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Abstract

The Design and Fabrication of

Snap-Release Integrated Optomechanical Circuits

by

Eric Christopher Langman

A fully-integrated optomechanical system is fabricated from a single layer of 400 nm

thick stoichiometric LPCVD Si3N4. Optomechanical coupling is demonstrated between

single-mode optical ring resonators and nanomechanical resonators released using our

novel ‘snap-release’ mechanism. This mechanism utilizes the high tensile stress of LPCVD

Si3N4 to realize sub-50 nm distances between optical ring resonators and the released

‘snap-release’ nanobeams (SRNBs). In this dissertation we present the design, fabrica-

tion, and characterization of this new optomechanical system.
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Introduction

The intersection of quantum mechanics and general relativity is a unique point of interest

for every physicist of the last 100 years. Both frameworks have endured success after suc-

cess as their predictions have been confirmed with every relevant experiment conducted

in the last century, without exception. Nevertheless, the two theories seem incompatible

with each other, each producing nonsensical predictions when extrapolating beyond the

general confines of each respective theory. It is for this reason that the fabrication and

optimization of macroscopic systems exhibiting quantum mechanical effects is invaluable

for testing and expanding our understanding of the laws of nature. With such systems,

it is expected to be systematically possible to probe interactions between masses, and

therefore gravity itself, in the transition regime between quantum and classical mechanics.

The purpose of the research presented in this thesis is to develop such systems through

on-chip integration of nanoscale mechanical resonators into optical circuits. A unique fea-

ture of these devices is the so-called ‘snap-release’ mechanism demonstrated in Figure I,

by which tensile stress is released to bring the beam closer to an optical ring resonator

than is possible using standard electron-beam lithography and subsequent dry etching.

Although the technology presented here is too undeveloped for implementation of quan-

tum control protocols and the probing of gravity-quantum interactions, these preliminary

results warrant optimism for the eventual optical cooling of the devices near the side-
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Figure I A nanomechanical oscillator within 100 nm of an optical ring
resonator, obtained using a ‘snap-release’ mechanism.

band resolved regime. The ‘snap-release’ mechanism on its own could prove valuable to

alternative optical cavity geometries.

A Personal Motivation

Before diving into the technical aspects of the design and fabrication of optome-

chanical devices, let us step aside and examine a potential point of intersection between

quantum mechanics and gravity that interests us: the interpretation of quantum mechan-

ics itself. In particular, there is much debate over how to interpret the so-called collapse

of the wave function, when a physical system in a superposition of several eigenstates

of an observable appears to reduce to a single eigenstate. There exist a number of con-

tending theories, each presenting a unique view of the underlying mechanics of quantum

mechanics.

The Copenhagen Interpretation is, by far, the most commonly taught interpretation
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of quantum mechanics, and in some ways is considered the default interpretation. The

Copenhagen Interpretation stipulates that the collapse is forced by the act of measure-

ment itself. Referencing the infamous Schrodinger’s Cat, the act of opening the box

disturbs the system inside it, causing the cat to end up in either the alive or dead state,

no longer both. It seems, in fact, the curiosity of the observer kills the cat 50% of the

time.1

An interpretation of quantum mechanics that is potentially experimentally distin-

guishable from the Copenhagen Interpretation was developed by Roger Penrose in the

late 90s [1, 2]. The appropriately named Penrose Interpretation predicts that the incom-

patibility of eigenstates with different spacetime metrics leads to an inevitable collapse

of the superposition into one of the component eigenstates. The source of this incom-

patibility inherently comes from the time-evolution of a quantum state being given by

|ψ(t)〉 = e−iHt/~ |ψ(0)〉 (0.1)

If we consider a system initially in a superposition of states |ψ〉 and |χ〉, we can include

the gravitational information of each state as follows:

|ψ(0)〉 = α |φ〉 |Gφ〉+ β |χ〉 |Gχ〉 (0.2)

where |Gφ〉 and |Gχ〉 are the gravitational states of |φ〉 and |χ〉. Penrose argues that

the very idea of time propagation of such a state through a time-translation operator

is ill-defined when considering an inherent mismatch of t between |Gφ〉 and |Gχ〉. This

leads to the Penrose Postulate:

1Refined arguments might point toward the walls or air molecules of the box as the observer, but
that is a different topic altogether.
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Let f and f ′ be the acceleration 3-vectors of the free-fall motion in the two

space-times, also thought of as the gravitational force per unit mass. At each

point, the scalar (f − f ′)2 is a measure of spacetime incompatibility. For a

macroscopic object of arbitrary shape (a lump), the integral over the mass

distribution:

∆ =

∫
d3x(f − f ′)2 (0.3)

is a measure of the incompatibility of the lump to be in a superposition of

states at ~x and ~x′. Through writing the force as the gradient of a potential,

f = −∇Φ and using Poisson’s formula, ∇2Φ = 4πGρ, we end up with:

∆ = 4πG

∫
d3x

∫
d3y

(
ρ(x)− ρ(x′)

)(
ρ(y)− ρ(y′)

)
|x− y|

(0.4)

which is comparable to the self-energy in classical electrodynamics [3]. We

take the quantity

E∆ =
1

4πG

∫
d3x(f − f ′)2 (0.5)

to be the gravitational self-energy of a lump of mass to be at two different po-

sitions in spacetime. This leads to gravitational-induced decoherence between

on the scale of τ ∼ ~/E∆.

As far as Schrodinger’s Cat is concerned with this postulate, this implies that opening

the box is not necessary for the cat’s fate to be decided. The difference in body position

between the dead and alive states forces the wave function to collapse prior to observation.

To test the Penrose Postulate is theoretically easy. All you need to do is place macro-

scopic objects of various masses and volumes in quantum superpositions that involve

gradients in gravitational force, and measure the timescales at which they are no longer

able to maintain quantum superpositions [4]. Experimentally, this is very challenging [5].
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Cavity Optomechanics

Cavity Optomechanics is a growing field of physics motivated by probing theories

such as the Penrose Postulate. Using interferometric techniques to ‘trap’ light temporar-

ily with a test mass, the measurable interaction between that light and the mass is

strongly enhanced. By performing measurements on the light, we are then able to obtain

information about its interaction with the mass. In 2003, Marshall, Simon, Penrose,

and Bouwmeester [6] proposed a cavity optomechanics experiment in which a mirror,

consisting of approximately 1014 atoms, is placed in a quantum superposition using an

interferometer. The behavior of the system as function of the mirror mass then acts as a

probe of mass-dependent quantum effects. Since then, the Dirk Bouwmeester Group at

UC Santa Barbara has actively pursued the design, fabrication, and characterization of

new devices capable of probing the quantum effects of macroscopic objects.

Rather than improve or optimize a previously existing design, for the focus of my

dissertation I designed and developed a new one. Current optomechanical systems are

typically assembled in a piece-by-piece approach, adding complications along every step

of the experiment, and severely limiting the scalability of the systems. I designed and

fabricated a novel optomechanical system which is fully integrated onto a single wafer,

and thus needs minimal overhead compared to the initial fabrication of the devices. By

hand, it takes less than a minute to switch between adjacent optomechanical systems,

with 432 systems being fabricated during a single processing run. The design allows for

modification of the optomechanical system between processing runs, while still using the

same stepper lithography masks.
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Contents of Thesis

As this is the first generation of a novel type of integrated optomechanical devices, many

complications have been encountered and eventually overcame. The format and styling

of this thesis is aimed at a complete understanding of the design and processing, with

the intention to provide a detailed exposition of the technical aspects of the devices for

future generations of researchers working on this project.

Chapter 1: The underlying theory of optomechanical systems is explored. We look at

standard figures of merit, the linearized optomechanical Hamiltonian, and

the resulting quantum protocols for optical cooling and the generation of

entangled states. After a brief review of current optomechanical systems, we

propose a new integrated optomechanical design in which the entire system

is fabricated from a single layer of high-stress Si3N4.

Chapter 2: Relevant calculations and simulations are presented for each element of the

proposed optomechanical system, starting with independent simulations of

optical ring resonators and ‘snap-release’ nanomechanical resonators. After-

wards, we predict the optomechanical response of our design from simulation

results.

Chapter 3: We present the fabrication procedure and optimization of high quality optical

ring resonators and ‘snap-release’ nanomechanical resonators.

Chapter 4: A novel method of wafer bonding is explored which should lead to hermetically

sealed optomechanical samples at vacuum pressures below 10−5 mbar.

Chapter 5: We present the characterization results of the optical quality factors of our

ring resonators and the measured optomechanical response of system at room

temperature and pressure.
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Chapter 1

Cavity Optomechanics

The manipulation of physical systems using the radiation pressure of light has enjoyed

a rich history dating back to the beginning of experimental physics itself. In 1619, it

was Johannes Kepler who first postulated the ability for light to transfer momentum

to physical objects, correctly predicting why comets have a tail pointing away from the

sun [7]. After experimental verification of the radiation pressure force in 1901 [8], it was

used to transfer the angular momentum of photons to a macroscopic object in 1936 [9].

Since then, radiation pressure has been employed in a number of important techniques

and experiments, from optical tweezers[10] to the recent detection of gravitational waves

from binary blackhole and neutron star systems at LIGO [11, 12].

Optical cavities prove to be an invaluable asset in the implementation of interactions

mediated by radiation pressure. Light on resonance with a cavity gets ‘trapped’ by its

boundary conditions and consequently interacts with the same points in space hundreds,

thousands, or even millions of times before escaping. This naturally leads to an enhance-

ment of any interaction between the light and anything in the cavity. In fact, it was only

by utilizing this enhancement that LIGO was able to detect gravitational waves despite

it’s arms being only 4 km long. Otherwise, each arm would have necessarily been on
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the order of c/150 Hz ≈ 2000 km long to be able to resolve the spacetime fluctuations of

a system rotating at 75 times per second. Any systems which take advantage of this

cavity-enhancement belong to the branch of physics known as cavity optomechanics.

This chapter introduces the fundamental theory of cavity optomechanical systems and

the motivation and basis of our new design. First, we explore the canonical optomechan-

ical system and associated experimental figures of merit. The optomechanical Hamilto-

nian and relevant quantum control protocols are then covered. We look at the current

design and progress of the ‘trampoline resonator’ design developed by the Bouwmeester

Group of UC Santa Barbara. After discussion of drawbacks of such free-space options,

we introduce the design for a new photonic integrated optomechanical system.
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Table 1.1: Parameters of optomechanical systems defined throughout this chapter

Symbol Definition

ωL frequency of input laser

ωcav frequency of optical cavity

Ωm frequency of mechanical oscillator

κex cavity intensity decay rate associated with input coupling

κint cavity intensity decay rate from internal loss

κ total cavity intensity decay rate κ = κex + κint

Γm mechanical damping rate

Qcav quality factor of optical cavity

Qm quality factor of mechanical element

G frequency shift of the cavity per unit displacement of the mechanical
oscillator: G = ∂

∂x
ωcav(x)

∆ωFSR free-spectral range of the optical cavity (Eq. 1.2)

F The finesse of the cavity (Eq. 1.5)

fQ the fQ product of the mechanical oscillator: fQ = fmQm (Eq. 1.8)

xZPF zero-point fluctions of the mechanical oscillator (Eq. 1.15)

α average coherent amplitude of light in a resonant cavity α = 〈â〉
g0 optomechanical single-photon coupling strength (Eq. 1.17)

g cavity-enhanced single-photon coupling g = g0α (Eq. 1.28)
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Figure 1.1: Fabry-Perot cavity with moveable mirror attached to a harmonic oscillator.

1.1 Theory of Cavity Optomechanics

The canonical cavity optomechanical system is a Fabry-Perot cavity with one of its

mirrors fixed and the other attached to a mechanical oscillator, depicted in Fig. 1.1.

For a cavity of length L, resonances are found when the laser frequency ωL satisfies the

condition

ωL = m · 2πc/n
2L

(1.1)

where n is the index of refraction of the cavity medium (typically air or vacuum), and

m is any integer. The frequency separation between two resonances is known as the free

spectral range (FSR) of the system, and is given by:

∆ωFSR = 2π
c/n

2L
(1.2)

An alternative equation for the FSR, defined in terms of wavelength instead of frequency,

is given by:

∆λFSR =
λ2
L

2nL
(1.3)

where λL refers to the wavelength of the laser.
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1.1.1 Optical Finesse and fQ Product

To represent losses in the optical cavity, we define the cavity intensity decay rates κint

and κex, corresponding to coupling into/out of the cavity and to internal propagation

loss within the cavity, respectively. The total cavity intensity decay rate is thus simply

κ = κex + κint. We can then define two figures of merit for the goodness of a cavity, the

optical quality factor Qopt and the optical finesse F . The quality factor is the average

number of oscillations a photon undergoes before scattering out of the system:

Qopt =
ωL
κ

(1.4)

The finesse corresponds to the average number of ‘round-trips’ the photon makes in a

cavity before scattering out, and is given by

F =
λL/n

2L
Qopt = 2π

1

κ

c/n

2L
(1.5)

The finesse is generally considered the critical figure of merit of the optical component

of an optomechanical system, as it corresponds to the average number of interactions

a photon makes with the movable mirror. A higher finesse directly corresponds with a

stronger enhancement of the optomechanical interaction relative to loss.

The mechanical component of the system has similarly defined parameters, a me-

chanical frequency Ωm and mechanical loss Γm. The mechanical quality factor is given

by:

Qm =
Ωm

Γm
(1.6)

For cavity optomechanics, the critical physical property of the mechanical component of

the system is its ability to remain isolated from the thermal environment around it. This

determines how long the oscillator is able to remain in its quantum ground state. Most
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applications of optomechanics require that the mechanical system exchange less than a

single thermal phonon with the environment per mechanical oscillation [13, 14]. If less

than 1 phonon of energy ~Ωm is lost per oscillation, this leads to the condition:

Qm > 2π
kBT

~Ωm

(1.7)

noting that another definition of the Q-factor is 2π times the ratio of energy stored in the

resonator to energy lost per oscillation. Using the linear mechanical frequency instead of

the angular one, we substitute Ωm = 2πfm and rearrange Eq. 1.7 to get the condition:

fmQm >
kBT

~
(1.8)

The right side of this equation is determined by temperature of the surrounding environ-

ment, which is independently determined by our experimental ability to cool the sample

down to the lowest temperatures possible. The left side of the equation is appropriately

named the fQ product (or sometimes Qf product), and is considered the critical figure

of merit for the mechanical component of an optomechanical system.

Both the finesse of the optical cavity and the fQ product of the mechanical res-

onator give insight into the two components, independently. However, to gain insight

on how these two systems work together, we must go into the Hamiltonian formalism of

optomechanics.

1.1.2 Hamiltonian Formalism

Let us derive the optomechanical Hamiltonian for the system shown in Fig. 1.1.

Excitations in the intracavity optical field (â, â†) are coupled to phonon excitations of

the mechanical oscillator (b̂, b̂†) through the position of the mirror. To show this, we start

12
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with the expected Hamiltonian for the setup in Fig. 1.1, which at first glance appears to

be uncoupled:

Ĥ = ~ωcavâ†â+ ~Ωmb̂
†b̂ (1.9)

However, since ωcav is dependent on the position of the moveable mirror x, we are able

to introduce coupling through a first-order Taylor expansion:

ωcav(x) ≈ ωcav + x̂
∂

∂x
ωcav(x) (1.10)

≈ ωcav − x̂ G (1.11)

where G = − ∂
∂x
ωcav(x) is the optical frequency shift per displacement. For a standard

optical cavity, we find

G = − ∂

∂x

[
ωcav

(
1 +

x

L

)−1 ]
(1.12)

≈ − ∂

∂x

[
ωcav

(
1− x

L

) ]
=
ωcav
L

(1.13)

As for x̂, we rewrite it in terms of the phonon annihilation and creation operators:

x̂ =

√
~

2meffΩm

(b̂+ b̂†) = xzpf (b̂+ b̂†) (1.14)

where xzpf is the zero-point fluctuation amplitude of the harmonic oscillator. It is found

by taking the square-root of the expectation value of the displacement squared:

xZPF = 〈x̂2〉1/2 = 〈0|x̂2|0〉1/2 =

√
~

2meffΩm

(1.15)

13
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where meff is the effective mass of the mechanical oscillator. Putting this all together

gives:

ωcav(x) ≈ ωcav

(
1 +

xzpf
L

(b̂+ b̂†)
)

(1.16)

Substituting this into Eq. 1.9 yields

Ĥ → Ĥ − ~ωcav
xzpf
L

â†â(b̂+ b̂†) (1.17)

This additional term is our interaction Hamiltonian:

Hint = −~g0â
†â(b̂+ b̂†) (1.18)

where g0 = ωcav
xzpf
L

is the single-photon optomechanical coupling parameter.

Let us establish a strong optical field in the cavity using a laser, such that fluctuations

in the optical field are considered small. This leads to the substitution â→ α+ â, where

α = 〈α〉 is the average coherent amplitude of the optical field in the cavity. This changes

our interaction Hamiltonian to:

Hint = −~g0(α + â)†(α + â)(b̂† + b̂) (1.19)

= −~g0α
2(b̂† + b̂)− ~g0â

†â(b̂† + b̂)− ~g0α(â† + â)(b̂† + b̂) (1.20)

We can eliminate the middle term, which is quadratic in smallness (no α). Breaking up

the remaining Hint into zeroth and first-orders of the fluctuation amplitudes â†, â yields:

Hint = H0 +H1 (1.21)

H0 = −~g0α
2(b̂† + b̂) (1.22)

H1 = −~g0α(â† + â)(b̂† + b̂) (1.23)
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1.1.2.1 Radiation Pressure Force

The zeroth-order interaction term:

H0 = −~g0|α|2(b̂+ b̂†) (1.24)

= −~g0|α|2
x̂

xzpf
(1.25)

corresponds to the so-called radiation-pressure force

Fx̂ = − d

dx̂
H0 = ~

g0

xzpf
|α|2 (1.26)

of the optical field on the mechanical oscillator. As is the case with a classical harmonic

oscillator under a displacing force, we can eliminate the effect by shifting the origin of

our coordinate system to the new equilibrium position.

1.1.2.2 Linearized Optomechanical Hamiltonian

The most important physics of the interaction Hamiltonian is found in terms that are

linear in order of the fluctuation amplitudes (â†, â). These are collected in the term:

H1 = −~g0α(â† + â)(b̂† + b̂) (1.27)

= −~g(â†b̂+ âb̂+ â†b̂† + âb̂†)

= −~g(â†b̂+ â†b̂†) + h.c. (1.28)

where g = g0α is the cavity-enhanced coupling between the optical field and the mechan-

ical oscillator. This is known as the linearized optomechanical Hamiltonian.
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1.1.3 Sideband Generation

The two terms in Eq. 1.28 correspond to different interactions involving the exchange

of energy between the optical cavity and the mechanical oscillator. Preferential selection

of the different terms is possible through modulation of the laser frequency with respect

to resonant frequency of the cavity. By considering the time dependence of the field

operators:

â(t) = â(0)e−iωcavt (1.29)

b̂(t) = b̂(0)e−iΩmt (1.30)

we are able to see how to selectively excite the different terms. For example, by driving

the Hamiltonian with the laser frequency

ωL = ωcav − Ωm (1.31)

we pick out the term â†b̂ which had a time-dependent phase vector of ei(ωcav−Ωm)t. The

other terms are removed by the rotating wave approximation. The â†b̂ term corresponds

to the creation of a photon in the optical cavity and the removal of a phonon from the

mechanical resonator.

Similarly, by driving the interaction Hamiltonian with:

ωL = ωcav + Ωm (1.32)

the â†b̂† term is excited, which corresponds to the creation of a phonon in the optical

cavity and the addition of a phonon to the mechanical resonator.
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(a) Sideband resolved systems allow for clear
excitation of the red-detuned, blue-detuned, or
fundamental optical modes.

(b) When not sideband resolved, each reso-
nance cannot be isolated from the others.

Figure 1.2: Optomechanical spectra demonstrating sideband characteristics. Each
black line is the sum of a fundamental cavity resonance, along with the two sidebands.

Now, let us consider the absorption spectrum of the optical ring resonator. With-

out the optomechanical interaction, the absorption spectrum of the ring was a set of

Lorentzians at the different resonant frequencies of the optical cavity. However, with

the addition of the excitation of the â†b̂ and the â†b̂† terms, additional resonances are

created on either side of each ωcav, detuned by ±Ωm. These resonances are referred to as

sidebands, and are the mechanism by which we are able to manipulate the mechanical

oscillator through the cavity field.

For manipulation of the mechanical oscillator, it is desirable for each resonance to

to be well isolated from the other resonances. In particular, overlapping of the red-

detuned and blue-detuned resonances is especially undesriable as it implies a nontrivial

probability of adding energy to the mechanical oscillator while attempting to remove it,

and vice versa. When the sidebands are well isolated, we say that the system is sideband

resolved. Mathematically, this condition is set by a high ratio of Ωm to κ, the width of

the optical resonance, as demonstrated in Fig. 1.2.
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1.1.4 Sideband Cooling

As discussed in the previous section, by driving the Hamiltonian with ωL = ωcav−Ωm

we resonate the â†b̂ term that represents the creation of a photon in the optical field and

the removal of a phonon from the mechanical nanobeam. Through continuous excitation

of this interaction, energy will be removed from the mechanical resonator for every photon

that is scattered into the optical cavity, thus lowering its temperature. This stimulated

interaction, referred to as sideband cooling, is an invaluable technique for optomechan-

ical systems. In particular, it is useful for cooling the mechanical resonator toward its

quantum mechanical ground state when cryogenic cooling methods are insufficient.

We are interested in the minimum number of phonons in the resonator we can obtain

using this technique for a given optomechanical system. Let A+ and A− be the transition

rates for gaining and losing a phonon, respectively. And let Γ+ and Γ− be the occupation

rates of phonons entering and leaving the resonator. The transition rates and occupation

rates are related through Bose enhancement factors:

Γ+ = (n+ 1)A+ (1.33)

Γ− = nA− (1.34)

which will reach equilibrium when the phonon number reaches:

nA− = (n+ 1)A+ (1.35)

→ n =

(
A−

A+
− 1

)−1

(1.36)

If the phonon transitions are being driven by the interaction Hamiltonian terms through a

monochromic laser, then we know the transition amplitudes are going to be proportional
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to the cavity absorption spectra, given by the Lorentzians:

A+ ∝ κ/2

(κ/2)2 + (ωL − (ωcav + Ωm))2
(1.37)

A− ∝ κ/2

(κ/2)2 + (ωL − (ωcav − Ωm))2
(1.38)

Since A+ and A− will have the same proportionality constant, the ratio of the transition

rates is given by:

A−

A+
=

(κ/2)2 + (ωL − ωcav − Ωm)2

(κ/2)2 + (ωL − ωcav + Ωm)2
(1.39)

This allows us to solve for the equilibrium phonon number for general ωL:

n =

(
(κ/2)2 + (ωL − ωcav − Ωm)2

(κ/2)2 + (ωL − ωcav + Ωm)2
− 1

)−1

(1.40)

=
(κ/2)2 + (ωL − ωcav + Ωm)2

(ωL − ωcav − Ωm)2 − (ωL − ωcav + Ωm)2
(1.41)

Now, let us look at the phonon count if we drive the system on the red-detuned sideband

with ωL = ωcav − Ωm:

n =

(
κ

4Ωm

)2

=

(
1

Qopt
ωcav
4Ωm

)2

(1.42)

This suggests the optical and mechanical qualities of the system will not prevent us from

reaching the ground state if we are in the sideband-resolved regime Ωm
κ
� 1. However, if

we are in the regime where Ωm
κ

is on the order of unity, then so will be the phonon number.

Additionally, the optimal ωL is not on top of the red-detuned sideband resonance. Let

us further red-detune our laser frequency with ωL = ωcav − Ωm − δω, giving us:

n =
(κ/2)2 + (δω)2

(2Ωm + δω)2 − (δω)2
(1.43)
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Extremizing this equation leads to:

nmin =
1

2

((
1 +

κ2

4Ω2
m

)1/2

− 1

)
(1.44)

with

δω =
√

(κ/2)2 + Ω2
m − Ωm (1.45)

= Ωm

((
1 +

κ2

4Ω2
m

)1/2

− 1

)
(1.46)

We see that Eq. 1.44 matches Eq. 1.42 in the Ωm
κ
� 1 limit, suggesting that driving

the system on top of the red-detuned sideband is near optimal when operating in the

sideband resolved regime. In the unresolved-sideband regime regime, when Ωm
κ
� 1, we

find:

nmin =
κ

4Ωm

� 1 (1.47)

which implies an nmin well above the ground state.

Rearranging Eq. 1.44 gives us:

(κ/2
Ωm

)2

= 4nmin(nmin + 1) (1.48)

With the substitution κ = ωcav/Qopt, this leads to:

Qopt =
1

4
√
nmin(nmin + 1)

ωcav
Ωm

(1.49)

which is an equation for the lower bound on the optical quality factor necessary to obtain

nmin phonons.

To determine the lower limit on Qopt necessary to realize ground state cooling, let us
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calculate when nmin = 1
2
. For this value, we would expect the mechanical oscillator to

be in the ground state approximately half of the time. From Eq. 1.49 we get:

Qopt =
1

2
√

3

ωL
Ωm

(1.50)

For λL = 1 µm light (≈ 300 THz) and a 20 MHz mechanical oscillator, this corresponds

to an optical Q-factor of ≈ 4.3 × 106 as a lower bound to cool to the quantum ground

state using sideband cooling (if thermal effects are ignored).

Of course, it is necessary to include the thermal environment when considering such

system. However, the significance of the thermal environment is predominantly deter-

mined by the temperature of that external environment and the degree to which the

optomechanical system is coupled to it. Since these effects are determined by experimen-

tal conditions, it is beyond the scope of this thesis. For in depth information on that

topic with respect to our group, see the thesis of F. M. Buters. [?].

1.1.5 Quantum Entanglement

On the other side, the blue-detuned sideband is useful for the generation of entangled

states between the optical cavity and the mechanical resonator. By driving the â†b̂†

resonance, we stimulate the downconversion of a photon with frequency ωL = ωcav +

Ωm to a photon with energy ~ωcav and a phonon with energy ~Ωm. This opens the

door for entanglement between multiple mechanical resonators using the ring cavity as

intermediary.

Consider two mechanical resonators b̂1, ω1 and b̂2, ω2, both coupled to the same optical

cavity with ωcav. The mechanical resonances are being driven by two distinct lasers ωL1

and ωL2. A fairly simple protocol can be followed to first get resonator 1 in its first-excited

state and resonator 2 in its ground state, then drive a mixing of the energy between the
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two resonator leading to an entangled state. The basic premise is as follows [15]:

1. Both mechanical resonators are cooled to their quantum ground state using the

side-band cooling technique discussed in Section 1.1.4. This is most simply done

with two long laser pulses of ωL1 = ωcav − ω1 and ωL2 = ωcav − ω2. This leads to

the initial state:

|ψ〉 = |0〉1|0〉2 (1.51)

2. A short pulse of ωL1 = ωcav + ω1 drives the â†b̂†1 side band, exciting resonator 1 to

its first excited state:

|ψ〉 = |1〉1|0〉2 (1.52)

3. Two red-detuned pulses are sent into the cavity, not directly on the sidebands yet

still satisfying ωL2−ωL1 = ω2−ω1. This creates a beat in the optical field at ω2−ω1,

creating an effective spring constant between the two mechanical resonators [16].

Thus, using the optical cavity as an intermediary, the two mechanical resonators

interact and state transfer occurs between them. This leads to the entangled state:

|ψ〉 = α|0〉1|1〉2 + β|1〉1|0〉2 (1.53)

4. A ‘readout’ pulse of ωL1 = ωcav − ω1 probes the optical cavity [17]. The â†b̂1

interaction is impossible if resonator 1 is in its ground state. As such, the average

readout power is determined by the average occupancy of resonator 1.
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(a) First generation. Mirror
mounted on AFM cantilever.
(Kleckner, 2006)[18]

(b) Second generation - Trampoline Resonators. DBR de-
posited fabricated on Si3N4 membrane, with the bottom of the
wafer etched out. (Kleckner, 2011)[19]

Figure 1.3: SEM images of early generation ‘mirror on a spring’ designs for optome-
chanical systems.

1.2 Free-Space Optomechanical Systems

Many approaches have been taken to the design and construction of systems capable of

demonstrating optomechanical coupling. One simple, yet effective, strategy is to replicate

the ‘movable mirror’ geometry studied in the previous section, depicted in Fig. 1.1 on

page 10. The critical detail of such designs is figuring out how to realize a mirror on a

mechanical oscillator. The first attempt of this strategy by the Bouwmeester Group at

UCSB took this quite literally, gluing a mirror on the underside of a commercial cantilever

designed for atomic force microscopy, shown in Fig. 1.3a. Using the sideband cooling

concepts described in Section 1.1.4, the fundamental mode temperature of the cantilever

was successfully cooled to 135± 15 mK from room temperature [18].

The next generation of devices improved the overall synergy of the system by fab-

ricating both the mechanical oscillator and the mirror from a stack of layers on single

wafer. A SiO2/Ta2O5 mirror is etched in the center of a Si3N4 ‘trampoline’ resonator, as
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(a) Current fabrication processes involve leaving
large masses on the underside of the samples to add
weight.

(b) A trampoline inside of a trampoline, which
isolates the inner mirror from mechanical wafer
modes.

Figure 1.4: Current trampoline resonators include added mass and extra stages of
isolation to improve performance.

shown in Fig. 1.3b. The entire bottom side of the wafer is removed using wet and dry

etch processes, allowing for the collection of light from the backside of the resonator.

The trampoline resonator design was further improved by Brian Pepper (Ph.D 2014)

and Matthew Weaver (Ph.D. 2018) through various modifications of the etch geometries,

and added features which increase isolation of the optomechanical system from the envi-

ronment. For example, as seen in Fig. 1.4, the trampoline resonators were nested within

larger trampoline resonators which served to shield the inner resonator from wafer modes

that were allowing cross-talk between resonators fabricated on the same sample [20].

Beyond our group at UC Santa Barbara, a wide variety of free-space designs exist

which incorporate the optomechanical interaction by having an optical cavity resonance

be dependent on the position of a mechanical oscillator. For a thorough review of modern

optomechanical designs, see the recent review by Aspelmeyer et al. (2014)[5].
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1.3 Integrated Optomechanics

Although many successful optomechanical systems have been developed around the

world, most of them suffer from complicated optical setups necessary to align and stabilize

them. Most optomechanical systems are an assembly of high-quality devices constructed

independently and brought together under very controlled conditions. These systems are

isolated from environmental elements in vacuum chambers and cryogenically cooled down

to milliKelvin temperatures, all while necessarily maintaining alignment of the component

parts. As each system is cooled toward cryogenic temperatures, thermal contraction of

the constituent materials modifies the alignment. Laser locking techniques are used to

prevent total misalignment, but this results in heating of the system and ultimately sets

a lower limit on the attainable environmental temperature.1

Such issues would be greatly reduced with a fully integrated platform, where the en-

tire optomechanical system is fabricated on a single wafer. The individual components,

fabricated in alignment, would remain aligned as the system is cooled to cryogenic tem-

peratures, even as the layers contract and the sample bends. Additionally, such designs

can be faster and cheaper to produce, and scalable as well. This expands the realm of

potential applications for optomechanical systems, and even opens to the door towards

industrialization.

To fabricate a fully integrated cavity optomechanical system, one must couple optical

waveguides to a resonant structure, and have the resonance of that structure be dependent

upon the position of a nanomechanical resonator. Such conditions are met by having a

nanomechanical resonator in close proximity to an optical ring resonator. Exploring this

system and evaluating its optomechanical coupling are covered in the remainder of this

chapter.

1For a full treatment of experimental complications, see the thesis of F. M. Buters [?].
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1.3.1 Optical Ring Resonators

Optical ring resonators are a natural choice for the basis of a photonic integrated

system with optomechanical coupling. Ring resonators functionally work on the same

principles that govern Fabry-Perot Interferometers, and follow analogous equations. The

fundamental difference is that rings resonate when the optical field satisfies periodic

boundary conditions around the ring, rather than Dirichlet boundary conditions at the

coupling regions (mirrors). To see this, we will look at the input-output theory for our

particular geometry in Section 1.3.1.1.

The behavior and functionality of ring resonators is typically determined by the num-

ber of waveguides coupled the ring. When only a single waveguide is coupled to it, the

ring resonator filters its resonance frequencies from the waveguide spectrum. The light

effectively gets trapped in the ring by constructive interference, and is eventually lost to

scattering. When a second waveguide is coupled to a ring resonator, the light absorbed

by the ring is not necessarily lost as in the previous case. Instead, the light can cou-

ple into the 2nd waveguide, where it can be collected for direct measurement or sent to

another photonic element in some greater system. In either case, the photon will have

information about the ring resonator imprinted on its quantum state, magnified by the

number of times it traveled around the ring. For this reason, our design employs ring

resonators coupled to two waveguides, sometimes referred to as a ‘double-bused’ ring

resonator, depicted in Fig. 1.5 on the next page.
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Figure 1.5: Mapping of amplitude and field definitions for characterizing properties
of double-bused ring resonators.

1.3.1.1 Input-Output Theory

To understand the spectrum of double-bused ring resonators, we use input-output

theory to calculate the interference effects and resonance properties. Referring to Fig.

1.5 above, we assign electric field amplitudes and phases to the waveguides of each cou-

pling region (an, bn, rn, sn), and we define transmission (tn, t
†
n) and absorption (κn, κ

†
n)

coefficients for the couplers. With the idea that |κn|2 + |tn|2 = 1, we can write the

coupling equations as: a2

r2

 =

 t1 κ1

−κ†1 t†1


a1

r1

 (1.54)

b2

s2

 =

 t2 κ2

−κ†2 t†2


b1

s1

 (1.55)
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The phase associated with the optical field propagating around the circumference of the

rings is given by:

θR =
2πneff
λ

2πR = 4π2neff
R

λ
(1.56)

where R is the radius of the ring, λ is the wavelength of the laser source, and neff is the

effective index of refraction of the mode. With this quantity in mind, we can relate the

fields inside the ring with the equations:

s1 = r2α
1/2
R exp(i

θR
2

) (1.57)

r1 = s2α
1/2
R exp(i

θR
2

) (1.58)

where αR is the loss coefficient and phase associated with a single round trip around the

ring. Using equations 1.54 - 1.58, we are able to create a self-consistent equation for the

field inside the ring:

r2 = r2t
†
1t
†
2αR exp(iθR)− κ†1a1 − t†1κ

†
2b1 (1.59)

and thus solve for r2:

r2 =
−κ†1a1 − t†1κ

†
2b1

1− t†1t
†
2αR exp(iθR)

(1.60)

This allows us to solve for the general solution of the output field b2:

b2 = b1t2 − κ†1κ2α
1/2
R exp(iθR/2)

a1 + b1t
†
1α

1/2
R exp(iθR/2)

1− t†1t
†
2αR exp(iθR)

(1.61)

It is generally the case that the coupling regions on both sides are identical. In such

cases, by defining t1 = t2 = t exp(iφt) and κ1 = κ2 = κ exp(iφκ), our general result can
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simplify to:

b2 = b1te
iφκ − κ2a1 + b1tα

1/2
R ei(θR/2−φt)

1− t2αRei(θR−2φt)
α

1/2
R eiθR/2 (1.62)

For the case in which only the input port is being excited (a1 6= 0, b1 = 0), Eq 1.62

reduces to:

b2 =
a1κ

2α
1/2
R

1− t2α2
1/2 exp(iθR − 2φt)

ei(θR/2+π) (1.63)

The power transferred from the input port (a1) to the drop port (b1) is then given by:

Pb
Pa

=
|b2|2

|a1|2
=

αRκ
4

1 + α2
Rt

4 − 2αRt2 cos(θR − 2φt)
(1.64)

=
αR(1− t2)2

1 + α2
Rt

4 − 2αRt2 cos(θR − 2φt)
(1.65)

=
αR(1− t2)2

(1− αRt2)2 + 2αRt2(1− cos(θR − 2φt))
(1.66)

where we used the normalization condition |κn|2 + |tn|2 = 1 to reduce the number of

parameters. Noting that αRt
2 approaches 1 for ideal systems, we see that the system

will resonate when θ − 2φt = 2πn for integer values of n. On resonance, the transferred

power is thus:

Pb
Pa

∣∣∣∣
res

= αR

(
1− t2

1− αRt2

)2

(1.67)

We see that in the low-loss limit (αR → 1), all of the power is transferred from the

input/output waveguide to the add/drop waveguide. Had t1 6= t2, this would have not

been the case.
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1.3.1.2 Resonance and Loss

Let us consider a small change in phase δθR away from the resonant condition. Taylor

expanding Eq. 1.66 around a resonance yields:

Pb
Pa
≈ αR(1− t2)2

(1− αRt2)2 + αRt2δθ2
R

(1.68)

which is a Lorentzian with a full-width at half maximum given by:

(
1

2
Γθ)

2 = αR
1− αRt2

αRt2
(1.69)

→ Γθ =
2(1− αRt2)√

αRt2
(1.70)

The quality factor of such a resonance is then given by:

Q =
θR
Γθ

=
2πR

λ/neff

π
√
αRt2

1− αRt2
(1.71)

To obtain the optical finesse (average number of round trips), we simply take the quality

factor (average number of oscillations) and divide it by the number of oscillations per

round trip. This gives us:

F = Qλ/neff
2πR

= π

√
αRt2

1− αRt2
(1.72)

At first glance, it may appear that the finesse is independent on the radius of the ring,

and the quality factor can be increased by simply making the ring larger. However, αR

will be of the form

αR = (αL)2πR/L (1.73)
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where L is some characteristic length associated with a certain amount of loss. For any

ultra-low loss system, αL will approach 1. With that in mind, let us for now write

α = 1 − ε where ε � 1. Using the binomial approximation, we can then simplify Eq.

1.72 as follows:

F|t=1 = π
(1− ε)πR/L

1− (1− ε)2πR/L
(1.74)

≈ π
1− πR

L
ε

2πR
L
ε

(1.75)

=
1

R

L

2ε
− π

2
(1.76)

≈ 1

2

L

R

1

1− α
(1.77)

We see the finesse scales inversely with ring radius. This leads to the internal quality

factor being independent of radius:

Q ≈ 2πR

λ/neff

1

2

L

R

1

1− α
(1.78)

= π
L

λ/neff

1

1− α
(1.79)

This means the upper bound of our Q factors is not determined by the radius of the ring,

as might have appeared at first glance of Eq. 1.71. Instead, it is primarily determined

by the loss per unit length of the waveguides which make it up.

Propagation loss of optical power is frequently characterized in units of [db/cm],

where 3db = 50% power loss. As such, light propagating through a waveguide with 0.3

db/cm will have its power reduced to 50% after 10 cm of waveguide. Generally, losses

on the order of 1 db/cm are considered good, 0.1 db/cm are considered high-quality, and

0.01 db/cm are considered ultra-high quality.
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Figure 1.6: Predicted internal quality factors of ring resonators as a function of prop-
agation loss (db/cm).

Figure 1.7: Simulated predictions of optical finesse as a function of ring radius.
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Figure 1.8: Schematic of an integrated optomechanical system, coupling a nanobeam
to an optical ring resonator both fabricated from the same layer of Si3N4.

1.3.2 Adding an Optomechanical Interaction

By releasing a nanomechanical resonator at the outer edge of an optical ring resonator,

as depicted in Fig. 1.8, we generate the optomechanical Hamiltonian derived in Section

1.1.2. Although we are not changing the physical length of the ring resonator, we are

changing its effective length by modifying the effective index of the optical mode near

the region of optomechanical coupling. In this way, the resonant frequency of the ring

resonator is dependent upon the position of the released mechanical structure.

The ring resonator is coupled to two optical waveguides, diametrically opposed. One

waveguide is fed by a laser source and functions as the input of the system. The other

waveguide functions as the output of the system, carrying only light that had been ab-

sorbed by the ring and interacted with the nanomechanical resonator. Both the ring and

bridge are fabricated from the same Si3N4 layer, with the bridge oscillating horizontally

(in the wafer plane) to within close proximity of the outer radius of the ring.

As shown in Section 1.1.2, the strength of the optomechanical coupling is determined

by G = ∂
∂x
ωcav(x), the optical frequency shift in the resonator per unit displacement of

the mechanical oscillator. In the case of the movable mirror, calculating this coupling
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term required simple geometric arguments. However, estimating it for this photonic

integrated system is considerably more involved. The proximity of the nanobeam to the

optical ring increases the effective index of the optical modes in that region of the ring.

Consequently, the movement of the nanobeam causes a predictable change in the ring’s

resonant frequencies.

Let nx(θ) be the effective index of the optical mode as a function of angle around the

ring, for a distance x between the ring and the nanobeam. For most the ring, nx(θ) = n∞,

but as θ sweeps over the optomechanical region nx(θ) increases in value. The phase shift

induced by the presence of the mechanical resonator is given by:

φOM(x) =
2π

λ

∫ θ+

θ−

(
nx(θ)− n∞

)
Rdθ (1.80)

where we have introduced θ− and θ+ to restrict our integral to the region of the ring

non–negligibly effected by the presence of the nanobeam.

With the knowledge that a phase accumulation of 2π will shift the phase from one

resonance to the other, we know that the resulting change in frequency from such a phase

shift is given by:

δωring(x) = ∆ωFSR
φOM(x)

2π
(1.81)

=
c/neff
2πR

2πR

λ

∫ θ+

θ−

(
nx(θ)− n∞

)
dθ (1.82)

=
c

λneff

∫ θ+

θ−

(
nx(θ)− n∞

)
dθ (1.83)

=
ωcav
2π

1

neff

∫ θ+

θ−

(
nx(θ)− n∞

)
dθ (1.84)

Unlike the Fabry-Perot optomechanical systems, we do not find a closed-form solution

for the optomechanical coupling. Instead δωring(x) must be obtained from simulations of
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the device geometry and numercal integration of the results. By comparing the results

to the change mechanical resonator’s position with respect to the ring, we are able to

approximate the frequency shift per displacement, G ≈ ∂
∂x
δωring(x). These simulations

and calculations are covered in Section. 2.3
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Chapter 2

Experimental Design and Simulation

Much work has already been done in fabricating ultra-high quality optical ring resonators.

The John Bowers Group at UC Santa Barbara produces optical ring resonators with

quality factors approaching 108 [21]. To accomplish this, they utilize Si3N4 deposited

by Low Pressure Chemical Vapor Deposition (LPCVD) for the waveguide cores and

SiO2 for the embedding material. This latter detail is significant for the fabrication of

optomechanical devices, as SiO2 can be isotropically etched using HF solutions or vapor,

with high selectivity with respect to LPCVD Si3N4. This gives us a method by which we

are able to release freestanding mechanical nanobeams in the proximity of optical ring

resonators, as long as they are fabricated from LPCVD Si3N4 deposited on SiO2.

The original plan was to construct a mechanical nanobeam above Si3N4 ring resonators

previously fabricated by the Bowers Group. However, many complications pushed us

away from this layer-by-layer strategy. We moved toward a design in which the optical

ring resonator and the mechanical nanobeam are both fabricated from the same layer

of stoichiometric LPCVD Si3N4. For this to work, the thickness of the LPCVD Si3N4

was increased from 60 nm to 400 nm, to ensure that the primary mode of oscillation of

the mechanical nanobeam is in the wafer plane. This also increases confinement of the
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optical mode within the waveguide core, impacting the optical behavior in some positive

and negative ways:

• The ring radii are able to get significantly smaller due to the sharp decrease in

bending loss. Although the previous ring radii were on the order of 10 mm, 400 nm

thick waveguides can approach radii as small as 12 µm before the bending loss is

non-negligible with respect to other typical loss mechanisms. As derived in Eq.

1.77, the optical finesse scales inversely with radius. Reducing the radius by a

factor of 103 will increase the optical finesse by a factor of 103. A high finesse

implies stronger optomechanical coupling relative to optical loss.

• The SiO2 cladding layer becomes less critical with stronger optical confinement

to the waveguide core. We thus forego cladding the waveguides near the optical

ring resonators and worry much less about reflections generated near where the

nanobeam is released by undercutting.

• Increased confinement corresponds directly to stronger optical field density near

the left and right edges of the waveguide core. This suggests a larger fraction of

photons are interacting with waveguide sidewalls on average. Consequently, optical

loss from sidewall roughness will increase.

• With lensed fibers we are unable to focus the laser light source to a spot size smaller

than the waveguide mode size. Insertion losses increase.
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In this chapter, we start with 2 inherently fixed parameters for our optomechanical

devices:

1. Si3N4 waveguide height hWG = 400 nm: High-stress LPCVD Si3N4 layers

are known to suffer critical failure at thicknesses >400 nm. In short, the tensile

stress of the Si3N4 becomes so strong that it rips the material itself apart. There is

significant research on techniques that would allow for thicker layers of Si3N4 [22],

but for now we stick with the safe upper limit of 400 nm.

2. Laser Wavelength λL = 1060± 10 nm: We use a Sacher Lasertechnik brand,

Litmann class tunable diode laser, model TEC-500-1060-030. This gives us access to

wavelengths in the range 990–1075 nm, with operation optimized for 1060 nm. With

that in mind, we consider the laser wavelength to span the range λL = 1060 ± 10

nm when performing calculations and simulations.

Using these parameters as a starting point, we determine the appropriate parameter

space to explore with our fabrication process. The parameters of interest are:

• Width of ring waveguide: Simulations of mode profiles are used to determine

that 400 nm thick Si3N4 uncladded waveguides need to be at least 400 nm wide

to support a single mode (Section 2.1.2). The actual chosen minimum width for

the mask design is 600 nm, to be on the conservative side. Calculations indicate

that waveguide thickness >1200 nm lead to weak optomechanical coupling (Section

2.3.1.4).

• Radius of ring waveguide: Simulations indicate bending loss becomes non-

negligible when the ring radius is on the order of 12 µm (Section 2.1.3). We choose

16 µm as the minimum ring radius for our mask design.
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• Thickness of SiO2 Underlayer: Simulations indicate substrate absorption loss

starts becoming an issue when the wet oxide underlayer is smaller than 2 µm (Sec-

tion 2.1.4). We chose a wet oxide thickness of 3 µm.

• Coupling Split: This refers to the distance between the optical ring resonators

and the straight waveguides in the evanescent coupling regions. Estimations of the

coupling amplitudes and correspondingQ-factors are done using FDM simulation

(Section 2.1.5). However, the actual limits are determined by experimental param-

eters. The minimum value, 300 nm, is set by the fabrication process. Attempting

stronger coupling results in the straight waveguide and ring waveguide etch geome-

tries influencing each other. The maximum value is set by the expected optical

quality factors. Our coupling splits are between 300 and 600 nm.

• Properties of Si3N4 Nanobeams: The engineering physics of the nanobeams

is covered in Section 2.2. The dependency of the optomechanical coupling on the

nanobeam dimensions are explored in Section 2.3.1.2.
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2.1 Photonic Simulations

The PhotonD software suites FIMMWAVE and OMNISIM are used to simulate the

various optical properties of our photonic integrated system in pseudo-3D (2D + ẑ). For

our simulations, we restrict ourselves to two different solvers, primarily based on how

well each is capable of handling perfectly-matched layers (PMLs). PMLs are material

layers placed at the outer edges of the simulation space to force a rapid decay of fields

that propagate into them. They are capable of doing this through a ‘complex coordinate

stretching’ technique that effectively gives the outer layer real and imaginary component

to its thickness. The imaginary portion of the thickness provides a boundary condition

capable of satisfying reflectionless absorption of radiating fields. The two solvers we use

are:

• Film-Mode Matching (FMM) is a semi-analytic algorithm based on using thin

rectangular layers as meshing for the simulation space. As such, it is capable of

producing fast and accurate calculations for specifically rectangular geometries. It

is capable of handling PMLS on the side boundaries, but is not suited for PMLs

on the top or bottom. This makes them great for simulating bending loss which

primarily radiates along the wafer plane, but ill-suited for simulating absorption

into the substrate.

• Finite-Difference Method (FDM) is capable of dealing with waveguides of ar-

bitrary cross-sectional geometry, made of both real and lossy materials. Unlike

FMM, it is capable of dealing with PMLs on all 4 sides, and thus is the necessary

solver to use when calculating absorption loss into the substrate. Due to its robust-

ness, computation time is generally longer, but the results are more likely to be

devoid of computational artifacts. When applicable, it is recommended that FDM

be used to check the results of using FMM.
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2.1.1 Optical Mode Simulations

A majority of our design is determined by simulating the optical modes of waveguides

given their cross-sectional geometry and curvature, and the frequency of light propagating

in them. From the calculated modes, we can extract the mode’s effective index, TE/TM

characteristics, and various forms of loss.

As a demonstration, let us investigate the mode differences between 60 nm and 400 nm

thick Si3N4 waveguides, both 1200 nm wide and fully surrounded by SiO2. We use the

complex FMM mode solver in FIMMWAVE, with the complex option enabled for loss

calculations, to obtain the initial results shown in the Fig. 2.1. We find that thin (60 nm)

waveguides are only able to support a single transverse-electric (TE) mode, and zero

transverse-magnetic (TM) modes. The thick (400 nm) waveguides are able to support 3

TE and 3 TM modes. Comparing the TE1 modes of the two (Fig. 2.1a and 2.1b), we

observe that a significant portion of the mode of the thin waveguide is found outside of

the waveguide geometry (highlighted by a white line). On the contrary, the TE1 mode

of the thick waveguide is predominantly localized inside of the waveguide geometry.

Now, let us match the geometry to a ring resonator by adding a radius of curvature.

Fig. 2.2 shows the resulting cross-sectional fields when a 100 µm radius of curvature is

(a) TE1, 60 nm waveguide (b) TE1, 400 nm waveguide (c) TE3, 400 nm waveguide

Figure 2.1: Optical mode simulations obtained using FMM mode solver in
FIMMWAVE. Each waveguide is 1200 nm wide, with varying height, and composed
of Si3N4 surrounded by SiO2
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(a) TE1, 60 nm waveguide with 100 µm
radius of curvature. Measured loss: 900
db/cm

(b) TE1, 400 nm waveguide with 100 µm
radius of curvature. No bending loss mea-
sured (< 10−11 db/cm).

Figure 2.2: FIMMWAVE simulations of bent waveguides representative of optical
ring resonators. A PML is necessary on the right side of the waveguide to avoid
boundary reflections from the mode distortion to that side; they also allow for direct
measurement of bending loss.

enabled. The resulting distortion in the optical mode of the thin waveguide is strongly

apparent. By adding a PML to the right-side geometry to absorb the radiation lost in

that direction, we find that the bending loss of the thin waveguide is approximately 900

db/cm. The thick waveguide has no apparent distortion from the implementation of the

100 µm radius of curvature. Not only that, but no detectable bending loss was measured

by the PMLs at the boundary, indicating that it was below the software threshold of 10−11

db/cm. As we will further elaborate on in Section 2.1.3, these thick rings are therefore

capable of getting considerably smaller before bending loss becomes non-negligible.

By building these simulations entirely by parameter definitions, we are able to sweep

across the prospective parameter space of our ring resonators to determine which range

of parameters to investigate experimentally with our fabricated devices.

43



Experimental Design and Simulation Chapter 2

Figure 2.3: Effective index neff for Si3N4 waveguides of varying widths. Caculations
are performed using the FFM mode solver, with PMLs placed on both sides of the
simulation space.

2.1.2 Waveguide Width

Figure 2.3 shows the TE and TM mode characteristics for 400 nm thick Si3N4 waveg-

uides fabricated on top of SiO2, with air cladding. We see that the waveguides are able to

support a single mode down to about 400 nm wide. The simulations predict they become

multimode when the width is on the order of 900 nm.

As the data shows, there is difference in the neff between the TE1 and TE2 modes.

This leads to a difference in the the free spectral ranges of their resonances within the

ring, and thus them having significantly different resonant frequencies. With this in mind,

overlapping resonances are possible. We chose to fabricate a mixture of single-mode and

double-mode rings, ranging in width from 600 nm to 1200 nm.
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Figure 2.4: Comparison of simulated bending loss for the modes of 400 nm× 800 nm
Si3N4 waveguides, obtained using the FMM mode solver in FIMMWAVE

2.1.3 Bending Loss

Figure 2.4 shows bending loss simulations for 400 nm× 800 nm Si3N4 waveguide cores

on SiO2, both with and without SiO2 cladding. We observe:

• For both cladded and uncladded waveguides, the TM modes are more sensitive to

bending loss than TE modes.

• Although the presence of cladding does seem to effect the bending loss, the differ-

ences in the results are not significant.

• If we consider propagation loss from bending to be acceptable at 0.01 db/cm, then

the critical radius of curvature is around 11 µm for TE modes and 14 µm for TM

modes.

With all of this taken into account, we chose to focus on rings with a minimum radius

of 16 µm (with respect to the outer edge). According to the simulations, this corresponds

to <10−5 db/cm for the TE modes, and on the order of 10−3 for the TM modes.
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Figure 2.5: Simulated absorption loss for a 800 nm wide Si3N4 waveguide, as a function
of thickness of the SiO2 layer between the Si substrate and Si3N4.

2.1.4 Thickness of Thermal SiO2 Base Layer

Due to the high index of refraction of pure silicon (n ≈ 3.67 at 1060 nm), any portion

of the mode that propagates in silicon substrate is lost at a rapid rate. It is necessary

for us to use the complex FDM solver in FIMMWAVE, which allows us to place PMLs

at the bottom boundary where we would naturally expect the loss to propagate.1

Substrate absorption loss was studied for both cladded and uncladded waveguides.

The significant results are shown in Fig. 2.5. The uncladded waveguides exhibit stronger

substrate loss than the cladded waveguides fully encapsulated in SiO2. We also see that

the TM modes are more lossy than the TE modes by an order of magnitude.

1Initial simulations using the FMM solver predicted acceptable losses with an SiO2 layer of 500 nm
between the 400 nm LPCVD Si3N4 layer and the Si substrate. This seemed reasonable given the strong
confinement of the mode and that the distance from Si substrate to the Si3N4/SiO2 interface was 2.5
times the distance from the center of the waveguide to its bottom edge. However, these predictions were
flawed due to the inability for FFM to deal with PML on the bottom boundary of the simulation space.
As a result, non-functional rings were fabricated with an undercladding thickness of 500 nm. It took
some time to realize that this undercladding thickness was the cause of detrimental losses.
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Our original intent behind having a thin SiO2 layer between the Si substrate and the

LPCVD Si3N4 was to allow for simple anodic bonding between our sample and Borofloat-

33 glass (Chapter 4). For this to work, the total thickness of both the SiO2 and Si3N4

would have needed to be below 1 µm. These simulations indicate that such a target

is impossible. As there is no benefit to using an intermediate value, we chose 3 µm as

the thickness of the thermal SiO2 layer. If there were reason to do so, the simulations

indicate that one might achieve good results with a 2 µm thick thermal oxide layer, for

most applications.
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Figure 2.6: Simulation of a full ring resonator geometry in OMNISIM, near resonance.
The amplitude of calculated Hy fields, shown here, are good for visually discerning
ring absorption for TE modes.

2.1.5 Full Ring Simulation (OMNISIM)

Simulation of just the coupling regions of high-Q single-mode ring resonators provided

to be a challenging task. When using FIMMPROP2 to simulate the coupling regions that

would correspond to high Q-devices, more light appeared to be lost from the simulation

than made it into the ring regions. Attempts at normalzing the results were attempted

with the help of Photon-D support, but nothing sensible seemed to come out of it. More

success was found using the software module OMNISIM to simulate full ring geometries.

However, due to the scaling of computational complexity with the size of the rings3,

2the propagation module integrated with FIMMWAVE’s FDM solver
3From the manual: 10x change in geometry spacing will typically result in a 1,000x increase in

memory use and a 10,000x increase in calculation time
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(a) After an FDTD simulation, OMNISIM al-
lows for the sweeping of frequencies for drop and
throughput ports

(b) Longer scans can be useful for determining the
relative effect changes in parameter will have on the
FSR.

Figure 2.7: Sample simulations obtained using OMNISIM, after an initial FDTD
simulation of the geometry.

simulations were limited to smaller rings (R < 20 µm).

OMNISIM utilizes a number of solvers for different uses. For the simulation of reso-

nance behavior in optical rings, one must perform finite-difference time domain (FDTD)

simulations. FDTD works by using a ‘leapfrog’ algorithm to alternately evolve the elec-

tric and magnetic field vectors using Maxwell’s equations until convergence to a steady

state solution. Using the FDTD solver, we are also able to obtain estimations of coupling

Qs of resonances, as well the free-spectral ranges. As shown in Fig. 2.7a, we are able to

detect resonances at either the throughput port or the drop ports.

The primary goal of using the software was to estimate the expected coupling Q for

our smaller ring resonators. The results from simulating 16 µm radius rings is shown on

the next page. Based on these results, optical coupling distances in the range of 300–600

nm should suffice for characterization until measured Qopt reach the 106 regime.
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Figure 2.8: Results demonstrating the effect of changing the coupling split on both
the optical Q and resonance frequency. The latter is due to a change in the phase of
the coupler. All simulations were for a ring of radius 16 µm, with a width of 800 nm.
Data is plotted below.

Figure 2.9: Plot of the simulated Q as a function of the separation between waveguide
and ring resonator. The data matches the fit to an exponential very well, with the
exception of the data point at 450 nm.
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2.2 Mechanical Calculations and Simulations

Our goal is to realize a Si3N4 nanomechanical resonator within 100 nm of an optical

ring resonator, using a combination of lithography and dry etching. However, such critical

dimensions are not obtainable using stepper lithography, and would be far too expensive

to implement on full wafer scale using electron-beam lithography. Even then, EBL would

still be unable to obtain critical dimensions below 50 nm, and loading issues during

the dry etching process would likely yield distorted geometries. Instead, we fabricate

deformed ‘snap-release’ nanobeams that swerve around the ring resonators. Initially,

these nanobeams are approximately 500 nm from the ring resonators at the point of

closest approach. When the nanobeams are released by using vapor HF to remove the

SiO2, the tensile stress in the material causes the nanobeam to straighten and ‘snap’

toward the optical ring resonator, ideally reaching a new equilibrium position at close

proximity to the outer edge of the ring waveguide.

In this section, we cover the modeling and simulation of ‘snap-release’ nanobeams.

First, we discuss the underlying physics behind rectangular nanomechanical resonators,

with emphasis on the effects of tensile stress in the material. Next, we predict the effects

of the ‘snap-release’ mechanism, and compare the results to FEM simulations obtained

using COMSOL Multiphysics. Finally, we look at the predicted sources of loss to predict

the quality factors of the nanomechanical resonance.
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2.2.1 Properties of Si3N4 Nanobeams with Tensile Stress

The physics of doubly-clamped beams is well explained through Euler-Bernouli beam

theory, which is considered valid when the beam width is small with respect to the

wavelengths of the modes being considered.4 The governing differential equation for 1D

oscillation of a long/thin beam of uniform cross section is given by:

EI
∂4

∂x4
z(x, t)− σA ∂2

∂x2
z(x, t) + ρA

∂2

∂t2
z(x, t) = 0 (2.1)

where E, ρ, and σ are the Young’s Modulus, density, and tensile stress of the nanobeam

material, and A and I are cross-sectional area and cross-sectional inertia of the nanobeam

geometry. Reported literature values for the Young’s Modulus E of LPCVD Si3N4 span

the range 160-380 GPa, depending on the conditions of the deposition [23, 24, 25, 26,

27, 28]. The value of 280 GPa is chosen for calculations, as an average from the most

relatable sources [26, 27]. A density value of ρ = 3184 kg/m3 is initially assumed [25],

though deviation is possible due to potential variance in hydrogen content in the films

from the source material.

If we assume an oscillatory function of the form z(x, t) = u(x) exp(iωt) and any force

is time independent, we get:

EI
∂4

∂x4
u(x)− σA ∂2

∂x2
u(x)− ρAω2 u(x) = 0 (2.2)

4When the beam width and mode wavelength are on the same order, Timshenko beam theory should
be used.
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2.2.1.1 General Solution to Euler-Bernouli Equation

The general solution to Eq. 2.2, for a characteristic length L, is given by:5

uj(x) =
1

Kj

[
Aj sin

(
αj
x

L

)
+Bj cos

(
αj
x

L

)
+Cj sinh

(
βj
x

L

)
+Dj cosh

(
βj
x

L

)]
(2.3)

αj =
L√
2

(
σA

EI

)1/2
[(

1 +
4ρEω2

j

σ2

I

A

)1/2

− 1

]1/2

(2.4)

βj =
L√
2

(
σA

EI

)1/2
[(

1 +
4ρEω2

j

σ2

I

A

)1/2

+ 1

]1/2

(2.5)

where Kj is chosen such that ui(x) has a maximum value of 1. The choice to normalize

ui(x) in such a manner is related to equipartition theory [29]. The boundary conditions

for a doubly-clamped beam is are u(x) = 0 and ∂
∂x
u(x) = 0 at x = 0 and x = L. Imposing

these on the general solution:

1. Setting u(0) = 0 leads directly to Bj = −Dj.

2. Setting ∂
∂x
u(x) = 0 at x = 0 leads to αjAj + βjCj = 0.

3. Setting u(L) = 0 then leads to:

Dj

[
cosh(βj)− cos(αj)

]
= −Cj

[
sinh(βj)−

βj
αj

sin(αj)
]

(2.6)

4. With the final condition, ∂
∂x
u(x) = 0 at x = L, we get:

Cj
[

cosh(βj)− cos(αj)
]

= −Dj

[βj
αj

sinh(βj) + sin(αj)
]

(2.7)

5Source: Mathematica, with some artistic freedom added
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Since we still have the normalization factor Kj to take care of the overall scaling, Eq.

2.6 can be used to set Cj and Dj. This gives us the overall solution

uj(x) =
1

Kj

(
Cj

[
βj
αj

sin

(
αj
x

L

)
− sinh

(
βj
x

L

)]
+Dj

[
cosh

(
βj
x

L

)
− cos

(
αj
x

L

)])
(2.8)

Cj = cosh(βj)− cos(αj) (2.9)

Dj = sinh(βj)−
βj
αj

sin(αj) (2.10)

From the last boundary condition we now get:

2(1− cos(αj) cosh(βj)) =
α2
j − β2

j

αjβj
sin(αj) sinh(βj) (2.11)

which simplifies to

cos(αj) cosh(βj)− 1 =

(
σ2

4ρEω2
j

A

I

)1/2

sin(αj) sinh(βj) (2.12)

which is a transcendental equation that can be solved for αj, noting that

β2
j = α2

j + L2

(
σA

EI

)
(2.13)

Solving for ωj gives the eigenfrequencies of each mode:

fj =
ωj
2π

=
α2
j

2πL2

[
EI

ρA

(
1 +

L2σA

α2
jEI

)]1/2

(2.14)

Both Eq. 2.2 and Eq. 2.14 have two different limits. However, the frequency equation

reveals that the separation between these limits is dependent upon the mode parameter

αj. When the mode parameter αj ∼ w
L

√
E
σ

one loses the ability to separate out these
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regimes for even high-stress materials. Nevertheless, we are predominantly interested in

low mode numbers, so for now we assume αj to be on the order of unity. As such, we are

able to isolate the two limits as such:

• Low-Stress Limit
[
w
L
�
√

E
σ

]
: When the nanobeam width to length ratio is

sufficiently large with respect to the tensile stress, the physics matches that of a

rigid beam.

• High-Stress Limit
[
L
w
�
√

E
σ

]
: When the bar is sufficiently long enough and

stress is high enough, the physics matches that of a 1-D nanostring with stress σ.

Let us now examine these two regimes a bit more closely:

2.2.1.2 Low-Stress Solutions

In the low-stress limit (σ → 0), the solution reduces to:

uj(x) =
1

Kj

(
Aj

[
cosh

(
αj
x

L

)
−cos

(
αj
x

L

)]
−Bj

[
sinh

(
αj
x

L

)
−sin

(
αj
x

L

)])
(2.15)

Aj = sinh(αj)− sin(αj) (2.16)

Bj = cosh(αj)− cos(αj) (2.17)

The frequency of the jth mode is given by:

fj,LS =
α2
j

2πL2

(
EI

ρA

)1/2

(2.18)

Each unitless mode parameter αj is the jth root of the transcendental equation:

cos(αj) cosh(αj)− 1 = 0 (2.19)
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whose values are give by Table 2.1. As can be seen, the values of αj are well approximated

by π(j + 1
2
).

Table 2.1: Values of αj for low-stress, doubly-clamped beams

index j αj π(i+ 1
2
)

1 4.7300 4.7124

2 7.8532 7.8540

3 10.9956 10.9956

4 14.1372 14.1372

The fundamental mode is shown in Fig. 2.10, which compares it to the typical

sinusoidal mode shape associated with strings and high-stress nanobeams.

Figure 2.10: Comparison between fundamental mode shapes of low-stress nanobeams
and nanostrings.
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2.2.1.3 High-Stress Solutions

Let us now consider a nanobeam under high stress. The eigenfrequencies ωj are

approximated by:

ωj,HS =
αj
L

(σ
ρ

)1/2

(2.20)

which allows our transcendental function to simplify to:

cos(αj) cosh(βj)− 1 =

(
σA

EI

L2

4α2
j

)1/2

sin(αj) sinh(βj) (2.21)

By defining the length scale:

Ls =

√
EI

σA
(2.22)

we can write this equation as:

cos(αj) cosh(βj)− 1 =
L

2αjLs
sin(αj) sinh(βj) (2.23)

The physical significance of Ls will be clear shortly.

By looking at Eq. 2.13 and knowing that αj ∼ jπ, βj will be large, and sinh(βj) and

cosh(βj) will both be exponentially large and converge to the same value.6 This leads to

a ‘selection’ of the terms they are attached to (all other terms become negligible):

cos(αj) =
L

2αjLs
sin(αj) (2.24)

→ tan(αj) = 2αj
Ls
L

(2.25)

Seeing that the roots are going to be slightly larger than π, we expand out the tangent

6For typical values of nanobeams, we find βj ∼ 50, meaning the sinh(βj) and cosh(βj) are on the
order of e25.
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to first order:

αj − jπ = 2αj
Ls
L

(2.26)

which allows us to solve for the first order correction to αj in the high-stress limit:

αj =
jπ

1− 2Ls
L

(2.27)

For a rectangular nanobeam, I = 1
12
Aw2, giving:

Ls = w

√
E

12σ
(2.28)

which yields:

αj = jπ

[
1−

(w
L

)√ E

3σ

]−1

(2.29)

and leads to the corrected high-stress eigenfrequencies:

fj =
j

2L

(σ
ρ

)1/2
[

1−
(w
L

)√ E

3σ

]−1

(2.30)

This first-order correction can be ignored when L� 2Ls. For E = 280 GPa and σ = 1140

MPa, this corresponds to approximately to L � 10w. Since our nanobeams are on the

order of 100 nm wide and 20 µm long, we cannot.

To figure out the physical significance of Ls, we simply need to look at the corre-

sponding uj and frequencies. As discussed before, the ratio βj/αj is going to be large.

As such, the sin(αj
x
L

) term will determine the overall form, with the remaining terms

there basically to ensure the boundary conditions are satisfied and preserve symmetry.
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This leads to:7

uj,HS(x) ∼ sin
(
αj
x

L

)
(2.31)

∼ sin(jπ
x− Ls
L− 2Ls

) (2.32)

with the frequencies:

fj,HS =
ωj,HS

2π
=

j

2(L− 2Ls)

(σ
ρ

)1/2

(2.33)

which are both the profile and frequencies for a 1-D nanostring whose length is given by

L− 2Ls.

The origin of this effective reduction in length can be traced back to the application of

clamped boundary conditions, ∂
∂x
u(x) = 0 at x = 0 and x = L. Without these conditions

the material would form a kink at the boundary, which is unphysical. That being said,

it is unwise to take this interpretation too far and attempt to say that the nanobeam

can be modeled in such a manner. It is merely that the high-energy, oscillatory behavior

is restricted to the length L − 2Ls, which is what determines the shape and frequency.

As will be discussed later in Section 2.2.2.1, it is bending near the clamping region that

determines damping characteristics of standard-geometry rectangular nanomechanical

resonators.

Interestingly enough, this value can be obtained almost straight from Eq. 2.2 using

a physical argument. By normalizing our position coordinates to the length of the beam

through x̃ = x
L

, we get:

EI

L4

∂4

∂x̃4
u(x̃)− σA

L2

∂2

∂x̃2
u(x̃)− ρAω2 u(x̃) = F (x̃) (2.34)

7If you notice, we shift over the sin function by Ls. This shift inherently comes from the small
amplitude cos(αj

x
L ) term, which we are reducing down to a phase shift.
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Examining the first two terms, we see that EI
L4 > σA

L2 is when the system dynamics are

going to be determined by the first term, which corresponds to the rigidity of the material.

That is, the system must appear locally rigid over the length scales

Ls =

√
EI

σA
(2.35)

Thus, considering the clamped boundary condition, the nanobeam cannot ‘kink’ over a

shorter length scale than Ls. The rigidity of the boundary condition protrudes a distance

Ls before the material is able to contribute to the oscilliatory dynamics.

Fig. 2.11 shows the calculated mode profiles obtained with and without the correction,

in comparison to FEM simulation results obtained using COMSOL (covered in Section

2.2.1.5). In Section 2.2.1.5, further simulations will be performed as a function of stress,

and the results will be shown to be in strong agreement with the fundamental mode.

For higher order modes, the agreement starts to deviate as the effective Ls appears to

increase, perhaps suggesting that the material has a higher impedence of sorts to high

frequency motion.

Figure 2.11: FEM
simulations compared
to the standard 1D
nanostring approxima-
tion and the first-order
corrected equations.

Dimensions
L = 20 µm
w = 100 nm
h = 400 nm
σ = 1140
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As for the ‘rigid’ behavior observed near the clamping points, we can perform similar

asymptotic analysis to obtain analytic solutions near the end points. First, we note that

from Eq. 2.13, we can approximate:

βj ≈
L

Ls
(2.36)

Now, by singling out the terms of the general solution that are attached to a cosh(βj) or

sinh(βj), we get:

uj(x)clamp = sin
(
αj
x− Ls
L

)
+ αj

L

Ls
exp

(
− x

Ls

)
(2.37)

≈ αj
Ls
L

[
x− Ls
Ls

+ exp
(
− x

Ls

)]
(2.38)

which strongly agrees with FEM simulations for the fundamental mode, as seen in Fig.

2.12. The two results are also compared to the model of Schmid et al. (2011)[30], a

highly cited manuscript which models the clamping region as a cantilever under a load

determined by the tensile stress. Although this model probably demonstrates stronger

Figure 2.12: Comparison of mode shapes obtained for clamping regions using FEM
simulations and analytic models.
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agreement for Ls � L (for which the model is designed), here we see the FEM simulations

diverge significantly for our expected geometries. These models will be more strongly

compared in Section 2.2.2.1.

Following the form of Eq. 2.37, we can encompass both clamping regions and the

central sinusoidal form with the general solution:

uj(x) = sin
(
αj
x− Ls
L

)
+ αj

Ls
L

(
exp(− x

Ls
) + exp(−L− x

Ls
)
)

(2.39)

A comparison of this solution for j = 1 and and FEM simulations are presented on the

next page, in Figs. 2.13 and 2.14.

Using the first-order corrected αj allows us to write the full general solutions for the

frequency and mode shape conveniently:

The first-order corrected, high-stress solutions for a nanomechanical resonator of

cross-sectional area A and cross-sectional inertia I, and material properties of Young’s

Modulus E, density ρ, and tensile stress σ, can be written in terms of the length of

the nanomechanical L and the length scale:

Ls =

√
EI

σA
(2.22)

The normalized mode shapes uj are given by:

uj(x) = sin
(
jπ

x− Ls
L− 2Ls

)
+ jπ

Ls
L− 2Ls

[
exp

(
− x

Ls

)
+ exp

(
− L− x

Ls

)]
(2.40)

with eigenfrequencies:

fj =
j

2(L− 2Ls)

(σ
ρ

)1/2

(2.41)
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Figure 2.13: Comparison between FEM simulations and the first-order corrected eigen-
mode given by Eq. 2.40. See Fig. 2.14 below for residual plot.

Figure 2.14: Residual Plot for Fig. 2.13. We see that the analytic equation agrees
within 0.05% everywhere along the graph, maxmimally near the clamping region. The
simulations appeared to produce a small, yet non-zero, slope at the clamping point.
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2.2.1.4 Tensile Stress in LPCVD Si3N4 ‘Snap-Release’ Nanobeams

Tensile stress in the LPCVD Si3N4 layer is a result of the differences in the coefficients

of thermal expansion (α) between the Si3N4 and the Si substrate. LPCVD Si3N4 is

typically deposited at temperatures in excess of 800 ◦C. When the wafer cools, the Si3N4

layer attempts to contract by αSi3N4
= 3.4 µm

m
per K[31]. However, it is unable to do

so since the 500 µm Si substrate ultimately determines the contraction distance, with its

αSi = 2.69 µm
m

per K[32]. It is only when SiO2 is removed by an undercutting process

that the Si3N4 is free to contract.

When a straight nanobeam of length l is released, the Si3N4 material will desire to

contract by an amount δl, but will not be able to physically do so since it is still anchored

at its endpoints. Instead, the resulting strain δl
l

results in a stress σ give by:

σ = E
δl

l
(2.42)

where E is Young’s Modulus of the material. Our 400 nm LPCVD Si3N4 is provided by

Rogue Valley Microdevices (RVM), which has internally characterized the stress to be

approximately 1140± 15 MPa (personal communications). This corresponds to a strain

of δl
l

= 1140 MPa
280 GPa

≈ 0.0041, or about 1 in 250.

The high strain of LPCVD Si3N4 is vital in its ability to obtain high-quality nanome-

chanical resonators. However, we propose that we can sacrifice a fraction of this strain

to create an optomechanical interaction strong enough to more than justify the expected

change in mechanical quality factors. This is the subject of the remainder of this chapter.
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Let us now consider the design of our ‘snap-release’ nanobeams, and examine how

the change in shape impacts the final stress of the released nanobeam. Consider an

unreleased Si3N4 nanobeam constructed from 4 circle arcs of equal length and radius of

curvature Rcurv, connected in the following way:

such that the endpoint to endpoint distance of the nanobeam is L, but the total length of

the curved structure is L+δL, and the center of the beam is displaced by a small distance

δx. When the SiO2 is removed, the nanobeam material will contract. If the initial tensile

stress is strong enough, the material should contract sufficiently into a straight nanobeam

of length L, still fixed by the same two endpoints. It’s stress should be reduced by some

amount determined by the initial deformation.

Fig. 2.15 explodes the geometry of such a release. Adding the radius of curvature

Rcurv to the schematic allows for us to solve for δL as a function of the other parameters.

Figure 2.15: Geometric breakdown of the release of a ‘snap-release’ nanobeam.
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Using simple geometry, we obtain the equation:

1

4
(L+ δL) = Rcurv arcsin

(
L/4

Rcurv

)
(2.43)

which allows us to solve for the change in strain:

δL

L
=

(
L

4Rcurv

)−1

arcsin

(
L

4Rcurv

)
− 1 (2.44)

where we notice a repetition of a characteristic term L
4R

. Noting the right triangle geom-

etry, we are able to solve for this characteristic parameter:

1

4
L =

(
R2
curv − (Rcurv −

δx

2
)2

)1/2

(2.45)

→ L

4Rcurv

=

(
δx

Rcurv

− 1

4
(
δx

Rcurv

)2

)1/2

(2.46)

Plugging this into Eq. 2.44 gives us the less-than aesthetic equation:

δL

L
=

(
δx

R
− 1

4
(
δx

R
)2

)−1/2

arcsin

((
δx

Rcurv

− 1

4
(
δx

Rcurv

)2

)1/2
)
− 1 (2.47)

However, a Taylor expansion around the small parameter δx
Rcurv

leads to a significant

simplification:

δL

L
≈ 1

6

δx

Rcurv

+
1

30

(
δx

Rcurv

)2

+H.O.T. (2.48)

Considering that δx
Rcurv

∼ 0.01, we comfortably ignore even the 2nd order term. Thus,

the change in stress due to the release is:

∆σ = E
δL

L
= −1

6

δx

Rcurv

E (2.49)

66



Experimental Design and Simulation Chapter 2

The resulting stress of the ‘snap release’ nanobeam is give by:

σSR ≈ σ0 −
1

6

δx

Rcurv

E (2.50)

If we now consider this stress-release beam to be a segment of length LSR in a greater

nanobeam of total length L:: then using the simple δL
L

= δL
Ls

Ls
L

gives us

∆σ =
1

6
E

δx

Rcurv

LSR
L

(2.51)

The value of Ls in terms of the geometric release parameters is:

LSR = 4

(
R2
curv −

(
Rcurv −

δx

2

)2
)1/2

(2.52)

= 4Rcurv

(
1−

(
1− δx

2Rcurv

)2
)1/2

(2.53)

≈ 4
√
Rcurvδx (2.54)

If we assume that enough stress remains that the nanobeam dynamics are still in the

high-stress regime (σ > 100 MPa), the resulting frequency of the fundamental mode is:

f1 =
1

2L

(σ −∆σ

ρ

)1/2
[

1−
(w
L

)√ E

3 (σ −∆σ)

]−1

(2.55)
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(a) Si3N4 Nanobeam with no internal tensile stress.

(b) Si3N4 Nanobeam with σ = 1140 MPa. (c) Comparison of mode shapes obtained from
COMSOL to Eqs. 2.15 and 2.32.

Figure 2.16: COMSOL simulations comparing the fundamental mode profiles of
(a) zero-stress nanobeam to a (b) high-stress nanobeam. Dimensions for both are
w = 0.1 µm, h = 0.4 µm, L = 20 µm. In (c), the mode shapes are compared to the
mode shape equations for low and high stress nanobeams.

2.2.1.5 Finite Element Method (FEM) Simulations in COMSOL

COMSOL Multiphysics is used to numerically simulate released Si3N4 nanobeams

using Finite-Element Analysis (FEA). The Structural Mechanics Module allows us to

input initial non-zero values for the 3-dimensional stress or strain tensors, σij or εij.

Historically, our group has obtained results through use of the stress tensor, by setting

σxx = σyy = 1140 MPa, and all off-diagonal terms and σzz = 0. This obtains similar

results to working with εij, but does not produce consistent results with derived equations.

However, by setting εxx = εyy = σ
E

, we obtain results within 1% of predictions made

using the equations derived from Euler-Bernouli beam thoery. Implementing the strain

directly, instead of the stress, is also more consistent with the physical interpretation of

the system, and how we are modifying it.

To start, let us compare low and high stress nanobeams to predictions. Fig. 2.16

compares the fundamental modes between zero-stress and high-stress Si3N4 rectangu-

lar beams. We see that both low stress and high simulations agree strongly. As for

the frequencies, COMSOL predicts a fundamental frequency of 2.4 MHZ for zero stress,
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compared to 1.6 MHz obtained from Eq. 2.18. For εxx = εyy = 1140 MPa/280 GPa, the

simulated frequency is 15.72 MHz, compared to 15.67 MHz from Eq. 2.30. So, despite

the low-stress mode shape matching very well to the simulation, the calculated eigen-

frequencies differ by ∼ 50%. The high-stress eigenfrequencies however agree reasonably

well.

The ‘snap-release’ geometry is built parametrically in the COMSOL interface as a

function of δx and Rcurv, and covered with an ‘extremely fine’ mesh (Fig. 2.17a). The

Prestressed Analysis, Eigenfrequency study is used to first determine the static equilib-

rium of the geometry, and then determine the eiqenfrequencies. Fig. 2.17b shows the

2nd eigenmode oscillating about the new equilibrium position. Additionally, we use:

∆σ = E
δL

L
= −1

6

δx

Rcurv

E (2.49)

to predict the amount of stress released, then simulate straight rectangular nanobeams

with the new predicted stress. This is to determine whether COMSOL “agrees” that the

stress in the SRNBs is quantitatively given by Eq. 2.49. The results are shown on the

next page for simulations the first 3 modes of oscillation.

(a) Geometrical construction and meshing of
SR nanobeam.

(b) 2nd eigenmode of SR nanobeam, demon-
strating oscillation about flat nanobeam posi-
tion.

Figure 2.17: Simulation setup and results of SR nanobeams using COMSOL.
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Figure 2.18: SRNB Simulations for the fundamental mode (j = 1).

In Fig. 2.18 above, very strong agreement is demonstrated between our analytic

model (purple) and FEM simulations of both the ‘snap-release’ geometry (green) and

the released-stress model (yellow). As can be seen in Figs. 2.19 and 2.20 on the next

page, the agreement between our analytic equation for the frequency of an SRNB and

the simulation results begins to deviate for higher order modes. Nevertheless, for both

the j = 2 and j = 3 modes, COMSOL agrees in the evaluation that the stress released is

given by Eq. 2.49, even when more than half of the stress has been released.
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Figure 2.19: SRNB Simulations for the 2nd mode (j = 2).

Figure 2.20: SRNB Simulations for the 3rd mode (j = 3).
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2.2.1.6 Effective Mass

As the system exhibits oscillatory behavior, we wish to represent its modes as damped

harmonic oscillators with spring constants kj and effective masses mj. This will allow

us to relate the time-averaged motion of the device to its thermal energy in the next

section. For a harmonic oscillator of volumetric mass m, the quantity
mj
m

is the average

participation ratio of the mass of the jth mode toward the behavior of the system as a

harmonic oscillator. The formula for the effective mass is given by [29]:

mj =

∫
dV ρ(x)|rj(x)|2 (2.56)

where rj(x) is the normalized mode shape in 3 dimensions. In the case of an object with

uniform density and cross sectional area, this simplifies to:

mj = ρA

∫ L

0

dx|uj(x)|2 (2.57)

=
m

L

∫ L

0

dx|uj(x)|2 (2.58)

With fj and mj determined, one is able to find the spring constant of the mode through

the standard equation 2πfj =
√
kj/mj.

To check for self consistency of describing the physical behavior of the system as a

harmonic oscillator, one can independently determine the spring constant kj by calculat-

ing the deformation xj of the beam shape under an applied force Fj to obtain kj = Fj/xj.

Using this method, for a doubly-clamped nanobeam without any internal stress, one is

able to find [29]:

k1 = 192
EI

L3
(2.59)
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By comparing this to fj using Eq. 2.18, one obtains the effective mass

m1

m
=
k1

ω2
1

=
192

α4
1

≈ 0.384 (2.60)

Hauer et al. (2013)[29] obtained values of m1

m
= 0.39± 0.01 for a doubly-clamped beam

using five different methods, including FEM simulations and integration of Eq. 2.15.

Using the u(x) for low-stress nanobeams shown in Fig. 2.16c, obtained using COMSOL

simulations, we obtain a value of 0.396.

We are interested in the meff of our high-stress nanobeams to complete our model of

our system as damped harmonic oscillators. For a purely sinusoidal function we would

expect m1

m
= 11

2
. We would expect the high-stress value to be close to that, but slightly

less do to the clamping regions.

We are able to directly calculate the effective mass through COMSOL using the

full volume integral, without having to reduce our motion down to 1-dimension. After

generating the nanobeam eigenmodes in COMSOL, we first normalize ri(x) so that its

maximum value is 1. Then, COMSOL is able to perform a volume integral over the

simulation space to get the effective mass. In the language of COMSOL, this is done by:

meff =

∫
dV

[
solid.rho*(solid.disp)2

maxdisp2

]
(2.61)

where maxdisp is the determined maximum displacement of the mode. For the high-

stress nanobeam, we obtain a value of m1

m
= 0.484, near the value of 1

2
expected of a 1-D

nanostring, but differing by enough relative to the low-stress value (0.396) to be non-

negligible. Similarly, numerical integration of Eq. 2.58 using Eq. 2.40 yields m1

m
= 0.478.
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2.2.1.7 Thermal Motion

With the effective mass determined, we are now able to consider the thermal motion

of the nanobeam through full modeling of its behavior as that of a harmonic oscillator.

The thermal properties of a quantum mechanical harmonic oscillator with frequency ω

is explained with the standard phonon model. The total energy in a single mode with

frequency ωi is given by En = (n+ 1
2
)~ω, where n is the number of phonons in that mode.

Since phonons are spin-0 particles, they are governed by Bose-Einstein statistics. At a

temperature T , the probability of obtaining a phonon state of n phonons with is given

by:

P (n) =
exp(−n ~ω

kBT
)

1− exp(− ~ω
kBT

)
(2.62)

As such, the expected number of thermal phonons nth,j in the jth mode of a Si3N4

nanobeam is:

nth,i = 〈n〉 =
∞∑
n=0

nP (n) =
1

exp ~ωi
kBT
− 1

(2.63)

For ωj = 2π · 10 MHz, when T � 4.8 mK we can simplify this to:

nth,j ≈
kBT

~ωj
(2.64)

To relate the number of thermal phonons n in the jth mode to the physical amplitude of

the oscillation δxn, we simply set the classical energy of the harmonic oscillator equal to

the quantum energy levels for n phonons. This gives us

(δxn)2 = 2(n+
1

2
)
~ωj
kj

(2.65)

= 2(n+
1

2
)

~
meffωj

(2.66)

= 4(n+
1

2
)x2

zpf (2.67)
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where xzpf is the zero-point fluctuation of the quantum harmonic oscillator. From here

we can see xzpf is the root-mean squared of the ground state amplitude xzpf = 1√
2
δx0.

For large n, this reduces to:

δxn = 2
√
nthxzpf =

2

ωi

√
kBT

meff

(2.68)
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2.2.2 Damping Mechanisms

The dampening mechanisms for a nanomechanical resonator can be separated into two

categories: internal and environmental. Environmental damping mechanisms dominate

near atmospheric pressure, reducing mechanical Qs to near unity, as discussed in Sec-

tion 2.2.2.2. With proper isolation from the environment, internal damping mechanisms

within the sample should be all that remain.

2.2.2.1 Mechanical Damping

The internal damping of high-stress Si3N4 nanomechanical resonators is well stud-

ied [33, 24, 30]. There are four main loss mechanisms that need to be considered for

nanomechanical resonators [33]:

• Material damping: Energy is lost per cycle of oscillation due to intramaterial in-

teractions initiated by deformation.

• Clamping loss: Coupling between the mechanical modes of the nanobeam and

radiation modes of the surrounding material through the anchors leads to radiation

of vibrational energy.

• Thermoelastic damping: Motion in the mechanical resonator leads to compression

and expansion in the material. Compressed material becomes warmer and the

stretched material becomes colder. Energy is lost from the system if the beam is

able to significantly rethermalize within a period of oscillation.

• Surface loss: Defects on the surface of the resonator can modify the surface stress

or cause lossy interactions with surface waves. [34]

Unterreithmeier et al. (2010) [24] determined that clamping loss and thermoelastic damp-

ening and can be neglected for high-stress Si3N4 nanobeams, but were unable to distin-
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guish between surface loss and material loss with their model. Schmid et al. (2011)[30]

experimentally demonstrated that surface loss was not a limiting parameter by showing

that internal Q-factors were independent of width of the nanomechanical resonator.

Based on the above arguements, the expected mechanical quality factor Qmech is

approximated by [30]:

Qmech ≈ 2π
Wtension +Wbending

∆Wbending

(2.69)

where Wtension is the stored elastic energy in the tension and ∆Wdeform the energy lost

per cycle due to material deformation. With the assumption that ∆Wdeform is deter-

mined entirely by intrinsic material properties, a material specific quality factor for the

deformation is defined by:

Qmat = 2π
Wdeform

∆Wdeform

(2.70)

which allows us to write

Qmech =
Wtension

Wdeform

QSi3N4
(2.71)

where QSi3N4
≈ 17000 is the intrinsic material quality factor of Si3N4, determined by fit

to experimental data [30]. This can be written as:

Qmech =
σA

EI

∫ L
0

[ ∂
∂x
u(x)]2 dx∫ L

0
[ ∂

2

∂x2u(x)]2 dx
QSi3N4

(2.72)

where u(x) is the normalized mode shape.

For analytical estimation of these integrals for 1D nanostrings, the model described in

Schmid et al. (2011)[30] is very commonly used. Schmid matches the slope of the sinusoid

to that of a cantilever under an effective point force determined by σ and the geometric

parameters of the nanobeam. With this method, the local beam shape is estimated to
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be[30]:

u(x) =
nπ

L

( x
Lc

)2(
Lc −

x

3

)
(2.73)

Lc =

√
2
EI

σA
(2.74)

For a rectangular nanobeam with cross-sectional inertia I = 1
12
hw3, an analytical evalu-

ation of the integrals in Eq. 2.72 for the fundamental mode leads to [30]:

Qmech =

[
π2

12

E

σ

(w
L

)2

+

√
32

27

√
E

σ

w

L

]−1

QSi3N4
(2.75)

Alternatively, the mode shape u(x) can be obtained from COMSOL, and the integrals

in Eq. 2.72 evaluated numerically. If we normalize the mode shape to unit length through

x̃ = x
L

(to extract the dimensional dependence), Eq. 2.72 becomes:

Qmech = 12
σ

E

(L
w

)2
∫ 1

0
dz[ ∂

∂z
v(z)]2∫ 1

0
x̃[ ∂

2

∂x̃2u(x̃)]2
QSi3N4

(2.76)

To compare Eqs. 2.75 and 2.76, let us simulate a rectangular nanobeam with L =

20 µm, w = 100 nm, and σ = 1140 MPa. Evaluating the analytical result using Eq. 2.75

gives us:

Qmech =

[
π2

12

280 GPa

1140 MPa

(100 nm

20 µm

)2

+

√
32

27

√
280 GPa

1140 MPa

100 nm

20 µm

]−1

QSi3N4
(2.77)

≈ 11.1 · QSi3N4
(2.78)

≈ 190000 (2.79)
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(a) Overall profile of u1(x) (b) The clamping regions of u1(x) determined by
FEM analysis.

(c) Interpolated shape of ∂
∂xu1(x) (d) Interpolated shape of ∂2

∂x2u1(x)

Figure 2.21: COMSOL evaluation of u1(x) and its derivatives. The derivatives are
obtained using Mathematica’s interpolation function.

The length-normalized beam shape u(x̃) is extracted from COMSOL for the given

parameters. The results for u(x̃), ∂
∂x̃

, and ∂2

∂x̃2u(x̃) are shown in Fig. 2.21. Evaluation of

Eq. 2.76 using numerical integration of the results leads to:

QFEM = 12
1140 MPa

280 GPa

( 20 µm

100 nm

)2 4.92246

436.551
QSi3N4

(2.80)

≈ 22.0 · QSi3N4
(2.81)

≈ 370000 (2.82)

which is nearly double the result obtained from the model. To figure out the discrep-

ancy, let us see how our high-stress solutions compare to both the model and the FEM
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simulations. Starting with the direct approach of taking our overall solution:

u1(x) = sin
(
π
x− Ls
L− 2Ls

)
+ π

Ls
L− 2Ls

[
exp

(
− x

Ls

)
+ exp

(
− L− x

Ls

)]
(2.40)

and numerically integrating Eq. 2.72, which we choose to write in the form:

Qmech =
1

L2
s

∫ L
0

[ ∂
∂x
u(x)]dx∫ L

0
[ ∂

2

∂x2u(x)]dx
QSi3N4

(2.83)

we end up with

Qmech ≈ 18.00 · QSi3N4
(2.84)

≈ 306000 (2.85)

which is in between the results from the model and the simulated solutions. To gain

more insight into why this is, we use the same method of breaking down the nanobeam

into the clamped region and the free-oscillation region. Using the piece-wise equations

derived in Section 2.2.1.3

uj(x)clamp = αj
Ls
L

[
x− Ls
Ls

+ exp
(
− x

Ls

)]
(2.38)

uj(x)str = sin(αj
x− Ls
L

) (2.32)

we evaluate the integrals for energy stored in the deformation and tension. Noting the

form of ∂2

∂x2u1(x) demonstrated in Fig. 2.21d, the effects of the clamping region extend

far beyond Ls
L
≈ 0.022. To compensate for this, we extend the integral of our piecewise

function out to infinity. Since it is of the form of decaying exponential, it will sufficiently
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converge. The resulting energy integrals are thus:

Wd,str =
1

2
EI

∫ L−Ls

Ls

dx

[
∂2

∂x2
uj(x)str

]2

(2.86)

=
1

4
EI
(αj
L

)4
(L− 2Lc) (2.87)

Wd,clamp =
1

2
EI

∫ ∞
0

dx

[
∂2

∂x2
uj(x)clamp

]2

(2.88)

=
1

4

EI

Ls

(αj
L

)2
(2.89)

Wtension =
1

2
σ

∫ L−Ls

Ls

dx

[
∂

∂x
uj(x)str

]2

(2.90)

=
1

4
σA
(αj
L

)2
(L− 2Lc) (2.91)

Evaluating Eq. 2.71 with these results give:

Qmech =

[
Wd,str

Wtension

+ 2
Wd,clamp

Wtension

]−1

Qmat (2.92)

=

[
EI

σA

(αj
L

)2
+

2

L− 2Ls

√
EI

σA

]−1

Qmat (2.93)

=

[
α2
j

(Ls
L

)2
+ 2

Ls
L− 2Ls

]−1

Qmat (2.94)

=

[
(jπ)2

( Ls
L− 2Ls

)2
+ 2

Ls
L− 2Ls

]−1

Qmat (2.95)

Now, if we make the order of magnitude assumption that L− 2Ls ≈ L, and use assume
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a rectangular cross section so I = 1
12
Aw2, we get:

Qmech =

[
(jπ)2

12

E

σ

( w

L− 2Ls

)2
+

2√
12

w

L− 2Ls

√
E

σ

]−1

Qmat (2.96)

≈

[
(jπ)2

12

E

σ

(w
L

)2
+

1√
3

w

L

√
E

σ

]−1

Qmat (2.97)

where we see that we have the same approximate form as Eq. 2.75, but we predict

approximately half the energy dissipation from deformation in the clamping region, rel-

ative to the dissipation in the string component, when compared to the Schmid model.

Evaluating Eq. 2.95 for j = 1 gives:

Qmech ≈ 18.9 · QSi3N4
(2.98)

≈ 320000 (2.99)

which is close to our numerically integrated value. The deviation from COMSOL is likely

due to the simulation behavior near the clamping region, best demonstrated by the graph

of ∂2

∂x2u1(x) in Fig. 2.21d. This function is seen to suddently drop toward zero near the

boundary, rather than increase exponentially upward. This leads to an underestimation

of the bending energy stored in the clamping region, and thus an overestimation of the

resulting quality factor.

To be clear, this should not outright be taken to mean that the quality factors should

be larger. Considering the ‘fit’ parameter QSi3N4
associated with Si3N4, the purpose of

such models is to attribute relative losses correctly, and determine the scaling of each loss

term. Our model suggests that energy dissipation in the oscillatory portion of the mode

is double what the other model suggests (relative to the clamping region), but agrees

with the assessment that this mode of dissipation should scale ∝
(
L
q

)2
.
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To remain consistent, we will choose Eq. 2.95 for analytic calculations for the re-

mainder of the chapter, rather than the Schmid model. However, we necessarily need to

adjust our QSi3N4
for our new model to remain consistent with experimental observations.

Since our model predicts approximately half the damping in the clamping region as the

Schmid model, we need to reduce QSi3N4
by a factor of 2 to compensate. With this final

adjustment, the estimated intrinsic quality factor of the fundamental mode of our Si3N4

SRNBs is given by:

Qmech =

[
π2
( Ls
L− 2Ls

)2
+ 2

Ls
L− 2Ls

]−1

Q′Si3N4
(2.100)

where Q′Si3N4
≈ 8500 is the adjusted material quality factor for Si3N4.
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2.2.2.2 Air Damping

The effect of air damping is an important point of consideration for the characteri-

zation of any MEMS device. In general, high-quality mechanical resonators suffer from

a significant reduction in measured Q-factors near atmospheric pressure. This is caused

by there being a significant number of collisions between air molecules and the oscillator

over a single period of oscillation. However, depending on the mean free path of the air

molecules and the geometry of the resonator, different models are used to predict the

depreciation in Q-factor.

Here we introduce the Knudsen number Kn of the system, which is the ratio of the

mean free path of air particles to the characteristic length of the device:

Kn =
`FP
λchar

(2.101)

The value of Kn is used to estimate what interaction regime a mechanical system is in

with respect to its environemtn [35, 36]:

• Kn > 10: free-molecule regime: The interaction of air molecules with each other

can be ignored, and the air dampening effects are determined by collisions between

the oscillator and the air molecules. The Q is expected to scale inversely with

density of collisions, or equivalently inverse to the pressure.

• 0.01 < Kn : viscous regime: The ability to ignore the interaction of air molecules

with each other completely breaks down. Instead, the air must be treated as a

viscous fluid. Since viscosity is independent of pressure, the Q-factor must also be

independent of pressure.

• 0.01 < Kn < 10: the transition regime: Between the free-molecule and viscous

fluid regimes, air molecules still dampen the oscillation through collisions, but also
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exhibit nontrivial interactions with each other which impede their dampening of

the bar. As the mean free path decreases, the Q-factor dependency transitions

from scaling as inversely with pressure toward being pressure independent.

The mean free path `FP is approximately 68 nm at STP[37]. The characteristic length

λchar is best taken as the shorter of the 2 dimensions that correspond to the surface of

the nanobeam as it moves through the medium [38]. For our nanobeams, that is the

height 400 nm, which gives us Kn ≈ 0.17 at atmospheric pressure. This puts us well in

the middle of the transition regime based on the Knudsen number.

However, based on the results of Verbridge et al. (2008)[38] we should expect to be

able to obtain a reasonable estimate of the expected Q-factor through consideration of

the free-molecular regime. Verbridge demonstrated that a 55 nm wide Si3N4 nanobeam

follows the free-molecular limit all the way to atmospheric pressure, despite having a

Kn ∼ 1. The pressure dependence of a much wider 1.5 µm nanobeam (Kn ∼ 0.05 at

1 atm) began to deviate from Q ∝ P−1 behavior at around 1 Torr, but not by a large

amount. The Q still demonstrated strong negative scaling with pressure, and had a

final atmospheric Q of only 3 times the predicted value. Consequently, we expect our

Qatm-behavior to fit somewhere in the range Qatm ≈ Qfm|atm · (2 ± 1). Although such

an approach may seem inaccurate, such strategies are standard in the transition regime

due to the lack of models. For example, when considering nanobeams near the viscous

limit, a recommended approach is to simply modify the viscosity µ to µeff , where µeff

is experimentally determined [39, 36].

Christian (1966)[40] first derived the expected damping for rigid beams in the free-

molcule regime, and Newell (1968)[35] clarified the result and derived the corresponding

quality factor:

Qfm =
(π

2

)3/2ρ tf

P

√
kBT

mair

(2.102)
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where ρ is the density of the beam material, t is the thickness of the beam, f is the

frequency of the beam, P and T are the environmental pressure and temperature, and

mair is the average mass of an air molecule. Li et al. (2007)[41] later showed that the

same equation was also applicable to for elastic beams using the results of Yasumura et

al. (2000)[34]. Li et al. also provides a thorough derivation of Eq. 2.102.

Using the parameters for our Si3N4 nanobeams, and assuming the air is composed of

N2 molecules, we obtain the initial room-temperature prediction for our

Qfm =
(π

2

) 3
2 3184 kg/m3 · tf1

1.01× 105 Pa

√
kB · 300 K

4.65× 10−26 kg
(2.103)

≈ 1.85 ·
[

f

1 MHz

]
·
[

1.01× 105 Pa

P

][
t

100 nm

]
(2.104)

which effectively serves as a lower bound for our Qair estimation.

By combining this result with the predictions of Qmech in the previous section, the

expected total quality factor of the nanomechanical resonance Qtot = (Q−1
mech +Q−1

fm)−1

is shown in Fig. 2.22.

Figure 2.22: Predicted pressure dependency on observed nanomechanical Q-factors,
for both analytic approximations and numerical estimates obtained using FEM sim-
ulations.
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2.3 Optomechanical Coupling

Now that we have independently studied the optical and mechanical system which act

as the foundations of our photonic integrated device, we examine how the two systems

should interact with each other. FIMMWAVE simulations are used to calculate the

relationship between the effective index of optical modes and the geometry and position

of a nanobeams located just outside ring waveguide. With this, we estimate the potential

strength and behavior of the resulting optomechanical interaction.

As discussed in Section 1.1.2, to estimate the strength of the optomechanical interac-

tion we must determine the optical frequency shift in the resonator per unit displacement

of the mechanical oscillator, given by:

G = − ∂

∂x
ωres(x) = − ∂

∂x
(ωres + δωOM(x)) (2.105)

= − ∂

∂x
δωOM(x) (2.106)

where δωOM(x) is the shift in frequency due to the presence of the nanobeam, reproduced

here:

δωOM(x) =
ωres
2π

1

neff

∫ θ+

θ−

(
nx(θ)− n∞

)
dθ (1.84)

where nx(θ) is the effective index of the ring mode at angular position θ along the ring,

for a distance x between the ring and nanobeam. Let us define the function:

N(x) =

∫ θ+

θ−

(
nx(θ)− n∞

)
dθ (2.107)

such that we can write:

G =

(
ωres
2π

1

neff

)[
− ∂

∂x
N(x)

]
(2.108)
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We call N(x) the Integrated Index Shift caused by the presence of the optomechanical

resonator. The quantity ∂
∂x
N(x) is thus the Integrated Index Shift per Displacement,

which is directly proportional to G.

2.3.1 Simulations

To calculate N(x), we obtain nx(θ) through simulating waveguide cross-sections rep-

resentative of a mechanical nanobeam a distance x from an optical ring resonator. A

sample simulation geometry is shown in Fig. 2.23a. To more accurately simulate the

final fabricated cross-section, we implement an ‘overetching’ of the SiO2 layer on the

sides, which occurs when the Si3N4 nanobeam is undercut by a vapor HF process. By

performing a parameter sweep over the distance between the two Si3N4 sections, we ob-

tain the effective index data shown in Fig. 2.23b. This data is converted to the angular

nx(θ) by considering the distance from the ring at angle θ (where θ = 0 is the point of

closest approach), to the nanobeam, perpendicular to the direction of propagation. The

(a) Simulation setup. Si3N4, SiO2, and air
are respectively shown in purple, blue, and
grey.

(b) Effective index simulation results for 800 nm wide
waveguide with 100 nm wide nanobeam.

Figure 2.23: Geometry and sample results of simulations used to determine shift in
effective index of optical modes
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values for n∞ are obtained from the asymptotic values of the effective index. Plots of the

integrand [nx(θ)− n∞] are shown in Fig. 2.24 as a function of the optomechanical split,

from the data shown in Fig. 2.23b.

The integrated index shift per displacement ∂
∂x
N(x) is calculated by integrating the

individual curves in Fig. 2.24, interpolating the resulting values as a function of x, and

taking the derivative. We are interested in determining the dependency of the coupling

strength on various parameters of the ring resonator and mechanical nanobeam. Since the

optomechanical coupling strength is scaled directly from the index shift per displacement,

it is sufficient to compare values of the latter to determine the dependency of the former.

Figure 2.24: Change in effective index for varying optomechanical split. The integral
of each curve represent N(x), and the change between those integrals as a function of
optomechanical split is ∂

∂xN(x).
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Figure 2.25: Calculated Integrated Index Shift curves of the TE and TM modes of a
800 nm wide single-mode optical ring resonator with a radius of 50 µm, optomechani-
cally coupled to a nanobeam of width 100 nm.

2.3.1.1 Mode Polarization

As shown in Fig. 2.25, the TE modes are predicted to exhibit stronger coupling to

nanobeams. Although there is only an ≈ 20% difference when the split is on the order

of 50 nm, the difference increases to ≈ 50% when the nanobeam is within 20 nm. This

could be predicted from the slopes on Fig. 2.3. Overall, TE modes demonstrate stronger

increases in effective index as the waveguide geometry changes. This is most likely

due to the fact that TE modes generally have stronger interactions with the sidewalls,

whereas the TM modes live on the surfaces. When changing the waveguide geometry,

the overally confinement of the mode changes. The TE modes interact more or less with

the material outside the sides, and the TM modes interact less with the material above

and below the waveguide. Since the material below the waveguide (SiO2) has a closer

index to the waveguide material (Si3N4) than the material above and to the sides of the

waveguide (air/vacuum), the effect of the change in interaction with the material below

the waveguide is reduced.
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Figure 2.26: Calculated Integrated Index Shift curves for the TE mode of a 800 nm
wide single-mode optical ring resonator with a radius of 50 µm, optomechanically
coupled to nanobeams of varying widths.

2.3.1.2 Nanobeam Width

In general, we see that the strength of the interaction scales fairly linearly with the size

of the nanobeam. By doubling or tripling the width, the final effect on the optomechanical

coupling appears to scale by approximately as much. Since the motion of the nanobeam

scales with the inverse square root of the mass, by:

xZPF = 〈x̂2〉1/2 = 〈0|x̂2|0〉1/2 =

√
~

2meffΩm

(xzpf)

this suggests that wider nanobeams might be better for optomechanical coupling, since

a linear scaling of G with with respect to width would imply:

g ∝ Gxzpf ∝
G

mi

∝ w
1/2
NB (2.109)
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However, as discussed in Section 2.2.2.1, this leads to a reduction the mechanical quality

factors Qmech of the nanobeam. As such, the ideal nanobeam width is situation depen-

dent, with the ability to sacrifice fQ product for an increase in optomechanical coupling

by increasing the width of the nanobeam.

2.3.1.3 Ring Radius

Overall, the index shift per displacement increases as rings are made smaller. Al-

though the nanobeam interacts with smaller rings over a shorter distance, the phase of

the smaller rings is more strongly effected, leading to greater optomechanical coupling.

This appears to be yet another reason why smaller rings are better for optomechanical

applications.

Figure 2.27: Calculated Integrated Index Shift curves for the TE modes of 800 nm
wide single-mode optical ring resonators of varying radii, optomechanically coupled
to a 100 nm wide nanobeam.
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Figure 2.28: Calculated Integrated Index Shift curves between a 100 nm wide
nanobeam and 50 µm radii optical ring resonators of varying widths.

2.3.1.4 Ring Waveguide Width

The increased confinement from narrower ring waveguides results in an increased

sensitivity to the presence of the nanobeams. There is approximately a doubling of the

predicted optomechanical coupling when going from 0.8 µm to 0.6 µm, and approximately

a 60% when going from 1.0 µm to 0.8 µm. This is a fairly predictable outcome, know-

ing that the change in index of refraction as a function of waveguide width is concave

down. If the oscillation of the nanobeam as viewed as changing the effective width of the

core waveguide, then it would be moving up and down along a shallower sloped when

modulating wider waveguides.
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2.3.2 Estimation of Frequency Shift

To recapitulate the contents of this chapter, let us estimate the frequency shift due

to an optomechanical interaction between a specific optical ring resonator and SRNB.

Consider such a pair defined by the following parameters:

Table 2.2: Calculation Parameters of Sample SRNB

Parameter Value

Ring Resonator

Radius 16 µm

Width 800 nm

Height 400 nm

Si3N4 Nanobeam

Length 20 µm

Width 100 nm

Height 400 nm

Initial Stress 1140 MPa

δx 500 nm

Rcurv 50 µm

Coupling Splits

Optical 400 nm

Optomechanical 40 nm

1. The release parameters δx, Rcurv of the Si3N4 nanobeam allow us to calculate the

final tensile stress in the nanobeam after removal of the SiO2. Using Eq. 2.50, we

predict that the stress in the nanobeam decreases from 1140 MPa to 674 MPa.

2. Either calculations or simulations are used to estimate the frequency and effective

mass of the fundamental mode:

(a) For σ = 674 MPa, Eq. 2.55 predicts a fundamental frequency of 12.2 MHz. If

we assume
meff
m

= 0.48, then we get meff ≈ 1.22× 10−15 kg.
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(b) COMSOL simulations with εxx = εyy = 674 MPa
280 GPa

yield a fundamental frequency

of 12.2 MHz and meff ≈ 1.22× 10−15 kg.

3. The thermal amplitude of the fundamental mode is estimated using Eq. 2.68. For

ω1 = 2π · 12.2 MHz, meff = 1.22× 10−15 kg, and T = 300 K, we get:

δxn =
2

2π · 12.2 MHz

√
kB 300 K

1.22× 10−15 kg
≈ 48.1 pm (2.110)

or approximately a 0.1 nm peak-to-peak amplitude for the Si3N4 nanobeam.

4. FIMMWAVE predicts neff ≈ 1.70 for the given cross-sectional parameters of the

ring, as seen in Fig. 2.3.

5. From Fig. 2.27, we see that ∂
∂x
N(x)|x=40 nm ≈ −0.016 µm−1. Using this value, Eq.

2.108 gives us:

G =

(
ωres
2π

1

neff

)[
− ∂

∂x
N(x)

]
(2.111)

=
2π · 283 THz

2π

1

1.70
· 0.016 µm−1 (2.112)

≈ 2π · 0.42MHz/pm (2.113)

6. This leads to an oscillation in the resonant frequency of the ring with an amplitude

δωOM , approximated by:

δωOM = G · δxn = 2π · 0.42 MHz/pm · 48.1 pm ≈ 2π · 20.1 MHz (2.114)

7. The fractional shift in signal will depend on the quality factor of the optical ring.

From simulation of the coupling region (Section 2.3), 400 nm optomechanical split

corresponds to Q ≈ 150000. This leads to a FWHM of the optical resonance of

95



Experimental Design and Simulation Chapter 2

Γ = 282 THz
150000

≈ 1.9 GHz. It can be shown that the maximum slope of a Lorentzian

with signal voltage height V0 is 3
√

3
4

V0

Γ
. The fractional response of the signal to a

change in the resonance parameter is thus given by:

δV

V0

≈ 3
√

3

4

2(δωOM/2π)

Γ
(2.115)

=
3
√

3

4

20.1 MHz

1.9 GHz
(2.116)

≈ 0.03 (2.117)

Thus, the photodetector voltage will be modulated by 0.03V0 exp(iΩmt), which will then

be detected by a signal analyzer or lock-in amplifier, as discussed in Section 5.4. The

resulting frequency-space analysis will be broadened by the dampening of the mechanical

resonator, in such a way that the integrated signal must correspond to 1 kBT of energy

per mode. The ability to resolve the resulting peak in frequency space is determined

by the effect of this broadening in comparison to background sources of frequency noise,

such as classical and shot noise of the laser, which are outside the scope of this chapter.

Sources of noise in optomechanical systems is well covered by the thesis of F. M. Buters

[?].
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Chapter 3

Characterization and Optimization

of the Fabrication Process

Conservatively, the characterization and optimization of the fabrication process repre-

sents over 80% of the actual work put into this project. In many ways, designing and

characterizing this new fabrication process has been an adventure through a deep dark

forest in which 2 + 2 = 5, and the path leading out is only wide enough for one.1 I am

particularly reminded of an instance in which the fabrication process failed because an

individual step was done too well, and a little imperfection was the necessary ingredient

to success. It would be unreasonable, if not impossible, to properly document every

complication, diagnosis, and resolution encountered. Instead, we focus on the current

procedure, and point out where potential issues might arise. A consequence of this ap-

proach is that most weeks of work are reduced to a fraction of a sentence, and some entire

months do not even get that.

In this chapter, we discuss the fabrication of our integrated optomechanical system,

1A phrase I am borrowing from from 8th World Chess Champion Mikhail Tal, where he describes
a sharp and tactical game of chess in which the ‘correct’ moves are often counter-intuitive and simply
require you to find them over the board.
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consisting of optical ring resonators coupled to ‘snap-release’ nanomechanical resonators

(Fig. 3.2). First, the device design is presented along with an outline of the current

fabrication process. Then, the individual steps of the fabrication process are examined,

including development and optimization. The results of fabricated devices are presented

in Chapter 5.

A representation of our fabricated devices is shown above in Fig. 3.1. Each nanome-

chanical resonator, a rectangular nanobeam, is coupled to a double-bused optical ring

resonator, all fabricated from the same layer of Si3N4 (shown in burgundy). Outside of

the device region, an SiO2 cladding (yellow) is deposited over the Si3N4 waveguides. The

cladding protects the waveguides and reduces optical loss as the laser light propagates

from the edge of the sample to each designated ring. The etched regions that define

the waveguides terminate just short of edge of the sample, creating a uniform boundary

of LPCVD Si3N4 that completely encapsulates the waveguide network from the sample

edge. The thin wall around the circumference of the sample allows for the optomechani-

Figure 3.1: Topological representation of our device design. Light is coupled into
the input waveguide (lower left) from a lensed single-mode fiber. Resonant light is
absorbed by the ring and exits from the drop port (upper left). This light is usually
then collected by a multi-mode lensed fiber (not shown).
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cal system to be hermetically sealed at vacuum pressures by anodic bonding to the top

boundary (Chapter 4). Despite the waveguides terminating short of the boundary, we are

still able to couple in and out of them using lensed fibers, as long as the boundary layer

is reasonably thin. Single-mode lensed fibers are used to couple to the input port of the

input/throughput waveguide (lower left). Multi-mode lensed fibers (not shown) are used

to collect light from the add or drop ports (upper left). By virtue of this double-bused

design, photons collected from the drop port were absorbed by the ring resonator where

they interacted with the Si3N4 nanobeam.

Figure 3.2: SEM image showing an individual optomechanical device from one of our
samples. The ring resonator and ‘snap-release’ geometries are clearly visible.
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3.1 Process Overview

The process starts with boron-doped, single-side polished 4” silicon wafers, with a

3.0 µm wet SiO2 layer grown by Rogue Valley Microdevices (RVM). RVM then deposits

400 nm of stoichiometric Si3N4 on both sides using low-pressure chemical vapor deposition

(LPCVD). RVM’s LPCVD Si3N4 yields a tensile stress of approximately 1140± 15 MPa

in the Si3N4 layer (personal communications, 2017), even though the advertised stress is

>800 MPa. The total thickness of the stack is approximately 525 µm. For simplicity, a

single 4” wafer is used for every full process run, which is capable of producing 4 complete

versions of the mask (Section 3.2). The basic procedure is as follows:

1. Metal Mask Layer Deposition: Approximately 60 nm of chromium is deposited

using electron-beam physical vapor deposition (EBPVD).

(a) Our initial wafer has 3 layer: Si (grey),
SiO2 (yellow), and Si3N4(maroon).

(b) 60 nm of chromium is deposited on the
top layer.

Figure 3.3: Basic layers prior to lithography processes.
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(a) DUV Lithography is used to pattern
a ‘template’ mask, which consists of rings
and waveguides of the photonic integrated
system.

(b) Electron-Beam Lithography is used to
modify the ‘template’ mask by strategi-
cally adding slits to form a thin structure
near the rings.

Figure 3.4: The 60 nm chromium layer is etched using multiple techniques to yield a
final mask which that yields thin mechanical oscillators released in close proximity to
optical ring resonators.

2. Etching of Chromium Hard Mask Layer (Section 3.3)

(a) Deep Ultraviolet (DUV) Lithography (Section 3.3.1): High-resolution

DUV lithography is used to pattern rings, waveguides, and other large-scale

structures. A thermal reflow of the resist reduces sidewall roughness.

(b) Etching of Template Pattern (Section 3.3.3): A Cl2/O2 etch is used

to etch through the chromium layer, imprinting the template pattern into it.

(Fig. 3.4a)

(c) Electron Beam Lithography (EBL) (Section 3.3.2): Ultra-high resolu-

tion EBL is used to pattern slits in the flat regions near the ring resonators.

(d) Etching of pattern modifications (Section 3.3.3): An etch identical to

(b) is used to imprint the slit patterns in the chromium mask, defining the

unreleased mechanical nanobeams of the hard mask layer. (Fig. 3.4b)
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(a) Vertical etching of the Si3N4 using a
CF4/O2 ICP etch.

(b) Removal of the metal mask layer
leaves behind functional waveguides, opti-
cal ring resonators, and unreleased Si3N4

nanobeams.

Figure 3.5: ICP etching of the Si3N4 layer using chromium as a hard mask leads to
near vertical sidewalls. The chromium can be removed afterwards using dry or wet
options.

3. Vertical etch of LPCVD Si3N4 (Section 3.3.4): A CF4/O2 inductively-coupled

plasma (ICP) process vertically etches through the Si3N4, realizing the image of the

hard mask.

4. Removal of metal mask layer and Surface Preparation:

(a) Removal of metal mask layer: A wet transene-based chromium etchant is

used to remove the top chromium layer.

(b) Surface cleaning with Piranha Solution: A 3:1 mixture of H2SO4 and

H2O2, heated to 110 ◦C, is used to remove any chromium or organic residues.
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Figure 3.6: SiO2 cladding is deposited on the Si3N4 waveguides located outside of
the device regions, using RF-sputtering combined with a lift-off process. This both
protects them and reduces loss in these waveguide regions.

5. SiO2 Cladding Layer (Section 3.4):

(a) Stepper Lithography with dual-layer resist recipe: A dual-layer resist

recipe is used to protect the ring resonator regions. The bottom layer of

the resist is excessively undercut to allow for easy lift-off after the dielectric

deposition process.

(b) Cladding Deposition with RF Sputtering: SiO2 cladding is deposited

everywhere but the regions containing the ring resonators.

(c) Dielectric Lift-off: The photoresist protecting the ring resonators is removed

by immersion in Nanomechanical Polish (NMP) at 80 ◦C. (Note: This part can

be skipped if no-cleaning/characterization is needed before the wafer-bonding

layers.)

103



Characterization and Optimization of the Fabrication Process Chapter 3

(a) A conductive material is deposited
around the outside of the sample, short-
ing the top surface to the conductive Si
wafer.

(b) Polycrystalline Si is deposited on top
of the conductive layer.

Figure 3.7: A lift-off process is used to deposit a wafer-bonding compatible layer
around the outer edges of the samples.

6. Wafer Bonding Layer Deposition(Section 4.3):

(a) Stepper Lithography with dual-layer resist recipe: A dual-layer resist

is used to protect all photonic regions of the sample.

(b) Conductive Layer Deposition (Section 4.2): A conductive layer is de-

posited using EBPVD or sputtering. The deposition is done in such a way

that it covers the top region that will be bonded to, as well as the side regions

so as to short the top layer to the boron-doped Si wafer.

(c) Amorphous Silicon (α-Si) Deposition with RF Sputtering: A thin

layer (≈ 50 nm) of α-Si is deposited using RF Sputtering.

(d) Dielectric Lift-off: The photoresist protecting the photonic regions is re-

moved by immersion in Nanomechanical Polish (NMP) at 80 ◦C. (Note: If

lift-off was skipped for the SiO2 cladding, then this step will remove that

lift-off layer as well.)
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Figure 3.8: Removal of SiO2 beneath the mechanical structures yields tall bridge-like
structures. The fundamental mode of oscillation for such structures is in the wafer–
plane, to and away from the optical ring resonator. The waferbonding layers protect
the SiO2 cladding from the vapor HF process, preserving surface uniformity in those
critical regions.

7. Undercutting of LPCVD SiN Optomechanical Elements with Vapor HF

(Section 3.5): A vapor HF process is used to released the mechanical structures

that were defined by the electron-beam lithography. It is necessary to break the

overall etch up into 30 second intervals to avoid complications from water-vapor

build up on device surfaces.
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(a) Borofloat glass is bonded to the α-
Si layer, hermetically sealing the ring res-
onators and mechanical oscillators at vac-
uum pressures.

(b) The hermetic seal is preserved by care-
fully polishing the bonding layer to no less
than 10 µm.

Figure 3.9: Final packaging processes of the sample.

8. Anodic Wafer Bonding (Chapter 4): A Borofloat wafer is bonded to the α-Si

layer using an anodic bonding. This hermetically seals the ring resonators and

released nanobeams at 2× 10−9 bar.

9. Sample Dicing (Section 3.6): Each sample is diced into 6 columns of ring

devices.

10. Facet Polishing (Section 3.6): Approximately 20 µm of material is polished

away from each edge, using various grades of polishing film.
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3.2 Mask Design and Layout

The underlying geometry of our mask designs are shown in Fig. 3.10. They are

22 mm × 26 mm in extent, the maximum size the ASML DUV lithography system can

image with the numerical aperture set to 0.57. Global EBL alignment marks, laser

etch-depth monitoring pads, and fabrication characterization regions are found along the

left and right sides of the mask. The central device region consists of a 6 × 6 array of

independent device sets, each of which contains the framework for coupling to 12 ring

resonators. The array is 3500 µm perodic in the horizontal direction, and 3600 µm periodic

in the vertical direction. This periodicity is invaluable for utilizing stepper lithography

for both the SiO2 cladding and the waferbonding processes.

Figure 3.10: Schematic of ASML mask ThickRings v2, designed for fabrication of
bridges released on the outside of our ring resonators. The device region, located in
the center, consists of a 6 × 6 array of sets of 12 rings (each boxed in plum). Three
global EBL alignment marks are on each side of the device region. Laser etch-depth
monitoring pads can be found on each corner. Test regions, containing structures for
etch and mechanical release characterization, can be found along both sides.
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Let us now look at the general design of an individual element of the array, and how

we ultimately couple to each individual ring. A single set of rings is shown in Figure

3.11a. The input/throughput ports for all 12 rings are located on one side of the design,

with all of the add/drop ports located on the other side. As can be seen in the figure,

there is also a 13th pair of waveguides at the very end that acts a through-waveguide.

This is invaluable for aligning the sample, as well as estimating maximum possible signal

for the given fabrication. As can also be seen in the figure, every waveguide has a flat facet

at one end and an angled facet in the other. This was implemented to avoid Fabry-Perot

interference effects between two flat facets of the same waveguide.

Generally, light is coupled into the flat facet of one of the waveguides connected to

the left side, where it then propagates to one of the 12 rings in the center. On resonance,

(a) General layout for any of the 36 device sets
on the ASML mask. Usually, light is coupled
into waveguides on the left side and collected
on the right side.

(b) Microscope image of the coupling region.

(c) Microscope image of the device region with 12
individual rings coupled to the outer edge.

Figure 3.11: Layout and images of a single set of 12 rings. The device region of our
ASML mask is made up of a 6×6 array of such sets.
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light is filtered by the ring and coupled to the add/drop waveguide on the other side.

Light that couples through the add/drop waveguide exits through the corresponding flat

facet on the right side (the drop port). The angled facets are used if reflections are an

issue with the lensed fiber, or if there is damage to the waveguide between the flat facet

and the ring.

The central ring region in Fig. 3.11c is further broken down in Fig. 3.12 on the next

page.
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(a) Magnification of 1 of 36 ring device regions on the mask. There are 12 double-bused optical
ring resonators of varying dimensions. A label of the devices, pair of positive/negative local EBL
alignment markers, and a pair of horizontal/vertical 10 nmalignment calipers are all found to the
left of the devices. Between the optical waveguides, 4 µm diameter circles prevent ‘parastic modes’
in the Si3N4 from coupling light from the input fibers to the collection fibers.

(b) Optical ring resonator with mechani-
cal oscillator released.

(c) 4 µm circles suppress ‘parasitic’ modes

(d) Local alignment marks get
exposed when being used dur-
ing the EBL process.

(e) Calipers show success of EBL write
alignment to chromium template mask.

Figure 3.12: SEM Images of significant aspects of the ASML mask.
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(a) Sidewall angles tend to have an angle of
inclination greater than 85°.

(b) Actual waveguide thickness tends to be ap-
proximately 20 nm inset from hard mask di-
mensions.

Figure 3.13: Vertical Etch profiles of Cr etch process.

3.3 Chromium Hard Mask and Vertical ICP Etching

A chromium metal mask is utilized, instead of standard photoresist, to yield nearly

vertical sidewalls when etching through our LPCVD Si3N4 layer. Such vertical sidewalls

are difficult to obtain when using photoresist as a masking layer, since the photoresist

layer is etched away at a rapid rate by the presence of O2 during the ICP anisotropic

etch. Having vertical sidewalls in our LPCVD Si3N4 layer is vital for the fabrication of

optomechanical devices intended to oscillate in the wafer plane. Vertical etch profiles

from the chromium mask process is shown in Fig. 3.13, with the chromium mask still

present on top.

Additionally, implementing a hard mask layer allows us to construct a single mask

layer from multiple methods and/or steps of photolithography. We start with high-

resolution DUV stepper lithography to pattern an initial ‘template’ mask. This mask

contains >99% of the features to be defined. The template layer is then modified us-
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Figure 3.14: SEM Image of sidewall roughness following vertical etch of Si3N4 layer.

ing Electron Beam Lithography (EBL) to define the structure of our nanobeams. This

gives us valuable flexibility with the ability to modify dimensions of nanobeams between

fabrication runs, without having to design and order a new stepper mask.

3.3.1 High Resolution Deep Ultraviolet (DUV) Lithography

The highest resolution stepper lithography system available in the UCSB cleanroom

is the the ASML 5500 DUV System. It uses 248 nm light from excimer lasers to expose

chemically amplified photoresists, capable of resolving line structures down to 150 nm.

Currently, we use cleanroom-stocked UV6 Positive DUV Photoresist. Exposures are done

in the range of 12–18 mJ/cm2, depending on the desired thickness of the final waveguides.

As can be seen in Fig. 3.14, any roughness in the chromium mask translates downward

into the waveguides themselves. To improve the sidewall roughness of the final etch, it

was necessary to implement as substantial thermal reflow of the resist. By heating the

photoresist beyond its softening point, surface tension repairs much of the roughness.

However, the photoresist also flows outward from this softening, requiring modifications
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to the exposure dosage to compensate.

UV6 chemically amplified photoresist has a softening point around 145 ◦C. Following

some calibration issues with the hotplates2, thermal reflows of 145 and 150 ◦C were found

to be insufficient at initiating surface-tension based repair of the sidewalls. A thermal

reflow at 155 ◦C, however, was very effective at reducing sidewall roughness. However,

the extent of the reflow was very sensitive to time. Reflows of 80 or 90 seconds seem

ideal, with 120 seconds appearing to nearly liquefy the resist.

Due to the resulting variance in hard mask geometry from the sensitivity of the

photoresist to the thermal reflow process at 155 ◦C, the ASML exposure is done with an

energy exposure array. That is, each di is exposed to an incremenetally higher dosage

than the previous one, resulting in a range of feature sizes from di to di. After SEM

characterization of the resulting chromium hard mask, the di with the best feature sizes

2One of the most frustrating issues I came across was the variance and offset of hotplate temperatures
within the UCSB NFF. To the point, the temperatures of any contact hotplate should be assumed to run
0–10 ◦C hot, which makes them unviable for use with the resist reflow process. The non-contact hotplate
appears stable enough short term, but still needs to be checked regularly as the surface temperature
has been shown to drift by 5 ◦C before cleanroom staff catches on. Because of this, prior to each resist
reflow process, I recommend using a thermocouple attached to an Si wafer to check the temperature
calibration of both the surface temperature and process temperature to keep track of this variable.

(a) Standard 135 ◦C PDB (b) 155 ◦C for 90 seconds.

Figure 3.15: Comparison of photoresist sidewall roughness, with and without a ther-
mal reflow.

113



Characterization and Optimization of the Fabrication Process Chapter 3

is selected for continued fabrication. The others are then used for test pieces, or to be

processed later depending on the eventual results of the first-selected piece.

3.3.2 Ultra-High Resolution Electron Beam Lithography

Modification of the ‘template’ mask layer is done using a JEOL JBX-6300FS Electron

Beam Lithography System, in conjunction with CSAR-62 (SX AR-P 6200/2) electron-

beam resist and aquaSAVE conductive polymer. Four global alignment marks (P, Q, R,

S) are used to account for sample position and rotation. Then, a local alignment mark is

used for every row of rings to account for deviations in the the chromium mask pattern

and the ideal mask geometry. Without local alignment marks, EBL patterns could only

be consistently placed within 200 nm of their desired position on the mask. With local

alignment marks, placement was generally improved to within 20 nm. For every row or

rings, patterned calipers are used to determine the accuracy of the EBL positioning (See

Fig. 3.12e).

3.3.3 Chromium Dry-Etching

Reactive Ion Etching (RIE) of chromium is done with chlorine and oxygen gases.

The initial chromium-etching process recommended by clean-room staff was found to be

unstable. Run-to-run variations on the etch rate could be greater than 50 %, essentially

making the process nonviable. However, after several modifications beyond standard RIE

procedures, the etch rate was stabilized, significantly improving viability of the process.

3.3.3.1 Purge Gas Selection

Helium gas is used as a purge gas, rather than standard N2. Prior to the etching

of the chromium, a layer of anti-reflective (AR) coating needs to me removed via an O2
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etch. If N2 is injected into the etch chamber after the etch completes and the Cr layer is

exposed, N3− radicals in the plasma interact with the surface to form chromium nitride

(CrN). CrN is insulating and has lower etch rates in the Cl2/O2 etch optimized for pure

Cr layers.

3.3.3.2 Etch Loading Issues Induced by Carrier Wafer Interaction

After a couple years of experience with Cl2/O2 etching of chromium, it slowly became

apparent the etch was somehow interacting with the 6” carrier wafer when compared with

other etches. The carrier wafers would readily lose their luster and even start developing

black spots in areas exposed to the etch. Etch rates would occasionally drop by up to

60% from one run to the next. This issue was reported by other people attempting to

etch chromium via RIE methods.

We eventually postulated the etch was interacting with the silicon surface of the

carrier wafer, ultimately leading to roughening of the surface. This roughening would

effectively increase the surface area of the carrier wafer and consequently increase the

interaction between the etch and the silicon. Our solution was to blanket the carrier

wafer with a material known to not react with the etch, SiO2. 1 µm of PECVD SiO2

was deposited on a standard 6” carrier wafer to be exclusively used when etching with

chromium.

The simple solution of using an SiO2 carrier wafer proved very effective. Not only did

the etch rates stabilize, but they stabilized at an etch rate 60% higher. This was most

likely due to a loading effect between the etch reactants and the silicon carrier wafer. As

such, it was necessary to recharacterize the etch profile, in case the effective gas ratios

were effected by the loading.
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Figure 3.16: Notches along the outer edge of the chromium mask are correlated with
sidewall roughness near the position of the notches.

3.3.3.3 Formation of Notches Along Edge of Chromium Mask

Originally, it was found that notches frequently formed along the edges of the chromium

mask. As can be seen in Fig 3.16, these notches translate to sidewall roughness in the

Si3N4 waveguides. We hypothesized that Cl− residue was left along certain section of

the mask edge following the Cl2/O2 etch. When the sample would reach atmosphere,

the Cl− residue would interact with the air to form droplets of hydrochloric acid (HCl)

along the edges of the waveguide in random locations. As HCl is an active ingredient in

chromium wet etchants, this could explain the formation of the notches.

Simply rinsing the sample in DI water was recommended to fix this problem. The idea

was that the etching by HCl would not be fast enough to form significant notches if the

residues were washed away as soon as possible. However, this did not solve the problem.

Next, we decided to take advantage of the multi-recipe function of the ICP machines to
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remove the Cl− residue before the sample could reach vacuum. We originally tried:

Table 3.1: Chromium Etch Multi-Recipe: Remove resist, then clean (failed)

Step # Active Gasses Purpose

1 O2 Removal of anti-reflective coating

2 Cl2/O2 etching of chromium mask layer

3 O2 removal of remaining photoresist/AR coating

4 CF4/O2 removal of Cl− residue

Not only did this not solve the problem, but new pits were found to form inward of the

edge. With regard to persistent notch formation at the edge, it is reasonable to suspect

that the Cl− residue acted with the O2 to continue etching the chromium. As for the

pit-formation, we suspect that some Cl− residue managed to find its way underneath the

photoresist layer during the original etch process. Previously, this residue did not lead

to etching as it was sufficiently sealed from the air by the photoresist. However, with the

photoresist first removed, this hidden residue was now exposed to the same conditions

as the residue at the edge, leading to further etching.

Simply swapping steps 3 and 4 proved sufficient to solve the issue entirely. As such,

chromium etches followed the sequence:

Table 3.2: Chromium Etch Multi-Recipe: DUV Lithography

1 O2 Removal of anti-reflective coating

2 Cl2/O2 etching of chromium mask layer

3 CF4/O2 removal of Cl− residue

4 O2 removal of remaining photoresist/AR coating

without breaking vacuum. In ICP#1 this is a standard feature. For ICP#2, this

necessitates running the machine in Test Mode and performing the recipes manually in

sequence. The resulting sidewalls are shown in Fig. 3.17, with chromium hard mask
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layer still present on top.

The same procedure is followed for the chromium etch after the EBL patterning, but

with the initial O2 etch removed:

Table 3.3: Chromium Etch Multi-Recipe: Electron Beam Lithography

1 Cl2/O2 etching of chromium mask layer

2 CF4/O2 removal of Cl− residue

3 O2 removal of remaining E-beam resist

Figure 3.17: SEM image of sidewalls obtained using our optimized chromium etch process.
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3.3.3.4 Chromium ICP Etch with Cl2/O2

The chromium dry etch recipe changed numerous times through modifications pre-

sented in the previous sections. The change was particularly dramatic following the

change of the carrier wafer, where Cl2 was dropped from 60 sccm to 24 sccm. Eventually,

the following recipe was settled upon:

Table 3.4: Optimized Chromium Etch

Parameter Value

Cl2 24 sccm

O2 6 sccm

Pressure 1.33 Pa

Source Bias 500 W

Forward Bias 25 W

Using this recipe, along with the right vertical dry etch for the Si3N4 layer below

(Section 3.3.4), led to the sidewalls shown in Fig. 3.18.

Figure 3.18: SEM Image of sidewall roughness following vertical etch of Si3N4 layer.
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3.3.4 Vertical Etching of Si3N4

Generally, the vertical etching of Si, SiO2, and Si3N4 is achieved using reactive ion

etching with fluorine-containing plasmas. Commonly used gasses available in the UCSB

NFF are CF4, CHF3, and SF6. For Si3N4 specifically, CF4 is most commonly used and

works via the reaction:

12 F + Si3N4 3 SiF4 + 2 N2 (3.1)

where the fluorine ions are generated by the following reaction with plasma electrons

e– + CF4 CF3 + F + e– (3.2)

If O2 is not present during the reactive ion etch, a fluorocarbon layer (CFx) forms on the

surface of the etched layers, inhibiting the etch rate. The introduction of O2 suppresses

the formation of the fluorocarbon layer and stabilizes the etch rate [42]. Specifically, the

O2 reacts with the CFx, producing CO, CO2, COF2, and F [43]. If too much oxygen is

present however, etch-resistant oxide patches can form on the surface, leading to grassing.

Passivation layers can be incorporated by including hydrogen or nitrogen containing

process gasses such as CHF3 and N2. Such layers are used to protect the etch surface

during the etch itself, or can be useful in some way after. For example, hydrogen passi-

vation of Si3N4 surfaces is implemented in the field of photovoltaics to improve long-term

stability of commercial solar cells. For such systems, hydrogen is bonded to dangling

silicon bonds that otherwise create electrical issues.

Prior to our work, UCSB NFF staff member Bill Mitchell had already optimized the

dry etching of Si3N4 for sidewall roughness. He provided the following recipe for use with

ICP2:
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Table 3.5: Si3N4 Vertical Etch (CHF3-based)

Parameter Value

CHF3 35 sccm

CF4 5 sccm

O2 10 sccm

Pressure 0.5 Pa

Source Bias (RF) 500 W

Forward Bias (RF) 50 W

Expected Etch Rate 145 nm/min

However, this recipe was optimized for use with plasma-enhanced chemical vapor

deposition (PECVD) Si3N4. Although it would still likely provide the same etch quality

with LPCVD Si3N4, its inclusion of CHF3 comes with a drawback. The inclusion of a

hydrogen-containing compound, such as CHF3, allows for the formation of Si-H and N-H

bonds, which are known to have a significant impact on the physical properties of Si3N4

[44, 45, 46, 47]. Eventually, the final recipe

Table 3.6: Si3N4 Vertical Etch (no CHF3)

Parameter Value

CF4 50 sccm

O2 5 sccm

Pressure 2.00 Pa

Source Bias (RF) 500 W

Forward Bias (RF) 25 W or 40 W

was found to produce smooth, vertical sidewalls. (See Fig. 3.18)

121



Characterization and Optimization of the Fabrication Process Chapter 3

(a) SiO2 cladding protects the waveguides
from contamination.

(b) Improper deposition can lead to folds
in the cladding, which allow pathways for
the vapor HF to the waveguides.

Figure 3.19: SEM images of the cladding deposition on 400 nm waveguides. Vapor
HF is used to reveal the structure within the layers.

3.4 SiO2 Cladding Deposition and Liftoff

In general, ultra-low loss Si3N4 waveguides are usually covered in SiO2 to match the

thermally grown SiO2 beneath them. This cladding both improves the optical quality of

the waveguides and protects the waveguides from particles post-fabrication. For these

reasons, we clad the waveguides over a majority of the sample, only blocking the deposi-

tion in the region of our devices. The edge of the cladding layer intersects the waveguides

at a 45° angle, as seen in Fig. 3.20, to reduce potential reflections issues.

An SiO2 RF-Sputtering recipe had already been optimized for photonic applications

by Mike Davenport (Ph.D. 2017) working under John Bowers. The remaining parameters

to be determined were the height/tilt configuration of the source and substrate. Typically,

lower angles of incidence are preferred when doing lift-off processes. However, uniformity

and surface roughness are significantly more important for the later application of wafer

bonding, covered in Chapter 4.

Eventually, the clean-room standard dual-liftoff recipe was modified sufficiently to

allow the low-angle deposition of SiO2 using RF-sputtering, resulting in the proper lift-
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(a) After SiO2 sputtering (b) After lift-off

Figure 3.20: An octagon-shaped patch of photoresist shields the ring resonators during
the SiO2 sputtering process.

off demonstrated in Fig. 3.20. The significance of this is demonstrated in Fig. 3.21,

which compares the deposition uniformity for 3 hours sputtering depositions performed

at the lowest and highest angle configurations. We see that the low angle configuration

(a) exhibits approximately 10 nm variance from center to edge, whereas the high angle

configuration (b) had 15 nm variance despite depositing only 2/3 as much.

(a) z = 2.75 hφ = 4 mm (b) z = 1.52 hφ = 9 mm

Figure 3.21: Layer thickness for 2 different height/tilt configurations on Sputter 3, for
3 hour deposition time.
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(a) Stiction will occur with ‘snap-release’
nanobeams when wet processing is done follow-
ing the release of the mechanical structures.

(b) Vapor HF can be used to release Si3N4

nanobeams without stiction occurring.

Figure 3.22: Stiction can be avoided with a vapor HF etch instead of a standard wet
release, making ‘snap-release’ nanobeams possible using the SiO2 as a sacrificial layer.

3.5 Release of Mechanical Structures with Vapor HF

Dry Etching

Our mechanical structures are released by removal of the SiO2 layer beneath them.

The most common removal technique for sacrificial SiO2 layers is wet etching with diluted

or buffered HF solutions. The chemical process for such reactions is:

SiO2(s) + 4 HF(aq)
H2O

2 H2O + SiF4(g) (3.3)

However, wet releases are problematic when the released structures are in close proximity

to other objects. The surface tension of water will pull mechanically released objects

toward their nearest neighbors, which can cause them to adhere together even after the

water is fully removed. This problem is referred to as ‘stiction’ (static friction), and

comes from the inability of the mechanical structure to surpass the threshold required

to overcome the Van der Waals force between the two structures. Fig 3.22 shows an
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example of stiction encountered in our samples encountered after wet processing.

A common solution to this problem is critical point drying, which solves the surface

tension issue by going around the liquid-gas phase transition boundary, rather than

across it. This means the mechanical structures never encounter a physical liquid-gas

boundary as the liquid is converted to a gas, However, the critical point drying apparatus

in our cleanroom is unreliable. According to the logbook, valve failures tended to ruin

approximately 1 in 5 runs.

A relatively new option is the use of a dry HF vapor process, which uses gaseous HF

instead of liquid HF to etch the SiO2 layer. The UC Santa Barbara cleanroom obtain an

STPS uEtch Vapor HF system in 2013, which utilizes the reaction:

SiO2(s) + 4 HF(g)
EtOH

2 H2O + SiF4 (3.4)

In this process, we see that ethanol (EtOH) is used to catalyze the reaction instead of

H2O. A problem arises in that H2O is a product of the reaction. If this water is not

removed from the system sufficiently, its ability to catalyze the reaction via Eq. 3.1

will interfere with the etch rates. For this reason, each etch is usually broken up into a

number of shorter etches to avoid complications from the buildup of water over a single

etch cycle.

We are restricted to 5 base recipes with our vapor HF system.
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(a) After dicing, the roughness of the sample
edges leads to high scattering loss.

(b) Proper polishing yields a smooth waveg-
uide facet for light insertion after vapor HF to
release the SRNBs.

Figure 3.23: Facet polishing is critical in reducing insertion loss when coupling light
into and out of the optical waveguides. The images here are for non-wafer bonded
samples, to be used with the vacuum setup described in Section 5.4.2.

3.6 Dicing and Facet Polishing

Each full sample is diced into 6 functional device pieces and 2 test pieces (See Fig.

3.10) using a 100 µm wide dicing saw blade.3 Following the dicing process, there is

approximately 40− 50 µm thickness between the outer encapsulation layer and the start

of the optical waveguides. This needs to be polished and smoothed to reduce insertion

loss of the lensed fibers, yet not overly so such that the waveguides get exposed and the

wafer bonding process will not be able to form a seal. Noting that our lensed fibers have

a focal length of 14 µm in vacuum, the ideal width of the encapsulation layer is in the

range of 10 − 20 µm. To achieve this, polishing films of grade 6 µm, 1 µm, 0.3 µm, and

‘final polish’ are used in order from coarsest to finest. Only one sample bar is polished

at a time to avoid complications that arise from variance in the diced widths of the bars.

3If the sample is not to be waferbonded, it is instead diced with a 200 µm wide to ensure the waveguide
facets are exposed. All 6 samples can then be diced together, we a seventh piece of material to be used
a shield in front of them.
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Anodic Wafer Bonding

To further improve our integrated design, we attempt to hermetically seal our system

under transparent glass (Borofloat-33) at pressures on the order of 10−6 mbar. This

serves two functions:

1. It allows for room temperature characterization of high-Q mechanical devices with-

out the use of a vacuum chamber.

2. It protects our devices from foreign contaminants after they leave the cleanroom

environment, without taking any special precautions. This is significant as the

presence of a single particle near an optical ring is sufficient to render it unusable.

The fact that this can be done with transparent material is invaluable in preserving the

simplicity of our alignment procedure.

This short chapter covers the basics of anodic bonding, its standard limitations, and

how we get around them for our particular devices.
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4.1 Bonding Chemistry and Procedure

Using specific borosillicate glasses, anodic bonding is already an effective technique

for obtaining hermetically sealed regions for the fabrication of microsensors [48, 49, 50].

Borosilicate glass was developed in the late 1800s by melting together B2O3, Al2O3, SiO2

(silica), and Na2CO3 (soda ash). The resulting glass contains approximately 4% Na2O

by weight, which is the ‘active ingredient’ in anodic bonding. Borosilicate glass is 90%

transparent for wavelengths up to 2 µm, and has a coefficient of thermal expansion (CTE)

very similar to silicon. This is important for both the wafer bonding process, which goes

up 400 ◦C, as well as for later cryogenic cooling of the sample. Borofloat-33 is simply

borosilicate glass manufactured using a ‘floating’ technique that produces very uniform

and flat surfaces [51], necessary for wafer bonding.

Usually anodic bonding is done with direct contact between borosillicate glass and

p-doped silicon. By pressing the glass into the Si wafer, heating them up to > 400 ◦C, and

applying a negative voltage from the glass to the Si, O2– ions in the glass and positively

charged holes in the p-doped Si are dragged to the glass-Si interface. The strong electric

field pulls the two materials together, where the O2– ions are then able to form Si-O

covalent bonds with the Si substrate. This bond is known to be strong and hermetic,

and occur when the glass and Si are initially within 1 µm of each other [50].

When the borosilicate glass and Si wafer do not come directly into contact with each

other, the bond can still occur, but larger electric fields across the boundary are necessary,

requiring a larger voltage [52]. However, for SiO2 layers greater than 600 nm the bond

can no longer happen [53]. Since we necessarily need at least 2 µm of SiO2 between the

LPCVD Si3N4 and the Si substrate, we cannot directly wafer bond to the top of our

layer stack. To solve this problem, we deposit a conductive layer around the insulating

layer, with a liftoff layer protecting our devices. A thin layer of amorphous-Si (α-Si) is
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sputtered on the topside of the conductive layer, which the borosilicate glass is able to

bond to. The full bonding process then works as follows:

Figure 4.1: (Step 1) The borosilicate glass is placed on top of the sample, then loaded
into the vacuum bonder.

Figure 4.2: (Step 2) The system is pumped down to 2× 10−6 mbar, and heated to
400 ◦C. At 400 ◦C, the Na2O dissociates into Na+ and O2− ions.
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Figure 4.3: (Step 3) A negative voltage is placed across the device. This drives the
Na+ ions to the cathode and the O2− toward the conductive material that is shorted
to the anode.

Figure 4.4: (Step 4) Covalent Si-O bonds form at the interface between the α-Si and
the Borofloat glass.
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Figure 4.5: (Step 5) The sample is allowed to cool and return to atomspheric condi-
tions, to be diced and polished. As the seal is known to be strong and hermetic, the
device regions do not return to atmospheric pressure.

Although the UCSB NFF is equipped with a vacuum bonder, it need not be the

case that original bonding actually be done in vacuum. Options exist which allow for

non-vacuum bonding to yield a hermetically sealed vacuum pockets. A hole can be left

in the glass that connects the device region to the outside environment. By depositing

over that hole in a low pressure environment, one is able to obtain pressures in the sealed

chamber approximately matching the deposition pressure. Such an idea could also be

used to fix any small leaks on the edge of a sample. A getter can be placed inside the

sealed region in addition to this process to obtain vacuum pressures [54].

A final option to consider is the addition of a cryopump region using a material such

as activated charcoal. This could allow the sealed region to obtain ultra-high vacuum

pressures inside the seal when the sample is later cooled to cryogenic temperatures [55].
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4.2 Material Selection

The success of the anodic bonding process is dependent on the correct choice of

materials for the layers which connect the α-Si bonding layer to the top of the SiO2

cladding. These layers must include a relatively thick conductive material that is capable

of distributing the electric potential across the entire sample. The primary criteria for

deciding on a layer stack are:

• Surface Roughness/Uniformity Both long-scale and short-scale uniformity are

important factors in determining whether the bond succeeds, and whether vacuum

pressure will remain stable after the sample is diced and polished.

• Adhesion Between Layers: Every deposited material must strongly adhere to

the material below it. The friction generated during the dicing and polishing steps

is enough to pull weakly bonded layers apart from each other.

• Coefficient of Thermal Expansion (CTE): The sample will need to be heated

to >400 ◦C during the bonding process, and potentially cryogenically cooled to mK

temperatures. This necessitates that the layers have comparable CTEs to minimize

the stress undergone during temperature changes. This primarily relates to the

necessary conductive layer, as most metals have a CTE an order of magnitude

greater than Si, SiO2, and Si3N4.

• Method of Deposition: The conductive layer needs to be deposited in such a way

that the insulating SiO2 and Si3N4 are ‘shorted’ by the material. This necessitates

deposition on at least one edge of the sample, in addition to the top layer. This is

possible with multiple depositions or one single one that covers both the top and

at least one edge. Strategies using both Sputtering (DC and RF) and electon beam

physical vapor deposition (EBPVD) are explored in Sect. 4.3.
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Taking these points into account, we use the strategy to restrict ourselves to silicon

based compounds (Si, SiO2, and Si3N4) with the exception of our conductive layer. The

RF-sputtering of Si is the single most uniform process in the UCSB cleanroom (Brian

Thibeault, personal communication), thus taking care of all 4 bullet points with respect

to each other. The primary nuance thus becomes choosing an appropriate conductive

layer that fits in the middle. The top candidates are the refractory metals: niobium,

molybdenum, tantalum, tungsten, and rhenium. Refractory metals are know to have

high melting points and low CTEs, on the same order of silicon. This leads to them

being extremely resistant to heat, corrosion, and wear. They are also known to be

good electrical conductors. The CTEs of the refractory metals, and some other possible

candidates, are shown in Table 4.1.

Table 4.1: CTE for Relevant Materials

Material CTE @ 300 K (µm
m

K−1)

Device Materials:

Silicon (crystaline) 2.69 [32]

Silicon (amorphous) 4.4 [56]

SiO2 0.5 – 1.0 [57, 58]

Si3N4 3.4 [31]

Borosilicate Glass 3.3 [59]

Refractory Metals:

Tungsten 4.5 – 4.6

Molybdenum 4.8 – 5.1

Rhenium 6.2 – 6.7

Tantalum 6.5 – 6.6

Niobium 7.0 – 7.3

Other Metals of Interest:

Chromium 4.9 – 8.2

Titantium 8.4 – 8.6

Platinum 8.8 – 9.1

Note: Data for the metals was obtained from
Barron(1980)[60] and Cverna(2002)[61].
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4.3 Method of Deposition

Two methods of deposition are used:

Figure 4.6: Electron Beam Chemical Vapor Deposition (EBCVD) is normally very
unidirectional. However, by rotating the sample around one of its planar axes, we
are able to coat the front, back, and multiples sides with a single deposition. The
sample is clamped by an alligator clip attached to a chuck, which is rotated by a
motor connected to electrodes inside the EBCVD vacuum chamber.

(a) Although the sputtering process is di-
rectional, deposition occurs at an angle by
machine construction.

(b) DC-sputtering of tungsten de-
posits a sufficient amount of conduc-
tive material on the edge.

Figure 4.7: By design, the sputter machines deposit at an angle. For low angles
of deposition, the sputtering process deposits enough material on its sides for the
dielectric layers to be shorted.
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4.4 Results

The standard metrics by which wafer bonding is evaluated are the ‘eye’ test and

‘pull’ test [62, 63, 53]. The initial bonding of the glass layer to the Si layer is very

evident by visual inspection. Unbonded layers display a typical interference pattern that

is sensitive to touch or pressure on the top surface. Bonded layers tend to have a very

dull appearance. However, even if the two top layers successfully bond, the true test

for anodic bonding is the ability for the whole layer stack to withstand a pulling force.

Proper wafer bonding produces bond strengths equal to or greater than the fracture

strengths of the glass itself. As such, the pull test will fail at the glass level rather than

at the interface for a successful anodic bond.

(a) Particles and residues will prevent success-
ful bonding. The appearance around the par-
ticles is indicative of the lighter regions corre-
sponding to unsuccessful bonding.

(b) Evidence of failed bonding in the critical
region between the ring arrays. If this sample
were diced, the unsuccessful bonding on the top
would lead to penetration of the vacuum region
by air and/or water.

Figure 4.8: Microscope images from a failed anodic bond attempt. Dark regions
correspond to successful bonding.
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4.4.1 Aluminum

Although aluminum was not on the list of materials with a compatible CTE, it was a

good test choice for the EBCVD shown on the previous page. It is known to be sufficiently

conductive and smooth, unlike many other metals deposited through EBCVD. As shown

in Fig. 4.9a, aluminum was able to conduct sufficiently for the bonding process to work,

though higher voltages were required than usual (1500 V instead of 400V). However,

visual inspection of the sample afterwards clearly indicated that something had occurred

near the top layers, as it had changed from the standard grey appearance of aluminum

to a brownish color. Inspection under a microscope suggested that one of the layers

had cracked, most likely either the aluminum or the α-Si. A repeat test of the thermal

conditions without the Borofloat slide led to the brown appearance, with the top flaking

off. From this we concluded that the Al had expanded significantly to shatter the α-Si

layer on top of it, which has a coefficient of thermal expansion an order of magnitude

below it.

(a) Plot of current vs. time during the anodic bond-
ing using an aluminum conductive layer. A partic-
ularly high voltage (1500 V) was necessary to com-
plete the bond.

(b) Microscope image of the bonding re-
gion after the removal from the vacuum
bonder, and successful pull test. The α-Si
is shattered by the expansion of the alu-
minum underneath it.

Figure 4.9: Although aluminum passes the pull test, it very clearly fails the eye test.
The difference in CTE between aluminum and the other materials ultimately resulting
in the aluminum layer ‘bursting’ out from the α-Si material above it.
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4.4.2 Tantalum

Tantalum seems like the strongest candidate to be successful conductive layer for

our wafer bonding scheme. Buchwalter et al. (1995)[64] showed that the adhesion of

tantalum to silicon nitride is superior to tantalum to silicon oxide or chromium to either

material. It was also the only material combination that resulted in material failure from

a pull test, rather than at the interface. This suggests that we should use RF-sputtered

SiN inbetween our SiO2 cladding and our Ta layer, as well as between the Ta layer and

the α-Si layer. As an additional possible resource, tantalum nitride (TaN) can be used

as a glue between conductive materials [65]. A third potential (long-term) benefit is that

Ta is a Type-I superconductor with a relatively high critical temperature. The paves

the way for the conductive layer to have other potential purposes, such as driving the

nanomechanical oscillator after cryogenic cooling.

Based on the findings of Buchwalter[64], the following layer stack recipe was devel-

oped:

Table 4.2: Ta Layer Stack

Step # Thickness Layer Deposition

4 60 nm RF–sputtered α-Si coating

3 10 nm RF–sputtered SiN coating

2 50 nm DC–sputtered Ta

1 10 nm RF–sputtered SiN coating

0 - SiO2 cladding

where all 4 layers above the cladding are to be deposited in a single run without breaking

vacuum.
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(a) A nearly ideal current profile for anodic bonding. (b) Layer separation after completion of the
bonding process.

Figure 4.10: Although the SiN/tantanlum/SiN/Si stack demonstrated a successful
anodic bond, adhesion of the layers resulted in a failure of the process. Postmortem
analysis revealed separation between the Ta layer and the bottom RF-sputtered SiN
layer. However, the adhesion between the top SiN layer on the Ta was good.

The resulting stack proved to be very effective for the anodic bond process, as shown

in Fig. 4.10a. The current ramps up to 15 mA, the maximum allowed by the bonder.

After most of the sample is bonded, the current draw finally drops below 15 mA and

begins to decay exponentially over time. Unfortunately, retrieval of the sample from

the bonding machine resulted in separation between the Borofloat-33 glass and the Si

wafer. The top wafer bonding pattern had transferred completely from the Si piece to

the Borofloat. As shown in Fig. 4.10b, SEM imaging revealed separation had occurred

between the Ta layer and the RF-sputtered SiN layer beneath it.

These initial results are counter to the findings of Buchwalter [64]. After discussion

with cleanroom staff, we came to conclusion that it is most likely the case that the sput-

tered SiN is too smooth for the adhesion of Ta. As mentioned, the RF-sputtering of Si,

SiO, and SiN are the single smoothest and most uniform depositions in the UCSB NFF.

This minimizes the surface area over which the Ta can adhere to during the deposition
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process. Buchwalter suggests that the adhesion of Ta to SiN is driven by:

Si3N4 + 4 Ta 4 TaN + 3 Si (4.1)

which is thermodynamically feasible. That is to say, the reaction is not strongly favored,

but will happen spontaneously given enough time [64].

Rather than wait for TaN to form on the surface between the interaction between SiN

and Ta, it would seem advantageous to simply deposit the Ta in a nitrogen atmosphere,

which on its own leads to the formation of TaN [66]. By modifying the layer stack to:

Table 4.3: Proposed tantalum stack for wafer bonding

Step # Thickness Layer Deposition

5 60 nm RF–sputtered α-Si coating

4 10 nm RF–sputtered SiN coating

3 50 nm DC–sputtered Ta

2 5 nm RF–sputtered TaN

1 10 nm RF–sputtered SiN coating

0 - SiO2 cladding

we expect the adhesion issues to be fixed. This is to be explored upon the reception of

a new set of Borofloat wafers.
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4.4.3 Tungsten

After determining aluminum’s non-viability and before experimenting with the tan-

talum layer stack, we attempted to use DC-sputtered tungsten between SiO2 cladding

and the α-Si. As can be seen in Fig. 4.11, W was successful as a conductive layer for the

bond process. However, it failed the pull test afterwards, with the interface between the

SiO2 and the tantalum being the obvious point of failure. A testing of the dicing process

through the center of the devices (unharmed by the pull test) resulting in delamination

along the dicing line, resulting in water flooding the device region.

We originally concluded that W would not work as a conducting layer. However, after

the results of the tantalum layer, there is reason to second-guess the original conclusion.

Tungsten nitride is a known conductor, and could potentially be used instead of pure

tungsten in future tests.

Figure 4.11: Plot of current vs. time during the anodic bonding process for a W
conductive layer. Although it does not match the ideal form observed with tantalum
in Fig. 4.10, the strong and continuous pull of current is indicative of a successful
bond.
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Device Characterization and

Preliminary Results

In this chapter, we characterize samples made using the fabrication techniques in Chap-

ter 3 and compare them to predictions of Chapter 2. First, we discuss both general

and specific features of the optical setup used to characterize our samples at room tem-

perature and pressure. Results of optical and optomechanical characterization are then

be analyzed. We then compare these results to those obtained from a vacuum setup

constructed by Wolfgang Löffler at Leiden University. Finally, we compare the obtained

results to theoretical predictions from Chapter 2. Equations and ideas are repeated and

referenced when possible for the reader who jumped directly to this chapter.
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Figure 5.1: Diagram of the optical setup

5.1 Optical Setup

A layout of our basic optical setup is shown in Fig. 5.1.

1. Our laser source is a Sacher Lasertechnik Litmann class tunable diode laser, model

TEC-500-1060-030, operated by an Sacher MLD-1000 modular laser driver. In-

stalled in the MLD are the Laser Controller, Piezo Amplifier & Current Coupling,

and Ramp Generator modules, which together allow for scanning the laser with

0–100 V, with a piezo tuning rate of 1.3 GHz/V. Mode-hop-free tuning ranges of

∼ 10 GHz can be obtained around most resonances, sometimes with a fair amount

of current adjustment needed. The full range of the laser is 990–1075 nm, but we

generally aim to stay around the operational wavelength of 1060 nm. The laser is
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usually operated with currents of 100–130 mA, outputting 10-15 mW of power.

2. Light from the laser aperture passes through a Thorlabs IO-D-1064-VLP optical

isolator, which transmits approximately 60% of the power.

3. A 90/10 beamsplitter picks off 10% of the light for analysis. The transmitted 90%

is coupled to a single-mode fiber using a coupler with 5 degrees of freedom. The

reflected 10% is further separated by a 99/1 beamsplitter. The transmitted 99% is

sent to a Mach-Zender Interferometer to look for modehops. The reflected 1% is

sent to a spectrometer to keep track of the wavelength.

4. The single mode fiber is connected a 1 m long lensed fiber, which is threaded through

a standard manual fiber polarization controller utilizing stress-induced birefrin-

gence.

5. The lensed fiber is aligned with the input waveguide using an overhead CCD camera

to monitor light scattered in the waveguides, and from the throughput port.

6. After tuning the laser frequency until a the ring is on resonance, light is collected

from the drop port with a multi-mode lensed fiber.

7. The multi-mode fiber is fed into a Thorlabs APD110C avalanche photodetector

with a bandwidth of 50 MHz.

8. The APD is connected to an oscilloscope and a Zurich HF2LI lock-in amplifier for

spectral analysis.
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5.2 Ring Resonators

The first step in the development of our process was obtaining high-finesse optical

ring resonators, and understanding how their coupling, optical Qs, and finesse vary as a

function of their geometry. Since our FSRs are much greater than the mode-hope free

range of our laser, we are restricted to measuring the Q-factors and estimating the finesse

from the predicted FSRs. This essentially reduces our goal to optimizing the ratio of Q

to R.

5.2.1 Optical Quality Factors

Optical quality factors are characterized by scanning the laser over the resonance of

the ring, and fitting the resulting photodiode voltage to a Cauchy Distribution. A quicker

method is simply determining the full-width half maximum of the resonance by tuning

the laser voltage directly, then dividing the laser frequency by it. This latter method is

good for spot-checking if there is something wrong with a ring, without having to fully

characterize it.

The development of the chromium etch mask process, detailed in Section 3.3, was

primarily driven through optical Q measurements. Despite being on the low side, the

initial Qs were very promising when taking the apparent sidewall roughness into context.

For visibly rough sidewalls, Qs were obtained in excess of 3× 105, indicating ∼ 1 db/cm

propagation loss (Fig. 1.6). Images of similar sidewalls and the resulting Qs are shown

on the next page.
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Figure 5.2: Images of sidewall roughness taken around the time of sample Loss Test
4A (LT4A), whose measured optical quality factors are given in the tables below.

Table 5.1: Loss Test 4A R16

Ring
Width

Coupling Split

300 nm 500 nm 700 nm

0.8 µm 35 60 145

1.0 µm 40 - 152

1.2 µm 45 100 153

Table 5.2: Loss Test 4A R25

Ring
Width

Coupling Split

300 nm 500 nm 700 nm

0.6 µm - 50 -

0.8 µm 45 76 -

1.0 µm 67 161 179

1.2 µm - 200 333

Table 5.3: Loss Test 4A R50

Ring
Width

Coupling Split

300 nm 400 nm 500 nm 600 nm

0.8 µm 43 86 143 -

1.0 µm 57 125 157 250

1.2 µm 100 150 231 273
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With the optimization of the thermal reflow of the UV6 photoresist (Section 3.3.1),

the quality factors increased towards being limited by coupling for the lower coupling

distance values.

Table 5.4: Loss Test 10A R16

R = 16 µm
w = 800 nm

Coupling Split

300 nm 500 nm 700 nm

L10A Fabricated 70 340 600± 100

OMNISIM (Fig. 2.9) 76 865 ∼ 107

which is consistent with internal Qs on the order of 6× 105.

Following these results, full attention was put toward the detection of an optomechan-

ical signal. Loaded optical Qs > 105 were considered sufficient enough for the start of

optomechanics. This meant all samples were processed with vapor HF, which generally

roughened up the surface. Additionally, the APD was a necessary replacement for the

low-speed InGaAs amplified photodetector that we were using, which cut our signal by

a factor of 5. As such, obtaining measurements for the 500 nm coupling splits became

essentially impossible, as well as a second priority. This led to us being generally coupling

limited:

Table 5.5: Outside Bridge 15, width = 800 nm

Ring
Radius

Coupling Split

300 nm 400 nm

16 nm 72 136

20 µm 80 192

24 µm 82 208

32 µm 77 178

40 µm 90 257
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(a) Successful 20 µm SRNB with δx = 500 nm and Rcurv = 50 µm

(b) Failed 12 µm SRNB with δx = 500 nm and Rcurv = 16 µm.

Figure 5.3: Subset of the original SRNB tests, comparing successful (a) and failed (b)
releases. Patterns were entirely defined by E-beam lithography

5.3 Snap-Release Nanobeams

The snap-release mechanism was experimentally tested before the “theory” of Section

2.2.1.4 was penned out. It was simply an idea written with E-Beam Lithography, at the

edge of a sample to be undercut with vapor HF. The initial results are shown in Fig. 5.3.

It was only later that Eq. 2.49:

∆σ = E
δL

L
= −1

6

δx

Rcurv

E (2.49)

was derived, which explains the results. Both nanobeams shown have δx = 500 nm,

which is around the minimum distance required for the fabrication of the nanobeam to

be independent from its surroundings. However, the failed bridge had Rcurv = 16 µm

in order to yield a 12 µm long bridge. Eq. 2.49 predicts this releases 1460 MPa of

tensile stress, more than the assumed 1140 MPa available. With an Rcurv = 16 µm, the
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(a) Optical ring resonator geometry after E-beam Lithog-
raphy to define the SRNB on the right side.

(b) pre-vHF (c) post-vHF

Figure 5.4: Demonstration of the release of a ‘snap-release’ nanobeam to yield a
nanomechanical resonator in close proximity to an optical ring resonator.

other bridge only releases 467 MPa of stress, leaving more than enough to remain in

the high-stress regime after being pulled straight. Longer SRNBs were also tested (with

δx = 500 nm), and all of them pulled straight as one would expect given the model.

The SRNB design was implemented into our mask design to create the ThickRings v2

Mask, detailed in App. A. As shown in Fig. 5.4, the ‘template’ ring geometries have

the inner bending of SRNBs patterned into the Cr mask, with δx and Rcurv set for each

device. E-beam lithography is then used to modify the chromium hard mask, defining

the width and length dimensions of the SRNB. Using this technique, we can fabricate

SRNB with length only limited by the fabrication geometry (slightly less than 2× the ring

radius with the present mask design), and with optomechanical splits ∼ 50 nm. Smaller

optomechanical splits should be obtainable by tweaking the exposure/reflow parameters

of the initial ‘template’ to enlarge the geometry. The width of the SRNBs appears to be
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limited to approximately 50 nm (Fig. 5.6). Thinner nanobeams likely fail due to forces

exerted upon them by the fabrication process (e.g. resist spinning).

Figure 5.5: Optomechanical coupling splits on the order of 50 nm were obtained using
our SRNB fabrication process.

Figure 5.6: The thinnest SRNBs obtained were on the order of 60 nm wide.
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Figure 5.7: SEM image of a 16 µm radius optical ring resonator with a 20 µm long SRNB.
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Figure 5.8: SEM image of a 24 µm radius optical ring resonator with a 40 µm long SRNB.
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Figure 5.9: SEM image of one of the shorter SRNBs coupled to a relatively large
optical ring resonator (R = 40 µm).
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5.4 Detection of Optomechanical Coupling

Optomechanical coupling is detected by analyzing the noise spectrum of the drop-port

signal using a Zurich HF2LI lock-in amplifier. Due to the presence of the nanomechanical

resonator, the resonant frequency of the optical ring resonator is modulated by fm as the

effective index is changes with the position of the oscillating nanomechanical resonator.

This shifts the detuning of the laser with respect to cavity, resulting in the power trans-

mission (and thus photodetector voltage) also being modulated by fm. By mixing the

photodetector voltage with a reference frequency fr, we obtain new signals at fs ± fr.

By applying a low-pass filter after the mixing, only when fs ∼ fr do we get signal above

noise.

5.4.1 Atmospheric Measurements

Using the optical setup in Section 5.1, optomechanical coupling between optical ring

resonators and SRNBs was detected at room temperature and pressure. The HF2LI

picked up broad noise peaks in the MHz range on the blue detuned side of 2 optical

resonances, shown in Fig. 5.10. Each optical resonance corresponded to a distinct SRNB

geometry. The ∼ 9 MHz and ∼ 13 MHz resonances were found on devices D6i and D5i,

respectively. From fitting the noise spectra of Fig. 5.10 to Cauchy distributions (Fig.

(a) L = 20 µm, δx = 500 nm, Rcurv = 50 µm (b) L = 16 µm, δx = 300 nm, Rcurv = 32 µm

Figure 5.10: Raw optomechanical signals from the Zurich HF2LI for OB5-D5i and
OB5-D6i, respectively
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5.11), we get:

Table 5.6: SRNB Parameters, and Measured

Device L δx Rcurv fm (MHz) Qatm

OB5-D5i 16 µm 300 nm 32 µm 13.39± 0.03 20.5± 5.5

OB5-D6i 20 µm 500 nm 50 µm 8.93± 0.02 15.9± 2.6

The low Qs are expected. In Section 2.2.2.2, we obtain:

Qm ≈ 1.85 ·
[

f

1 MHz

]
·
[

1.01× 105 Pa

P

][
t

100 nm

]
(2.104)

for room temperature. From SEM images taken of the OB5 sample, the approximate

post-release width of the SRNBs was ∼ 75 nm. From Eq. 2.104, this leads to estimated

atmospheric Qs of 18.5 and 12.4 for D5i and D6i respectively. The measured Qs agreed

quite reasonably with these predictions.

Figure 5.11: OB5-D6i optomechanical signal
taken at atmospheric pressure. Fit to a Cauchy
Distribution gives Qm = 15.9± 2.6

Figure 5.12: SEM image of an SRNB
from OB5-D5 array, giving an approx-
imate width of 75 nm.
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As discussed in App. A, the D5 ring array is special in that it the only set with

δx = 300 nm instead of 500 nm. This means its the length of its snap-release section is

12.7 µm long instead of 16.0 µm. As such, we use the generalized stress-release equation:

∆σ =
1

6
E

δx

Rcurv

LSR
L

(2.51)

where LSR is the length of the snap release region, and L is the total length. Along with

our derived equation for the fundamental frequency (from Section 2.2.1.3):

f1 =
1

2L

(σ −∆σ

ρ

)1/2
[

1−
(w
L

)√ E

3 (σ −∆σ)

]−1

(2.55)

we are able to compare our measured frequencies with predictions:

Table 5.7: Comparison of measured frequencies to model values

OB5-D5i OB5-D6i

σ0 = 1140 MPa 16.65 MHz 11.95 MHz

σ0 = 830 MPa 13.27 MHz 8.91 MHz

Measured 13.39 MHz 8.93 MHz

We see immediately that our estimated frequencies are over 25% higher than measured

when assuming an initial stress of 1140 MPa. However, our values agree very well if we

assume an initial stress of 830 MPa. This value is more consistent literature values of

stress in LPCVD Si3N4 [67, 24, 20]. It is most likely the case that the quoted value of

1140 MPa corresponds to a thin film stress measurement, and our thicker Si3N4 layer has

less stress.
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(a) Each sample is encapsulated in the metal struc-
ture, with transparent glass windows on each side.

(b) The metal chamber is connected to a vacuum
pump for controlling the pressure.

Figure 5.13: Image of the optical setup at Leiden University. It is functionally equiv-
alent to Fig. 5.1, but high magnification lens are used to focus the laser source light
onto the input facet, as well as collimate light from the drop port onto the photodiode.

5.4.2 Vacuum Measurements

Following measurement of the low Qm values in the previous section, two strategies

were taken to measure Qm at low pressures. The first was the vacuum wafer bonding

process discussed in Chapter 4, which at this time has not successfully led to low-pressure

Qm measurements. The second method involves the more conventional strategy of align-

ing the sample in a vacuum system. Images of the design, built at Leiden University

by Wolfgang Löffler, are shown above in Fig. 5.13. The vacuum apparatus consists of

a machined metal chamber with hermetically sealed glass windows (Fig. 5.13a), and a

vacuum pump connected to the chamber. Besides these differences, the setup is func-

tionally equivalent to the setup shown in Fig. 5.1, but with the lensed fibers replaced by

actual lens (microscope objectives).
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Figure 5.14: Measurement of the optomechanical interaction as a function of pressure,
obtained using the vacuum setup shown on the previous page. This data is collected
on device OB19B-D6e (fabricated April 26, 2018).

Measurements of optomechanical coupling for varying environmental pressure are

shown in Fig. 5.14. As expected, Qm shows a strong dependence on pressure. The

change in resonance frequency as a function of pressure does not correspond to the

damped frequency ω2 = ω2
0(1 − 1

4Q2 ), though it is in the right direction. Although the

cause is unknown, this is a commonly observed dependency with Si3N4 nanomechanical

resonators.

The data in Fig. 5.14 is collected from sample Outside Bridge 19B, device D6e

(fabricated April 26, 2018). SEM images of the exact device suggest the width of the

SRNB is approximately 100 nm. Using the estimated stress of 830 MPa, the frequency

predicted by Eq. 2.55 would match the measured values for an SRNB width of 110 nm,

which would certainly fall within the resolution error of the SEM.
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Figure 5.15: Measured Q values as a function of gauge pressure. Fitting the data to
Eq. 5.1 estimates the mechancal quality factor to be Qmech = 39300± 500, with the
predicted Qm at atmosphere to be Qatm = 14.4± 0.9.

As discussed at the end of in Section 2.2.2.2, we expect the measured qualtiy factor

Qm as a function of pressure to behave as:

Qm =

(
1

Qmech
+

1

Qatm

[
P

1 bar

])−1

(5.1)

where Qmech is the intrinsic quality factor of the SRNB and Qatm is the measured quality

factor at atmospheric temperature and pressure. Fitting the OB19B data (Fig. 5.1)

yields Qmech = 39300 ± 500 and Qatm = 14.4 ± 0.9. The Qatm is consistent with the

predictions of Section 2.102, as well as the atmospheric results from the previous section.

In Section 2.2.2.1, our model eventually predicted the intrinsic quality factor Qmech

would be given by:

Qmech =

[
(jπ)2

( Ls
L− 2Ls

)2
+ 2

Ls
L− 2Ls

]−1

Q′Si3N4
(2.100)
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where Q′Si3N4
≈ 8500. Assuming a final stress of σ = 830 MPa - 470 MPa = 360 MPa, and

a width of 100 nm, Eq. 2.100 predictsQmech ≈ 9.5·Q′Si3N4
≈ 80000. This is approximately

a factor of 2 larger than our measured Qmech. The most likely cause of the deviation is

surface roughness on the sides of our SRNBs, though more data is necessary before being

able to make any definitive conclusions.
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Conclusion

The groundwork has been laid for a fully-integrated optomechanical system, combin-

ing the established platform of optical ring resonators with our novel ‘snap-release’

nanobeams. The framework for predicting the behavior of each component of the system

is established in Chapter 2. This includes FEM simulations and an analytic model for

predicting mechanical parameters, as well as photonic simulations for the optical and

optomechanical parameters. The characterization of a complete fabrication process is

presented in Chapter 3. Finally, in Chapter 5, we present preliminary results demon-

strating the viability of both the fabrication process and the predictive models.

With the exception of the intrinsic quality factor from the vacuum sample, which

was off by a factor of 2, the measured physical properties of the SRNBs were in strong

agreement with the stress-release model presented in Section 2.2.1.4, assuming an initial

stress in the material of σ0 = 830 MPa. The agreement with the model is significant in

that it suggests the SRNBs are well-behaved with respect to the ‘snap-release’ mechanism.

That is to say, there do not to be any catastrophic consequences for releasing the stress

in this manner.

With a working model to understand the system to high-precision, it is already pos-

sible to imagine applications for such an integrated design. To start, parametric modi-

fication of the nanobeams can give you important information about the material itself,

such as the tensile stress, film density, and Young’s Modulus. Standard methods for
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obtaining these values include the fabrication of released microsctructures and fitting to

models. However, here we are probing the effect of Young’s modulus in the most direct

way possible - by modifying the length of the material itself. And since we are using

an integrated photonic design, we can fabricate 100s of SRNBs on a single sample, and

move waveguide to waveguide collecting the frequency of each SRNB (with an average

alignment time on the order of a minute when moving between adjacent waveguides).

Beyond measuring its own properties, released SRNBs can potentially be utilized

as sensors. For example, one can imagine 2 ring/SRNB systems coupled to the same

waveguide in such a way that the SRNBs oscillate perpendicular to each other. In this

configuration each SRNB can act as an accelerometer, with the position of each SRNB

shifting the resonance frequency of its respective ring as accelerating forces displace

each beam. Thus, from a single optical waveguide one can sense acceleration along 2

orthogonal directions through simple monitoring of near-resonant signals.

In any case, it is clear that this project is still in its infancy. There are still many

things to understand about the system, and many avenues towards improving the fab-

rication process. Nevertheless, the preliminary results give cause for optimism of this

new design. With further optimization, this integrated system could join the list of cav-

ity optomechanical devices capable of probing the quantum mechanics of macroscopic

objects.
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Appendix A

Organization of ThickRings v2 Mask

The mask consists of 36 sets of 12 resonators, organized in a 6 × 6 array. Each set is

identified by a letter (column) and number (row), with A1 corresponding to the upper

left set. Individual resonators within a set are designated by a lowercase letter, ‘a’–‘l’,

with ‘a’ being the first ring from the left. As such E4 would correspond to the device set

in the 4th row of the 5th column of the mask, and E4d would be the fourth resonator

within that set.

A.1 Primary Devices: Columns A,B,C,D,E

The first 4 columns, A–D, follow a strict structure. Column E varies slightly:

• Each column corresponds to ring resonators of a specific radius. The radii are

16 µm(A), 20 µm(B), 24 µm(C), 32 µm(D), and 40 µm(E).

• Row 1 consists of rings with no optomechanical coupling region. They represent

the base case for us to compare to the effects of each implemented optomechanical

coupling region.
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• Rows 2–4 correspond to different splits between each ring resonator and a flat me-

chanical structure. The coupling splits (and row numbers) are 300 nm(2), 400 nm(3),

and 500 nm(4).

• Rows 5 and 6 have ‘curved coupling regions,’ designed so that release of the me-

chanical structure allows the tensile stress to bring the mechanical structure closer

to the ring resonator. Row 5 corresponds to a radius of curvature of 32 µm , which

has a minimum bridge length of 16 µm (≈ 13 MHz). Row 6 corresponds to a radius

of curvature of 50 µm, which has a minimum bridge length of 20 µm (≈ 9MHz).

• Within every set of rings, the only varying parameters are the optical coupling

splits and the thickness of the ring waveguides.

• Within each 12 ring set, only the ring waveguide thickness and coupling split vary.

The ring radius and mechanical structure and coupling remain the same. This table

shows the coupling split and ring thickness pattern within each set of rings:

Ring Waveguide Thickness

Coupling Split 800 nm 1000 nm 1200 nm

300 nm a e i

400 nm b f j

500 nm c g k

600 nm d h l
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A.2 Extra Devices: Columns 6

The 6th column, F, does not follow the previous rules. Column F is meant to allow

for comparison between variations in the electron beam lithography. As such, it primarily

consists of rings with identical parameters. The general rules for column F are as follows:

• F1–F3 have rings with radii of 16 µm. F4–F6 have rings with radii of 24 µm.

• F1 is identical to A2. F4 is identical to C2. (For these two rows, each ring is

actually distinct.)

• F2 and F5 are similar to rows A6 and C6, but the thickness of every ring waveguide

is 800 nm. Hence, the following triplets are of identical rings: (a, e, i), (b, f, j),

(c, g, k), and (d, h, l), with their respective coupling splits being 300 nm, 400 nm,

500 nm, and 600 nm.

• Every resonator in F3 is identical to A6b, and every resonator in F6 is identical to

C6b. That is, each has a thickness of 800 nm and a coupling split of 400 nm.
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