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Abstract

Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial 

counterparts. While zebrafish have a centuries-long track record in developmental and regenerative 

biology, their utility has grown exponentially with the onset of modern genetics. This is 

exemplified in studies focused on skeletal development and repair. Herein, the numerous 

contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/

ligament, and other skeletal tissues are described, with a particular focus on applications to 

development and regeneration. We summarize the genetic strengths that have made the zebrafish 

a powerful model to understand skeletal biology. We also highlight the large body of existing 

tools and techniques available to understand skeletal development and repair in the zebrafish and 

introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we 

review the unique contributions of zebrafish to our understanding of regeneration and highlight 

diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to 

fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal 

biology.
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1. Introduction

Animal models have played important roles in uncovering the genetic basis of skeletal 

development, disorders, homeostasis, and diseases. Traditionally, mice have been the model 

organism of choice due to the large number of available genetic tools and the ability to 

induce targeted genetic modifications in embryonic stem cells. The recent development 

of a wide array of new techniques for genetic manipulation has broadened the range of 

model organisms that can efficiently be genetically modified. Among these, the zebrafish 

has become a powerful vertebrate model system due to its external fertilization, rapid early 

development, high fecundity, and transparency at embryonic stages [1]. Most importantly, 

zebrafish share 70% of genes with humans, making zebrafish an ideal system to model 

human development and diseases [2]. While the zebrafish has predominantly been used to 

study early developmental processes, more recently this small freshwater fish has also been 

used to interrogate post-embryonic stages, especially with regard to the musculoskeletal 

system [3–12].

A broad range of methods are available to genetically modify zebrafish and are being used 

in both forward and reverse genetic approaches. The recent adaptation of the clustered, 

regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system 

for genome editing significantly expanded the options for genetic modifications in zebrafish. 

This has led to a large increase in the number of generated targeted mutants and transgenic 

lines. Currently, there are 53,522 mutant alleles and 31,964 transgenic lines recorded in the 

Zebrafish Information Network (https://zfin.org/) [13]. These genetically modified animals 

can now be readily combined with single cell genomic technologies at both a tissue and 

whole organism level to define pathways important in skeletal development, regeneration 

and disease. In this review, we will highlight the methods available for genetic manipulation 

and how these tools have been used to study skeletal development and regeneration.

2. Tools for Genetic Manipulation in Zebrafish

The zebrafish gained popularity as a model system because of its amenability to genetic 

manipulation, especially as a means to perform large scale forward genetic screens in a 

vertebrate. Forward genetic screens are a powerful approach to identify genes important for 

a specific developmental process in an unbiased manner. Here, mutations are randomly 

induced throughout the genome and mutant progeny are identified by their altered 

phenotype, followed by mapping to identify the underlying genetic change. On the other 

hand, targeted mutagenesis allows for the genetic manipulation of a specific gene of interest 

to study its function. In this section we describe the different methods available for genetic 

modification of zebrafish and the approaches they are used in.

2.1 Random mutagenesis

In random mutagenesis, mutations are induced throughout the genome to discover gene 

function. This technique has been used in both forward and reverse genetic approaches. 

Several methods have been shown to be effective in zebrafish, including induction of 

mutations through gamma-rays and ultraviolet (UV) light [14–16]. The two major forms of 
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mutagenesis employed in zebrafish today are: (1) chemical and (2) insertional mutagenesis 

and are discussed in more detail in the sections below.

2.1.1 Chemical mutagenesis—The chemical N-ethyl-N-nitrosourea (ENU) is a highly 

potent mutagen and is widely used for the random induction of point mutations. In zebrafish, 

point mutations can be generated at a frequency of about 1 in 500–1000, although with 

varying frequency for different loci [17–19]. Multiple large scale forward genetic screens 

using chemical mutagenesis have been performed in zebrafish, including screens for early 

craniofacial development and changes in adult skeletal morphology [20–30]. They have led 

to the discovery of many genes and gene networks that play a role in skeletal development 

and disease. Identification of the underlying genetic changes used to be very time consuming 

and labor intensive, but the recent adaptation of next-generation sequencing methods to 

map mutations has sped up this process significantly [31–40]. However, due to the high 

number of polymorphisms in the zebrafish genome and the lack of inbred strains, some 

phenotype-causing mutations, especially in non-coding regions, remain challenging to 

identify. Therefore, insertional mutagenesis tools have been developed which allow for 

the rapid identification of the integration site and thereby of the affected gene (see section 

2.1.2).

In addition to forward genetic screens, ENU mutagenesis has also been employed in reverse 

genetic approaches, such as Targeting Induced Local Lesions in Genomes (TILLING). 

Here, progeny of mutagenized fish are screened for mutations in genes of interest by 

amplification of the region of interest followed by either Cel1 digestion or sequencing, 

before phenotyping [41]. Initially this approach was used to target a single gene. However, 

taking advantage of next-generation sequencing technologies allowing for the sequencing 

of entire exomes and genomes, the Zebrafish Mutation Project used exome sequencing 

of a large population of F1 progeny from mutagenized fish to identify ENU induced 

coding mutations genome-wide [42]. Using this approach, knockout alleles in over 60% 

of zebrafish genes were identified and are available to the community (Table 1) (https://

www.sanger.ac.uk/collaboration/zebrafish-mutation-project/,https://zmp.buschlab.org/).

2.1.2 Insertional mutagenesis—The drawback of chemical mutagenesis is the 

potential difficulty in identifying the underlying gene mutation, which can be alleviated 

through the use of insertional mutagenesis methods. In insertional mutagenesis, random 

integration of DNA into the genome is used as a mutagen, which enables rapid identification 

of the mutated region as the donor DNA works as a tag for the integration site [51]. 

The first insertional screens in zebrafish have been performed by injection of pseudotyped 

retrovirus into blastula stage embryos [52, 53]. Subsequently, the viral DNA integrates into 

the genome and, when integrated into the germline, is transmitted to the progeny. These 

retroviral insertion screens have achieved efficiencies of mutagenesis of about one ninth of 

that observed with ENU [53]. As mutations are caused by integration of DNA, the type of 

mutations that are being created are typically restricted to loss-of-function or hypomorphic 

alleles, while ENU can also induce neomorphic and antimorphic alleles. Several large-scale 

insertional mutagenesis experiments have been performed [43, 53–56] and a large number 

of mutants have been identified, including mutants with defects in the development of the 
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skeleton [57]. With adaptation of Illumina sequencing methods, it is possible to identify 

the integration sites quickly and efficiently. Over 6000 F1 progeny carrying integrations 

were archived and mapped, with over 3700 carrying integrations predicted to cause null-or 

hypomorphic alleles [43] (Table 1).

While retrovirus-mediated mutagenesis has proven to be a very efficient method, handling 

and preparation of the retrovirus is challenging. Therefore, alternative methods have been 

explored, of which transposon-mediated random integration of DNA into the zebrafish 

genome was found to be the most efficient [58]. Transposon systems have been used 

successfully to deliver genetic material into plants and invertebrates. Several of these 

transposon systems have been found to work in zebrafish, including the synthetic Sleeping 

Beauty, the maize Ac/Dc, zebrafish TC1/mariner (ZB) and medaka Tol2 systems, with the 

Tol2 system being the most widely used with observed evidence of germline integration 

in about 50% of injected fish [59–63] Transposases recognize terminal inverted repeats 

(TIR), excise the TIR-flanked DNA and insert it into a different location in the genome, 

with different transposases showing preferences for integrations in specific regions of 

the genome [64]. Similar to the retrovirus insertions, depending on the location, the 

insertions can inactivate genes or change gene expression. For mutagenesis, TIRs are 

cloned into transposon donor-plasmids to facilitate integration of the insert DNA into the 

genome when injected with transposase mRNA. Coding sequences of fluorescent proteins or 

transcriptional activators can be cloned into the donor-plasmid and enable visual screening 

of insertion events into enhancer or coding regions, which at the same time enables 

investigation of expression patterns of the affected gene.

The flexible design options of the transposon donor plasmid have expanded the utility 

of the approach beyond the generation of loss-of-function alleles [65]. A wide variety of 

constructs has been used in enhancer, gene or protein trap screens, including flippase (Flp) 

or Cre recombinase activatable and switchable conditional cassettes [46–48, 66–69]. This 

has led to the generation of a large collection of available enhancer, gene and protein trap 

lines and new lines using new versions of donor-plasmids with novel functionalities are 

constantly being added (Table 1). In addition, transposon-based mutagenesis methods have 

been extensively used for the generation of reporter, overexpression and conditional lines 

(see section 2.3).

2.2 Targeted mutagenesis

While random mutagenesis is a very powerful approach, this strategy requires the generation 

of a large number of mutagenized fish to screen and phenotype in order to identify mutations 

in a specific gene of interest. In addition, not every gene is mutated with the same efficiency, 

and thereby, finding a mutation in a specific gene even in a large population is not 

guaranteed. Target specific DNA nucleases circumvent this problem and can be used to 

induce sequence specific double-strand breaks which can result in the formation of small 

INDELs at the cut site due to error prone repair during non-homologous end joining (NHEJ) 

[70]. In addition, homology-directed repair (HDR) mechanisms enable precise, target-site 

specific integration of donor templates with homology arms. While the induction of INDELs 
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using nucleases is highly efficient, methodologies for HDR in zebrafish are still evolving, 

with many different strategies succeeding at variable efficiencies [71].

The first nucleases shown to be effective in zebrafish were the zinc finger nucleases (ZFNs) 

[72, 73] and the transcription activator-like effector nucleases (TALENs) [74, 75]. However, 

after the discovery of the CRISPR/Cas system for genome editing and its successful 

application in zebrafish, ZFNs and TALENs have been largely replaced by the CRISPR/Cas 

system due to easier design and synthesis and higher versatility [76–79]. The CRISPR/Cas 

system for genome engineering is based on an adaptive defense mechanism in bacteria 

[80, 81]. It uses synthetic guide RNAs to direct a Cas protein to a target site for genome 

editing. Target sites consist of 17–24 nucleotides which are being integrated into the guide 

RNA and are restricted to loci adjacent to short protospacer-adjacent motifs (PAM), which 

are required for Cas protein function. The length of the target site as well as the PAM 

sequences are protein specific and new variations of Cas proteins are constantly added to 

the repertoire. Available Cas proteins include nucleases for the induction of double-strand 

breaks, nickases inducing single strand cuts, base editors for precise induction of base 

changes, transposase fusions to facilitate DNA integration and prime editors for induction 

of mutations through reverse transcription [82]. Many of these have been shown to be 

active in zebrafish, expanding the application of CRISPR/Cas beyond its utility to generate 

double stranded breaks for knock-outs and knock-ins [83, 84]. CRISPR/Cas tools have been 

developed to generate global and tissue specific knock-outs, knock-ins and point mutations 

and to trace individual cells through generation of CRISPR barcodes (Table 2).

One advantage of the CRISPR/Cas system over ZFNs and TALENs is the relative ease of 

guide RNA design and synthesis and the ability to simultaneously target multiple genes, 

which has been used in several high-throughput mutagenesis experiments in zebrafish [49, 

79, 85, 86]. Besides generating large mutant collections, these large-scale screens have 

provided important information on the efficiency of INDEL induction, accessibility of target 

sites, and off-target effects which has aided in the development of easy-to-use guide RNA 

design tools (Table 2). Now, with commercially synthesized guide RNAs, Cas mRNA or 

protein, the CRISPR/Cas system is widely accessible in zebrafish [87, 88]. CRISPR/Cas 

genome editing has successfully been used to generate models of human skeletal diseases 

[8] and due to the high efficiency in the induction of mutations, skeletal phenotypes can 

readily be detected and analyzed in the F0 generation, further accelerating the discovery 

process [89–91].

In addition to its gene editing applications, the CRISPR/Cas system, like the Tol2 integration 

system, has emerged as an important tool to make targeted reporters, enabling the quick 

and reliable creation of new reporter lines and Cre drivers, as reviewed in detail in the next 

section.

2.3 Transgenesis

One main advantage of the zebrafish is the ability to perform in vivo labeling and imaging 

due to its small size and transparency during early developmental stages. Optically clear 

mutants (casper, crystal) have been generated by combining different pigment mutants to 

enhance in vivo imaging capabilities beyond larval stages [143, 144]. For the generation 
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of transgenic fish, a number of different techniques have been explored for the delivery 

of foreign DNA, including retroviral infection, electroporation, particle bombardment and 

microinjection [145–149]. To date, microinjection is the most widely used technique for the 

generation of transgenic zebrafish due to its fast and easy application.

Initially, only circular or linearized DNA had been injected into fertilized eggs, which 

resulted in relatively low transgenesis rates [146, 150, 151]. Modification of the donor DNA 

and addition of I-SceI meganuclease or Tol2 transposase to the injection mix did increase 

the transgenesis rate significantly [152, 153]. Meganuclease or Tol2 recognition sequences 

are integrated into the donor DNA to allow linearization and integration of the DNA into the 

genome. To facilitate easy design of Tol2 plasmids for transgenesis, plasmid collections for 

modular design of donor-plasmids using the Gateway cloning system have been generated 

and are constantly expanded [154]. Combination of identified, tissue specific promoters 

with conditional expression systems and fluorophores targeted to different subcellular 

compartments provide limitless options for the design and generation of transgenic zebrafish 

for in vivo imaging and analysis as well as manipulation of gene function (Table 3) [155].

The ability to target transgene expression to a specific cell type is dependent on the 

availability and identification of specific promoter and/or enhancer elements. Due to their 

capability to contain large fragments of genomic DNA (up to 300kb), modified bacterial 

artificial chromosomes (BACs) have been used to drive transgene expression in zebrafish 

[156, 157]. BAC modifications include the addition of I-SceI or Tol2 sites to increase 

transgenesis efficiency and addition of reporter genes through homologous recombination. 

While BACs efficiently capture most regulatory elements of a gene, their handling and 

modification is not trivial. The identification of smaller and easier to handle regulatory 

elements alleviates this problem but can be laborious and time consuming. Due to the more 

compact genome and conserved regulatory mechanisms, regulatory elements from another 

freshwater teleost, medaka (Oryzias latipes), are commonly used to drive gene expression 

in zebrafish [158]. One example is the use of the medaka osterix promoter to drive gene 

expression in zebrafish preosteoblasts and osteoblasts (Table 4) [159–163].

While meganuclease and transposase based transgenesis methods are very efficient, they 

often lead to the integration of multiple copies of the transgene and integration site-

specific effects on expression [164, 165]. This can be avoided through integration of the 

expression plasmid into a predefined landing site using the phiC31 integrase system [166]. 

Alternatively, to circumvent the need for identification of regulatory elements, integration 

of expression constructs can now be targeted to specific locations in the genome to 

capture the surrounding regulatory region to drive gene expression. Here ZFNs, TALENs 

or CRISPR/Cas are being used to create double strand breaks at the desired integration site 

and co-injected donor DNA is integrated into the cut site. A large number of different knock-

in strategies are being explored and show different levels of efficiency, often leading to 

imprecise integration into the genome [71, 167, 168]. For target integration using homology 

directed repair, a number of different template designs have been used. Designs differ in the 

length of the homology arms as well as the type of DNA template used (single stranded 

oligonucleotides, double stranded linear, in vivo linearized or circular DNA) [169–177]. In 
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addition to different template designs, simultaneous inhibition of the non-homologous end 

joining DNA repair pathway has been explored to improve precise integration [178–180].

However, not all transgenesis strategies require homology arms, and donor DNA without 

any homology can successfully be integrated through homology-independent DNA repair 

[181, 182]. DNA constructs similar to those used in enhancer, gene and protein trap screens 

can be used to generate reporter lines for genes of interest.

In the skeletal field, live imaging and manipulation of transgenic zebrafish has been used 

to capture crucial events during development and regeneration of tendon/ligament, bone 

and cartilage and is discussed in the sections below. The zebrafish is also an excellent 

vertebrate model for high-throughput chemical screening using whole organisms. Chemical 

libraries are commercially available or can be accessed through screening centers at some 

academic institutions or commercially. Many libraries are assembled to contain known 

biologically active compounds, for which there is some information about the molecular 

target, and more specific chemical libraries targeting particular molecular processes, such 

as kinase or chromatin targeting libraries, can be selected. Although some chemical screens 

were performed using morphology or staining methods as assays, transgenic fish have 

enabled automation of the screening platform, enabling larger scale screening efforts [183–

185]. These studies highlight the major opportunities available to use chemical screens to 

interrogate skeletal development and repair, which will serve as an important platform to 

inform both basic and translational research. Table 3 summarizes available expression and 

cell labeling systems and musculoskeletal system specific transgenic lines are listed in Table 

4.

3. The Zebrafish Skeleton

The adult zebrafish skeleton can be divided into the endoskeleton, consisting of the cranial, 

axial and appendicular skeleton and the dermoskeleton, including scales, teeth, and fin rays. 

Despite a divergence in the number of skeletal elements and the shape of the skeleton in 

zebrafish, decades of research have demonstrated the deeply conserved mechanisms that 

control skeletal development in vertebrates. Like mice and humans, the adult zebrafish 

skeleton is composed of bones joined by fibrous or cartilaginous joints, ligaments that 

connect neighboring bones, and tendons that attach muscles to bones. While the craniofacial 

skeleton derives from both neural crest and mesoderm, the axial skeleton arises from 

mesoderm.

Despite some differences from their mammalian counterparts, the zebrafish skeletal system 

provides powerful models to understand skeletal development and model human disease. 

In this section, we summarize the basic building blocks of the zebrafish skeleton and 

highlight some of the studies that illustrate the conserved genetic requirements for skeletal 

system development. As a detailed discussion of specific skeletal elements, like the vertebral 

column or the paired pectoral fins, is outside the scope of this review, we refer the reader 

to several excellent reviews [4, 285–290]. These reviews carefully summarize the homology 

of specific skeletal elements to their mammalian counterparts and highlight discoveries 

and recent advances made using zebrafish models. Likewise, although there is a wealth of 
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skeletal research using the other teleost model, medaka, and most of the methods for genetic 

modification described also work in this model, our review will specifically focus on studies 

in the zebrafish. We refer interested readers to recent work and reviews describing medaka 

as a model of human skeletal diseases and illustrating how innovative imaging methods can 

be used to gain new insight into skeletal biology processes such as bone remodeling [7, 

291–293]

3.1 Cartilage

The earliest chondrocytes in the zebrafish skeleton emerge from neural crest cells within the 

craniofacial skeleton by 56 hours post fertilization (hpf) [294]. By 72hpf, the craniofacial 

cartilaginous template is fully formed in the craniofacial skeleton, robustly expresses classic 

chondrocyte markers like col2a1a [271, 295], and can be readily detected by Alcian 

blue staining of glycosaminoglycans and glycoproteins (Figure 1A). These cartilages are 

typically 1–3 chondrocyte layers in thickness, with perichondrium surrounding the cartilage. 

In contrast to cartilages found in the craniofacial skeleton, the cartilages in the axial 

skeleton, including those along the vertebrae and at the base of fins, emerge later in larval 

development [296]. Along vertebrae 1–5, basidorsal cartilages form that will later become 

the neural arches [296]. However, unlike mammalian vertebral bodies which form through 

endochondral ossification and are patterned following somite boundaries, zebrafish vertebrae 

are pre-patterned by notochordal signals that induce ossification of notochord sheath cells 

(chordacentra). These provide a template for autocentrum formation by sclerotome derived 

osteoblasts and only the patterning of the hemal and neural arches is somite dependent 

[297].

The mechanisms that govern cartilage specification, differentiation, and growth have been 

extensively researched using zebrafish, especially within the craniofacial skeleton [298–

300]. Chondrocytes in the craniofacial skeleton derive from barx1+ condensations that 

express sox9 [294, 301, 302], like the gene expression patterns characterized in mice [303, 

304]. Due to the teleost-specific whole genome duplication, sox9 in zebrafish, like many 

other genes, has two orthologs, sox9a and sox9b [2, 240, 305, 306]. While one copy of 

50–90% of genes duplicated through a whole genome duplication tends to mutate to a 

pseudogene, the genes maintained as functional pairs provide unique advantages for the 

study of gene function [307]. Gene pairs evolve and one gene copy can develop new 

functions (neofunctionalization) or the expression domains or function of the original gene 

can be subdivided between pairs (subfunctionalization) [308]. The subfunctionalization of 

sox9 for example, allows for the analysis of aspects of sox9 function not possible in mice 

where haploinsufficiency of sox9 leads to early lethality [309]. Like in mouse models [310, 

311], zebrafish chondrocyte differentiation and maturation rely on Sox transcription factors. 

Mutant alleles for sox9a were independently generated using ENU (jeftw37) and retroviral 

(hi1134) mutagenesis, and mutant fish displayed severely reduced and absent cartilages 

throughout the craniofacial skeleton and fins [53, 312, 313]. In contrast, sox9b (b971), 

mutated using gamma radiation, is predominately required in the lower jaw cartilages, with 

many neurocranium and fin cartilages intact. Simultaneous deletion of sox9a and sox9b 
eliminates all cartilages throughout the skeleton, highlighting the conserved requirement for 

the Sox family to properly establish cartilages in vertebrates [314].
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3.2 Bone

Bone formation takes various forms in the zebrafish skeleton, and includes 

intramembranous, perichondral, and endochondral ossification. The earliest bones develop 

via intramembranous ossification, directly differentiating into osteoblasts from mesenchymal 

progenitors, independent of cartilage formation [315]. A mineralized opercle is readily 

detectable by 3 days post fertilization (dpf) [316]. Thereafter, dermal bones will 

continuously emerge throughout larval and juvenile development within both the 

craniofacial and axial skeletons (Figure 2A) [296, 317]. Perichondral ossification is 

apparent around cartilaginous elements between 5–7dpf, particularly around the developing 

Meckel’s and ceratohyal cartilages [316], while endochondral ossification arises later at 

juvenile stages of development [272, 318]. Like endochondral bones in other vertebrates, 

endochondral bones in the zebrafish contain growth plates composed of proliferative and 

hypertrophic chondrocytes, are surrounded by perichondrium that forms cortical bone, and 

have a marrow space [272, 318]. However, unlike mammals, the endochondral marrow space 

does not contain hematopoietic tissue, but instead contains adipocytes distributed within the 

marrow cavity, as hematopoiesis occurs in the zebrafish head kidney [272, 319].

Generally, the adult zebrafish skeleton is composed of four major classes of bone: compact 

bone, spongy bone, tubular bone and chondroid bone [318]. These bones exist as both 

cellular bone and acellular bone, with many dermal bones (like the frontal and parietal 

bones) lacking the many embedded osteocytes that are pervasive in mouse and human bone. 

Across all bones, osteoblast differentiation takes a similar path as in mice and humans, 

with osteoblasts expressing runx2a/b [320], osterix (osx/sp7), and eventually osteonectin 
(osn), osteocalcin (bglap) and col10a1a (Figure 2B–D) [315]. Like in mice [321], mutants 

for sp7 (hu2790), isolated through TILLING, develop skeletal defects driven by impaired 

osteoblast differentiation [322, 323]. Zebrafish models also uncovered mechanisms of bone 

mineralization. The characterization and mapping of two mutants identified in a forward 

genetic screen led to the discovery of reciprocal roles for enpp1 and entpd5 for phosphate/

pyrophosphate regulation and bone mineralization, with enpp1 (hu4581) mutants displaying 

ectopic mineralization and entpd5a (h3718, hu5310) mutants lacking mineralized bone 

[262].

As in mammals, normal development, homeostasis and repair of the zebrafish skeleton is 

dependent on the presence and function of osteoclasts. Osteoclasts are hematopoietic cells 

of the monocyte/macrophage lineage that possess the ability to not only resorb bone, but 

also to regulate bone formation [324]. Osteoclasts can be identified by the expression and 

activity of the lysosomal enzyme tartrate resistant acid phosphatase (TRAP), encoded by 

the acp5 gene. Detailed histological analysis in combination with TRAP staining showed 

that bone resorption predominantly occurs through mononucleated osteoclasts in juvenile 

zebrafish, while predominantly multinucleated cells are found in adults [325]. Analysis of 

TRAP expression in the zebrafish lower jaw captured TRAP+ mononucleated osteoclasts at 

20 dpf, and multinucleated osteoclasts by 40 dpf, although the emergence of osteoclast types 

is likely site specific [319, 325]. This presence of mono- and multinucleated osteoclasts was 

confirmed by fluorescent activated cell sorting (FACS) of cells isolated from ctsk:DsRed 
transgenic fish, taking advantage of the unique possibility in zebrafish to isolate primary 
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osteoclasts from entire fish [280]. In both mammals and zebrafish, the ETS-domain 

transcription factor Pu.1 as well as signaling through colony stimulating factor 1 receptor 

(Csf1r) play critical roles in myelopoiesis. Analysis of ENU generated mutants in pu.1 
(G242D), as well as csf1ra (j4e1, j4blue), showed a significant decrease in myeloid cells and 

therewith osteoclasts [281, 326]. Double mutant analysis revealed a predominant function of 

pu.1 in osteoclastogenesis, while csf1ra function is important during osteoclast maturation. 

In mammals, loss of osteoclast function leads to osteopetrosis, however the consequences 

of loss of Csf1r function to the zebrafish skeleton are milder and can be detected as shape 

changes of vertebral bodies, hemal and neural arches, as well as an increase in bone mineral 

density [280, 281, 327]. While a lot of research in zebrafish has focused on defining the 

different stages and sites of hematopoiesis, as well as defining developmental trajectories of 

hematopoietic cell lineages, the precise origins of osteoclasts in zebrafish remain an active 

field of investigation [328–331].

3.3 Joints

Articulations between neighboring bones play critical roles in modulating growth, 

movement and flexibility. Like in other vertebrate models, the zebrafish contains a variety 

of joint types, including fibrous joints and cartilaginous joints. Fibrous joints typically 

form between two dermal bones in the craniofacial skeleton. One example are the 

zebrafish cranial sutures, which display conserved requirements during skull development as 

zebrafish carrying mutations in cyp26b1 (t24295, generated through ENU mutagenesis) or 

combinatorial deletions in twist1b (el570) and tcf12 (el548), both generated using TALENS, 

fail to form select sets of cranial sutures, similar to mice and humans [160, 332, 333]. 

Cartilaginous joint specification has been extensively researched in zebrafish, with several 

mutant lines or morpholino treated embryos leading to the loss or gain of cartilaginous 

joints, including the Iroquois homeobox factor family, nkx3.2, and barx1 [278, 279, 334–

336] and transgenic reporters to label developing joints (Figure 1B–C). Furthermore, recent 

work has demonstrated the presence of synovial joints in the zebrafish jaw and fins and a 

conserved requirement for Prg4 (also known as Lubricin), demonstrated by deleting prg4b 
(el594) using TALENS to reveal arthritis phenotypes in mutants [337]. Another recent study 

identified a highly conserved nkx3.2 enhancer that is essential for jaw joint formation in 

zebrafish [338]. These findings highlight the zebrafish as a powerful system to interrogate 

joint degenerative and developmental diseases.

3.4 Tendons and Ligaments

Conserved with that of chick and mouse [339, 340], zebrafish tendon development is marked 

by early expression of scleraxis a (scxa) (Figure 3A), a transcription factor found in tendon 

cells at all stages, in the cranial regions after 40 hpf and the axial regions after 30 hpf [274, 

275, 277, 341–343]. Around 60 hpf, tendon cells express the matrix genes, tenomodulin 
(tnmd), col1a1a, col1a1b, and col1a2, signifying their differentiation and maturation (Figure 

3B–G) [341]. Zebrafish tendon cells also express a second scleraxis paralog, scleraxis b 
(scxb) [341, 343]. Generally, the genes expressed by tendons, including scxa/b, also label 

ligaments, making it difficult to molecularly distinguish them although they have unique 

characteristics at the structural and functional level and can readily be identified based on 

their attachment points [341, 344]. In zebrafish, the majority of cranial tendons originate 
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from the cranial neural crest [341, 345], with the exception of the sternohyoideus tendon 

which is contributed by two germ layers, the neural crest and the mesoderm [275]. Zebrafish 

pectoral fin tendons are derived from lateral plate mesoderm [275, 285] and axial tendons 

arise from the sclerotome compartment in the somites [277].

Zebrafish tendons rely on conserved regulatory programs found in mice and humans. Similar 

to Scx mutant mice [346], knockout of scxa (kg170) or scxa and scxb (kg107) together using 

CRISPR/Cas in zebrafish resulted in decreased tnmd expression. Notably, the zebrafish 

mutants also had defects in cranial tendon and ligament development and differentiation, 

resulting in detached muscle fibers, abnormal swimming behavior, and reduced numbers of 

intermuscular bones [343, 347]. Proper matrix assembly is important for the formation and 

integrity of the tendon attachment as morpholino knock-down of thrombospondin 4b (tsp4b) 
resulted in muscle detachment [348]. Consistent with research in mice [349] and chicken 

[350], studies in zebrafish have shown that muscles are required for axial tendon induction 

but dispensable for induction of cranial and pectoral fin tendon progenitors. However, 

muscles are necessary for the maintenance of scxa expression in the cranial and pectoral 

fin tendons at later stages [341]. In turn, problems with the myotendinous matrix can affect 

the muscle, resulting in movement impairment and muscle weakness [351]. In contrast, 

cartilage does not appear to be required for the induction of tendon progenitors in the 

cranial, pectoral fin and axial regions [341]. Several pathways have conserved requirements 

for tendon development in zebrafish, including the Fibroblast Growth Factors (FGF) [341] 

and Transforming Growth Factors β (TGF-β) pathways [341, 352]. More recently, the 

zebrafish model has been used to identify novel signaling pathways regulating tendon 

cell formation, such as Bone Morphogenetic Protein (BMP) [275], Hedgehog [277], and 

mevalonate [277] pathways. Additionally, a recent study showed mechanical force regulates 

the cellular projections from tendon cells and extracellular matrix (ECM) production [352]. 

These studies highlight the conserved requirement of tendon formation across development, 

as the number of studies using zebrafish as models for tendon biology grow.

3.5 Teeth

Zebrafish have pharyngeal teeth located at the fifth ceratobranchial bone [353]. These 

teeth have many morphological similarities to vertebrate teeth, including the presence 

of enameloid, dentin, pulp, and odontoblasts. They are shed and replaced throughout 

the animal’s lifespan, making them a compelling model for tooth regeneration [353]. 

Using TRAP staining and ctsk:DsRed transgenic lines, large numbers of osteoclasts can 

be detected at the base of teeth, where resorption of attachment bone is required for 

tooth replacement. Consequently, loss of osteoclasts in csf1ra/b double mutants (mh5, and 

mh108, mh112) leads to an increase in tooth number due to tooth retention [280, 319]. 

The signaling pathways involved in the development and mineralization of zebrafish teeth 

overlap significantly with vertebrates [354–357], and several genes have been shown to be 

essential for tooth formation, including ext2 [358] and the foxf family [300]. Zebrafish teeth 

are a largely untapped model for biomineralization, tooth development and regeneration and 

future research is warranted to expand the mechanisms of tooth biology using the zebrafish 

model.
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3.6 Scales

Although absent in mammalian and avian models of skeletal development, zebrafish scales 

have proven to be a rich resource to understand bone biology. Scales are ectoderm-derived 

calcified organs that cover the body. The external side of each individual scale has four 

discrete zones, all of which contain mineralized circuli of various stages. Dynamic mineral 

labeling using calcein and alizarin red show that one circulus is added to each scale per 

week in growing young adult fish, and alkaline phosphatase (ALP) activity is seen in 

differentiating osteoblasts along the margins of new circuli, but not old circuli [359]. Like 

other bones, scales are remodeled by osteoclasts and are often utilized as a proxy to assess 

osteoclast number and activity in mutant models, using TRAP staining for osteoclasts and 

von Kossa staining to detect mineralized tissue and assess resorptive activity [280, 360–

363]. For example, analysis of scales from csf1ra/b double mutants did show a complete 

loss of TRAP staining and no signs of bone resorption, confirming the importance of Csf1r 

function for osteoclastogenesis [280]. Recent transcriptional analysis of CRISPR generated 

low-density liporpotein receptor-related 5 (lrp5) mutants showed an enrichment in genes 

involved in both osteoblast signaling and function and osteoclast differentiation, suggesting 

a novel role for Lrp5 during osteoclastogenesis. Detailed analysis of osteoclast behavior 

in mutant scales supported a role for Lrp5 in osteoclastogenesis as mutants displayed an 

increase in TRAP staining and an increase in resorbed area, suggesting an increase in 

osteoclast number and/or activity [363].

Zebrafish scales can be easily harvested from adult zebrafish and cultured for up to 72 hours 

in vitro [359]. Several studies have utilized ex-vivo scale culture systems to uncover basic 

interactions between osteoblasts and osteoclasts, to model skeletal changes in pathological 

conditions, and to perform chemical screens to identify novel regulators of osteoblast 

and osteoclast activity [364–366]. For example, ontogenetic scales from sp7:luciferase 
transgenic fish have been cultured in osteogenic media to successfully screen for novel drugs 

with osteogenic potential [269]. These tissue explants also show endogenous interactions 

between osteoblasts and osteoclasts, something not attainable in monolayer cell cultures. 

Thus, the zebrafish model provides novel mechanisms to understand skeletal development 

through the utility of structures absent from alternative models.

4. Regeneration in the zebrafish skeleton

Zebrafish have profound regenerative capacity. Numerous examples show that tissue repair 

in zebrafish exceeds its mammalian counterparts [367, 368]. The zebrafish is also one 

of the earliest model organisms used to study musculoskeletal regeneration [369]. Bone 

regeneration employs multiple distinct cellular methods based on the anatomical location 

and the extent of injury. Among the diverse routes towards regeneration, fin amputation is 

the only injury that results in a classical blastema, which is evolutionarily conserved with 

axolotl [370]. However, fin crush injuries undergo intramembranous repair, and mandible 

resection heals by endochondral ossification. This diversity of regenerative programs means 

that an injury can be selected to model a specific mammalian repair mechanism or to 

examine mechanisms distinct to the zebrafish. The use of transgenic lines together with in 
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vivo imaging allows for the observation of cell behavior during the regeneration process in 

real time.

The different regeneration models (Figure 4) will be further elaborated in the following 

section. In addition, this section will also highlight the regenerative strategies for the skeletal 

components that support bone, including cartilage and tendons/ligaments.

4.1 Fin Amputation

Epimorphosis is a process by which complex structures are regenerated by a highly 

organized cluster of proliferative, undifferentiated cells called a blastema. Amputation of the 

zebrafish caudal fin is a classic example of this phenomenon, and has been known to science 

for more than two centuries [369]. The advent of transgenesis has greatly accelerated our 

understanding of this process. There is an immense body of literature describing caudal fin 

regeneration [371], and this section will summarize in brief and highlight specific emerging 

transgenic techniques that have contributed to the field.

The caudal fin faithfully regenerates its native structure and function following serial 

amputations [372]. This remarkable epimorphic regeneration process is believed to largely 

mirror both the cell types and signaling mechanisms present during development [373]. 

Within 24 hours of amputation, small clusters of mesenchyme known as blastemas aggregate 

at the distal ray stumps enveloped by a wound epithelium. Outgrowth of bone and 

supporting tissues then occurs over a period of weeks until new rays achieve their original 

sizes and organization [371]. Regenerative osteoblasts derive from multiple proliferative 

populations including cells derived from intra-ray mesenchyme [163], and to a lesser extent, 

dedifferentiated osteoblasts activated from the remaining bone tissue [161, 374]. With the 

multitude of available transgenic lines and lineage tracing techniques, these processes can 

easily be traced and visualized by time lapse imaging in vivo in the easily accessible and 

relatively thin (less than 200um thick) zebrafish caudal fin. We refer readers to existing 

reviews that describe this process in further cellular detail [374, 375].

Signaling cascades important for regenerative outgrowth following caudal fin amputation 

include Notch [376], FGF [377], TGFβ [378], Wnt [379], Hedgehog [380], and numerous 

others. Much of this work has been performed using traditional gene knockouts and 

reporters, with a more recent trend towards incorporating transcriptomics, epigenetic 

profiling, and inducible genetic approaches. One example is identification of a tissue-

specific leptin b-linked enhancer element as essential to the regenerative response of intraray 

mesenchyme [381]. Live clonal analysis using tph1b:CreER; priZm animals indicate these 

activated mesenchymal cells exhibit significant positional and functional heterogeneity that 

is acquired within the first 2–3 days post-amputation [382]. The transient wound epidermis 

has also been tracked using fn1b:creERt2-mediated fate mapping [383], and found to 

orchestrate early osteoblast patterning [384].

4.2 Fin Ray Fracture

Crush injury to the caudal fin hemirays, including intra-ray arteries and nerve fibers, 

produces a callus that is reminiscent of those seen in mammalian fractures [385]. The gene 

expression profile of the callus shares many markers in common with caudal fin amputation 
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including msxb (early blastema marker), osterix, collagen 1, osteonectin, osteopontin and 

Tenascin C. Similar to mammalian fracture repair, the fin ray fracture involves the FGF, 

retinoic acid, and Wnt signaling pathways [264]. Osteocalcin:GFP and runx2:GFP fish were 

leveraged to show that mature fin ray osteoblasts decreased osteocalcin expression and 

increased runx2 expression around fracture sites, suggesting dedifferentiation of osteoblasts 

in this model. Entpd5:Kaede and osterix:CreERT2-p2a-mCherry ; hsp70l:loxP-DsRed2-
loxP-nlsEGFP transgenic animals have shown that dedifferentiated osteoblasts migrate 

towards the fracture site from adjacent fin ray segments, proliferate and then mineralize 

the injury site [264].

The fin ray fracture has also been used to study fracture healing in a zebrafish osteogenesis 

imperfecta (OI) disease model, which showed that similar to human patients, OI zebrafish 

suffered non-union in about 30% of fractures, whereas non-union essentially never occurs 

in wild type animals. Bisphosphonates reduced osteoclast activity and therefore healing 

in wild-type animals, while reducing incidence of spontaneous fractures in the OI fish. 

Additionally, bacterial infection by S. aureus was shown to impair fracture healing in 

zebrafish using this model [386]. Furthermore, the fin ray fracture model has been used 

to show that osteocytes are responsible for the improved fracture healing observed with low-

intensity pulsed ultrasound therapy [387], and wnt16 mutant (bi667 and bi451) zebrafish 

showed increased vulnerability to spontaneous fractures and delayed osteoblast recruitment 

and bone mineralization during fracture healing [388]. The fin ray fracture is an accessible 

and clinically relevant model of intramembranous regeneration, with increased reliance on 

osteoblast differentiation versus what is currently understood in mammals.

4.3 Calvarial Trepanation

Surgical defects of the cranial vault—trepanation of the frontal and/or parietal bones—are 

commonly used to model intramembranous regeneration in rodents. These models have 

been adapted to zebrafish; a 0.5 mm defect regenerates in 14 days [264]. Reporter animals 

including runx2:GFP, sp7:GFP, and bglap:GFP bred on a casper double-mutant background 

(lacking pigment) have been used for serial intravital imaging of the differentiation process 

[264]. This group used sp7:CreERT2-mediated lineage tracing to reveal contribution of 

resident calvarial osteoblasts to the repair process. Intravital optical coherence tomography 

has also been recently applied to monitor small molecule-induced changes to defect 

regeneration [389].

4.4 Mandibulectomy

The mandible is developmentally derived from neural crest cells of the first pharyngeal arch, 

and ossification occurs around a central cartilage template (Meckel’s cartilage) that persists 

through adulthood [390]. Mandibulectomy is the only endochondral bone repair model in 

zebrafish. There are two approaches: bilateral amputation of the distal aspect including the 

mandibular symphysis [391], and unilateral resection of the mandibular body including the 

Meckel’s cartilage [392].

Amputation of the distal 1/3 of the mandible results in endochondral repair that fully ossifies 

and does not restore the cartilaginous mandibular symphysis [391]. RNA sequencing of 
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regenerating tissue at day 4 revealed upregulation of numerous genes associated with neural 

crest cells and their differentiating progeny. Using a follow-up knockdown approach, foxi1 
was identified as regulating sox9a+ progenitor cells adjacent to the Meckel’s cartilage that 

are required for bone outgrowth from the amputated stumps [393]. The bone formed in 

this model is believed to primarily derive from mesenchymal cells of the mandible located 

adjacent to the injury. Some genes representative of epimorphic regeneration of the fin, 

such as msxb, are expressed in this model, but the primary mechanism is believed to 

be endochondral regeneration [394]. Interestingly, this process is not dependent on Wnt 

signaling [394].

Regenerative cartilage formed after resection of the mandibular body is continuous with 

Meckel’s cartilage, if any remains following the procedure [394], yet the regeneration 

process is distinct from developmental endochondral ossification [392]. The repair cartilage 

cells, lineage-traced with col2a1a:GFP, stain for osteoblast-specific spp1 and embed 

themselves in alizarin-labeled new bone, and this process requires ihha signaling [392]. 

Zebrafish mandible regeneration is therefore believed to incorporate highly regenerative 

hybrid cartilage-bone cells with enhanced plasticity relative to most mammalian models 

[395]. A her6:mCherry transgenic reporter shows that Notch signaling is active during 

the early phases of regeneration, and regenerate bone volume is proportional to early 

Notch signaling levels [396] (Figure 4). hsp70l:Gal4; UAS:myc-Notch1a-intra mediated 

overexpression of the Notch1a receptor’s intracellular domain accelerates the conversion of 

cartilage to bone [396].

4.5 Scale Regeneration

Adult zebrafish scales regenerate following loss. RNA-seq of both ontogenetic and 

regenerating scales shows conservation of osteogenesis programs between zebrafish and 

mammals [397]. A prednisolone-induced osteoporosis model was found to impact scale 

regeneration by inhibiting the size of the new scale and increasing osteoclast activity 

[361]. Osteoblast-associated genes like sp7 and runx2a are expressed very early in scale 

regeneration, and Hh signals shha, ihha, and ptch1 are all expressed by day 2 of scale 

regeneration. Small-molecule inhibition of Hh signaling results in a reduction in the number 

of central and marginal osteoblasts by impacting the recruitment of precursors and osteoblast 

differentiation [398]. Using osx:H2A-mCherry fish, osteoblasts can be seen as early as 

24 hours post scale plucking (hpp). Genetic ablation of homeostatic osteoblasts using 

osx:mCherry-NTR animals shows similar rates of scale regeneration as control animals, 

indicating de novo osteoblasts contribute to scale regeneration. This was confirmed by using 

osx:kaede photoconvertible animals, which shows that new osteoblasts do not result from 

proliferation of pre-injury osteoblast populations. osx:Venus-hGeminin and osx:mCherry-
zCdt1 animals enable discrimination between cell cycle phases, which helped determine the 

proliferation patterns of osteoblasts in the regenerating scales. fgf20a:EGFP transgenic fish 

have also been used to show fgf20a is expressed in the osteoblasts of regenerating scales, 

and hsp70l:dnfgfr1-GFP animals have been used to induce heat-shock controlled inhibition 

of fgf receptors, which resulted in decreased scale regeneration. The poor regeneration in 

these animals was found to result from decreased proliferation of osteoblasts [162].
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Erk activity, dependent on Fgf receptors and MAPKK in scale osteoblasts, is activated 

in repeated waves that travel from the center to the periphery of regenerating scales 

once every two days. Osteoblast growth, and therefore scale growth, correlates with the 

speed and number of Erk waves [239]. To investigate the intercellular interaction between 

osteoblasts and osteoclasts during osteoclast differentiation, trap:GFP; osterix:mCherry 
double-transgenic fish were generated to visualize both osteoclasts and osteoblasts in a 

fracture scale model in zebrafish. Flow cytometry sorting followed by confocal microscopy 

revealed that most trap:GFP+ cells had mCherry+ particles in their cytoplasm, which 

were thought to be osteoblast-derived extracellular vesicles. This was confirmed after 

transplantation of kidney marrow cells from trap:GFP fish into irradiated osterix:mCherry 
fish resulted in GFP+/mCherry+ double positive cells at fracture sites, as well as after 

live imaging of fractured scales showed osteoclasts actively interacting with osteoblasts 

by engulfing their mCherry+ particles. These osteoblast-derived extracellular vesicles were 

determined to promote osteoclast differentiation and fusion in cell culture [266].

4.6 Tendon and ligament regeneration

Over 14 million tendon injuries are reported in the United States each year [399], yet 

their lasting repair remains a significant clinical challenge. Most studies of tendon injury 

mechanisms employ mammalian models such as mouse and rat, which are characterized by 

non-regenerative healing through scar formation. These studies have explored the molecular 

and cellular mechanisms underlying mammalian tendon injury and repair and have improved 

our understanding of the cell types and pathways involved in the repair process [400–

405]. Neonatal mice, which have been found to undergo regenerative tendon healing, have 

been used to dissect the cellular, mechanical, and structural mechanisms and have shown 

that Scx-lineage cells contribute to functional repair [403, 406]. The zebrafish provides 

a new system to study tendon and ligament regeneration; however, the model is in its 

infancy and much work is needed to fully understand the mechanisms guiding tendon 

and ligament regeneration. Recently, genetic tools were developed to ablate scxa+ tendon 

cells in zebrafish and it was discovered that the larvae were able to fully regenerate their 

tendon composition and pattern (Figure 3H) [275, 407]. Using live imaging and lineage 

tracing, they established that the new cells were recruited from sox10+ perichondral cells 

and nkx2.5+ cells surrounding the muscle and identified BMP signaling as an essential 

regulator of tendon regeneration. Interestingly, they found ablation in adults also resulted 

in regeneration of the scxa+ tendon cells. Using a similar ablation methodology in 

the zebrafish, another group depleted tenocytes in the trunk myotendinous junction via 

nkx3.1:Gal4; UAS:NTR-mCherry and col1a2:Gal4; UAS:NTR-mCherry transgenic lines 

and found disrupted muscle morphology [277]. In contrast to tendon cell ablation in 

zebrafish which caused defective myotendinous junction function, Scleraxis-lineage cell 

depletion in mice however improved the biomechanical properties of the tendon after 

injury [408]. It is unclear why in some contexts Scx-lineage cells are important for proper 

healing and regeneration, but not in others. Clearly, more work is necessary to dissect the 

complexities of tendon healing in regenerative and non-regenerative contexts. The zebrafish 

provides a key platform for in vivo examination of tenocyte regeneration in the future.
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More recently, a zebrafish model of ligament injury was established with the goal of 

testing jaw joint cartilage regeneration [409]. The jaw joint damage was introduced by 

transecting the interopercular–mandibular ligament that can cause jaw joint destabilization. 

They showed, through transgenic reporter imaging, genetic ablation and single-cell RNA 

sequencing, multiple cellular populations including sox10+ and grem1a+ cells contributed 

to jaw joint cartilage regeneration. However, the ability of the zebrafish to regenerate the 

ligament in this context remains unexplored. Certainly, this is an exciting direction given the 

frequency of ligament tears in humans, particularly for the anterior cruciate ligament, which 

cannot reattach without surgical intervention. The emerging models for tendon and ligament 

regeneration often focus on the cranial or axial tendons and ligaments as the adult pectoral 

fins consist of distal fin rays connected by muscles to the proximal pectoral girdle, but 

without long tendinous attachments as found in mammalian limbs [410–412]. These recent 

works lay a critical foundation for employing zebrafish to understand tendon and ligament 

regeneration, and the zebrafish model will very likely emerge as a powerful model for 

discoveries into the cellular and molecular mechanisms of tendon and ligament development 

and repair.

5. Discussion and future directions

Research in the zebrafish model has grown exponentially in the past two decades. The 

feasibility of genetic manipulations, imaging, and lineage tracing techniques along with 

a relatively low cost to maintain zebrafish lines compared to mammalian housing has 

made it an accessible model for many labs. Technological advancement in genetic editing 

tools and next generation sequencing strategies have further accelerated work in this 

system. With high gene homology to humans and conserved developmental processes 

between vertebrates, the zebrafish is an attractive model for both understanding foundational 

mechanisms underlying developmental and regenerative biology and also in modeling 

human diseases. As described throughout this review, these studies include generating 

zebrafish mutants to model human disease, but they can also be predictive of human disease 

loci [9]. For example, Frank Eames and colleagues identified mutants with reduced cartilage 

matrix and increased perichondral bone formation in an ENU mutagenesis screen [413]. 

Positional cloning revealed mutations in enzymes in the proteoglycan synthesis pathway, 

fam20b and xylosyltransferase1 (xylt1), as phenotype causing, highlighting the critical 

function of proteoglycan synthesis in endochondral ossification. Several years later, studies 

showed that mutations of FAM20B and XYLT1 in humans are associated with Desbuquois 

skeletal dysplasia (DBSD), a chondrodysplasia characterized by skeletal changes including 

increased ossification with short limbs and stature [414, 415]. Complementing these studies, 

the robust regenerative abilities of the fish have been examined in cellular and molecular 

detail, providing a blueprint for improving healing mechanisms in humans.

The zebrafish model has also emerged as a prominent model for understanding 

developmental biology at a single cell resolution. A number of groups have utilized 

single-cell technologies to understand embryogenesis in zebrafish, including studies focused 

on neural crest, which gives rise to most of the craniofacial skeleton [416–423]. In the 

context of skeletal development, a recent study carefully mapped neural crest derivatives 

in the craniofacial skeleton across zebrafish development, generating both scRNA-seq 
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and scATAC-seq datasets for a range of timepoints as early as 36 hpf and as late as 6 

months of age. The authors showed that skeletogenic identities within neural crest are 

progressively prefigured at an epigenetic level and identified transcriptional signatures for 

putative multipotent skeletal progenitors and metabolically unique fibroblasts that support 

the craniofacial skeleton [423]. These datasets will undoubtedly be a staple for zebrafish 

researchers interested in the development and regeneration of skeletal tissues, and it will be 

very interesting to understand how the programs and cell types captured in these datasets 

relate to programs that are activated during regenerative processes. Such work is already 

underway in the zebrafish fin with recent reports describing fin regeneration at single 

cell resolution and demonstrating the pathways required within macrophages, epithelia and 

osteoprogenitors during fin regeneration [424–426]. Single cell genomics is also now being 

integrated with lineage tracing tools, enabling gene expression and epigenetic analyses to 

be combined with lineage data in a single experiment [130, 140–142, 417]. These tools will 

drive discovery across species and tissues, and the ease of transgenesis and mutagenesis will 

make zebrafish a leader in developmental and regenerative biology.

As indicated throughout this review, the zebrafish has been a powerful model to 

understand skeletal development, and specifically bone and cartilage development. Research 

investigating osteoclasts, tendons and ligaments, and teeth remain growing areas in the 

zebrafish community. As these emerging research areas mature, the zebrafish’s strengths 

with respect to imaging and genetics will enable researchers to investigate the complex 

tissue interactions that drive skeletal shape and function. Complemented with new genomic 

technologies and precise genetic editing, and considering the relatively low cost to maintain 

zebrafish, the growing number of disease models, and the advent of multiplex single cell 

experiments [427–429], the zebrafish model will be a critical discovery model for skeletal 

development and regeneration.
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Figure 1. 
Cartilage and joint development in zebrafish. (A) A time series of cartilage development 

in the zebrafish lower jaw skeleton using the sox10:dsRed reporter to label chondrocytes. 

Cartilage formation is clearly apparent within the craniofacial skeleton at 60 hpf. (B) The 

hyoid joint (arrowhead) that connects the hyomandibular and ceratohyal cartilage expresses 

irx7:GFP. (C) trps1:GFP is enriched at joints in the craniofacial skeleton, including the 

hyoid joints (arrowhead) and jaw joints (arrows). Scale bars, 50 μm.
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Figure 2. 
Bone development in zebrafish. (A) Developmental series of alizarin red stained zebrafish 

from larval, juvenile and adult stages. Mineralized bones are detected earliest in the 

craniofacial skeleton and later appear within the axial and fin skeleton. Scales emerge later 

in development. Scale bars, 500 μm. (B-D) Osteogenesis in the larval opercula (boxed in A 
at 6 dpf). (B) RUNX2:GFP preosteoblasts are enriched at the tips of the mineralized larval 

opercular. (C) sp7:mCherry high cells are enriched along the surface of the opercular, while 

sp7:mCherry; RUNX2:GFP pre-osteoblast are abundant at the bone tips. (D) osc:GFP+ 
osteoblasts are restricted to the most mature osteoblasts away from the edges of the 

opercule. Scale bars for B-D, 50 μm.

Henke et al. Page 38

Bone. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Zebrafish craniofacial tendon and tendon cell division during tendon regeneration. (A) A 

double transgenic line shows scxa:mcherry; col2a1a:eGFP expression at 3dpf. Scale bar, 

50μm; (B-D) Multiphoton images of sternohyoideus tendon at 180 dpf show scxa:gal4-vp16; 
uas:epNTR-RFP+ tendon cells (B, D) and second harmonic generation (SHG) of collagen 

fibril (C, D). Scale bar, 100μm; (E) Ultrastructural examination of tendon cells and collagen 

fibrils by TEM. Scale bar, 2μm; (F, G) Magnified examination of tendon cells and collagen 

fibrils in (E). Scale bar, 0.5μm; (H) Time lapse imaging of ceratohyal cartilage region 

shows tendon cell division during tendon regeneration. scxa:gal4-vp16; uas:epNTR-RFP+ 
labels tendon cells (white arrows indicate a cell undergoing division) and col2a1a:eGFP 
labels ceratohyal cartilage. Scale bar, 25μm. In (H), tendon cells were ablated at 3–5 dpf, 

t=00:00:00 was immediately after the cell ablation. T, tendon cell. Images A-D, H, anterior 

to the left. Images E-G, transverse section.
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Figure 4. 
Diverse regenerative processes activate notch signaling in the zebrafish skeleton. Micro-

computed tomography reconstruction of the adult zebrafish skeleton, obtained in a Scanco 

μCT40 at 12μm^3 resolution with a lower threshold of 250 mgHA/ccm. Microscopy of 

zebrafish expressing the Notch signaling reporter her6:mCherry demonstrates ability to 

perform longitudinal intravital imaging of fluorescent transgenes under anesthesia using a 

stereomicroscopy. Representative images are shown 10 days following each of the following 

model injuries: (A) unilateral mandibulectomy; (B) scale plucking; (C) dorsal fin ray 

fracture; and (D) partial tail amputation, which were performed in different animals. Yellow 

dashed lines in A-D represent approximate injury margins.
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Table 1.

Databases and collections of genetically modified zebrafish

Zebrafish Mutation Project 
(ZMP)

ENU induced mutants, predicted loss-of-function mutations in 
> 60% of genes of the zebrafish genome

https://zmp.buschlab.org/ [42]

Zebrafish Insertion 
Collection (ZInC)

Retroviral insertion lines, over 3000 mutated genes https://research.nhgri.nih.gov/ZinC/ [43]

Zebrafish Gene Trap and 
Enhancer Trap Database 
(zTRAP)

GFP and Gal4FF expressing gene and enhancer traps https://ztrap.nig.ac.jp/ztrap/ [44]

NIGKOF Knock Out Fish 
Project

Knockout lines generated through transposon insertions in the 
zTRAP project

https://ztrap.nig.ac.jp/knockout/faces/
insertion/FindInsertion.jsp

ZETRAP 2.0 GFP and KillerRed expressing enhancer trap lines [45]

FlipTrap Cre mediated switch between protein and gene trap, constructs 
are flanked by FRT sites allowing replacement of the FlipTrap 
cassette

https://fliptrap.usc.edu/static/contact.html 
[46]

CreZoo Gene trap lines expressing mCherry-T2A-CreERT2 https://dresden-technologieportal.de/en/
services/view/id/209 [47]

trap-TRAP Enhancer trap lines for Translating Ribosome Affinity 
Purification (TRAP)

https://amfermin.wixsite.com/website [48]

ZAKOC Zebrafish All-Gene KO Consortium for Chromosome 1 http://www.zfish.cn/TargetList.aspx
http://zfin.org/action/publication/ZDB-
PUB-171002-4/feature-list
[49]

zfishbook International Zebrafish Protein Trap Consortium database, lines 
generated with gene-break transposons

http://www.zfishmeta.org/ [50]

Zebrafish Information 
Network (ZFIN)

The most comprehensive database of genetic and genomic data 
for zebrafish, including mutant alleles and transgenic lines

https://zfin.org/ [13]

Zebrafish International 
Resource Center (ZIRC)

A central repository for zebrafish wildtype and mutant strains, 
as well as zebrafish related materials.

http://zebrafish.org

European Zebrafish 
Resource Center (EZRC)

Repository for zebrafish lines from European researchers and 
materials

https://www.ezrc.kit.edu/

China Zebrafish Resource 
Center (CZRC)

Repository for zebrafish lines, resources and technology http://en.zfish.cn/
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Table 2:

Subset of available zebrafish CRISPR/Cas tools

Design tools CRISPRscan guide RNA design tool and off 
target prediction

https://www.crisprscan.org/ 
[87]

CRISPRon/CRISPRoff on-target and off-target 
predictions for CRISPR-Cas9 
gene editing

https://rth.dk/resources/crispr/ 
[92, 93]

Breaking-Cas variable design of gRNAs for 
CRISPR/Cas for all eukaryotic 
genomes available on Ensembl

https://bioinfogp.cnb.csic.es/
tools/breakingcas/ [94]

CCTop/CRISPRater tunable CRISPR/Cas target 
online predictor and effectivity 
predictor

https://cctop.cos.uni-
heidelberg.de/index.html [95, 
96]

AceofBASEs sgRNA design and off-target 
prediction tool for adenine and 
cytosine base editors

https://aceofbases.cos.uni-
heidelberg.de/index.html [97]

CHOPCHOP CRISPR and TALEN design 
tool

https://chopchop.cbu.uib.no/ 
[88, 98, 99]

CRISPOR guide RNA design tool and off 
target prediction

http://crispor.org [100]

CRISPRdirect guide RNA design tool and off 
target prediction

http://crispr.dbcls.jp/ [101]

CRISPRseek software package for gRNA 
design

[102]

GT-Scan appsuite gRNA and HDR template 
design tools(GT-Scan, 
TUSCAN, CUNE)

https://gt-scan.csiro.au/ [103–
105]

CRISPR RGEN Tools Tools for RNA-guided 
endonucleases, including off 
target prediction, Cas gRNA 
design, base editing and 
primer editing tools

http://www.rgenome.net/cas-
designer/ [106–110]

Gene Sculpt Suite tools for genome editing 
including design of 
short oligonucleotides for 
homology-based gene editing 
(GtagHD), prediction of 
extend of microhomology-
mediated end joining repair 
(MEDJED) and prediction of 
locations with just 1–2 MMEJ 
alleles (MENTHU)

http://www.genesculpt.org/ 
[111]

Mojo Hand CRISPR and TALEN design 
tool

https://talendesign.org/ [112, 
113]

CRISPR-ERA gRNA design tool for 
genome editing, repression and 
activation

http://crispr-era.stanford.edu/ 
[114]

CRISPR-SKIP design of exon skipping 
mutations using single-base 
editors

https://
knoweng-0.igb.illinois.edu/
crispr-skip/ [115]

Databases CRISPRz database of validated CRISPR 
targets in zebrafish

https://research.nhgri.nih.gov/
CRISPRz/

iSTOP database of sgRNAs for 
generating STOP codons

http://www.ciccialab-
database.com/istop [116]

SpCas9 
alternatives

Spg NGN Pam [117]

SpRY NRN PAM [117]
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LbCpf1 (Cas12a) TTTV PAM [118]

SpCas9 VQR NGAN, NGNG PAM [119]

SpCas9 EQR NGAG PAM [119]

SpCas9 VRER NGCG PAM [119]

SpCas9 KKH NNNRRT PAM [120]

SauCas9 NNGRRT PAM [121]

AsCpf1 TTTV PAM [121]

Nme2Cas9 NNNNCC PAM [121]

ErCas12a YTTN PAM [122]

ScCas9 NNG PAM [123]

Transgenic lines 4xUAS:NLS-Cas9,myl7:RFP Gal4 effector line for Cas9 
expression with red heart 
transgenesis marker

[124]

4xUAS:NLS-Cas9,cryaa:EGFP Gal4 effector line for Cas9 
expression with green eye 
transgenesis marker

[124]

hsp70l:LOXP-DsRed-LOXP-Cas9-GFP,rnu6–
32:CRISPR1-tyr

Cre and heat shock controlled 
Cas9-GFP fusion expression

[125]

ef1a:Cas9-NLS ubiquitous expression of Cas9 [126]

actb2:NLS-zCas9-NLS,cryaa:TagRFP ubiquitous expression of Cas9 
with red eye transgenesis 
marker

[127]

hsp70l:LOXP-mCherry-LOXP-NLS-zCas9-NLS Cre and heat shock controlled 
Cas9 expression

[127]

ubb:NLS-zCas9-NLS,myl7:EGFP ubiquitous expression of Cas9 
with green heart transgenesis 
marker

[127]

hsp70l:Cas9-IRES-EGFP,myl7:EGFP heat shock inducible co-
expression of Cas9 and EGFP 
with green heart transgenesis 
marker

[128]

hsp70l:Cas9-P2A-mCherry,myl7:EGFP heat shock inducible co-
expression of Cas9 and 
mCherry with green heart 
transgenesis marker

[128]

lyzC:Cas9,cryaa:GFP Neutrophil-specific expression 
of Cas9 with green eye 
transgenesis marker

[129]

hsp70l:zCas9-T2A-GFP,5x(U6:sgRNA) heat shock inducible 
simultaneous expression of 
Cas9 and GFP, ubiquitous 
expression 5 guide RNAs 
for lineage tracing using 
GESTALT

[130]

hsp70l:DsRed-v7,myl7:EGFP CRISPR array, with green 
heart transgenesis marker 
for lineage tracing using 
GESTALT

[130]

UAS:Cas9T2AGFP;U6:sgRNA1;U6:sgRNA2 Gal4 effector line for 
simultaneous Cas9 and GFP 
expression

[131]

Base editors (BE) BE4max cytosine BE [132]

zABE7.10 adenine BE [133]
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BE, BE-VQR, dBE-VQR cytosine BE [134]

zAncBE4max cytosine BE [135]

BE4-Gam cytosine BE [97, 136]

ABE8e adenine BE [97]

ancBE4max-SpymacCas9 cytosine BE [136]

ancBE4max cytosine BE [97, 132, 136]

evoBE4max cytosine BE [97]

CBE4max-SpRY cytosine BE [137]

zAncBE4max cytosine BE [135]

Transcriptional 
regulators

dCas9-KRAB repressor [138]

dCas9-VP160 activator [138]

dCas9-Eve repressor [139]

Lineage tracing GESTALT (genome editing of synthetic target 
arrays for lineage tracing)

lineage tracing through 
modification of a CRISPR/Cas 
target array

[140]

scGESTALT (single-cell GESTALT) GESTALT combined with 
transcriptome profiling

[130]

LINNAEUS (lineage tracing by nuclease-
activated editing of ubiquitous sequences)

lineage tracing through Cas9 
induced INDELs in a 
multicopy transgene combined 
with transcriptome profiling

[141]

ScarTrace lineage tracing through Cas9 
induced INDELs in a 
multicopy transgene combined 
with transcriptome profiling

[142]

Screening tools MIC-Drop (multiplexed intermixed CRISPR 
droplets)

microfluidics based generation 
of a library of droplets 
containing different RNP 
complexes together with DNA 
barcodes for injection

[86]
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Table 3:

Subset of available transgenic tools

Commonly used 
genetically encoded 
fluorophores

tagBFP Ex 402, Em 457 [186]
mCerulean Ex 433, Em 475 [187]
CFP Ex 456, Em 480 [188]
mTFP1 Ex 462, Em 492 [189]
EGFP Ex 488, Em 507 [190]
lanYFP Ex 513, Em 524 [191]
mVenus Ex 515, Em 527 [192]
E2-Orange Ex 540, Em 561 [193]
tdTomato Ex 554, Em 581 [194]
dsRed Ex 558, Em 583 [195]
mCherry Ex 587, Em 610 [194]
RFP Ex 587, Em 637 [196]
mKate2 Ex 588, Em 633 [197]
For a more comprehensive list of available fluorophores see: https://www.fpbase.org/ [198]

Localization signals cell membrane:
Lyn myristoylation and palmitoylation sequence [199–201] 
CAAX motif [202]
nucleus:
histone H2A.F/Z fusion [202]
histone H2B fusion [203]
hmgb1 fusion [204]
SV40 nuclear localization signal (NLS) [205]
nucleoplasmin NLS [206]
actin cytoskeleton:
Lifeact [207]
microtubules:
ensconsin microtubule-binding domain fusion [208]

Transcriptional 
activator systems

Gal4-UAS [209]
QF-QUAS [210]
KalTA4-UAS [210]

Conditional expression 
systems

Cre-loxP/lox2272/loxN [211, 212]
Flp-FRT [213]
Dre-Rox [214]

Inducible gene 
expression systems

Cre-ERT2 + Tamoxifen [215]
LexPR + mifepristone [216]
TetA-GBD + doxycycline and dexamethasone [217]
TetA-EcR + doxycycline and tebufenozide [217]
hsp70l promoter + heat shock [218]
GV-EcR + tebufenozide [219]
IQ-Switch + tebufenozide [220]
GAVPO + blue light [219]

Cell ablation systems Nitroreductase + metronidazole [221–223]
KillerRed + intense green or white light [224]
M2H37A [219]
Kid + Kis anti-toxin [225]
PhoCl-Bid [225]

Signaling pathway 
activity reporter 
systems

Wnt signaling:
TOPdGFP [226]
Tcf/Lef-mini:dGFP [227]
TCFsiam [228]
BMP signaling:
BMP-responsive element [229–232]
dominant negative Bmpr1a-GFP [233]
FGF signaling:
dusp6:d2EGFP [234]
dominant negative hsp70:dn-fgfr1 [235]
Notch pathway:
Tp1bglob [204]
her12-Kaede [236]
Hedgehog signaling:
ptc1-Kaede [237]
ssh-GFP [238]
Erk signaling:
Erk KTR [239]
TGF-beta signaling:
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12xSBE:EGFP [240]
12xSBE:nls-mCherry [240]

Genetically encoded Ca 
sensors

GFP-aequorin [241, 242]
GCamp [243]
CaMPARI [244]

Apoptosis marker AnnexinV-YFP [245]
NES-DEVD-mCardinal-NLS [246]
genetically encoded death indicators (GEDIs) [247]

Autophagic flux sensor GFP-LC3-RFP-LC3DG [248]

FUCCI (Fluorescent 
Ubiquitination-based 
Cell Cycle Indicator)

hGeminin [162, 249]
zCdt1 [162, 249]

Lineage tracing tools Photoconvertible proteins:
Dendra Ex 488, Em 505 > Ex 556, Em 575 [250]
Kaede Ex 508, Em 518 > Ex 572, Em 580 [251]
mEos2 Ex 506, Em 519 > Ex 573, Em 584 [252]
Kikume Ex 507, Em 517 > Ex 583, Em 593 [253]
Zebrabow, priZm (Lox2272-LoxP-RFP-Lox2272-CFP-LoxP-YFP) [254, 255]
Palmskin (LoxN-Lox2272-LoxP-H2B-EBFP2-LoxN-palm-mCherry-Lox2272-palm-mEYFP-LoxP-palm-
mCerulean) [256]
FRaeppli-nls (UAS-attB-Lox2272-STOP-Lox2272-phiC31-cmlc2-mTurquoise-attP-nls-E2-Orange-attP-nls-
mKate2-attP-nls-mTFP1-attpP-nls-TagBFP) [257]
FRaeppli-caax (UAS-attB-Lox2272-STOP-Lox2272-phiC31-cmlc2-mTurquoise-attP-E2-Orange-CAAX-attP-
mKate2-CAAX-attP-mTFP1-CAAX-attpP-TagBFP-CAAX) [257]

Plasmid collections Tol2 kit (http://tol2kit.genetics.utah.edu) [154]
CRISPR/Cas9 vector system for tissue-specific gene disruption [258]
Addgene (https://www.addgene.org/)
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Table 4:

Commonly used musculoskeletal transgenic lines

Cell type Musculoskeletal transgenes and papers of origin Origin of regulatory element used

Osteoblast 
lineage

(1) osx:EGFP [259]
(2) osx:kaede [162]
(3) osx:nuGFP [160]
(4) osx:Venus-hGeminin [162]
(5) osx:mCherry-zCdt1 [162]
(6) osx:mCherry-NTR [163]
(7) osx:H2A-mCherry [162]
(8) osx:mTagBFP-2A-CreER [163]
(9) entpd5a:pkRED [260]
(10) runx2:eGFP [161] 
(11) osc:eGFP [161] 
(12) osc:GFP [261]
(13) osx:CreERT2-P2A-mCherry [161]
(14) entpd5a:YFP [262]
(15) entpd5a:Citrine [263]
(16) entpd5a:Kaede [264]
(17) runx2:GAL4-VP16_2A-mCherry) [265]
(18) osx:Lifeact-mCherry [266]
(19) col10a1:mCitrine [267]
(20) col10a1:GFP [268]
(21) sp7:luciferase [269]

(1) BAC containing the osterix locus (CH73–243G6)
(2), (3), (4), (5), (6), (7), (8), (13), (18), (21) 4.1 kb upstream 
regulatory region of medaka osterix gene
(9), (14), (15), (16) BAC containing the entpd5 locus
(10), (17) 557bp enhancer from the last intron of human RUNX2 
fused to the mouse cFos minimal promoter
(11) 3.7kb upstream promoter sequence of medaka osteocalcin
(12) 3.5kb upstream regulatory region of medaka osteocalcin [270] 
(19) BAC containing the col10a1 locus
(20) 2.2 kb upstream promoter of zebrafish col10a1

Cartilaginous 
cells

(1) col2a1a:eGFP [271]
(2) col2a1a:CreERT2 [272] 
(3) col9a2:GFPCaaX [273]
(4) col2a1a:mCherry [267]

(1), (2) R2 element upstream the transcription initiation site (358bp 
enhancer)
(3) 2048bp of zebrafish col9a2 promoter upstream of the start of 
translation
(4) BAC containing the col2a1a locus

Tendon/ligament 
cells

(1) scxa:mcherry [274]
(2) scxa:gal4-vp16 [275]
(3) col1a2:loxP-mCherry-NTR [276]
(4) nkx3.1:gal4-vp16 [277]
(5) col1a2:Gal4-VP16 [277]
(6) col1a2:GFP [277]

(1), (2) BAC CH211 251g8 containing the entire scxa genomic 
locus
(3), (5), (6) BAC CH211–122K13 containing col1a2 locus
(4) BAC zC21G15 from the CHORI-211 library containing the 
nkx3.1 locus

Joint cells (1) irx7:GFP [278]
(2) trps1:GFP [279]

(1), (2) SAGp11A, Tol2-mediated gene trap insertions into the 
endogenous locus [61]

Osteoclast (1) ctsk:FRT-dsRed-FRT-Cre [280]
(2) trap:GFP-CAAX [266]
(3) ctsk:EGFP [281]
(4) ctsk:Citrine [263]

(1), (3) 3kb upstream regulatory region of medaka cathepsin K gene
(2) 6kb upstream regulatory region of the zebrafish trap (acp5a) 
gene 
(4) BAC containing the cathepsin K locus

Neural crest-
derived skeletal 
cells

(1) sox10:ERT2-Cre [282] 
(2) sox10:GFP [283]
(3) sox10:CreERT2 [272]
(4) sox10:dsRED [284]

(1) 4.9kb of zebrafish sox10 promoter sequence upstream of the 
start of translation
(2) 4725bp of zebrafish sox10 promoter upstream of the start of 
translation
(3), (4) 4.9kb of zebrafish sox10 promoter sequence upstream of the 
start of translation
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