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Neuropathic pain correlates with worsening
cognition in people with human
immunodeficiency virus
Ronald J. Ellis,1,2 Ned Sacktor,3,† David B. Clifford,4 Christina M. Marra,5

Ann C. Collier,6 Benjamin Gelman,7 Jessica Robinson-Papp,8 Scott L. Letendre,9

and Robert K. Heaton2,10 for the CNSAntiretroviral Therapy Effects Research (CHARTER)
Study Group

†Deceased.

Neuropathic pain and cognitive impairment are among the HIV-related conditions that have most stubbornly re-
sisted amelioration by virally suppressive antiretroviral therapy. Overlaps between the regional brain substrates
andmechanisms of neuropathic pain and cognitive disorders are increasingly recognized, yet no studies have exam-
ined the longitudinal relationship between these two disorders.
Participants in the prospective, observational CNS HIV AntiRetroviral Therapy Effects Research (CHARTER) cohort
underwent standardized clinical evaluations for clinical examination findings of distal sensory polyneuropathy, re-
porting distal neuropathic pain and neurocognitive performance at study entry (baseline) and an average of 12 years
later. Change in neuropathic pain and neuropathy status from baseline to follow-up was by self-report and repeat
examination, and change inneurocognitiveperformancewasassessedusingapreviouslypublished summary regres-
sion-based change score. Relationships between incident or worsened neuropathic pain and neurocognitive change
were evaluated using uni- and multivariable regressions, including age at baseline and other relevant covariates.
Participants were 385 people with HIV, 91 (23.6%) females, mean± standard deviation (SD) age at baseline 43.5 (7.81)
years, ethnicity 44.9%AfricanAmerican, 10.6%Hispanic, 42.6%non-Hispanicwhite and 1.82% other. Baselinemedian
(interquartile range) nadir CD4was 175 (34 309) cells/µl and current CD4was 454 (279 639). Incident orworsened distal
neuropathic pain occurred in 98 (25.5%) over the follow-up period. People with HIV with incident or worsened distal
neuropathic painhad significantlyworsenedneurocognitive performance at follow-up compared to thosewithout in-
cident orworsened distal neuropathic pain (summary regression-based change scoremean±SD –0.408±0.700 versus
–0.228±0.613; P=0.0158). This effect remained significant when considering viral suppression on antiretroviral ther-
apy, incident diabetes and other covariates as predictors. Overall neurocognitive change related to neuropathic pain
was driven primarily by changes in the domains of executive function and speed of information processing. Those
with incident distal neuropathy signsdidnot haveneurocognitiveworsening, nor did individualswhousedopioid an-
algesics or other pain-modulating drugs such as amitriptyline.
Worsened neurocognitive performance in people with HIV was associated with worsened neuropathic pain but not
with changes in physical signs of neuropathy, and this was not attributable to therapies for pain or depression or to
differences in viral suppression. Thisfinding implies that incident orworsenedpainmay signal increased risk forneu-
rocognitive impairment, and deserves more investigation, particularly if better pain management might stabilize or
improve neurocognitive performance.
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Introduction
Neuropathic pain and cognitive impairment are among theHIV-related
conditions that have most stubbornly resisted amelioration by virally
suppressive antiretroviral therapy. Distal neuropathic pain (DNP) in
people with HIV is often treatment-resistant1,2—meaning that it per-
sists despite the use of analgesic medications—and is associated with
reduced quality of life,1,3 greater disability and unemployment4,5 and
other morbidities, including poor balance and falls.6,7

Distal sensory polyneuropathy and neurocognitive impairment
share multiple risk factors, including diabetes mellitus, abdominal
obesity, small vessel disease and arterial stiffness.8–11 Moreover,
neuropathic pain andneurocognitive impairment share some regional
brain substrates, such as alterations in the dorsolateral prefrontal cor-
tex and the anterior and posterior cingulate cortices12,13 and some
pathophysiological features, suchasmicroglial activation14 andabnor-
mal glutamatergic neurotransmission.15 Together these observations
raise the possibility that underlying vascular, inflammatory or neuro-
degenerative mechanisms contribute to both conditions.

Despite these links, to our knowledge no studies have evaluated
the longitudinal evolution of neuropathy, neuropathic pain and
neurocognitive impairment. Our goal was to assess whether wor-
sened neuropathic pain and neuropathywere associated with wor-
sened neurocognitive performance in people with HIV.

Materials and methods
Participants

Participants were enrolled in the prospective, observational cohort
study, CNS HIV AntiRetroviral Therapy Effects Research (CHARTER),
performed at six US sites [Johns Hopkins University (Baltimore),
Icahn School of Medicine at Mount Sinai (New York), University of
Texas Medical Branch, University of California San Diego, University
of Washington (Seattle) and Washington University (St. Louis)].
Eligibility criteria included theability toprovidedetails of antiretroviral
therapy use and during CHARTER assessments of a standardized
examination for symptoms and signs of HIV-associated sensory neur-
opathy. Exclusions were active opportunistic infections or uncon-
trolled major psychiatric disorders or inability to cooperate with a
full day of clinical evaluation. Comorbidities such as hepatitis C

infection and substance abuse were permitted. Baseline visits took
place between 2003 and 2007, and follow-up assessments approxi-
mately 12 years later, between 2016 and 2019. All participants signed
local institutional review board-approved written consents.

Clinical assessment of neuropathy and neuropathic
pain

Evaluations were conducted by centrally trained clinicians (mid-level
practitioners and physicians) and included clinical examination for
neuropathy signs (bilateral distal vibration, sharp and touch loss in
the legs and feet and reduced ankle reflexes) and self-reported neuro-
pathicpain.Distal sensorypolyneuropathywasdefinedas twoormore
signs bilaterally. DNP was defined as burning, aching, or shooting
symptoms in the distal legs and feet andwas classified intofive grades
of clinician-ratedpainseveritydistal sensorypolyneuropathybasedon
participant report: none, slight (occasional, fleeting), mild (frequent),
moderate (frequent, disabling) and severe (constant, daily, disabling,
requiring analgesic medication or other pain medication). Worsened
DNP was defined as an increase of at least one grade according to
the scale above in a participant who had at leastmild DNP at baseline.

Neurocognitive testing

Neurocognitive performance at baseline and follow-up both were
measuredusingacomprehensiveneuropsychological battery covering
sevendomains as specifiedby the Frascati criteria16 forHIV-associated
neurocognitivedisorders (HAND). Thebattery is described indetail in a
previous publication, and included tests of executive function, learn-
ing, memory, attention, working memory, psychomotor speed and
speed of information processing.17 Raw test scores were converted to
standardized T-scores (mean 50, SD 10) that were corrected for age,
education, sex and race/ethnicity. Change in neurocognitive perform-
ance from baseline to follow-up was measured using practice-
corrected, summary regression-based change scores (sRBCS18) that
correct for baseline performance, practice effect and other statistical
artifacts (regression to the mean) and demographics.

Other clinical evaluations

The Medical Outcomes Study HIV Health Survey (MOS-HIV) has
been shown to be a reliable and valid tool for assessing overall
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quality of life, daily functioning and physical health.19,20 The
MOS-HIV contains 36 questions and includes a pain function sub-
scale. Current mood was assessed by the Beck Depression
Inventory (BDI)-II.21 Dependence in instrumental activities of daily
living was assessed with a modified version of the Lawton and
Brody scale16 that asks participants to rate their current and best
lifetime levels of independence for 13major instrumental activities
ofdaily living suchas shopping,financialmanagement, transportation
and medication management.22 The Patient’s Assessment of Own
Functioning Inventory (PAOFI)23 is a 33-item self-report measure
used to measure perceived cognitive symptoms in everyday life. A
structured clinical interview administered by trained interviewers
was used to collect any history of balance disturbance and its onset
over the previous 10 years as previously described.6 Balance distur-
bances were classified as not present; occasionally unsteady, no falls;
frequently unsteady; some near-falls or rare falls; and must use a
cane, walker or other prop. Potential confounds included history of al-
coholusedisorders, diabetesmellitus (self-report oranti-diabeticmed-
ications), hypertension (self-report or antihypertensive medications),
hyperlipidaemia (self-report or medications), CD4 measured at base-
line, nadirCD4 (self-report) andbodymass indexandviral suppression
at baseline. We also calculated vascular risk (a potential common
underlying mechanism) using the Prospective Cardiovascular
Münster (PROCAM).24 Current medications, including opioids, antide-
pressants and adjunctive painmedications at baseline and follow-up,
were collected by self-report.

Laboratory evaluations

HIV infectionwas diagnosed by enzyme-linked immunosorbent assay
with western blot confirmation. HIV RNA in plasma was measured
using commercial assays; viral suppression was defined as a level be-
low the lower limit of quantitation of 50 copies/ml. Peripheral blood
CD4+ T-cell concentration was measured by flow cytometry.

Statistical analyses

Relationshipsbetween incidentorworsenedneuropathicpainorneur-
opathy and sRBCSwere evaluatedusinguni- andmultivariable regres-
sions, including age at baseline and other relevant covariates. The
primary statistical analysis was to test a single hypothesis—that peo-
plewith HIVwith incident orworsenedDNPwould haveworse neuro-
cognitive decline at follow-up than those without incident or
worsened DNP. All other analyses, including multivariable models,
were secondary, obviating the need to for additional controls for
experiment-wide error rate. Secondaryanalyseswere conducted to as-
sesswhich specific neurocognitive domainswere linked to incident or
worsened DNP. Domain changes were assessed as regression-based
change scores for the tests within each domain. Analyses were con-
ducted using JMP Pro® version 15.0.0 (SAS Institute Inc., Cary, NC,
2018). Post hoc follow-up analyses examined regression-based change
scores for eachdomain. Because thesewerepost hoc follow-ups,nocor-
rection was made for multiple comparisons.

Data availability

Data will be made available upon request to the first author.

Results
Participants

Table 1 shows demographic and clinical characteristics of the study
participants, who comprised 385 people with HIV, 91 (23.6%)

females,mean± standard deviation age at baseline 43.5 (7.81) years,
ethnicity 44.9% African American, 10.6% Hispanic, 42.6%
non-Hispanic white and 1.82% other. Baseline median (interquar-
tile range, IQR) nadir CD4 was 175 (34309) cells/µl and current
CD4 was 454 (279 639). Median (range) of follow-up was 12.4 (9.69–
16.2) years. At baseline, 73.6% were on combination antiretroviral
therapy and at follow-up 96.3%. Viral suppression rates were
45.8% at baseline and 83.7% at follow-up. Also, as shown in
Table 1, at baseline participants with incident or worsening DNP
were older, hadmarginally worse depressedmood, weremore like-
ly to be on an opioidmedication and had worse MOS pain function,
physical health and mental health.

Incident or worsened neuropathic pain

At baseline, 115 participants (29.9%) had DNP. Those with baseline
neuropathic pain had much worse overall somatic pain function
(MOS pain function scale) at baseline than those without (55.4 ±
21.5 versus 73.3 ±24.8; P=6.10×10−11). Of 270 (70.1%) who were
pain-free at baseline, 65 (24.1%) developed incident neuropathic
pain at the 12-year follow-up. Of 117 with DNP at baseline, it wor-
sened in 33 (28.7%) and improved in 55 (47.8%). Thus, incident or
worsened DNP occurred in 98 (25.5%). With respect to the clinical
significance of worsened pain, those with incident or worsened
DNP had much worse pain functioning as indexed by the MOS
pain function scale at follow-up than those with no or stable pain
(52.7 ±26.1 versus 68.0 ±26.5; P=1.89× 10−6) and worse reports of
poor balance (P= 0.0002).

Cross-sectional relationship of DNP to
neurocognitive performance

To assess the possibility that neuropathic pain directly affected
performance on the neurocognitive tests, we examined the pain-
cognition relationship at each visit cross-sectionally. Those with
DNP at baseline had global neurocognitive performance no worse
than those without DNP (Global deficit scores: 0.477±0.461 versus
0.526±0.499, P=0.372). The same was true for the follow-up visit
(0.559±0.562 versus 0.529± 0.573, P=0.681). Because manual dex-
terity in particular might be influenced by pain, we separately eval-
uated the motor/psychomotor domain of functioning. At baseline,
those with DNP performed worse in motor function than those
without (domain T-score 44.9 ± 9.94 versus 47.2 ± 10.2. P=0.0411).
This relationship was borderline at follow-up (42.9 ±11.0 versus
45.3 ± 11.4, P=0.0530). Additional findings of interest were whether
at baseline participants with sensory paresthesias performed
worse with respect to motor function than those without sensory
paresthesias (44.9 ±9.68 versus 47.6 ± 10.3, P=0.0118). Those with
reduced ankle reflexes also performed worse on motor testing
(44.5 ±9.48 versus 48.1 ±10.4, P=0.0005), and those with reduced
distal vibratory sensation showed a trend towards worse perform-
ance (44.9 ± 9.20 versus 47.2 ±10.4, P=0.051).

Incident/worsened neuropathic pain and changes in
neurocognition

People with HIV with incident or worsened DNP had significantly
worsened neurocognitive performance at follow-up compared to
those without incident or worsened DNP (sRBCS mean±SD −0.408
±0.700 versus −0.228± 0.613; P=0.0158). In a multivariable model
adjusting for viral suppression at follow-up, incident or worsened
pain remained significant (P=0.0323) while viral suppression was
not (P=0.923). In a multivariable regression including incident or
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worsened DNP, age and their interaction, neuropathic pain re-
mained statistically significantly associated with neurocognitive
worsening (P=0.0143), while the other two variables were not sig-
nificant (P=0.516 and 0.901, respectively).

With regard to the potential clinical significance of the neuro-
cognitive changes, worsened neurocognitive performance corre-
lated with significantly worse depression as indexed by the BDI-II
(r=−0.257, P=3.71×10−7), more complaints of impaired cognitive
functioning (PAOFI; r=−0.238, P= 2.43× 10−6), worse mental
(r=0.270, P=5.2× 10−7) and physical (r=0.266, P= 8.10× 10−7) health
quality of life as indexed by the HIV-MOS, worse dependence in ac-
tivities of daily living (r=−0.174, P=6.54×10−4) and a greater likeli-
hood of being unemployed [range odds ratio (IQR) 18.3 (3.5, 103)]. In
light of the correlations of DNPwith both depression and neurocog-
nitive performance and the potential impact of depression on neu-
rocognitive performance, we further examined the interaction of
depression and neuropathic pain with respect to neurocognitive

performance. Those with DNP had worse depression than those
without DNP [BDI-II median 8 (95% CI, 4, 15) versus 7 (2, 15);
Wilcoxon P=0.0472] andmore severe depressedmood at follow-up
correlated with worse neurocognitive change
(r=−0.257 P<0.0001). The correlation of depression with neurocog-
nitive change was somewhat less strong for those with DNP than
for those without (r=−0.172, P=0.0035 versus r=−0.427 P<0.0001).
In amultivariable regression usingDNP, BDI-II and their interaction
to predict neurocognitive change, the BDI-II was significant
(P<0.00001) as was the interaction term (P=0.0180, full model
P=1.19×10−7). Removing the interaction from the model, DNP
approached significance (P=0.0556, full model P=3.98×10−7).

As shown in Table 2, post hoc analyses of neurocognitive domain
T-score changes indicated that the relationship of incident DNP
to change in neurocognitive performance was principally driven
by changes in executive function and speed of information pro-
cessing. The median change in MOS pain function scores (re-
flecting overall pain, including neuropathic pain and other
sources) was 0 (IQR −22.2, 11.1). Worsened MOS pain was weakly
related to worse neurocognitive performance (r = 0.103; P =
0.0482). Also, those with incident or worsened DNP did not
have worsened MOS pain function than those without (−6.69 ±
28.9 versus −2.53 ± 27.3; P = 0.210).

Relationships with distal sensory polyneuropathy

At baseline, 101 participants (26.2%) had clinical signs of distal sen-
sory polyneuropathy. Incident distal sensory polyneuropathy oc-
curred in 96 of 284 participants (33.8%). Neurocognitive change as
determined by the sRBCS did not differ in those with and without
incident distal sensory polyneuropathy (−0.338±0.662 versus
−0.228± 0.611; P=0.163).

Table 1 Participant demographic and clinical characteristics according to DNP change status

All Incident or worsening DNP Not incident/worsening DNP P

n 385 98 287 –

Baseline age, years, mean ± SD 43.5± 7.81 44.9 ± 7.55 43.0± 7.86 0.040
Female sex, n (%) 91 (23.6%) 21 (21.4%) 70 (24.3%) Ns
Ethnicity non-Hispanic white, n (%) 164 (42.6%) 46 (46.9%) 118 (41.1%) Ns
Hispanic/Latino, n (%) 41 (10.6%) 9 (9.2%) 32 (11%) Ns
Black, n (%) 173 (44.9%) 40 (40.8%) 133 (46.3%) Ns
Other, n (%) 7 (18.2%) 3 (3.1%) 4 (1.4%) Ns
Education, years, mean ± SD 13.1± 2.62 13.0 ± 2.58 13.1± 2.63 Ns
Nadir CD4+ lymphocytes, median (IQR) 175 (34, 309) 193 (47, 326) 168 (30, 306) Ns
Baseline CD4+ lymphocytes, median (IQR) 454 (279, 639) 436 (267, 643) 475 (328, 616) Ns
On antiretroviral therapy at baseline, n (%) 284 (73.8%) 73 (76.5%) 211 (73.5%) Ns
On antiretroviral therapy at follow-up, n (%) 371 (96.3%) 93 (94.9%) 278 (96.9%) Ns
Baseline plasma HIV RNA<50 copies/ml, n (%) 174 (45.8%) 48 (50.0%) 126 (44.7%) Ns
Follow-up plasma HIV RNA<50 copies/ml, n (%) 262 (83.7%) 73 (84.9%) 189 (83.3%) Ns
Exposed to neurotoxic dideoxynucleoside, n (%) 212 (55.1%) 58 (59.2%) 154 (53.7%) Ns
Years of dideoxynucleoside exposure, mean ± SD 1.83± 3.09 2.04 ± 3.31 1.76± 3.01 Ns
Follow-up BDI-II, mean ± SD 9.65± 9.51 11.3 ± 10.4 9.13± 9.14 0.0595
Lifetime substance use disorder, n (%) 271 (70.8%) 74 (75.5) 197 (69.1) Ns
Lifetime alcohol use disorder , n (%) 204 (53.3%) 55 (56.1%) 169 (58.9%) Ns
Current alcohol use disorder, n (%) 5 (1.31%) 0 (0.0%) 4 (1.5%) Ns
Lifetime MDD, n (%) 183 (47.8%) 62 (63.3%) 176 (61.3%) Ns
Current MDD, n (%) 49 (12.8%) 7 (7.87%) 21 (7.87%) Ns
On opioid medication, n (%) 53 (13.8%) 19 (19.4%) 34 (11.9%) 0.0697
MOS-HIV pain function, mean ± SD 64.2± 27.2 52.7 ± 26.1 68.0± 26.5 <0.0001
MOS-HIV physical health summary, mean ± SD 45.0± 11.8 40.6 ± 12.1 46.6± 11.3 <0.0001
MOS-HIV mental health summary, mean ± SD 50.3± 11.2 47.3 ± 12.4 51.3± 10.6 0.0036

MDD = major depressive disorder; Ns = not significant.

Table 2 Post hoc analysis of neurocognitive domain T-score
changes related to incident or worsened DNP (Student’s t-test)

Neurocognitive
domain

Incident/
worse DNP

Not incident/
worse DNP

P

Verbal −0.285 ±1.18 −0.120 ±0.977 0.168
Executive functioning −0.499±0.971 −0.206±0.966 0.0095
Speed of information

processing
−0.534±1.05 −0.122±0.950 0.0003

Learning −0.216 ±1.19 −0.243 ±1.12 0.836
Recall −0.0561±0.978 0.0331 ±0.908 0.408
Working Memory −0.363 ±1.04 −0.244 ±0.932 0.286
Motor function −1.05±1.14 −0.789±1.06 0.0414
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Potential confounds

As shown in Tables 3 and 4, factors not associated with neurocog-
nitive worsening (sRBCS) included sex, race/ethnicity, diabetes at
baseline, hyperlipidaemia at baseline, hypertension at baseline,
nadir CD4 at baseline, current CD4 at baseline, on antiretroviral
therapy at baseline and viral suppression at baseline, bodymass in-
dex and alcohol use disorder history. Incident diabetesmellitus sig-
nificantly predicted worse sRBCS (−0.476±0.745 versus −0.245±
0.614; P= 0.0331), but incident hypertension and hyperlipidaemia
did not. Worse depression (higher BDI-II scores) at both baseline
and follow-up was associated with worse sRBCS as well (−r=0.180
P= 0.0004 and r=−0.249, P=8.09×10−7, respectively). A higher value
on a composite index of vascular risk, the PROCAM at follow-up,
was correlated with worse sRBCS (r=−0.120, P= 0.0330).
Participants taking any opioid medication at the follow-up visit
did not show worse sRBCS than those not taking opioids (−0.351±
0.679, n=53 versus -0.261± 0.633, n=332; P=0.3440). In a multivari-
able model, neither opioids (P=0.901), nor their interaction with
DNP (P=0.082), was significant, while incident/worsened neuro-
pathic pain remained significant (P=0.0196, full model P=0.0246).
Similarly, participants taking antidepressant medications did not
differ from those not taking them with respect to neurocognitive
change (−0.292± 0.635, n=86 versus −0.268±0.641, n=299;
P=0.757). In a multivariable model, neither antidepressants
(P=0.898), nor their interactionwithDNP (P=0.456), was significant.
In an additional multivariable regression that included opioids,
antidepressants and their interaction as predictors of neurocogni-
tive worsening, neither of the main effects nor the interaction
term was significant (opioids P=0.1252, antidepressants P=
0.0598, interaction P=0.0554; whole model P=0.0974). Adding an
additional term to this model, neuropathic pain was the only sig-
nificant predictor of neurocognitive decline (opioids 0.2071, antide-
pressants P=0.0714, interaction P=0.0848, neuropathic pain P=
0.0304, whole model P=0.0265).

Of the following medications often used as adjunctive treat-
ment for neuropathic pain, nonewas linked toworse sRBCS, except
lamotrigine: duloxetine, pregabalin, gabapentin, amitriptyline, tra-
madol. Those on lamotrigine (n=6)—used for bipolar affective dis-
order and seizures as well as neuropathic pain—at follow-up had
worse sRBCS than those not on lamotrigine (−0.840±0.339 versus
−0.265± 0.639, P=0.0285). A composite variable representing being
on any one of these medications was not associated with worse
sRBCS (P=0.566).

As insulin resistance and diabetes mellitus are risk factors for
bothDNPand cognitive decline,we examined levels of haemoglobin
A1C, which were available at the second visit. Participants with
incident or worse DNP had higher HbA1C (5.96±1.48 versus 5.67±
1.08, P=0.0417) and those with higher HbA1C had worse global
neurocognitive change (r=−0.106, P=0.0391). In a multivariable

regression including HbA1C, incident or worsening DNP and their
interaction, HbA1C and the interaction term were not significant
predictors of neurocognitiveworsening (P=0.112 and 0.350, respect-
ively), but DNP remained significant (P=0.0247, full model P=
0.0195).

Multivariable models

To account for potential confounds,weperformedmultivariable re-
gression for those predictors that were statistically significant in
the univariable analysis of sRBCS. Incident/worsened DNP (P=
0.00946) and incident diabetes (P=0.01436) but not their interaction
(P= 0.06194) were independently associated with worsened neuro-
cognitive performance (full model P=0.0060), with the interaction
trend suggesting that the combination of incident/worsened DNP
and incident diabetes was worse than either alone. In a second
model evaluating incident/worsened neuropathic pain and
PROCAM vascular index as predictors of sRBCS, PROCAM was not
significant (P= 0.0669), and was therefore removed from themodel,
leaving only incident/worsened neuropathic pain. In a thirdmodel,
both worse BDI-II at baseline (P=0.00048) and incident/worsened
DNP (P= 0.0221) predicted worse neurocognitive change (overall
model P=0.122× 10−4). Finally, in a model including both lamotri-
gine and incident/worsened DNP, both variables retained signifi-
cance (lamotrigine, P= 0.0316; incident or worsened DNP, P=
0.0175; whole model P= 0.0054).

Discussion
Participants with incident or worsened neuropathic pain, but not
those with incident findings of neuropathy on exam, experienced
worse neurocognitive performance at follow-up. This relationship
was not confounded by potential covariates including baseline dia-
betes mellitus or HIV disease parameters. We were able to assess
several other potential explanations for the relationship between
incident/worsened DNP and worsened neurocognitive perform-
ance, such as depression andmedications used to treat neuropath-
ic pain; none of these confounds explained the correlation.

The changes in cognition associated with DNP were clinically
significant, being associated with more self-reports of impaired
cognitive functioning, worse health-related quality of life, greater
dependence in activities of daily living and a greater likelihood of
unemployment.

Whether the association of incident/worsened DNPwith neuro-
cognitive worsening was due to a direct or indirect causal associ-
ation or common effects of a shared unobserved variable is
uncertain. For example, mitochondrial dysfunction is common in
HIV and may influence both brain and peripheral nerves.25–29

Vascular disease and metabolic syndrome (for example, hyperlip-
idaemia, hypertension, PROCAM) might separately predispose to
both neuropathy and neurocognitive impairment, although we
did not find evidence of this in our analysis.

The observation that incident and worsened neuropathic pain,
but not incident distal sensory polyneuropathy, was correlated
with worsened neurocognitive performance suggests that it is
pain, rather than nerve injury, that links the two conditions.
While not all of thosewith neuropathic pain had clinical exam find-
ings of neuropathy, wehave shownpreviously that peoplewithHIV
who report neuropathic pain do have abnormal electrophysiologic-
al signs consistent with peripheral nerve injury.30

In the current study, change inMOS pain function, ameasure of
global pain that includes neuropathic pain, was not associatedwith

Table 3 Correlations (Spearman’s r) of potential confounds
with change in neurocognitive performance (sRBCS)

r P

Baseline age, years 0.029 0.564
Nadir CD4 cells/µl −0.078 0.123
Current CD4 cells/µl −0.058 0.252
Body mass index −0.061 0.238
Follow-up PROCAM (vascular risk) 0.115 0.0417
Baseline BDI-II score −0.181 0.0003
Change in BDI-II −0.030 0.551
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worse neurocognitive performance. Thus, pain as a predictor of
subsequent neurocognitive decline was specific to neuropathic
pain, as differentiated from other sources of pain. Of interest,
change in neuropathic pain did correlate with change in MOS
pain function.31

Accumulating observations indicate that chronic neuropathic
pain is at least as dependent uponCNS changes as it is upon periph-
eral nerve injury. Indeed, neuropathic pain and neurocognitive im-
pairment share alterations in specific regional brain substrates,
such as the dorsolateral prefrontal cortex and the anterior and pos-
terior cingulate cortices.13,16 We have observed atrophy in the pos-
terior cingulate cortex in people with HIVwith chronic neuropathic
pain32 and other neuropathies are associatedwith changes in func-
tion in the posterior cingulate cortex using functional MRI.33,34 At
the same time, in the healthy brain, the magnitude of reactive
changes in posterior cingulate cortex activity is related to cognitive
load,35 and a failure of appropriate deactivation is associated with
inefficient cognitive function.36 Notably, the specific cognitive do-
mains we found to be best correlated with worsening neuropathic
pain are those partly mediated by the dorsolateral prefrontal cor-
tex. DNP and neurocognitive impairment also share particular
pathophysiological mechanisms, such as microglial activa-
tion16,37,38 and glutamate neurotransmission.15,16,39,40 These links
should be examined in future studies.

The generalizability of this study depends upon the specific co-
hort characteristics andmeasurementmethods used. For example,
relatively few females were included, and most participants had a
history of advanced HIV disease. Thus, the results of this study
may be less pertinent to women or to people with HIV who never
had advanced HIV disease. Another limitation of this study is that
it could not determine the causal association between worsened
pain and worsened neurocognitive performance. Thus, the pres-
ence of pain could interferewith ability to fully concentrate on neu-
rocognitive testing or, conversely, cognitive impairment could
adversely impact pain coping. However, if ongoing pain directly

affectedperformance, thenonewouldexpect a cross-sectional rela-
tionship between the presence of DNP and poorer neurocognitive
performance. We showed that those with DNP at baseline per-
formed no worse than those without; the same was true for the
follow-up visit. DNP and other sensory disturbances did, however,
associate with poor performance on the test of motor functioning,
specifically. Future clinical trials to reduce pain and assess the im-
pact of this interventiononneurocognitive performancewouldpro-
vide insight into causality. If an individual reports incident DNP,
they may also have or be at increased risk for cognitive difficulties
andassociatedmedicationnonadherence, virologic failure, reduced
independence in instrumental activities of daily living and reduced
quality of life. Whether ameliorating neuropathic pain will benefit
neurocognitive function is an important future consideration.
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