms and experiments. Journal of Experimental Algo-
rithmics (JEA), 20:1–20, 2015.

[44] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijayku-
mar. Sparten: A sparse tensor accelerator for convolutional neural networks.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 151–165, 2019.

[45] Michael T Goodrich and Paweł Pszona. External-memory network analysis
algorithms for naturally sparse graphs. In European Symposium on Algo-
rithms (ESA), pages 664–676. Springer, 2011.

[46] Douglas Gregor and Andrew Lumsdaine. The Parallel BGL: A generic li-
brary for distributed graph computations. Parallel Object-Oriented Scien-
tific Computing (POOSC), 2(1), 2005.

[47] Enrico Gregori, Luciano Lenzini, and Simone Mainardi. Parallel k-clique
community detection on large-scale networks. Transactions on Parallel and
Distributed Systems, 24(8):1651–1660, 2013.

[48] Tanuj Gupta. Actor Graph Library. Master’s thesis, University of California,
Santa Cruz, Santa Cruz, USA, 2023.

[49] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asyn-
chronous parallel execution in pregel-like graph processing systems. Pro-
ceedings of the VLDB Endowment, 8(9):950–961, 2015.

[50] Fei Hao, Geyong Min, Zheng Pei, Doo-Soon Park, and Laurence T. Yang.
k-clique community detection in social networks based on formal concept
analysis. Systems Journal, 11(1):250–259, 2017.

[51] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago,
Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher.
Extensor: An accelerator for sparse tensor algebra. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 319–333, 2019.

[52] Ahmed E Helal, Jan Laukemann, Fabio Checconi, Jesmin Jahan Tithi,
Teresa Ranadive, Fabrizio Petrini, and Jeewhan Choi. ALTO: adaptive lin-
earized storage of sparse tensors. In Proceedings of the ACM International
Conference on Supercomputing, pages 404–416, 2021.

115

[53] Carl Hewitt, Peter Bishop, and Richard Steiger. Session 8 formalisms for
artificial intelligence a universal modular actor formalism for artificial intel-
ligence. In Advance papers of the conference, volume 3, page 235. Stanford
Research Institute Menlo Park, CA, 1973.

[54] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of
products. Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[55] Shams M Imam and Vivek Sarkar. Selectors: Actors with multiple guarded
mailboxes. In International Workshop on Programming based on Actors
Agents & Decentralized Control, pages 1–14, 2014.

[56] Shweta Jain and C Seshadhri. The power of pivoting for exact clique count-
ing. In International Conference on Web Search and Data Mining (WSDM),
pages 268–276, 2020.

[57] Shweta Jain and C Seshadhri. Provably and efficiently approximating near-
cliques using the Turán shadow: PEANUTS. In Proceedings of The Web
Conference 2020, pages 1966–1976, 2020.

[58] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: a pattern-
aware graph mining system. In European Conference on Computer Systems
(EuroSys), pages 1–16, 2020.

[59] Aaron Jezghani, Semir Sarajlic, Michael Brandon, Neil Bright, Mehmet Bel-
gin, Gergory Beyer, Christopher Blanton, Pam Buffington, J Eric Coulter,
Ruben Lara, et al. Phoenix: The revival of research computing and the
launch of the new cost model at Georgia Tech. In Practice and Experience
in Advanced Research Computing, pages 1–9. 2022.

[60] Nishant Khanorkar. Enabling flexible data placement in the Actor Graph
Library. Master’s thesis, University of California, Santa Cruz, Santa Cruz,
USA, 2023.

[61] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman
Amarasinghe. The Tensor Algebra Compiler. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):1–29, 2017.

[62] Tamara G Kolda and Brett W Bader. Tensor decompositions and applica-
tions. SIAM review, 51(3):455–500, 2009.

[63] Tamara G Kolda and Jimeng Sun. Scalable tensor decompositions for multi-
aspect data mining. In 2008 Eighth IEEE international conference on data
mining, pages 363–372. IEEE, 2008.

116

[64] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is
Twitter, a social network or a news media? In Proceedings of the 19th
international conference on World wide web, pages 591–600, 2010.

[65] Kartik Lakhotia, Shreyas Singapura, Rajgopal Kannan, and Viktor
Prasanna. Recall: Reordered cache aware locality based graph process-
ing. In 2017 IEEE 24th International Conference on High Performance
Computing (HiPC), pages 273–282. IEEE, 2017.

[66] Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. A survey of
algorithms for dense subgraph discovery. Managing and mining graph data,
pages 303–336, 2010.

[67] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[68] Jiajia Li and Kevin Barker. PASTA: A parallel sparse tensor algorithm
benchmark suite, Dec 2019.

[69] Jiajia Li, Mahesh Lakshminarasimhan, Xiaolong Wu, Ang Li, Catherine
Olschanowsky, and Kevin Barker. A parallel sparse tensor benchmark suite
on CPUs and GPUs. In Proceedings of the 25th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 403–404, 2020.

[70] Jiajia Li, Yuchen Ma, Xiaolong Wu, Ang Li, and Kevin Barker. Pasta:
a parallel sparse tensor algorithm benchmark suite. CCF Transactions on
High Performance Computing, 1(2):111–130, 2019.

[71] Jiajia Li, Jimeng Sun, and Richard Vuduc. HiCOO: Hierarchical storage
of sparse tensors. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’18, New
York, NY, USA, 2018. ACM.

[72] Ronghua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu
Yu. Ordering heuristics for k-clique listing. VLDB, 2020.

[73] John DC Little and Stephen C Graves. Little’s law. Building intuition:
Insights from basic operations management models and principles, pages
81–100, 2008.

[74] Bangtian Liu, Chengyao Wen, Anand D Sarwate, and Maryam Mehri
Dehnavi. A unified optimization approach for sparse tensor operations on
GPUs. In 2017 IEEE international conference on cluster computing (CLUS-
TER), pages 47–57. IEEE, 2017.

117

http://snap.stanford.edu/data

[75] Amogh Lonkar and Scott Beamer. Accelerating clique counting in sparse
real-world graphs via communication-reducing optimizations. arXiv preprint
arXiv:2112.10913, 2021.

[76] Andrew Lumsdaine, Luke Dalessandro, Kevin Deweese, Jesun Firoz, and
Scott McMillan. Triangle counting with cyclic distributions. In High Per-
formance Extreme Computing Conference (HPEC), pages 1–8. IEEE, 2020.

[77] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan
Berry. Challenges in parallel graph processing. Parallel Processing Letters,
17(01):5–20, 2007.

[78] Alan M Mainwaring and David E Culler. Active Message applications pro-
gramming interface and communication subsystem organization. Citeseer,
1996.

[79] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for
large-scale graph processing. In International Conference on Management
of Data (SIGMOD), pages 135–146, 2010.

[80] F Miller Maley and Jason G DeVinney. Conveyors for streaming many-to-
many communication. In Workshop on Irregular Applications: Architectures
and Algorithms (IA3), pages 1–8. IEEE, 2019.

[81] S. Manoharan and Sathish. Patient diet recommendation system using k
clique and deep learning classifiers. Journal of Artificial Intelligence and
Capsule Networks, 2(2):121–130, 2020.

[82] Tobias Marschall, Ivan G. Costa, Stefan Canzar, Markus Bauer, Gunnar W.
Klau, Alexander Schliep, and Alexander Schönhuth. CLEVER: clique-
enumerating variant finder. Bioinformatics, 28(22):2875–2882, 10 2012.

[83] David W Matula and Leland L Beck. Smallest-last ordering and clustering
and graph coloring algorithms. Journal of the ACM (JACM), 30(3):417–427,
1983.

[84] Seung Won Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun Xiong,
Eiman Ebrahimi, and Wen-mei Hwu. Emogi: Efficient memory-access for
out-of-memory graph-traversal in gpus. arXiv preprint arXiv:2006.06890,
2020.

[85] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Cache-guided
scheduling: Exploiting caches to maximize locality in graph processing.
AGP’17, 2017.

118

[86] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang.
Introducing the Graph 500. Cray Users Group (CUG), 19(45-74):22, 2010.

[87] Mark EJ Newman. Assortative mixing in networks. Physical review letters,
89(20):208701, 2002.

[88] Andy Nguyen, Ahmed E Helal, Fabio Checconi, Jan Laukemann, Jesmin Ja-
han Tithi, Yongseok Soh, Teresa Ranadive, Fabrizio Petrini, and Jee W
Choi. Efficient, out-of-memory sparse MTTKRP on massively parallel ar-
chitectures. In Proceedings of the 36th ACM International Conference on
Supercomputing, pages 1–13, 2022.

[89] NVIDIA. NVIDIA TESLA V100 GPU ARCHITECTURE, 2017.
https://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

[90] K. Xinchang P. Vilakone and D. Park. Personalized movie recommenda-
tion system combining data mining with the k-clique method. Journal of
Information Processing Systems, 15(5):1141–1155, October 2019.

[91] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering
the overlapping community structure of complex networks in nature and
society. nature, 435(7043):814–818, 2005.

[92] Long Pan and Eunice E . Santos. An anytime-anywhere approach for max-
imal clique enumeration in social network analysis. In International Con-
ference on Systems, Man and Cybernetics (SMC), pages 3529–3535, 2008.

[93] Yannis Panagakis, Jean Kossaifi, Grigorios G Chrysos, James Oldfield, Mi-
halis A Nicolaou, Anima Anandkumar, and Stefanos Zafeiriou. Tensor
methods in computer vision and deep learning. Proceedings of the IEEE,
109(5):863–890, 2021.

[94] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos.
Tensors for data mining and data fusion: Models, applications, and scal-
able algorithms. ACM Transactions on Intelligent Systems and Technology
(TIST), 8(2):1–44, 2016.

[95] J-S Park, Michael Penner, and Viktor K Prasanna. Optimizing graph algo-
rithms for improved cache performance. IEEE Transactions on parallel and
distributed systems, 15(9):769–782, 2004.

[96] Sri Raj Paul, Akihiro Hayashi, Kun Chen, Youssef Elmougy, and Vivek
Sarkar. A fine-grained asynchronous bulk synchronous parallelism model
for PGAS applications. Journal of Computational Science, 69:102014, 2023.

119

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[97] Sri Raj Paul, Akihiro Hayashi, Kun Chen, and Vivek Sarkar. A productive
and scalable actor-based programming system for PGAS applications. In
Computational Science–ICCS 2022: 22nd International Conference, Lon-
don, UK, June 21–23, 2022, Proceedings, Part I, pages 233–247. Springer,
2022.

[98] Roger Pearce, Maya Gokhale, and Nancy M Amato. Multithreaded asyn-
chronous graph traversal for in-memory and semi-external memory. In Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pages 1–11. IEEE, 2010.

[99] Roger Pearce, Maya Gokhale, and Nancy M Amato. Scaling techniques for
massive scale-free graphs in distributed (external) memory. In International
Symposium on Parallel and Distributed Processing (IPDPS), pages 825–836.
IEEE, 2013.

[100] Eshrat Reghbati and Derek G. Corneil. Parallel computations in graph
theory. SIAM Journal on Computing, 7(2):230–237, 1978.

[101] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015.

[102] Ryan A Rossi, David F Gleich, and Assefaw H Gebremedhin. Parallel max-
imum clique algorithms with applications to network analysis. Journal on
Scientific Computing, 37(5):C589–C616, 2015.

[103] Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with
applications to statistics and computer vision. In Proceedings of the 22nd
international conference on Machine learning, pages 792–799, 2005.

[104] Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting
and peeling algorithms. In Conference on Applied and Computational Dis-
crete Algorithms (ACDA21), pages 135–146. SIAM, 2021.

[105] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing
Liu, and George Karypis. FROSTT: The formidable repository of open
sparse tensors and tools, 2017.

[106] Shaden Smith and George Karypis. SPLATT: The Surprisingly ParalleL
spArse Tensor Toolkit. http://cs.umn.edu/~splatt/, 2016.

[107] Shaden Smith, Jongsoo Park, and George Karypis. Sparse tensor factoriza-
tion on many-core processors with high-bandwidth memory. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 1058–1067. IEEE, 2017.

120

http://cs.umn.edu/~splatt/

[108] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George
Karypis. Splatt: Efficient and parallel sparse tensor-matrix multiplication.
In 2015 IEEE International Parallel and Distributed Processing Symposium,
pages 61–70. IEEE, 2015.

[109] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Al-
bonesi, and Zhiru Zhang. Tensaurus: A versatile accelerator for mixed
sparse-dense tensor computations. In 2020 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pages 689–702.
IEEE, 2020.

[110] E. Tomita T. Matsunaga, C. Yonemori and M. Muramatsu. Clique-based
data mining for related genes in a biomedical database. BMC Bioinformat-
ics, 10(205), 2009.

[111] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk,
Christos Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen
Sun, et al. Prodigy: Improving the memory latency of data-indirect irregular
workloads using hardware-software co-design. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
654–667. IEEE, 2021.

[112] Techpowerup. AMD EPYC Embedded 9554, 2024. https://www.
techpowerup.com/cpu-specs/epyc-embedded-9554.c3190.

[113] Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos Siganos,
Mohammed J Zaki, and Ashraf Aboulnaga. Arabesque: a system for dis-
tributed graph mining. In Symposium on Operating Systems Principles
(SOSP), pages 425–440, 2015.

[114] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case
time complexity for generating all maximal cliques and computational ex-
periments. Theoretical computer science, 363(1):28–42, 2006.

[115] Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and
Satoshi Matsuoka. Efficient breadth-first search on massively parallel and
distributed-memory machines. Data Science and Engineering, 2:22–35,
2017.

[116] Jeffrey Vetter and Chris Chambreau. mpip: Lightweight, scalable mpi pro-
filing. 2005.

[117] Guozhang Wang, Wenlei Xie, Alan J Demers, and Johannes Gehrke. Asyn-
chronous large-scale graph processing made easy. In CIDR, volume 13, pages
3–6, 2013.

121

https://www.techpowerup.com/cpu-specs/epyc-embedded-9554.c3190
https://www.techpowerup.com/cpu-specs/epyc-embedded-9554.c3190

[118] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup graph process-
ing by graph ordering. In Proceedings of the 2016 International Conference
on Management of Data, pages 1813–1828, 2016.

[119] Wm A Wulf and Sally A McKee. Hitting the memory wall: Implications
of the obvious. ACM SIGARCH computer architecture news, 23(1):20–24,
1995.

[120] Xiaowei Ye, Rong-Hua Li, Qiangqiang Dai, Hongzhi Chen, and Guoren
Wang. Lightning fast and space efficient k-clique counting. In The Web
Conference, pages 1191–1202, 2022.

[121] Xiaowei Ye, Rong-Hua Li, Qiangqiang Dai, Hongzhi Chen, and Guoren
Wang. Efficient k-clique counting on large graphs: The power of color-
based sampling approaches. IEEE Transactions on Knowledge and Data
Engineering, 2023.

[122] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon, Bruce
Hendrickson, and Umit Catalyurek. A scalable distributed parallel breadth-
first search algorithm on BlueGene/L. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages 25–
25. IEEE, 2005.

[123] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe,
and Matei Zaharia. Making caches work for graph analytics. In 2017 IEEE
International Conference on Big Data (Big Data), pages 293–302. IEEE,
2017.

[124] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini:
A computation-centric distributed graph processing system. In Symposium
on Operating Systems Design and Implementation (OSDI), pages 301–316,
2016.

122

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Thesis Overview

	Workload Analysis of a Sparse Tensor Decomposition
	Introduction
	Background
	Tensor Data Structures
	Matricized Tensor Times Khatri Rao Product (MTTKRP)

	Experimental Setup
	Sparse Tensor Frameworks
	Tensor Dataset

	Performance Analysis
	Improving Performance
	Comparison Against Leading Frameworks

	Related Works
	Conclusion

	Improving Scalability of Pivoting-Based Clique Counting
	Introduction
	Background
	Preliminaries
	Enumeration-Based K-Clique Counting
	Pivoting-Based K-Clique Counting

	Parallelizing the Ordering Phase
	Parallel Core-Approximation
	Centrality-Based Ordering

	Maximum Neighbor Influence
	Work-Locality Tradeoff

	Improving Counting Phase Scalability
	Reducing Memory Consumption

	Evaluation
	Experimental Setup
	Accelerating the Ordering Phase
	Work-Locality Tradeoff and Maximum Neighbor Influence
	Reduction in Memory Usage
	Parallel Scaling of k-Clique Counting
	Total Execution Time Comparison
	Comparison Against GPU

	Related Work
	Conclusion

	Actor-Based Distributed Breadth-First Search
	Introduction
	Background
	Conventional Top-Down BFS
	Bottom-Up BFS
	The Actor Model
	HCLib-Actor Framework
	The Actor Graph Library (AGL)

	Actor-Based Direction-Optimizing BFS
	Parallel Top-Down BFS
	Parallel Bottom-Up BFS
	Parallel Direction-Optimizing BFS

	Evaluation
	Experimental Setup
	Bottom-Up Comparison
	Direction-Optimizing BFS
	Comparison Against Prior Work

	Related Work
	Conclusion

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography

